Все то, чего достигает наша сложно устроенная система органов дыхания, это проникновение молекул кислорода через границу, которая отделяет окружающую среду от тканей. Куда же кислород поступает оттуда?
У одноклеточного организма сложностей не возникает. Как только молекулы кислорода пересекают оболочку, они оказываются внутри клетки, где вещества, составляющие клеточное содержимое, набрасываются на них. Даже если мы имеем дело более чем с одной клеткой, этот процесс иногда столь же прост. Если каждая клетка в равной степени подвержена воздействию окружающей среды (обычно это океан, иногда — пресная вода), каждая получает свою порцию кислорода непосредственно с помощью диффузии. Сравнительно большие организмы могут существовать таким образом при условии, что каждая клетка имеет собственный «океанический фронт». Это означает, однако, что такой организм может быть не более чем двумерным. Медузы и ленточные черви относятся к самым длинным животным организмам из существующих, которые все еще зависят только от диффузии кислорода. Колокол (купол) медузы состоит из тонкого внешнего слоя клеток, внутри имеет неживое желеобразное вещество, в то время как ее длинные щупальца настолько тонкие, что ни одна клетка не располагается вдали от океана. Что же касается ленточных червей, по своему строению они походят на ленту, как следует из их названия: длинные и широкие, но плоские.
Для того чтобы построить трехмерную клеточную структуру, некоторые клетки должны довольствоваться тем, что будут спрятаны внутри, отрезаны от океана слоями других клеток. Как же эти внутренние клетки получают свой кислород? Они не могут полагаться на диффузию через испытывающие нехватку кислорода клетки, что лежат между источником кислорода и ними. Решение было найдено много сотен миллионов лет назад, когда некоторые примитивные червеобразные существа «отщипнули» кусочек океана, по сути дела сохранив его внутри структуры собственного организма. Таким образом появился «внутренний океанический фронт», который со временем стал гораздо более важным, чем изначальный внешний. В конце концов абсорбция кислорода из окружающей среды была ограничена небольшим специализированным отделом тела, как я уже объяснял в предыдущей главе. Кислород диффундирует через этот отдел и попадает во внутреннюю жидкость — кровь.
Для относительно небольших и простых организмов существование крови достаточно само по себе. Она может находиться в относительно сложных разветвленных каналах таким образом, что все клетки будут рядом с жидкостью. Кислород, поступающий в кровь, будет диффундировать во все части тела, а из крови — в каждую клетку. Процесс диффузии может охватывать относительно большие расстояния, но не может осуществляться через слои кислородпоглощающих клеток. Каждая клетка должна честно получить свою долю.
Но когда организм становится больше и сложнее, простой диффузией не обойтись. Продолжительность процесса диффузии такова, что части тела, находящиеся слишком далеко от областей поглощения кислорода, могут испытывать кислородное голодание. Возникает необходимость заменить стоячую заводь, скажем, на бегущий поток, который будет активно доставлять кислород к клеткам. Тогда отпадает необходимость полагаться на слепые, беспорядочные и довольно медлительные силы диффузии. Поток приведет в движение насос в форме полой мышцы, которая, расширяясь и сжимаясь, будет всасывать кровь, а затем с силой выбрасывать ее наружу. Этот насос — сердце. Когда кровь выталкивается из сердца под большим давлением, ткани нельзя подвергать прямому удару без повреждений. Следовательно, кровь, покидающая сердце, должна находиться в мускульных трубках (кровеносных сосудах), которые поглотят толчок и, разветвляясь, в конечном счете разнесут кровь к каждой части тела.
У некоторых форм нехордовых кровь возвращается к сердцу, просачиваясь вокруг клеток. Однако это медленный процесс, и цикл замедлен до такой степени, что для больших и сложных организмов просто неприемлем. У хордовых (и у отдельных нехордовых) кровь проходит по кровеносным сосудам повсюду, как от сердца, так и назад к нему. Кровь циркулирует по замкнутому кругу таким образом, что сердце, кровеносные сосуды и кровь составляют то, что называется системой кровообращения. (В действительности эта система не совсем замкнутая. Существует нечто вроде утечки, но об этом в следующей главе.)
Строение сердца у разных групп организмов различное, и неудивительно, что более сложное оно у более сложных существ. Нехордовые, такие, как земляные черви, имеют замкнутую систему кровообращения, и в такой системе часть одного из кровеносных сосудов сокращающаяся. Волна циклических сокращений проходит по всей его длине, проталкивая кровь вперед. Такое простейшее сердце, всего лишь пульсирующий сосуд, также можно найти у примитивных хордовых, таких, как ланцетник. У позвоночных, однако, пульсирующий сосуд расширяется, образуя несколько полых камер. Увеличив свой объем, насос способен лучше перекачивать кровь, точно так же, как вы сможете ударить сильнее, если перед этим сделаете глубокий вдох. Увеличившемуся в объеме насосу, естественно, требуется мышечная стенка гораздо более толстая и сильная, чем стенка любого кровеносного сосуда.
У рыб сердце состоит из двух главных камер. Передняя камера — это предсердие, или атриум (от латинского «преддверие», или «прихожая», поскольку она служит входом для следующей камеры с более мускулистыми стенками). Предсердие сокращается и посылает кровь в заднюю камеру, которая называется желудочек. Предсердие служит своего рода хранилищем крови, собирая ее из входящих кровеносных сосудов, а затем выталкивая в желудочек, который под действием внезапного растягивания мышц, способствующих всасыванию крови, отвечает особенно мощным сокращением. Когда желудочек сокращается, кровь с силой выбрасывается в кровеносные сосуды, которые ведут ко всем органам организма. Кровь несет кислород, используемый клетками, между которыми она проходит так, что к тому времени, когда возвращается в предсердие, содержание в ней кислорода фактически должно быть нулевым. Но оно не нулевое благодаря жабрам. Кровеносные сосуды подходят к жабрам и там собирают кислород. Богатая кислородом кровь из жабр смешивается с кровью, бедной кислородом, из оставшихся органов, и та кровь, которая содержится в большинстве сосудов, — это смесь того и другого — как говорится, на удивление богатая кислородом кровь.
