Работы Тома, Мазера, Морена и др. собраны в сборнике пере водов: Особенности дифференцируемых отображений. — М.: Мир 1968. — 268 с.
Обсуждаемые в предисловии статьи:
Тюрина Г. Н. Топологические свойства изолированных особенностей комплексных пространств коразмерности один // Изв. АН СССР. Сер. мат. — 1968. — Т. 32. — С. 605 — 620.
Nye J. F., Hannay J. Н. The orientation and distortion of caustics in geometrical optics // Optica Acta. — 1984. — V. 31, № 1. — P. 115 — 130.
Чеканов Ю. В. Каустики геометрической оптики // Функцион. анализ и его прил. — 1986. — Т. 20, вып. 3. — С. 66 — 69.
О гипотезе Тома:
Thom R. Topological models in biology // Topology. — 1969. V. 8. — P. 313 — 336.
Guckenheimer J. Bifurcation and Catastrophe // Proc. Internat. Sympos. in Dynamical Systems (Salvador, 1971) / Ed. M. Peixoto. — New York: Academic Press, 1973.
Xeсин Б. А. Бифуркация особых точек градиентных динамических систем // Функцион. анализ и его прил. — 1986. — Т. 20, вып. 3. — С. 94 — 95.
Современные проблемы математики. — М.: ВИНИТИ, 1988. — Т. 33.- С. 113 — 155. — (Итоги науки и техники).
Монтель об особенностях:
Моntеl P. Sur les methodes recentes pour l'etude des singuliarites des fonctions analytiques // Тр. I Всесоюзного съезда математиков (Харьков, 1930). — М.; Л.: ОНТИ НКТП СССР, 1936. — С. 36 — 57.
Обширная библиография имеется в следующих источниках:
Постон Т., Стюарт Й. Теория катастроф и ее приложения.- М.: Мир, 1980. — 608 с.
Арнольд В.И., Варченко А. Н., Гусейн-Заде С. М. Особенности дифференцируемых отображений. Т. I. — М.: Наука, 1982.- 304 с. Т. II. — М,: Наука, 1984. — 336 с.
Zeeman Е. С., B.W.W. 1981 Bibliography on Catastrophe Theory. — Coventry: University of Warwick, 1981. — 73 p.
Арнольд В. И. Особенности систем лучей // Успехи мат. наук. — 1983. — Т. 38, вып. 2. — С. 77 — 147.
Современные проблемы математики. — М.: ВИНИТИ, 1983. — Т. 22. — 244 с. — (Итоги науки и техники); 1988. — Т. 33. — 236 с. — (Итоги науки и техники).
Современные проблемы математики. Фундаментальные направления. — М.: ВИНИТИ, 1986. — Т. 5. — 284 с.; 1988. — Т. 6. — С. 256, 1989. — Т. 39. — С. 256.
Томпсон Дж. М. Т. Неустойчивости и катастрофы в науке и технике. — М.: Мир, 1985. — 256 с.
Первая работа по теории особенностей:
Whitney Н. On singularities of Mappings of Euclidean Spaces I. Mappings of the Plane into the Plane // Ann. Math. — 1955. — V. 62. — P. 374 — 410.
Учебники:
Брёкер Т., Ландер Л. Дифференцируемые ростки и катастрофы. — М.: Мир, 1977. — 208 с.
Голубицкий М., Гийемин В. Устойчивые отображения и их особенности. — М.: Мир, 1977. — 296 с.
Джилмор Р. Теория катастроф для ученых и инженеров. — М.: Мир, 1983.
Брюс Дж., Джиблин П. Кривые и особенности. — М.: Мир, 1988.
Дискуссия о катастрофах:
Thom R. Topological models in biology // Topology. — 1969. — V. 8, № 3. — P. 313 — 335.
Thom R. Stabilite structurelle et morphogenese. — New York: Benjamin, 1972. — 362 p.
Thom R. Catastrophe Theory: Its present state and future perspectives // Dynamical Systems. Warwick, 1974. — Berlin — Heidelberg — New York: Springer-Verlag, 1 — 75. — P. 366 — 372. Lecture Notes Math. V. 468.
Zeeman E. C. Catastrophe theory: a reply to Thom // Loc, cit. P. 373 — 383.
Zeeman E. C. Catastrophe theory: Selected Papers. 1972. — 1977. Addison-Wesley. Reading Mass. 1977.
Guckenheimer J. The Catastrophe Controversy // Math. Intell. 1978. — V. 1. — P. 15 — 20.
Fussbudget H. J., Znarler R. S. Sagasity theory. A. Critique // Math. Intell. — 1979. — V. 2. — P. 56 — 59.
