ГОРЫ

Чтобы яснее себе представлять, как образовались горы Северо-Востока, приведем сначала общие сведения о строении земной коры. Именно в ней заключается все, что нас окружает, — горы, моря, реки, а на разных глубинах — множество полезных ископаемых.

В земной коре выделяются четыре слоя. Самый верхний и тонкий из них — осадочные породы (глины, песчаники и др.). Под ним находится гранитный слой, а еще глубже — базальтовый. Следующий слой, уже на границе с верхней мантией, состоит из сильно уплотненных пород с малым содержанием кремнезема.

Такова схема. В действительности строение земной коры не столь простое. Как полагает член-корреспондент АН СССР В. В. Белоусов, вся земная кора сложена осадочными породами. Но на разных глубинах они претерпевают значительные изменения. На небольшой глубине из тех же осадочных пород, но обогащенных кремнеземом образуется «гранитный» слой, а глубже, из тяжелых и плотных пород, обедненных кремнеземом, — «базальтовый» (дно океанов действительно устлано настоящими базальтами).

Уточнить строение земной коры позволяют сверхглубокие скважины. В частности, по данным бурения Кольской скважины, предполагаемый базальтовый слой в действительности оказался зоной древних рассланцованных гранитогнейсов. Температура на участке скважины увеличивается с глубиной на 1 °C не через каждые 33 м, как считалось до сих пор, а через 70 м (правда, до определенного уровня). И, пожалуй, самое неожиданное — окаменелые микроорганизмы, извлеченные из скважины, имеют возраст около 2 млрд, лет, т. е. жизнь на Земле появилась много раньше, чем полагали ученые.

На нашей планете повсеместно совершаются изменения и преобразования. Одни из них длятся сотни миллионов лет, другие намного меньше, а третьи в геологическом понимании протекают мгновенно. Это же касается и горных сооружений. Они то возникают, то, претерпевая очень сложные изменения в своей жизни, исчезают, а затем вновь появляются, но уже в других местах и непохожие на предыдущие.

Исследования показали, что эти процессы на земном шаре происходят в результате главным образом вертикальных и горизонтальных перемещений масс земной коры. Эти перемещения приводят к складчатости мощных пластов осадочных пород, создающих горные сооружения. Однако причины горообразования еще до сих пор не получили однозначного ответа ученых. Одни из них считают, что горообразование — результат сжатия слоев земной коры, бокового давления, а значит, и постепенного сокращения земной коры как следствия охлаждения нашей планеты. Охлаждаясь, Земля уменьшается в размере и ее верхняя оболочка как бы сморщивается. Действительно, некоторые складки осадочных толщ как будто бы подтверждают такое предположение.

Имеются и другие гипотезы. Сторонники их полагают, что складчатость порождается расширением земной коры. Доказательства в пользу такой точки зрения тоже имеются. Отсюда можно заключить, что в земной коре происходят как сжатия, когда в основном возникает складчатость, так и растяжения, в результате которых появляются разломы и трещины. Но все объясняется тем, что горизонтальные перемещения в земной коре обусловлены стремлением различных ее участков к равновесию. В этом и заключается непостоянство поверхности земного шара.

Интересная гипотеза о горизонтальном перемещении континентов, получившая известность еще в первой четверти нашего века, принадлежит немецкому ученому А. Вегенеру. По его мнению, континентальные массивы, будучи погруженными в полужидкую базальтовую оболочку, как бы плавают в ней. Причина движения материков кроется в том, что на эту оболочку воздействует и притяжение Луны.

В настоящее время существуют два представления о жизни нашей планеты. Согласно одному из них, Земля — жесткое тело с неподвижными материками и впадинами океанов. Эти взгляды отстаивают фиксисты. Другие ученые полагают, что земная поверхность, как и океанические впадины, очень неустойчива и находится все время в движении. Данные идеи выдвигаются мобилистами. Их аргументация в последнее время получает надежное обоснование.

Как указывает академик А. Л. Яншин, гипотеза А. Вегенера находит весомое подтверждение. На Атлантическом побережье Южной Бразилии известны ледниковые отложения с валунами, состоящими из редких пород, которые на Южноамериканском континенте больше нигде не встречаются. Но такие породы выходят на поверхность в Намибии (Южная Африка). Следовательно, когда-то Намибия прилегала к берегам Бразилии. С африканских гор на запад текли ледники, достигавшие территории нынешней Южной Америки. И еще одно открытие, которое считается сенсационным: сейсмическое зондирование земной коры подтвердило существование слоя сильно разогретых пластичных пород, по которым и происходит движение материков.

Как видим, в основе упомянутых гипотез лежат диаметрально противоположные взгляды, но почти все ученые сходятся на том, что причиной горообразования являются внутренние (эндогенные) силы Земли.

Как известно, под оболочкой земной коры находится верхняя мантия, глубина которой составляет многие сотни километров. Она и является той областью нашей планеты, где образуются раскаленные горные породы, поступающие в недра земной коры и на ее поверхность. Постепенно они остывают, образуя громадные массивы гранитов и других пород.

Обратимся к конкретным примерам по территории Северо-Востока. Рельеф края необычайно разнообразен.