Это вполне подходит для рыб, но ранние формы наземной жизни, обзаведясь легкими, начали отделять систему циркуляции воздуха от всего остального. Сердце амфибий имеет два предсердия. Сосуды, приносящие из легких кровь, богатую кислородом, входят в одно предсердие, а сосуды, несущие кровь из остальных органов организма (бедную кислородом), входят в другое. Сокращающийся желудочек затем поочередно решает две задачи: посылает бедную кислородом кровь в легкие за добавочной порцией кислорода, а затем кровь, обогащенную кислородом, отправляет к остальным органам тела. Процесс смешивания двух типов крови был сокращен, но не устранен полностью.
У рептилий желудочек находится на пути разделения на две части, и этот финальный этап доведен до завершения у птиц и млекопитающих. Последние, будучи теплокровными, используют кислород с огромной скоростью, и эффективность просто не может не повышаться. У птиц и млекопитающих (включая и нас с вами, конечно) сердце четырехкамерное и состоит из двух предсердий и двух желудочков. На самом деле это двойной насос, объединенный в один орган и очень тщательно синхронизированный. Вся кровь проходит по очереди через каждый из насосов. Насос под номером один посылает ее в легкие где она собирает кислород. Богатая кислородом кровь возвращается в насос под номером два. Она совсем не смешивается с кровью, бедной кислородом, но появляется из насоса под номером два обогащенной кислородом и несет свой богатый запас кислорода к оставшимся органам тела. При этом она теряет кислород и по возвращении в насос номер один снова отправляется к легким. И таким образом цикл продолжается.
Но теперь давайте обратимся к человеку.
Человеческое сердце — это орган конической формы, длиной около 5 дюймов и шириной 3,5 дюйма, или, грубо говоря, размером с кулак человека. Оно весит около 10 унций у взрослых мужчин и 8 унций у женщин. Располагается оно в грудной полости, сразу за грудиной и между легкими. Хотя сердце и располагается посередине, его оси симметрии не вертикальны. Острие конуса наклонено влево. Это острие высовывается из-за грудины, и именно в этом месте можно легко обнаружить биение сердца на ощупь или же его услышать. Именно это дает не искушенным в медицине людям ошибочное представление о том, что сердце находится далеко слева.
Сердце — это, по существу, большая мышца, которая по своей природе не является ни скелетной, ни висцеральной, а занимает промежуточное место между ними; поэтому его можно отнести к классу сердечных мышц. Сердечная мышца должна иметь надежность и силу сокращения скелетной мышцы. Однако в отличие от обычных полосатых мышц сердечная мышца находится полностью под непроизвольным контролем. В этом отношении она напоминает висцеральную мышцу. Сердечная мышца отличается от скелетной мышцы также тем, что клетки, составляющие ее, не разделены, а соединены в различных местах. Такие скопления клеток называются синцитий (что по-гречески означает «клетки вместе»). Сердце состоит из двух синцитиев, один из которых образует два желудочка, а другой — два предсердия. Существование этих синцитиев обеспечивает действие сердечной мышцы как единого целого; и для сердца, как ни для какого другого органа, важна точная синхронизация действий.
Сердце, подобно легким, окружено многослойной оболочкой. Это перикард (что по-гречески значит «вокруг сердца»), присоединенный к грудине спереди и диафрагме внизу, внутренняя же его часть примыкает к сердцу. Между этими двумя оболочками находится жидкость, и когда сердце бьется, то оно сдвигается по отношению к грудине и диафрагме, а эта жидкость служит смазкой, призванной уменьшить трение.
Давайте начнем описание системы кровообращения человека с правого предсердия. По-латыни предсердие человека обычно называется auricula (в переводе — «ушко»), поскольку кажется, что оно свисает с верхней части сердца, подобно собачьему висячему уху, хотя анатомы предпочитают термин «атриум». Кровь попадает в правое предсердие, после того как прошла через все органы тела, поэтому фактически не содержит кислорода; первая задача сердца — постараться исправить такое положение. Следовательно, запускается эффективный механизм.
Между правым предсердием и правым желудочком находятся три маленьких выступа, или заостренных лоскутка ткани, — створки. Они соединены связками с маленькими папиллярными (сосковидными или прыщевидными) мышцами, прикрепленными к внутренней стороне желудочка. Эти створки складываются на этих связках в обратном направлении и не препятствуют потоку крови, продвигающемуся в направлении к ушку. Следовательно, по мере того как кровь входит в ушко, она вливается, минуя эти самые створки, также и в желудочек. К тому времени, как предсердие заполняется кровью, желудочек тоже заполнен.
Когда правое предсердие заполнено, его мышечная оболочка сокращается, и содержимое добавляется, минуя створки, к тому, что уже там находилось. Расширенные мышечные стенки желудочка в результате этого наплыва крови начинают сокращаться особенно сильно. Когда это происходит, первая волна крови, направленная в ушко, крепко прижимает тканевые створки к отверстию, накрепко запечатывая его. Теперь кровь не может протолкнуться через створки и в другом направлении, поскольку связки крепко удерживают их, сдерживая натиск потока крови. Другими словами, кровь может проходить из предсердия в желудочек, минуя эти створки, но не наоборот. Эти створки образуют односторонний клапан, тот самый, который называют трехстворчатым клапаном. В сердце, как и в системе кровообращения, много других клапанов, все работают по тому же принципу, и строение всех обеспечивает ток крови только в одном направлении. Поскольку кровь из сокращающегося желудочка не может быть вытолкнута назад в предсердие, она вынуждена просачиваться через другое отверстие, имеющееся в желудочке. Через это отверстие она выливается в большой кровеносный сосуд, ведущий к легким.
Сердце в разрезе
Стенка правого желудочка по мускульной силе превосходит стенку правого предсердия, поскольку предсердию нужно только протиснуть кровь в соседнюю камеру, а желудочек должен заставить ее двигаться к легким. Для этого требуется гораздо большее усилие.
Кровеносный сосуд, получающий кровь из желудочка и ведущий ее от сердца к другим органам, — это артерия (от греческого «воздушный канал»). Такое название было дано сосудам, потому что, как оказалось, у мертвых они пустые, и поэтому древние анатомы решили, что сосуды эти переносят воздух. Стенки артерий мускульные и эластичные. Как только кровь устремляется в артерию, мышечная стенка расширяется, чтобы вместить неожиданный наплыв крови. Как и в случае с самим желудочком, расширение следует за сокращением. В устьях артерий имеются полулунные клапаны (со створками, как следует из названия, в форме полумесяца). Они дают возможность крови войти в сосуд, но не позволяют вернуться назад. Сокращающаяся артерия может, таким образом, проталкивать кровь только в одном направлении — все дальше и дальше от сердца.