Диссертация Пуанкаре:
Poincare Н. Sur les proprietes des fonctions definies par les equations aux differences partielles Paris.: G. V. 1879, Oeuvres de Henry Poincare, Tome I, Paris: Gauthier — Villars. 1951, XLIX — CXXIX.
Диссертация содержит, между прочим, теорему о версальных деформациях для нульмерных полных пересечений (лемма IV на стр. XI) и метод нормальных форм.
Работы Андропова по теории структурной устойчивости и теории бифуркаций были представлены уже в докладе:
Андронов А. А. Математические проблемы теории автоколебаний // I Всесоюзная конференция по колебаниям. — М.; Л.: ГТТИ, 1933. — С. 32 — 72; Андронов А. А. Соб. соч. М., 1956. — С. 85 — 124).
Его статья 1939 г. (совместная с Е. А. Леонтович) содержит исследование обоих типов бифуркации рождения цикла: локального (цикл рождается из положения равновесия) и нелокального (рождение цикла из петли сепаратрисы). См.:
Андронов А. А., Леонтович Е. А. Некоторые случаи зависимости предельных циклов от параметров // Учен. зап. Горьковского гос. ун-та. — 1939. — № 6. — С. 3 — 24.
Андронов А. А., [Витт А. А.], Xайкин С. Э. Теория колебаний. — М.: Физматгиз, 1937 (в поздних изданиях указывается, что фамилия второго автора была пропущена "вследствие трагической ошибки").
Работы об экспоненциальном разбегании траекторий суммированы в:
Аносов Д. В., Синай Я. Г. Некоторые гладкие эргодические системы // Успехи мат. наук. — 1967. — Т. 22, вып. 5. — С. 107 — 172.
Смейл С. Дифференцируемые динамические системы // Успехи мат. наук. — 1970. — Т. 25, вып. 1. — С. 113 — 185.
Lorenz E. N. Deterministic nonperiodic flow // J. Atomos. Sci. — 1963. — V. 20. — P. 130 — 141.
Приложения экспоненциального разбегания траекторий к теории гидродинамической неустойчивости описаны в:
Arnold V.I. Sur la geometrie differentielle des groups de Lie de dimension infinie et ses applications a l'hydrodynamique des fluicles parfaits // Ann. Inst. Fourier. — 1966. — V. 16, № 1. — P. 319 — 361.
Цитированные в тексте работы об оценках размерности аттракторов:
Ильятенко Ю. С. Слабо сжимающие системы и аттракторы галёркинских приближений для уравнений Навье — Стокса // Успехи мат. наук. — 1981. — Т. 36, вып. 3. — С. 243 — 244.
Ильяшенко Ю.С., Четаев А. H. Слабо сжимающие системы и аттракторы галёркинских приближений для уравнений Навье — Стокса на двумерном торе // Успехи механики. — 1982. — Т. 5, вып. 1; 2. — С. 31 — 63.
Бабин А. В., Вишик М. И. Аттракторы для эволюционных дифференциальных уравнений в частных производных и оценки их размерности // Успехи мат. наук. — 1983. — Т. 38, вып. 4. — С. 133 — 187.
Теорема Богданова впервые была анонсирована в обзоре:
Арнольд В. И. Лекции о бифуркациях и версальных семействах // Успехи мат. наук. — 1972. — 27, вып. 5. — С. 119 — 184.
Доказательства опубликованы в:
Богданов Р. И. Бифуркация предельного цикла в семействе векторных полей на плоскости // Тр. семинара им. И. Г. Петровского. — 1976. — Т. 2. — С. 23 — 35.
Богданов Р. И. Версальная деформация особенности векторного поля на плоскости в случае нулевых собственных чисел // Тр. семинара им. И. Г. Петровского. — 1976. — Т. 2. — С. 87 — 65.
Случаи симметрии порядка 2, 8 или ≥5:
Мельников В. К. Качественное описание резонансных явлений в нелинейных системах. — Препринт / ОИЯФ. — Дубна, 1962. — Р. 1013. — С. 1 — 17.
Хорозов И. Е. Версальные деформации эквивариантных векторных полей для случаев симметрии порядка 2 и 3 // Тр. семинара им. И. Г. Петровского. — 1979. — Т. 5. — С. 163 — 192.
Симметрия порядка 4:
Арнольд В. И. Потеря устойчивости автоколебаний вблизи резонанса и версальные деформации эквивариантных векторных полей // Функцион. анализ и его прил. — 1977. — Т. 11, вып. 2. — С. 1 — 10.
Нейштадт А. И. Бифуркации фазового портрета некоторых систем уравнений, возникающих в задаче о теории потери устойчивости вблизи резонанса 1:4// Прикл. математика и механика. — 1978. — Т. 42.- С. 830 — 840.
