Сначала мысль, воплощена
В поэму сжатую поэта,
Как дева юная, темна
Для невнимательного света;
Потом, осмелившись, она
Уже увертлива, речиста,
Со всех сторон своих видна,
Как искушенная жена
В свободной прозе романиста;
Болтунья старая, затем
Она, подъемля крик нахальный,
Плодит в полемике журнальной
Давно уж ведомое всем.
Не претендуя на полноту, я приведу здесь несколько ярких работ, авторы которых рассматривали особенности, бифуркации и катастрофы в системах общего положения, возникающих в различных областях знания.
Каустики встречаются уже у Леонардо да Винчи, название им дал Чирнгаузен.
В 1654 г. Гюйгенс построил теорию эволют и эвольвент плоских кривых, обнаружив одновременно устойчивость точек возврата на каустиках и волновых фронтах (т. е. сборок соответствующих отображений). Перестройки фронтов на плоскости исследовались Лопиталем (около 1700 г.) и Кэли в 1868 г.
Гамильтон в 1837 — 1838 г. применил исследование критических точек семейств функций к изучению особенностей систем лучей в геометрической оптике, вроде конической рефракции и двойного лучепреломления.
Якоби в лекциях по динамике (1866) исследовал каустики системы геодезических эллипсоида, выходящих из одной точки, и обнаружил устойчивость точек возврата на каустиках.
Алгебраические геометры прошлого века хорошо знали типичные особенности кривых (Плюккер) и поверхностей (Сальмон), двойственных гладким. Ласточкин хвост подробно описан Кронекером (1878) и входил в учебники алгебры (Вебер, 1898); его можно найти в каталоге гипсовых поверхностей (Бриль, 1892), имеющихся в кабинетах геометрии старых университетов.
Типичные особенности отображений поверхностей в трехмерное пространство (зонтик Уитни, z2 = ху2, половина которого изображена выше, на рис. 31) исследованы Кэли в 1852 г. Кэли изучал также геометрию семейства эквидистант и каустику трехосного эллипсоида — тем самым "кошелек", изображенный выше, на рис. 39, в. Он явно сформулировал задачу о топологии семейств линий уровня гладкой функции общего положения (1868) и исследовал бифуркации в некоторых типичных трехпараметрических семействах функций двух переменных.
Алгебраические аналоги теорем трансверсальности теории особенностей систематически использовались алгебраическими геометрами, особенно итальянской школы (Бертини, 1882 и др.).
Пуанкаре далеко развил теорию бифуркаций (включая более сложные, чем "бифуркация Хопфа" случаи) в своей диссертации и в "Новых методах небесной механики" (т. I, п. 37, п. 51; т. III, гл. 28 и т. п.).
К сожалению, бесхитростные тексты Пуанкаре трудны для математиков, воспитанных на теории множеств. Пуанкаре сказал бы: "прямая делит плоскость на две полуплоскости" там, где современные математики пишуа просто: "множество классов эквивалентности дополнения [R2 \ R1 к прямой R1 на плоскости R2, определяемых следующим отношением эквивалентности: две точки А, В ∈ R2 \ R1 считаются эквивалентными, если соединяющий их отрезок АВ не пересекает прямую R1, состоит из двух элементов" (цитирую по памяти из школьного учебника).
В книге "Математическое наследство Пуанкаре", изданной Американским математическим обществом, написано даже, что Пуанкаре не знал, что такое многообразие. В действительности определение (вещественного) гладкого многообразия в Analysis Situs Пуанкаре подробно изложено. В современных терминах оно таково: многообразием называется подмногообразие евклидова пространства, рассматриваемое с точностью до диффеоморфизма.
Это простое определение настолько же лучше современных аксиоматических конструкций, насколько определение группы как (рассматриваемой с точностью до изоморфизма) группы преобразований и определение алгоритма, основанное на какой-либо (универсальной) машине Тьюринга, понятнее абстрактных определений.
Абстрактные определения возникают при попытках обобщить "наивные" понятия, сохраняя их основные свойства. Теперь, когда мы знаем, что эти попытки не приводят к реальному расширению круга объектов (для многообразий это установил Уитни, для групп — Кэли, для алгоритмов — Черч), не лучше ли и в преподавании вернуться к "наивным" определениям?
Сам Пуанкаре подробно обсуждает методические преимущества наивных определений окружности и дроби в "Науке и методе": невозможно усвоить правило сложения дробей, не разрезая, хотя бы мысленно,: яблоко или пирог.