Кровь ударяется о стенки артерии, когда толчками выталкивается из желудочка, и распределяется по всей ее длине. Эти толчки можно прощупать в тех местах, где артерия проходит под кожей. Самое удобное место для измерения пульса (в переводе с латинского «биение») на запястье, под ладонью, именно там он традиционно и измеряется. Биение пульса конечно же синхронно совпадает с биением сердца[14], и в дни, когда лекарь мало что мог сделать, кроме как проверить наиболее очевидную работу органов тела, измерение пульса было важным диагностическим приемом. Теперь гораздо больше выводов о работе самого сердца можно сделать с помощью более надежных методов, чем определение пульса на ощупь, поэтому измерение пульса в наше время не столь важно.
Та самая артерия, которая принимает кровь из правого желудочка и несет ее к легким, — это легочная артерия. Легочная артерия разделяется на две, одно ее ответвление ведет к правому легкому, другое — к левому. Эти артерии продолжают разделяться, образуя ветви с сосудами, которые становятся все тоньше и тоньше, стенки их тоже постепенно утончаются. Самые маленькие артерии — артериолы — в конце концов разделяются на капилляры (что в переводе с латинского означает «подобный волосу». Они названы так из-за своей малой толщины — в действительности они гораздо тоньше волоса). Такое ветвление сосудов аналогично ветвлению бронхов на бронхиолы, а затем на альвеолы.
Стенки капилляров состоят из одного слоя плоских клеток, через которые легко осуществляется диффузия небольших молекул. Капилляры, на которые разветвляются артерии, почти столь же многочисленны, как и альвеолы, на которые разделяются бронхи, и действительно, вдоль каждой альвеолы располагается участок капилляра. Молекулы кислорода, проникающие через мембрану альвеолы, также проникают через стенку капилляра и оказываются увлеченными кровотоком. Кровь, которая входит в капилляры легких, испытывая дефицит кислорода, выходит из тех же самых капилляров обогащенной кислородом.
Постепенно капилляры начинают соединяться в несколько большие сосуды, затем — в еще большие. Такие большие кровеносные сосуды, несущие кровь из органов назад к сердцу, — это вены. Самые маленькие из них — это венулы. К тому времени, когда кровь оказывается в венах, толчки сердечного насоса больше нельзя почувствовать. Они полностью гасятся при трении крови о стенки многочисленных капилляров. Следовательно, в венах кровь течет гораздо медленнее и гораздо ровнее, чем в артериях. Поэтому, если вена перерезана, кровь вытекает из нее обильно, но равномерно. Из пореза артерии кровь фонтанирует рывками, в унисон с биением сердца. Артериальное кровотечение гораздо труднее остановить, и оно гораздо опаснее, чем венозное.
Поскольку венам не приходится смягчать удар сердечных сокращений, их стенки гораздо тоньше, чем стенки артерий, и не обладают большой мускульной силой. То, что они не используют нагнетательного действия, означает, что кровь в венах продвигается вперед не под непосредственным действием сердечной деятельности. Вместо этого ее движущая сила — сжатие соседними мышцами по мере их сокращений и расслаблений в процессе нормальной деятельности. Многие из больших вен имеют несколько односторонних клапанов, расположенных по всей длине (особенно вены, которые должны нести кровь к сердцу вопреки силе гравитации), и эти клапаны позволяют крови продвигаться только в одном направлении — к сердцу.
Та вена, в которую в конце концов объединяются капилляры и венулы легких, называется легочной веной. Эта вена несет свежеобогащенную кислородом кровь в левое предсердие, куда она попадает через односторонний клапан. Легочная артерия и легочная вена вместе со всеми меньшими сосудами между ними составляют малый круг кровообращения.
Из левого предсердия обогащенная кислородом кровь проходит в левый желудочек через клапан, состоящий из двух, а не из трех тканевых выступов — створок. Он называется митральным клапаном из-за двух створок, которые, соединяясь вместе, становятся похожими на митру епископа (церемониальный головной убор). Два клапана, трехстворчатый и митральный, называются одним термином — атриовентикулярные (предсердно-желудочковые) клапаны.
Вид спереди
Задачей левого желудочка является доставка крови, с помощью его сокращений, ко всем частям тела, за исключением легких, о которых заботятся правый желудочек и малый круг кровообращения.
Выйдя из левого желудочка, кровь должна идти дальше через гораздо большее количество капилляров, чем кровь, покидающая правый желудочек, которой нужно добраться всего лишь к близлежащим легким. По этой причине, хотя оба желудочка при каждом сокращении перекачивают одинаковое количество крови, левый желудочек должен делать это с усилием, в шесть раз превышающим усилие правого желудочка. Тогда совсем не удивительно, что мышечная стенка левого желудочка в два раза толще стенки правого (еще одна асимметрия сердца).
Сокращение левого желудочка проталкивает кровь через односторонний клапан в аорту (от греческого «подниматься», возможно, потому, что первые несколько дюймов аорты ведут прямо вверх).
Аорта — это самая большая артерия в организме, диаметром у основания чуть больше дюйма. Вначале она идет прямо вверх (восходящая аорта, как я уже сказал), но затем изгибается дорсально (дуга аорты) и продолжает идти вниз (нисходящая аорта) как раз впереди позвоночного столба. Устремляясь вниз, аорта проходит через диафрагму.
От восходящей аорты в точке сразу за ее соединением с левым желудочком отходят две небольшие ветви, ведущие кровь назад к сердцу. Поскольку две эти артерии, подобно короне, окружают сердце, они и называются коронарными артериями. Может показаться удивительным, что сердце не позволяет себе насытиться непосредственно кровью, которую в себя вмещает, но это не так просто. Во-первых, только левая его половина содержит кровь богатую кислородом. Однако как только кровь выходит из сердца, часть ее сразу же возвращается назад, и сердце питается как бы прямо из крана, до того как любой другой орган или ткань получат шанс добраться до крови. С человеческой точки зрения сердце может показаться эгоистичным, но это объяснимый эгоизм: сердцу требуется гораздо больше энергии, чем любому другому органу, и от стабильной и бесперебойной его работы зависят все остальные органы.