Березовская Ф. С., Xибник А. И. О бифуркациях сепаратрис в задаче о потере устойчивости автоколебаний вблизи резонанса 1:4 // Прикл. математика и механика. — 1980. — Т. 44. — С. 938 — 943.
Затягивание потери устойчивости:
Шишкова М. А. Рассмотрение одной системы дифференциальных уравнений с малым параметром при высших производных // ДАН СССР. — 1973. — Т. 209, № 3. — С. 576 — 579.
Нейштадт А. И. Асимптотическое исследование потери устойчивости равновесия при медленном прохождении пары собственных чисел через мнимую ось // Успехи мат. наук.- 1985. — Т. 40, вып. 5. — С. 300 — 301.
Нейштадт А. И. О затягивании потери устойчивости при динамических бифуркациях I, Н // Дифференц. уравнения. — 1987. — Т. 23, вып. 12. — С. 2060 — 2067; 1988. — Т. 24, вып. 2. — С. 226 — 233.
Каскады удвоений:
Шапиро А. П. Математические модели конкуренции // Управление и информация.- Владивосток: Дальневосточ. науч. центр АН СССР, 1974. — Т. 10. — С. 5 -75.
Мау R. М. Biological populations obeying difference equations; stable points, stable cycles and chaos // J. Theor. Biol. 1975. V. 51. — P. 511 — 524.
Feigenbaum M. Quantitative universality for a class of nonlinear transformations // J. Stat. Phys. — 1978. — V. 19, № 1. — P. 25 — 52.
Соllet P., Eсkman J. P. Iterated maps of the interval as dynamical system.- Boston: Birkhauser, 1980. — 248 p.
Бифуркации коразмерности два:
Жолондек Г. Версальность одного семейства симметричных векторных полей на плоскости // Мат. сб. — 1983. — № 120. — С. 473 — 499.
Zoladek H. Bifurcations of Certain Family of Planar Vector Fields Tangent to Axes // Journ. of Diff. Equa. — 1987. — V. 67, № 1. — P. 1 — 55.
Теорема конечности доказана в:
Левантовскпй Л. В. Особенности границы области устойчивости // Функцион. анализ и его прил. — 1982. — Т. 16, вып. 1. — С. 44 — 48.
Простейшие особенности описаны в:
Арнольд В. И. Лекции о бифуркациях и версальных семействах // Успехи мат. наук. — 1972. — Т. 27, вып. 5. — С. 119 — 184.
Другой подход к теории перестроек волновых фронтов и каустик изложен в статье:
Wassermann D. Stability of unfoldings in space in time // Acta Math. — 1975. — V. 135. — P. 57 — 128.
Интересно отметить, что неудачный выбор точки зрения и постановки задачи привел автора этой статьи к сложным ответам в простейших случаях и скрыл от него управляющие более сложными случаями простые общие законы, описанные в цитируемых ниже работах. Изображения перестроек волновых фронтов в трехмерном пространстве впервые появились в:
Arnold V. I. Critical points of smooth functions // Proc. of the International Congress of Mathematicians, 1974. — Vancouver. — 1975. — V. 1. — P. 19 — 40.
Теория перестроек каустик и волновых фронтов изложена в статьях:
Arnold V. I. Wave Fronts Evolution and Equivariant Morse Lemma // Comm. Pure Appl. Math. — 1976. — V. 29. — P. 557 — 582.
Закалюкин В. М. Перестройки волновых фронтов, зависящих от одного параметра // Функцион. анализ и его прил. — 1976. — Т. 10, вып. 2. — С. 69 — 70.
Закалюкин В. М. Лежандровы отображения в гамильтоновых системах. — М.: МАИ, 1977. — С. 11 — 16.
Подробное изложение имеется в диссертации В. М. Закалюкина (М.: МГУ, 1978. — 145 с.), см. также:
Закалюкин В. М. Перестройка фронтов и каустик, зависящих от параметра, и версальность отображений // Современные проблемы математики. — М.: ВИНИТИ:, 1983. — Т. 22. — С. 56 — 93. — (Итоги науки и техники.)
Изображения перестроек каустик впервые появились в первом русском варианте настоящей книги:
Арнольд В. И. Теория катастроф // Природа. — 1979. — № 10. — С. 54 — 63.
Во французском переводе Ш. — М. Кантора (Matematica. — 1980, May. — P. 3 — 20) эти изображения были заменены страницей комментариев Р. Тома.
Теория бикаустик изложена в:
Арнольд В. И. Перестройки особенностей потенциальных потоков бесстолкновительной среды и метаморфозы каустик в трехмерном пространстве // Тр. семинара им. И. Г. Петровского. — 1982. — Т. 8. — С. 21 — 57.