В 1931 г. А. А. Андронов выступил с обширной программой, отличающейся от современной программы катастрофистов только тем, что место еще не созданной к тому времени теории особенностей Уитни занимают качественная теория дифференциальных уравнений и теория бифуркаций Пуанкаре. Идеи структурной устойчивости (грубости), коразмерности (степени негрубости), бифуркационные диаграммы, явная классификация бифуркаций общего положения и даже исследование складок и сборок гладких отображений поверхностей на плоскость явно присутствуют в работах А. А. Андронова и его школы.
Физики всегда использовали более или менее эквивалентные теории катастроф построения при исследовании конкретных задач. В термодинамике эти идеи систематически использовались Максвеллом и особенно Гиббсом (1873). Перестройка изотерм диаграммы ван дер Ваальса — типичный пример применения геометрии сборки. Анализ асимптотики в окрестности критической точки быстро приводит к пониманию независимости этой геометрии от точного вида уравнения состояния — факт, хорошо известный со времен Максвелла и упоминаемый в большинстве учебников термодинамики (например, Ландау и Лифшица). Предложение Максвелла провести горизонтальный участок изотермы так, чтобы площади лунок над и под ним были равны, означает переход от одного из двух конкурирующих минимумов потенциала к другому в момент, когда второй становится ниже. Соответствующая бифуркационная диаграмма в теории катастроф называется стратом Максвелла. "Правило фаз" Гиббса доставляет топологические ограничения на строение этой и подобных ей бифуркационных диаграмм (открытие необходимости строго доказывать подобные факты — заслуга математики более позднего периода). Гиббс также явно указал на связь термодинамики с геометрией контактной структуры.
Геологические применения анализа особенностей указаны Скрейнемакерсом (1917).
В теории "теплового взрыва" Семенова (1929) и в работах его последователей по теории горения явно изучались перестройки стационарных режимов при изменении параметров, что приводило к необходимости исследования и складок, и сборок, и более сложных ситуаций. В частности, в работе Я. Б. Зельдовича 1940 г. проанализированы явления, происходящие при морсовской перестройке кривой равновесий на плоскости фазовой переменной и параметра (рождении новых островков или их слиянии с основной кривой). В современной математической теории аналогичный анализ выполнен лишь в последние годы.
Анализ волнового поля вблизи каустики и ее особенностей привел Эйри и Пирси к осциллирующим интегралам, фаза которых доставляет нормальную форму складки и сборки соответственно. В связи с этим стоит отметить, что найденные М. А. Леонтовичем и В. А. Фоком асимптотики поля вблизи границы до сих пор не переварены теорией катастроф.
В теории упругости Койтер в 1945 г. обнаружил полукубическую особенность в зависимости предельной нагрузки от нецентральности ее приложения в задаче о прощелкивании арки. Специалисты по теории упругости использовали геометрию сборки для выбора программ испытаний упругих конструкций, при которых не происходит прощелкивания несмотря на высокие нагрузки.
Вычисления в этих исследованиях обычно проводились без общей теории, за счет правильного отбрасывания одних членов ряда Тейлора и оставления других "наиболее важных". Из физиков, особенно систематически применявших теорию катастроф до ее возникновения, стоит особо выделить Л. Д. Ландау. В его руках искусство отбрасывать "несущественные" члены ряда Тейлора, сохраняя меньшие по величине "физически важные" члены, дало много включаемых в теорию катастроф результатов.
Так, в работе 1943 г. о возникновении турбулентности Ландау прямо выписывает этим методом уравнение "бифуркации Хопфа" для квадрата амплитуды теряющего устойчивость колебания. Теория фазовых переходов второго рода по Ландау сводится к анализу бифуркаций критических точек симметрических функций. Кривые Ландау в теории фейнмановских интегралов, зависящих от параметров, с их устойчивыми точками возврата, включаются в число основных бифуркационных диаграмм современной теории катастроф.
Конечно, современная общая теория позволяет с меньшей затратой сил исследовать более сложные особенности. Однако наибольшую практическую ценность имеют в большинстве случаев именно исследования наиболее простых и часто встречающихся особенностей: затрата сил на преодоление технических трудностей, стоящих на пути исследования более сложных случаев, не всегда оправдывается практической ценностью получаемых результатов. Напротив, фундаментальные работы предшественников теории катастроф (как упомянутых выше, так и многих других) сохраняют все свое значение и теперь, когда их математическая структура вполне выяснена теориями особенностей и бифуркаций.