Вид сзади
От дуги аорты отделяется брахицефалическая артерия (по-гречески «рука-голова») и устремляется вверх. Она быстро разделяется на четыре основные ветви, что оправдывает ее название. Две из них — это подключичные артерии, поскольку они проходят параллельно этой кости. Подключичные артерии доставляют кровь к рукам. Между двумя подключичными артериями находятся две сонные артерии, по которым кровь проходит вверх по обе стороны шеи[15]. Это название возникло из фокуса, который показывали греческие шарлатаны, — они усыпляли козу, надавливая на сонную артерию и перекрывая таким образом поступление крови к мозгу.
Нисходящая аорта густо разветвляется по мере движения вниз. В области груди находятся бронхиальные артерии. Они ведут к легким, но, в отличие от легочных артерий, не затем, чтобы насытиться кислородом. Они уже несут кислород и служат для того, чтобы доставить к частям легких — бронхам кислород, в котором они нуждаются, но который не могут взять непосредственно из воздуха.
Многочисленные артерии, на которые в своей нижней части благополучно разветвляется аорта, ведут к разным участкам пищеварительного тракта. В их число входят: эзофагальные артерии, которые названы так, потому что ведут к пищеводу — трубке, соединяющей гортань и желудок; брюшные артерии, которые ведут к желудку и другим близлежащим органам; и мезентериальные артерии, ведущие к кишечнику.
Кроме того, имеются межреберные артерии, которые ведут к межреберным мышцам, и поясничные артерии, которые ведут к нижнему отделу позвоночника и мышцам брюшной стенки. Диафрагмальные артерии ведут к диафрагме, а почечные — к почкам, что следует из их названия. (Существуют и другие артерии, но я не буду даже и пытаться перечислить здесь их все.)
Кровеносная система
В области крестца то, что осталось от нисходящей аорты, разделяется на две общие подвздошные артерии. Каждая, в свою очередь, подразделяется на наружную и внутреннюю подвздошную. Две наружные подвздошные артерии питают ноги, а внутренние подвздошные несут кровь к органам таза.
Все эти разнообразные артерии разделяются на артериолы и в конечном счете на капилляры. Капилляры, в свою очередь, объединяются в венулы, а затем в вены. Обычно они возвращают кровь, проходя параллельно соответствующим им артериям, и называются как эти артерии. Таким образом, кровь, которую несет к почкам почечная артерия, возвращается по почечной вене, кровь, которую доставляют к бедрам и нижним конечностям подвздошные артерии, возвращается по подвздошным венам — и так далее.
Интересное исключение состоит в том, что кровь, несомая к шее и голове сонной артерией, возвращается по яремной вене. Яремная вена располагается ближе к поверхности горла, чем сонная артерия (вены обычно располагаются ближе к поверхности, чем артерии, что оправдано, поскольку травма вен менее опасна), и яремная вена, следовательно, знакома среднестатистическому человеку как вена, которая перерезается, когда перерезано горло.
Кровь, возвращаясь через вены из различных органов тела (за исключением легких), попадает в самые большие вены, полые вены, потому что они имеют самую большую полость, или диаметр отверстия. Их две. Вены, идущие от головы, шеи, плеч и предплечий, объединяются и образуют верхнюю полую вену, а вены, идущие от нижней части торса, бедер и нижних конечностей, образуют нижнюю полую вену. Обе полые вены впадают в правое предсердие, кислород из их запаса крови истощается долгим путем через различные органы. Кровь теперь вернулась к исходной точке, с которой я начал описание процесса кровообращения, и готова снова отправляться к легким за очередной порцией кислорода. Отрезок системы кровообращения, идущий через аорту к телу в общем и назад через полые вены, называется большим кругом кровообращения.
Человеческое сердце бьется со скоростью от 60 до 80 ударов в минуту (чуть быстрее одного удара в секунду) в течение всей жизни, которая может продлиться долее века. При каждом ударе сердце выбрасывает около 130 кубических сантиметров крови даже в самых спокойных условиях, поэтому за одну минуту спокойно работающее сердце перекачивает 5 литров крови. За сто лет верной службы оно совершит около 4 миллиардов ударов и перекачает 600 000 тонн крови.
Работа, совершаемая сердцем каждую минуту, эквивалентна подъему веса в 70 фунтов на высоту 1 фут от земли. Это в два раза превышает энергию, которую могут произвести сильные мышцы рук и ног; однако сердце может работать в таком темпе неопределенно долго, в то время как мышцы конечностей, достигнув меньшего, тем не менее быстро устают. Необычная способность сердечной мышцы работать столь усердно и, несмотря на это так неутомимо вызывает особый интерес у физиологов.
Скорость биения сердца частично зависит от размера организма — чем меньше размер, тем быстрее сердцебиение. Так, у женщин сердце бьется на 6–8 ударов быстрее, чем у мужчин. У детей сердце бьется еще быстрее, и при рождении частота ударов может достигать 130 в минуту.
Это относится и к другим млекопитающим, кроме человека. У кролика сердце бьется со скоростью 200 ударов в минуту, а крошечное сердчишко мыши трепещет со скоростью 500 ударов в минуту. Хладнокровные животные, которым требуется гораздо более низкий уровень внутренней химической активности, чем птицам и млекопитающим, существуют с медленным сердцебиением. Сердце лягушки, несмотря на ее небольшой размер, бьется всего 30 раз за минуту в теплую погоду, с падением температуры сердцебиение замедляется. При температуре, близкой к нулевой, скорость сердечных ударов понижается до 6–8 в минуту.
Животные, впадающие в зимнюю спячку, демонстрируют удивительное разнообразие скорости сердечных ударов. У ежа в нормальном состоянии сердце бьется со скоростью 250 ударов в минуту, но в холодную погоду он выживает за счет приостановки деятельности организма, вызванной снижением температуры тела, во время которой частота биения сердца может упасть до 3 ударов в минуту. У животных, которые по размеру превосходят человека, сердцебиение, естественно, медленнее, чем у нас. У буйвола оно 25 ударов в минуту, у слона — 20 ударов. Сердечный ритм у данного организма будет варьироваться в зависимости от уровня его активности. Во время физических упражнений, когда потребность организма в кислороде возрастает, сердце бьется сильнее и чаще. Ускорение сердечной деятельности происходит также при нервном напряжении, страхе или радостном ожидании и волнении. Учащенное сердцебиение при таких обстоятельствах — знакомое явление.
Продолжительные физические нагрузки гипертрофируют сердце, как любую другую мышцу. По этой причине у спортсменов скорость биения сердца при отдыхе ниже, чем у мужчин, ведущих сидячий образ жизни. Сердце спортсмена может совершать не больше 50–60 ударов в минуту. Замедление сердцебиения более чем оправдано тем, что сердце, увеличенное в размерах и укрепленное с помощью физических упражнений, доставляет больше крови за один удар.