Результаты о бифуркациях были анонсированы на семинаре им. И. Г. Петровского осенью 1980 г. (см.: Успехи мат. наук. — 1981. — Т. 36, вып. 4. — С. 233), а изображения бикаустик впервые появились в 1981 г. в первом издании настоящей книги. Некоторые из этих поверхностей изучались в работах Щербака и Гафни и дю Плессиса 1 82 г. (в теории Щербака — в качестве объединений касательных к пространственным кривым).
Классификация особенностей каустик и волновых фронтов до размерности 10 проведена в статье:
Закалюкин В. М. Лагранжевы и лежандровы особенности // Функцион. анализ и его прил. — 1976. — Т. 10, вып. 1. — С. 26 — 36
и исправлена в § 21 книги:
Арнольд В. И., Варченко А. Н., Гусейн-Заде С. М. Особенности дифференцируемых отображений. I. Классификация критических точен, каустик и волновых фронтов. — М.: Наука, 1982. — 304 с.
Работа о движении льда:
Nуе J. F., Thorndike A. S. Events in evolving three-dimensional vector fields // J. Phys. A. — 1980. — V. 13. — P. 1 — 14.
Lifshitz E. M., Halatnikоv I. M. Investigations in relativists cosmology // Adv. Phys. — 1963. — V. 12. — P. 185.
Zeldovich Ya. B. Gravitational instability: an approximate theory for large density perturbations // Astron. Astrophys. — 1970. — V. 5. — P. 84 — 89.
Arnоld V. I., Shandarin S. F., Zeldоviсh Ya. B. The Large Scale Structure of the Universe. I. General Properties. One and Two-Dimensional Models// Geophys. Astrophys. Fluid Dvn. — 1182. — V. 20. — P. 111 — 130.
Арнольд В. И. Перестройки особенностей потенциальных потоков бесстолкновительной среды и метаморфозы каустик в трехмерном пространстве // Тр. семинара им. И. Г. Петровского. — 1982. — Т. 8. — С. 21 — 57.
Аrnоld V. I. Some Algebro-Geometrical Aspects of the Newton Attraction Theory // Arithmetic and Geometry. II. Geometry / Boston: Birkbauser. 1983. — P. 1 — 3. Progress in Math: V. 36.
Шандарин С. Ф. Теория перколяции и ячеистая структура Вселенной. — Препринт / ИПМ им. М. В. Келдыша. — М., 1982. — № 137. — С. 1 — 15.
Брызгалова Л. Н. Особенности максимума функции, зависящей от параметра // Функцион. анализ и его прил. — 1977. — Т. 11, вып. 1. — С. 59 — 60.
Врызгалова Л. Н. Функция максимума семейства функций, зависящих от параметров // Функцион. анализ и его прил. — 1978. — Т. 12, вып. 1. — С. 66 — 67.
Васильев В. А. Асимптотика экспоненциальных интегралов, диаграммы Ньютона и классификация точек минимума // Функцион. анализ и его прил. — 1977. — Т. И, вып. 3. — С. 1 — 11.
Матов В. И. Топологическая классификация ростков функций максимума и минимакса семейств функций- общего положения // Успехи мат. наук. — 1982. — Т. 37, выи. 4. — С. 129 — 130.
Матов В. И. Области эллиптичности семейств однородных многочленов и функции экстремума // Функцион. анализ и его прил. — 1985. — Т. 19, вып. 2. — С. 26 — 36.
Богаевский И. А. Перестройки особенностей функций минимума и бифуркации ударных волн уравнения Бюргерса с исчезающей вязкостью // Алгебра и анализ. — 1989. — Т. 1, № 4. — С. 1 — 16.
Классификация Давыдова построена в его диссертации:
Давыдов Л. А. Особенности в двумерных управляемых системах (М.: МГУ, 1982. — 149 c.).
Результаты частично анонсированы в:
Давыдов А. А. Особенности границы достижимости в двумерных управляемых системах // Успехи мат. наук — 1982 — Т. 37, вып. 3. — С. 183 — 184.
Давыдов А. А. Граница достижимости в двумерных управляемых системах // Успехи мат. наук. — 1182. — Т. 37, вып. 4. — С. 129.
Доказательства опубликованы в:
Давыдов А. А. Граница множества достижимости в многомерных управляемых системах // Тр. Тбил. ун-та. Сер. Мат., Мех., Астрон. — 1982. — Т. 13; 14. — С. 78 — 96.
(о гёльдеровости и липшицевости границы).
Давыдов А. А. Нормальные формы дифференциальных уравнений, не разрешенных относительно производной, в окрестности особой точки // Функцион. анализ и его прил. — 1985. — Т. 19, вып. 2. — С. 1-10.