Что помогает сердцу сохранять идеальный ритм? Можно подумать, что это происходит благодаря какой-то ритмичной нервной стимуляции, но это не так. Хотя сердце действительно снабжено нервами, которые могут влиять на частоту его биения, они отвечают в первую очередь совсем не за ритм. Это подтверждается тем, что сердце эмбриона в утробе матери начинает биться еще до того, как образуется нервная система, и продолжает биться у экспериментальных животных, даже если нервы перерезать. Сердечная мышца будет сокращаться даже в полной изоляции при условии, что она будет помещена в подходящую жидкость.
Сердечные клетки пропускают ионы калия, но не пропускают ионы натрия. Эти ионы представляют собой заряженные частицы, и при разнице концентрации таких частиц внутри и снаружи клетки создается электрический потенциал, который проходит через клеточную оболочку. Рост и падение этого электрического потенциала по мере того, как ионы проходят через оболочку клетки, вызывает ряд сокращений (впрочем, подробности того, как это происходит, до сих пор не совсем ясны), и ритмичность, с которой движутся ионы, отражается на ритмичности этих сокращений. Это означает, что работа сердца зависит от концентрации различных ионов в крови и что она должна контролироваться в узких пределах. Именно с этим-то и справляется организм; да и сам человек может создать имитацию этого процесса вне организма, используя, как я сказал выше, подходящую жидкость.
Сердце, вынутое из тела, можно сохранить в действующем состоянии (живым и бьющимся), если оно перфундировано в растворе, поддерживающем нужную концентрацию разнообразных ионов. (Под перфузией подразумевается принудительное движение жидкости через кровеносные сосуды, которые в обычном состоянии питают орган.) Первым изобрел жидкость, которая оказалась эффективной для таких целей, английский врач Сидней Рингер, и она до сего времени известна как «раствор Рингера». Биться может не только все сердце целиком, даже часть его будет сокращаться, если перфундирована надлежащим образом. Именно так было обнаружено, что различные отделы сердца сокращаются с разной скоростью. Та часть сердца, что бьется быстрее всех, однако, задает скорость остальным отделам, поскольку каждое повышение и снижение электрического потенциала передается по сердечной мышце из этой части, а остальные отделы сердца вынуждены следовать ей, не имея возможности установить собственную скорость колебаний электрического потенциала. Поэтому та часть, что бьется быстрее остальных, называется сердечным стимулятором, или водителем ритма[16].
В двухкамерном сердце рыб водитель ритма находится в полой вене — sinus venosus. Это расширение на конце вены, ведущей в предсердие. Биение сердца начинается здесь и прогрессирует к предсердию и желудочку.
Полая вена сохраняется у эмбрионов птиц и млекопитающих, но исчезает при рождении. Она сливается в правое предсердие, и ее остатки все еще различимы в виде пучка особых клеток. Поскольку эти клетки представляют собой слияние полой вены и предсердия, они называются синусоатриальный пучок, или сокращенно пучок S-А. Именно пучок S-А является водителем ритма в человеческом сердце. Волна флюктуации (колебаний) электрического потенциала, которая начинается в пучке S-A, распространяется по обоим предсердиям (которые составляет единая слитая клетка, или синцитий — соклетие, как вы, вероятно, помните), так чтобы оба предсердия сокращались одновременно. В месте разделения между предсердиями и желудочками (атриовентрикулярный пучок, или пучок А-V), где заканчивается один синцитий и начинается другой, происходит моментальная пауза. Пучок А-V, однако, вскоре подхватывает волну и направляет ее вдоль желудочков, которые тогда тоже сокращаются одновременно[17].
Если происходит сбой в работе узла А-V, то биение водителя ритма узла S-А не передается желудочку, и это состояние называется блокадой сердца. Это не означает, что желудочки прекращают сокращения. Они продолжают делать это, но только при своей собственной естественной скорости, которая составляет всего около 35 ударов в минуту. Если узел А-V находится в рабочем состоянии, сердце может справиться с этим лучше, чем если происходит сбой в работе узла S-А. Тогда сам узел A-V становится водителем ритма и поддерживает сердцебиение со скоростью 40–50 ударов в минуту.
Иногда, несмотря на существование синцития, сердечная мышца не сокращается с надлежащей синхронностью. Различные тонкие волокна (фибриллы) могут контактировать сами по себе, и в результате стенки предсердия, к примеру, могут начать сжиматься со скоростью 10 раз в секунду. Это мерцание предсердий. Пучок А-V, к счастью, не может воспринимать сокращения с такой скоростью, и в результате общего невнимания предсердия таким образом выражают свой протест. Они вторят сокращению желудочков с собственной скоростью, чего вполне достаточно, чтобы поддерживать жизнь организма. Тем не менее вполне достаточное количество сокращений предсердий теперь действительно проходит через пучок А-V, что впоследствии придает общему сердцебиению пугающую нерегулярность. В этом случае в качестве лечения прописывают дигиталис[18], действие которого угнетает проводимость пучка А-V. Желудочек тогда менее подвержен воздействию сокращений предсердия, и сердцебиение становится медленнее и регулярнее. Мерцание желудочков более опасно. Когда желудочек начинает быстро сжиматься, кровь не может нагнетаться, и быстро наступает смерть.
Поскольку сердцебиение так сильно зависит от подъема и падения электрического потенциала, неудивительно, что его ритм может нарушаться при стимуляции внешним потенциалом. Собственно говоря, то, что мы называем казнью на электрическом стуле, обычно результат мерцания (фибрилляции) желудочков, вызванного электрическим током, проходящим через тело. Переменный ток 60 герц в секунду, который обычно используется в домашнем хозяйстве, особенно эффективен для возникновения такого мерцания. (Мораль не в том, чтобы не пользоваться электричеством вовсе, скорее в том, чтобы пользоваться им с осторожностью.)
Многое можно сказать о работе сердца, используя специальное устройство, прослеживающее подъем и спад электрического потенциала и измеряющее его прохождение по сердечной мышце. У животных это можно сделать, прикрепив электроды непосредственно к поверхности сердца. У людей, к счастью, ткани проводят электричество, и изменения потенциала, которые связаны с работой сердца, можно определить, соединив соответствующие части поверхности тела с гальванометром.
Такое устройство впервые было создано голландским физиологом В. Эйнтховеном в 1903 году. Он воспользовался очень тонкой кварцевой нитью, посеребренной, чтобы проводила ток. Даже слабые изменения потенциала вызывали заметные отклонения нити, и эти ее движения можно было сфотографировать. В результате получилась электрокардиограмма (что по-гречески означает «запись сердечного электричества»), это слово обычно сокращают как ЭКГ. Обычная ЭКГ состоит из пяти зубцов обозначенных P, Q, R. S и T. Начинается она первым небольшим, направленным вверх зубцом (P), возвышающимся над базовой линией, и он представляет собой движение волны потенциала по предсердию. Прохождение через пучок А-V представлено направленным вниз зубцом Q (чуть ниже базовой линии), направленным вверх зубцом R (резкий, заостренный подъем вверх) и направленным вниз зубцом S (несколько глубже, чем зубец Q). И наконец, зубец T, похожий на зубец P, но выше и шире, представляет собой распространение волны по желудочку. Изменения формы и длины различных волн — полезные симптомы определенных неполадок сердечной деятельности.
До того как появились электрические приборы, существовало ухо, и им до сих пор можно пользоваться, чтобы получить важную информацию. Сердце — шумный орган, как нам всем хорошо известно. Если вы приложите ухо к чьей-то груди, то услышите звуки, похожие на: «луб-дуб — луб-дуб», «луб-дуб — луб-дуб». Эти звуки возникают, когда захлопываются клапаны. Когда желудочек сокращается, трехстворчатый и митральный клапаны закрываются, издавая «луб». Когда желудочек снова расслабляется, полулунные клапаны в аорте и в легочной артерии закрываются со звуком «дуб». Так «луб-дуб» отмечают начало и конец сокращения, или систолу (по-гречески «сокращение»). Период времени между одним «луб-дуб» и следующим за ним — это релаксация, или диастола (по-гречески «расширение»).
В 1819 году французский врач Рене Лэнек воспользовался короткой деревянной трубочкой, один конец которой приставлялся к груди в области сердца, а другой — к своему уху. Это давало возможность прослушать звуки издаваемые сердцем, у женщин, особенно у полных, не вводя врача в смущение, ведь прежде ему приходилось прикладывать свое ухо прямо к женской груди. Это был первый стетоскоп (что по-гречески означает «осматривать грудь», название, не соответствующее действительности, поскольку это не осмотр, а прослушивание). Постепенно он превратился в современный инструмент, без которого не сможет обойтись ни один уважающий себя врач.
Ценность стетоскопа (который устроен так, что может усиливать и направлять звук) в его способности отмечать легкие отклонения звука, которые указывают на неполадки в работе клапанов. Когда из-за нарушений клапаны не могут надлежащим образом закрываться (из-за рубцов, появившихся в результате болезни, такой, как, например, ревматизм), возникает утечка крови в обратном направлении, или регургитация. Когда такое случается, ясный звук плотно закрывающегося клапана сменяет неясный звук, называемый шумом. Если шумом заменяется звук «луб», регургитация происходит в одном из клапанов А-V, обычно митральном, который, как часть левого желудочка, получает гораздо больший удар. Если шумом заменяется звук «дуб», регургитация возникает в полулунных клапанах, обычно аорты, которые, опять же, получают большую нагрузку.
Не исключена возможность, что клапаны так сильно утолщаются за счет рубцовой ткани, что не могут открываться надлежащим образом. Даже при их самом большом раскрытии отверстие остается ненормально узким. Это стеноз (что по-гречески означает «сужение»). Кровь протекает через отверстие с увеличенной скоростью, польку тот же самый ее объем должен пройти через суженное отверстие за обычный период времени, его скорость должна возрастать, если она вся должна пройти через него. Кровь, пенящаяся вокруг неровной поверхности ткани рубца, также производит шум, но несколько отличающийся по уровню звука. Шум теперь слышен в момент, когда клапаны открыты, то есть перед «луб» или «дуб», указывающими на закрытие клапанов.
Неполадки в работе клапанов не обязательно фатальны и не всегда очень опасны. Они снижают эффективность работы сердца, но обычно не переходят грань, безопасную для организма. Кроме того, сердце может компенсировать их, увеличиваясь в размерах[19].
Мощное сжатие левого желудочка вызывает волну крови, втекающую в аорту со скоростью 40 сантиметров в секунду. Если аорта сужается, скорость движения крови будет возрастать, поскольку тот же объем жидкости должен будет пройти через отверстие меньшего диаметра за данную единицу времени, и единственное, что можно сделать, — это увеличить скорость прохождения. Придерживаясь той же линии рассуждений, приходим к выводу, что скорость будет снижаться, если артерия расширится.
Посмотрев на аорту, проходящую по средней линии организма, вы обнаружите, что диаметр ее невелик, но она дает ответвления для отвода крови. Важна не ширина какого-либо сосуда, а суммарная площадь поперечного сечения его различных ответвлений. По мере того как аорта разделяется и подразделяется, отдельные ее ветви становятся все уже и уже, но суммарная площадь поперечного сечения постоянно возрастает. К тому времени когда кровь проделает свой путь в артериолы, общая площадь поперечного сечения различных сосудов, через которые она проходит, становится в 15–30 раз больше площади поперечного сечения аорты, а кровь течет со скоростью всего 2 сантиметра в секунду.
В капиллярах, которые по отдельности такие тонкие, что их нельзя увидеть без микроскопа, общая площадь поперечного сечения, тем не менее, приблизительно в 750 раз превышает площадь поперечного сечения аорты, а кровь «ползет» со скоростью не более полумиллиметра в секунду. При таком медленном движении кровь капилляров в альвеолах имеет достаточно времени, чтобы насытиться кислородом, проходя по другим тканям, она имеет достаточно времени, чтобы напитать их кислородом. Когда капилляры сливаются в венулы, общая площадь поперечного сечения сосудов уменьшается, и скорость снова увеличивается. Две полые вены, взятые вместе, имеют площадь, в четыре раза превышающую площадь аорты, поэтому кровь снова входит в правое предсердие со скоростью около 10 сантиметров в секунду.