Давыдов А. А. Нормальные формы медленного движения уравнения релаксационного типа и расслоения биномиальных поверхностей // Мат. сб. — 1987. — Т. 132, вып. 1. — С. 131 — 139.
Давыдов А. А. Особенности полей предельных направлений двумерных управляемых систем // Мат. сб. — 1989. — Т. 136, вып. 4. — С. 478 — 499.
О теоремах Давыдова см.:
Арнольд В.И. Обыкновенные дифференциальные уравнения.- 3 изд. — М.: Наука, 1984. — С. 266 — 267.
Арнольд В.И. Контактная структура, релаксационные колебания и особые точки неявных дифференциальных уравнений // Геометрия и теория особенностей в нелинейных задачах: Сб. науч. тр. — Воронеж: Изд-во Воронеж, ун-та, 1987. — С. 3 — 8.
Особенности выпуклых оболочек, случай поверхности в трехмерном пространстве:
Закалюкин В. М. Особенности выпуклых оболочек гладких многообразий // Функцион. анализ и его прил. — 1987. — Т. 11, вып. 3. — С. 76 — 77.
Кривые в трехмерном пространстве:
Седых В. Д. Особенности выпуклой оболочки кривой в R3 // Функцион. анализ и его прил. — 1977. — Т. 11, вып. 1. — С. 81 — 82.
Общий случай:
Седых В. Д. Особенности выпуклых оболочек // Сиб. мат. журн. — 1983. — Т. 24, вып. 3. — С. 158 — 175.
Седых В. Д. Функциональные модули особенностей выпуклых оболочек многообразий коразмерности 1 и 2 // Мат. сб. — 1982. — Т. 119 (161). — С. 223 — 247.
Особенности тени выпуклой поверхности:
Кisеlmаn С. О. How smooth is the shadow of a smooth convex body? // J. Lond. Math. Soc. 1986. — V. 33, № 1. — P. 101 — 109.
Седых В. Д. Бесконечно гладкая компактная выпуклая гиперповерхность, граница тени которой не дифференцируема дважды // Функцион. анализ и его прил. — 1989. — Т. 23, вып. 3. — С. 86 — 87.
Kergosien Y. L., Thorn R. Sur les points paraboliques des surfaces // C. R. Acad. Sci. Paris. Ser. A. — 1980. — V. 290. — P. 705 — 710.
[Ошибки частично исправлены в работе:
Кergosien Y. L. La famille des projections orthogonales d'une surface et ses singularites // C. R. Acad. Sci. Paris, Ser. 1. — 1981. — V. 292. — P. 929 — 932.]
Платонова О. А. Особенности взаимного расположения поверхности и прямой // Успехи мат. наук. — 1981. — Т. 36, вып. 1. — С. 248 — 249.
Платонова О. А. Особенности проекций гладких поверхностей // Успехи мат. наук. — 1984. — Т. 39, вып. 1. — С. 149 — 150.
Платонова О. А. Проекции гладких поверхностей // Тр. семинара им. И. Г. Петровского. — 1984. — Т. 10. — С. 135 — 149.
Ландис Е. Е. Тангенциальные особенности // Функцион. анализ и его прил. — 1981. — Т. 15, вып. 2. — С. 36 — 49.
Более подробное изложение имеется в диссертациях Платоновой (М.: МГУ, 1981. — 150 с.) и Ландис (М.: МГУ, 1983. — 142 c.).
Арнольд В. И. Особенности систем лучей // Успехи мат. наук. — 1983. — Т. 38, вып. 2. — С. 77 — 147.
Щербак О. П. Проективно двойственные пространственные кривые и лежандровы особенности // Тр. Тбил. ун-та. Сер. Мат. Мех. Астрон. — 1982. — Т. 13 — 14 (232 — 233). — С. 280 — 336.
Доказательства теорем о проектированиях основаны на работе:
Арнольд В. И. Индексы особых точек 1-форм на многообразиях с краем, сворачивание инвариантов групп, порожденных отражениями, и особые проектирования гладких поверхностей // Успехи мат. наук. — 1979.- Т. 34, вып. 2. — С. 3 — 38.
Другой подход к проектированиям изложен в книге:
Banchoff Т., Gaffney Т., МсСrоrу С. Cusps of Gauss mappings. — Boston — London — Melbourne: Pitman. — 1982. — Res. Notes Math. — V. 55.
Обзор об особенностях проектирований:
Горюнов В. В. Особенности проектирований полных пересечений // Современные проблемы математики. — М.: ВИНИТИ, 1981. — Т. 22. — С. 167 — 206. — (Итоги науки и техники).