Когда кровь с силой выталкивается в аорту, она оказывает на ее стенки давление, которое называется кровяное давление. Это давление измеряется устройством, называемым сфигмоманометр (что по-гречески означает «измерять давление пульса»), прибором, который вместе со стетоскопом определенно является любимцем любого практикующего врача. Сфигмоманометр состоит из плоского резинового мешка 5 дюймов шириной и 8 дюймов длиной. Он находится в манжете, которой можно туго обернуть плечо, сразу над локтем. Внутрь резинового мешка накачивается воздух с помощью небольшой резиновой груши, снабженной односторонним клапаном. По мере накачивания резинового мешка давление внутри его возрастает. Оно измеряется небольшим ртутным манометром, с которым внутренняя часть мешка соединяется с помощью второй трубки.
Когда мешок накачивается, плечо сжимается до тех пор пока в один момент давление мешка на руку не сравняется с давлением крови. В этот момент главная артерия руки туго сдавлена, и пульсация в предплечье (где врач слушает ее с помощью стетоскопа) прекращается.
Теперь воздух выпускается из мешка, и по мере его выхода уровень ртутного манометра падает, и кровь начинает проходить через постепенно освобождающуюся артерию. Тот, кто измеряет кровяное давление, может теперь слышать первые слабые удары, и показания манометра в этот момент считаются показаниями систолического давления, поскольку эти первые удары можно услышать во время систолы, когда давление крови наивысшее. По мере выхода воздуха из резинового мешка и снижения уровня ртути наступает характерная пульсация, которая служит показателем диастолического давления, давления, когда сердце расслабляется.
Кровяное давление в отличие от скорости сердцебиения примерно одинаково у всех теплокровных животных, независимо от их размера. Систолическое давление — где-то в пределах от 110 до 115 миллиметров ртутного столба, а диастолическое — около 80 миллиметров ртутного столба. (Атмосферное давление обычно 760 миллиметров ртутного столба, поэтому систолическое давление от 0,15 до 0,20 атмосферы, в то время как диастолическое давление — около 0,10 атмосферы.)
Кровяное давление не постоянный показатель. Оно изменяется с возрастом. У новорожденного младенца систолическое давление не больше 40 миллиметров ртутного столба, оно повышается до 80 миллиметров к концу первого месяца жизни, затем продолжает расти гораздо медленнее, достигая 100 миллиметров в начале подросткового возраста и 120 миллиметров в конце подросткового возраста. В пожилом возрасте наблюдается постоянный рост давления. В возрасте 60 лет вполне нормальным[20] считается кровяное давление, если систолическое составляет 135, а диастолическое 90. Физические нагрузки и нервное напряжение также повышают кровяное давление, что кажется логичным. Когда организму требуется больше кислорода, сердце вследствие этого бьется быстрее и сильнее, значит, и давление крови на стенки артерий будет возрастать. Систолическое давление выше 180 или 200 миллиметров ртутного столба не будет необычным или причиняющим беспокойство как временное явление[21].
Эластичность артерий имеет тенденцию снижать систолическое давление, поскольку, когда они выпячиваются, чтобы получить приток крови, получается больше пространства для помещения крови, и раздвинувшиеся стенки испытывают меньший толчок. Однако с возрастом артерии теряют эластичность, так как на их стенках откладываются соли кальция, иногда превращая их в преклонном возрасте в трубки, твердые, почти как кости. Это — артериосклероз (от греческого «затвердение артерий»). При этих условиях систолическое давление повышается, и медленное затвердение артерий может сказаться на росте систолического давления в преклонном возрасте.
Временные изменения кровяного давления могут быть вызваны сокращением артериол, мышечная стенка которых способна совсем перекрывать эти маленькие сосуды. Эта сократительная способность артериол служит благой цели, сдвигая распределение крови так, чтобы оно отвечало изменяющимся потребностям организма. Обычно в состоянии покоя 25 процентов крови проходит через мышцы, а еще 25 процентов — через почки. Кроме того, 15 процентов проходит через область кишечника, а еще 10 процентов — через печень. Далее, 8 процентов проходит через мозг, 4 процента — через кровеносные сосуды, питающие сердце, и 13 процентов — через легкие и остальные органы тела.
При неожиданном испуге, например, важно, чтобы была обеспечена хорошая подача крови к легким, сердцу и мышцам. Область кишечника при этом может временно обойтись без нее, для медленного процесса переваривания будет достаточно времени после того, как минует критическое состояние. Посредством сжатия соответствующих артериол кишечник лишается некоторой части крови, которая затем распределяется в более важных областях.
Более демонстративное проявление изменений распределения крови можно рассмотреть на примере кожи. Кожа хорошо снабжена кровеносными сосудами, не только для того, чтобы подпитывать свои клетки, но и для переноса тепла из внутренних частей организма к поверхности, где оно может излучаться в атмосферу. В теплые дни, особенно при влажной погоде или когда усиление мышечной активности производит больше тепла, чем обычно, сосуды кожи расслабляются. Это — вазодилатация (что по-латыни означает «расширение сосудов»). Тогда в коже появляется больше пространства для вмещения большей порции крови, и выделение тепла в атмосферу возрастает. В результате мы заметно краснеем в жаркий душный день или после напряженной работы или игры. Эмоциональные факторы также могут вызвать вазодилатацию сосудов кожи, поэтому мы краснеем от замешательства, смущения, стыда, а иногда и от удовольствия. Но в холодную погоду, когда необходимо сократить потерю тепла в атмосферу, кровеносные сосуды кожи сожмутся (вазоконстрикция), и кожа будет содержать кровь в меньшем, чем обычно, количестве. Тогда мы бледнеем от холода. Эмоции способны вызывать такие же изменения цвета, на этот раз заставляя нас побледнеть от страха или шока.
Большие вены брюшной полости также могут сжиматься, чтобы вмещать меньше крови и таким образом сделать большую часть ее доступной для капилляров мышц и других ключевых органов. Это в первую очередь селезенка, коричнево-красный орган, располагающийся в левой стороне тела, сразу позади желудка. Размером она с сердце, но не так компактна, весит всего 5 или 6 унций. Ее пористая структура служит хранилищем крови. Она может расширяться и вмещать целый литр крови, а при необходимости сжиматься, проталкивает всего лишь 50 миллиметров своего запаса крови в общую систему кровообращения.