См. также:
Горюнов В. В. Геометрия бифуркационных диаграмм простых проектирований на прямую // Функцион. анализ и его прил. — 1981. — Т. 15, вып. 2. — С. 1 — 8.
Горюнов В. В. Проекции нульмерных полных пересечений на прямую и К (я, 1)-гипотеза // Успехи мат. наук. — 1982. — Т. 37, вып. 3. — С. 179 — 180.
Горюнов В. В. Бифуркационные диафрагмы некоторых простых и квазиоднородных особенностей // Функцион. анализ и его прил. — 1983. — Т. 17, вып. 2. — С. 23 — 37.
Горюнов В. В. Проектирования и векторные поля, касающиеся дискриминанта полного пересечения // Функцион. анализ и его прил. — 1988. — Т. 22, вып. 2. — С. 26 — 37.
Арнольд В. И. Критические точки функций на многообразии с краем, простые группы Ли Вk, Сk, F4 и особенности эволют // Успехи мат. наук. — 1978. — Т. 33, вып. 5. — С. 91 — 105.
Платонова О. А. Особенности в задаче о скорейшем обходе препятствия // Функцион. анализ и его прил. — 1981. — Т 15 вып. 2. — С. 86 — 87.
Платонова О. А. Особенности системы лучей вблизи препятствия. — Москва, 1981.150 с. — Деп. ВИНИТИ 11.02.81. — № 647 — 81.
Арнольд В. И. Особенности в вариационном исчислении // Современные проблемы математики. — М.: ВИНИТИ, 1983. — Т. 22. — С. 3 — 55. — (Итоги науки и техники).
Теория лагранжевых особенностей основана в 1966 г. См.:
Арнольд В. И. О характеристическом классе, входящем в условия квантования // Функцион. анализ и его прил. — 1967. — Т. 1, вып. 1. — С. 1 — 14.
Hormander L. Fourier integral operators, I // Acta Math. — 1971. — V. 127. — P. 79 — 183.
Арнольд В. И. Интегралы быстро осциллирующих функций и особенности проекций лагранжевых многообразий // Функцион. анализ и его прил. — 1972. — Т. 6, вып. 3. — С. 61 — 62.
Арнольд В. И. Нормальные формы функций вблизи вырожденных критических точек, группы Вейля Аk, Dk, Еk и лагранжевы особенности // Функцион. анализ и его прил. — 1972. — Т. 6, вып. 4. — С. 3 — 25.
См. также:
Guckenheimer J. Catastrophes and partial differential equations // Ann. Inst. Fourier. — 1973. — V. 23, № 2. — P. 31 — 59.
Теория лежандровых особенностей впервые появилась в книге:
Арнольд В. И. Математические методы классической механики. — М.: Наука, 1974. — 432 c.
и в докладе:
Arnold V. I. Gritical points of smooth functions // Proo. of the International Congress of Mathematicians (Vancouver 1974). — Canadian Mathematical Congress. — 1975. — V. 1. — P. 19 — 39.
См. также:
Sewell M. J. On Legendre transformations and elementary catastrophes // Math. Proc. Cambr. Philos. Soc. 1977. — V. 82. — P. 147 — 163.
Dubois J. G., Dufоur J. P. La theorie des catastrophes, V. Transformee de Legendre et thermodynamique // Ann. Inst. Henri Poincare, Nouv. Ser. Sect. A. 1978. — V. 29. — P. 1 — 50.
О раскрытом ласточкином хвосте см.:
Арнольд В. И. Лагранжевы многообразия с особенностями, асимптотические лучи и раскрытый ласточкин хвост // Функцион. анализ и его прил. — 1981. — Т. 15, вып. 4. — С. 1 — 14.
Arnold V. I. Singularities of Legendre varieties, of evolvents and of fronts at an obstacle // Ergodic Theory Dyn. Syst. — V. 2. — P. 301 — 309.
Гивенталь А. Б. Лагранжевы многообразия с особенностями и неприводимые sl(2)-модули // Успехи мат. наук. — 1983. — Т. 38, вып. 6. — С. 109 — 110.
Гивенталь А. Б. Многообразия многочленов, имеющих корень фиксированной кократности, и обобщенное уравнение Ньютона // Функцион. анализ и его прил. — 1982. -Т. 16, вып. 1. — С. 13 — 18.
Теоремы Гивенталя о подмногообразиях симплектического и контактного пространства впервые появились в первом издании этой книжки, в 1981 г. Они обобщают теорему Дарбу — Вейнстейна (разница состоит в том, что в теоремах Гивенталя структуры ограничиваются лишь на касательные к подмногообразию векторы). Теорема Дарбу — Вейнстейна доказана в статье:
Weinstein A. Lagrangian submanifolds and hamiltonian Systems // Ann. Math., II Ser. — 1973. — V. 98. — P. 373 — 410.
О подмногообразиях симплектических и контактных пространств см. также:
Арнольд В. И., Гивенталь А. Б. Симплектическая геометрия // Современные проблемы математики, Фундаментальные направления. — М.: ВИНИТИ; 1985. — Т. 4. — С. 5 — 139. — (Итоги науки и техники.)
Арнольд В. И. Особенности в вариационном исчислении // Современные проблемы математики. — М.: ВИНИТИ, 1983. — Т. 22. — С. 3 — 5. — (Итоги науки и техники.)
Melrose R. B. Equivalence of glancing hypersurfaces // Invent. Math. — 1976. — V. 37. — P. 165 — 191.
Melrose R. B. Equivalence of glancing hypersurfaces, II // Math. Ann. 1981. — V. 255. — P. 159 — 198.
Martinet J. Sur les singularites des formes differentielles // Ann. Inst. Fourier. — 1970. — V. 20, № 1. — P. 95-178.
Roussarie R. Modeles locaux de champs et de formes // Asterisque.- 1975. — V. 30.
Golubitsky M., Tischler D. An example of moduli for singular simplectic forms // Invent. Math. — 1977. — V. 38. P. 219 — 225.
Гивенталь А. Б. Особые лагранжевы многообразия и их лагранжевы отображения // Современные проблемы математики. — М.: ВИНИТИ; 1988. — Т. 83. — С. 55 — 112. — (Итоги науки и техники.)
Арнольд В. И. О поверхностях, определяемых гиперболическими уравнениями // Мат. заметки. — 1988. — Т. 44, вып. 1.
Arnold V. I. On the interior scattering of waves, defined by hyperbolic variational principles // J. of Geometry and Physics. — 1988. — V. 5, № 4. — P. 458 — 475.
Гивенталь А. Б. Лагранжевы вложения поверхностей и раскрытый зонтик Уитни//Функцион. анализ и его прил. — 1986. — Т. 20, вып. 3. — С. 35 — 41.
Пословица о хохолке жаворонка цитируется Плутархом: "как у каждого жаворонка должен появиться хохолок, так в каждом цивилизованном государстве должны появиться доносчики — сикофанты".
Более подробное изложение можно найти в следующих книгах:
Милнор Дж. Особые точки комплексных гиперповерхностей. — М.: Мир, 1971. — 128 с.
Арнольд В. И., Варченко А. Н., Гусейн-Заде С. М. Особенности дифференцируемых отображений. II. Монодромия и асимптотики интегралов.- М.: Наука, 1984. — 336 с.
Арнольд В. И., Васильев В. А., Горюнов В. В., Ляшко О. В. Теория особенностей // Современные проблемы математики. Фундаментальные направления. — М.: ВИНИТИ, 1988. — Т. 6. — С. 1- 256. — (Итоги науки и техники.)
Brieskorn Е. Die Milnorgitter der exzeptionellen unirnodularen Singularitaten // Bonn. Math. Schr. — Bonn.: Math. Inst, der Universitat Bonn.- 1983. — Bd 150. — 225 S.
Brieskorn E., Knorrer H. Ebene algebraiche Kurven. — Boston: Birkhauser, 1981. — 964 p.
Работы об икосаэдре:
Ляшко О. В. Классификация критических точек функций на многообразиях с особой границей // Функцион. анализ и его прил. — 1983. — Т. 17, вып. 3. — С. 28-36.
Щербак О. П. Особенности семейств эвольвент в окрестности точки перегиба кривой и группа Н3, порожденная отражениями // Функцион. анализ и его прил. — 1983. — Т. 17, вып. 4. — С. 70 — 72.
Колчаны:
Gabriel P. Unzerlegbare Darstellungen, I // Manuscr., Math. — 1972. — V. 6. — P. 71 — 103.
Бернштейн И. H., Гeльфанд И. M., Пономарев В. А. Функторы Кокстера и теорема Габриэля // Успехи мат. наук. — 1973. — Т. 28, вып. 2. — С. 19 — 33.
Назарова Л. А., Ройтер А. В. Поликолчаны и схемы Дынкина // Функцион. анализ и его прил. — 1973 — С. 94 -95.
Dlab A.,Ringel К. М. Representation of graphs and algebras // Carleton Math. Lect. Notes. Ottawa: — Carleton University, 1974. — V. 8.
Правильные многогранники:
Клейн Ф. Лекции об икосаэдре. — М.: Наука, 1989.
МакКей Дж. Графы, особенности и конечные группы // Успехи мат. наук. — 1983. — Т. 38, вып. 3. — С. 159 — 164.