Все эти приемы могут быть использованы для изменения объема крови или объема кровеносных сосудов (или того и другого) и таким образом способны изменять кровяное давление, но при нормальных условиях рост кровяного давления — явление временное и предназначается только для удовлетворения временной необходимости. Однако иногда кровяное давление повышается и остается высоким более или менее постоянно. Систолическое давление может достигать 300 миллиметров ртутного столба, диастолическое — 150, обе величины, грубо говоря, вдвое превышают норму. Это — гипертензия (от греческого «растягиваться»), или, говоря простым языком, повышенное кровяное давление. Такое состояние опасно по многим причинам. Оно дает непривычную нагрузку сердцу и артериям, способствуя дегенеративным изменениям в их структуре. Небольшие артерии, поврежденные постоянным высоким давлением на стенки, могут подвергнуться необычному затвердеванию и утратить способность приспосабливаться к высокому давлению, а то и разорваться.
Разрыв артерии в мозгу — это чрезвычайно серьезное явление, поскольку при поражении значительной части мозга результатом может быть паралич или смерть. Несчастная жертва действительно бывает поражена быстро и без предупреждения, поэтому это состояние называется ударом, апоплексией (от греческого «сразить, свалить с ног»), или кровоизлиянием в мозг. Естественно, это чаще происходит в моменты, когда возбуждение или перенапряжение повышают кровяное давление гораздо выше обычного уровня.
Иногда гипертензию вызывают неисправности в механизме, с помощью которого почки контролируют кровяное давление. В этом случае врачи говорят о почечной гипертензии. Зачастую причина ее неизвестна, и тогда ее называют эссенциальной гипертензией; одно из значений слова «эссенциальный» в медицинском словаре — «без известной причины». Синонимом к слову «эссенциальный» в этом смысле будет слово «идиопатический» (от греческого «индивидуальное недомогание»), то есть недомогание, которому нельзя дать общее определение.
Артерии не дегенерируют с возрастом, только затвердевают в результате отложений солей кальция. Еще одно изменение, которое может произойти в среднем возрасте и которое в равной степени катастрофично, — это отложение определенных компонентов жиров на внутренней поверхности артерий. Изначально гладкая внутренняя поверхность стенок становится грубой из-за таких отложений и принимает неправильную форму, которая показалась некоторым исследователям похожей на хлопья вареной овсяной каши. Поэтому это заболевание названо атеросклерозом (что по-гречески значит «кашицеподобное затвердевание»).
Пораженная атеросклерозом артерия опасна по двум причинам. Во-первых, грубая внутренняя поверхность может повредить небольшие тельца крови, функция которых заключается в том, чтобы вызывать ее свертывание. Следовательно, всегда есть вероятность, что в такой артерии будут образовываться сгустки крови. Сгусток может либо рассосаться без последствий после образования, либо перемещаться с кровотоком до тех пор, пока не дойдет до артерии, слишком маленькой, чтобы пройти через нее, — в этом случае он может закупорить сосуд и остановить кровоток в этом месте. Это — тромбоз (от греческого слова «сгусток»). Тромбоз в артериоле головного мозга столь же опасен, как и разрыв сосуда, — может вызвать паралич. Также атеросклеротические отложения сужают просвет артерии, иногда до угрожающих пределов, а также уменьшают ее эластичность. По той и другой причине давление в такой артерии повышается, и кровоснабжение затрудняется.
Коронарные артерии особенно уязвимы при таких изменениях. И это не потому, что коронарные артерии необычайно слабые, а потому, что потребности сердца ненормально высокие, настолько, что грань безопасности сужается.
В то время как большинство органов при обычных условиях используют всего 1/5 объема кислорода, несомого через них кровью, сердце использует 4/5 доступного объема. Другой орган, возможно, и может обойтись меньшей подачей кислорода без особых затруднений, сердце же — не может.
Когда суженная коронарная артерия не способна переносить достаточный объем крови, возникает острая боль в груди. Она может чувствоваться также в местах, удаленных от действительно пораженного органа (отраженная, реперкуссионная боль), — чаще в левом плече и руке. Такое состояние называется грудная жаба. Обычно приступ грудной жабы случается во время работы или в моменты эмоционального напряжения, когда пульс возрастает, а потребность сердца в крови становится явно больше, чем в состоянии доставить суженные коронарные сосуды. Лекарства, такие, как нитроглицерин, иногда используются в этих случаях, поскольку их действие заключается в инициации общей релаксации (расслабления) артерий, что увеличивает подачу крови к сердцу.
В месте, где тромб блокирует одно из ответвлений коронарной артерии, возникает коропарный тромбоз (знакомый всем инфаркт). Он может быстро привести к смерти, но, если заблокированная артерия достаточно мала, отмирает лишь часть сердца, непосредственно питаемая этой артерией. В этом месте образуется зарубцевавшаяся ткань, которая сама по себе не будет угрожать жизни человека, конечно, если условия, вызвавшие тромбоз, исчезнут и не вызовут тромбоз снова, на этот раз более серьезный.
Сосуды иногда становятся ненормально расширенными из-за повреждений стенок. Поврежденное место впоследствии заживляется в растянутом состоянии, вызванном биением крови под высоким давлением. Стенка навсегда остается слабой, выпячивающейся с каждым ударом сердца. Это — аневризма аорты (от греческого слова «широкий»). Опасность заключается в том, что аорта может просто разорваться после какого-нибудь слишком сильного сердечного удара, последствием которого станет смерть.
Вены также могут стать слишком расширенными. При этом повреждающим фактором будет не кровяное давление, которое в венах сравнительно низкое, а сила гравитации. Кровь, возвращающаяся из нижних конечностей в сердце, должна преодолевать силу гравитации, когда человек стоит или сидит. Это движение, преодолевающее силу гравитации, осуществляется обычным мускульным действием, которое подгоняет кровь в сосудах в направлении сердца благодаря односторонним клапанам в венах нижних конечностей. Если случайно возникнет повреждение таких клапанов или они перестанут работать, возникнет серьезное препятствие возврату крови. Кровь собирается в венах, которые раздуваются так, что их диаметр становится в четыре-пять раз больше, и результат — варикозное расширение вен. Такое состояние, естественно, отягощается, если человек ведет малоподвижный образ жизни или ему приходится много времени проводить на ногах.
Разнообразные неполадки в кровеносной системе, которые я перечислил в этой главе, в наши дни приобретают особое значение. В последние десятилетия, когда многие инфекционные заболевания, которые когда-то были смертельным бедствием человечества, излечиваются, различные сбои в системе кровообращения стали основными причинами смерти. Почти миллион людей в год умирает от каких-либо нарушений в сердце или сосудах, а это составляет около 55 процентов всех смертных случаев нации.