Краевые особенности:
Arnold V. I. Wave front evolution and equivariant Morse lemma // Commun. Pure Appl. Math. — 1976. — V. 29, № 6. — P. 557 — 582.
Wasserman D. Classification of singularities with compact abelian symmetry // Regensburger Math. Schr. Fachbereich Mathematik der Universitat Regensburg, 1977. — V. I.
Арнольд В. И. Критические точки функций на многообразии с краем, простые группы Ли Вk, Сk, F4 и особенности эволют // Успехи мат. наук. — 1978. — Т. 33, вып. 5. — С. 91 — 105.
Golubitsky M., Schaeffer D. A theory for imper feet bifurcation via singularity theory //Commun. Pure Appl. Math. 1979. — V. 32. — P. 21 — 98.
Pitt D. H., Poston T. Determinacy and unfolding in the presence of a boundary, 1978. (Мифический препринт, цитированный в 16-й главе КНИГИ Постона и Стюарта "Теория катастроф и ее приложения" (М.: Мир, 1980)).
Slodowy P. Simple singularities and simple algebraic groups. Berlin — Heidelberg — New York: Springer — Verlag, 1980. — 175 p. (Lect. Notes Math., v. 815).
Siersma D. Singularities of functions on boundaries, corners etc. // Q. J. Math. Oxf. 1981. — V. 32. — Ser. II. — P. 119 — 127.
Матов В. И. Особенности функций максимума на многообразиях с краем // Тр. семинара им. И. Г. Петровского. — 1981. — Т. 6. — С. 195 — 222.
Матов В. И. Унимодальные и бимодальные ростки функций на многообразиях с краем // Тр. семинара им. И. Г. Петровского. — 1981. — Т. 7. — С. 174 — 189.
Щербак И. Г. Двойственность краевых особенностей // Успехи мат. наук. — 1984. — Т. 39, вып. 2. — С. 207 — 208.
Щербак И. Г. Фокальное множество поверхности с краем и каустики групп, порожденных отражениями Вk, Сk и F4 // Функцион. анализ и его прил. — 1984. — Т. 18, вып. 1.- С. 90 — 91.
Щербак И. Г. Краевые особенности с простым разложением // Тр. семинара им. И. Г. Петровского.- 1990,- Т. 15.
Nguyen buu Duc, Nguyen tien Dai. Stabilite de l'interaction geometrique entre deux composantes holonomes simples // С. R. Acad. Sci. Paris, Ser. A. — 1980. — V. 291. — P. 113 — 116.
Ильюта Г. Г. Монодромия и исчезающие циклы для краевых особенностей // Функцион анализ и его прил. — 1985. — Т. 19, вып. 3. — С. 11 — 21.
Группы H3 и Н4:
Ляшко О. В. Классификация критических точек функций на многообразии с особым краем // Функцион. анализ и его прил. — 1983. — Т. 17, вып. 3. — С. 28 — 36.
Щербак О. П. Особенности семейств эвольвент в окрестности точки перегиба кривой и группа Н3, порожденная отражениями // Функцион. анализ и его прил. — 1983. — Т. 17, вып. 4. — С. 70-72.
Арнольд В. И. Особенности в вариационном исчислении // Успехи мат. наук. — 1984. — Т. 39, вып. 5. — С. 256.
Arnold V. I. Singularities of ray systems // Proc. of the International Congress of Mathematicians, August 16 — 24, 1983. Warszawa. — North-Holland 1984. — V. 1. — P. 27 — 49.
Варченко A. H., Чмутов С. В. Конечные неприводимые группы, порожденные отражениями, являются группами монодромии подходящих особенностей // Функцион. анализ и его прил. — 1984. — Т. 18, вып. 3. — С. 1 — 13.
Гивенталь А. Б. Особые лагранжевы многообразия и их лагранжевы отображения // Современные проблемы математики. — М.: ВИНИТИ. 1988. — Т. 33. — С. 55 — 112. — (Итоги науки и техники.)
Щербак О. П. Волновые фронты и группы отражений // Успехи мат. наук. — 1988. — Т. 43, вып. 3. — С. 125 — 160.
К добавлению
Более подробный анализ предшествовавших теории катастроф приложений ее идей имеется в статье:
Арнольд В. И. Теория катастроф. Современные проблемы математики. Фундаментальные направления. — М.: ВИНИТИ, 1986. — Т. 5. — С. 219 — 277. — (Итоги науки и техники.)
где приведена и соответствующая библиография.
См. также:
Bennequin D. Caustique mystique // Seminaire N. Bourbaki. — 1984. — № 634. — P. 1 — 37.
Саати Т. Л. Математические модели конфликтных ситуации. — М.: Сов. радио, 1977. — С. 47 — 53.