Наиболее древним сооружением является Колымский срединный массив, расположенный главным образом в низовьях Колымы и Индигирки. Образование его относится к протерозойской эре, а возможно даже к архею. На протяжении длительного времени массив подвергался тектоническим нарушениям, но тем не менее он постоянно играл роль жесткого упора, оказывая большое влияние на развитие структур, которые возникали позднее. Это поднятия (или периферические блоки), обрамляющие срединный массив: с запада и северо-запада — хребты Полоусный и Тас-Хаяхтах, с юго-востока — Приколымское поднятие.

Не менее интересна структура, обрамляющая Колымский срединный массив и именуемая Яно-Колымской (Яно-Колымо-Чукотской) складчатой областью. Она занимает верховья Колымы, Индигирки и почти весь бассейн Яны. Протяженность этой складчатой области равна 1800 км, а ширина местами достигает 600 км.

Когда-то Яно-Колымская складчатая область представляла собой обширный прогиб, заполненный морем. Сюда сносился обломочный материал разрушенных горных пород и отлагался в море. По мере его накопления происходило постепенное погружение прогиба и в конечном счете образовалась многокилометровая осадочная толща.

Наступило, однако, время, когда накопление осадков и погружение прогиба сменилось столь же медленным и продолжительным воздыманием накопившейся осадочной толщи. Это и привело к образованию гор. Такое воздымание (инверсия) вызывает неизбежное нарушение в пластах осадков, в результате возникают складки, заметные особенно там, где они прорезаны реками. Пласты осадочных пород часто лишь сжимаются (в «гармошку»), но не разрываются. Подобная складчатость называется пликативной. Нередко при воздымании осадочная толща подвергается разрыву — появляются трещины и прочие нарушения, способствующие перемещению пластов в горизонтальном и вертикальном направлениях. Однако на этом преобразования складчатой области не кончаются. Завершающий этап ее развития совпадает с весьма интенсивным внедрением в осадочную толщу магматических (огненно-жидких) расплавов.

Итак, в развитии Яно-Колымской складчатой области отчетливо различаются следующие этапы: длительное накопление морских осадков в обширном прогибе; складкообразование, совпадающее с началом вертикальных поднятий, в результате которых впоследствии и возникли горы; внедрение в осадочную толщу огромных объемов расплавов, в основном гранитного состава, сформировавших в складчатой области многочисленные массивы.

А теперь обратимся к другим горным сооружениям Северо-Востока. Если следовать путем первопроходцев, с запада на восток, то в верховьях правых притоков Лены и Алдана на нашем пути встретится громадный Верхоянский хребет, протяженностью 1200 км. Велика и ширина его — от 100 до 250 км. Самая высокая точка — до 2389 м. Верхоянский хребет — это своеобразный водораздел между Леной и Алданом, с одной стороны, и Яной и Индигиркой — с другой.

Значительным горным сооружением является хребет Сунтар-Хаята, высота которого достигает 2959 м. С этого хребта берут начало реки Индигирка и Колыма. Отсюда же хорошо видно Яно-Оймяконское нагорье. С востока и северо-востока оно как бы заслоняется протяженным (около 250 км) хребтом, названным именем выдающегося путешественника и ученого Г. А. Сарычева. Хребет Сарычева является одним из звеньев горной цепи между хребтами Сунтар-Хаята на юге и Черского на севере. В хребте Сарычева сочетаются разнообразные формы рельефа с явным преобладанием высокогорья. Некоторые вершины его в осевой части достигают высоты 2500 м.

К северо-востоку от хребта находится Нерская впадина. Теперь уже невдалеке возвышается величественное горное сооружение — хребет Черского, наиболее мощный в Яно-Колымской складчатой области. Протягивается он на 1600 км от верховья Колымы до низовья Яны.

Горная система Черского состоит из двух цепей: Обручева и Билибина. Они разделены столь же протяженной Момо-Сеймчанской депрессией, также входящей в горную систему Черского. Господствующее положение здесь занимает цепь Обручева. В нее входит 35 горных хребтов, в том числе и Улахан-Чистай с самой высокой вершиной Северо-Востока — горой Победа. Ее высота 3147 м. В этой же цепи много крупных гранитных массивов. Среди них наиболее известны Бахапчинский, Больших порогов, Чьорго — в верховье Колымы, Порожный, Чибагалахский и Чималгинский — на Индигирке.

Как уже упоминалось, в Яно-Колымской складчатой области много гранитных массивов, которые прослеживаются с юго-востока на северо-запад более чем на 1000 км. В одних случаях это небольшие куполовидные выступы площадью 1–2 км2, в других — настоящие массивы до 2000 км2.

Какими же причинами вызывается поступление к поверхности земной коры огненно-жидких расплавов, из которых и образуются все эти массивы? Известно, что земная кора и расположенная ниже верхняя мантия находятся в твердом состоянии. Но лишь до поры до времени. С глубиной температура повышается. Как показывают расчеты, на глубине нескольких десятков километров температура достигает такого уровня, при котором горные породы обычно плавятся. Однако с глубиной возрастает и давление, препятствующее плавлению, т. е. породы даже и на этой глубине находятся в твердом состоянии. Когда же возникает расплав?

Мы уже знаем, что на территории нынешней Яно-Колымской складчатой области когда-то бушевало море и под тяжестью осадков дно его опускалось все ниже. Но также известно, что на земном шаре в колоссальных прогибах со временем начинается воздымание и погружение в других местах, смятие осадков, появляются трещины и разломы вплоть до верхней мантии. Происходит нарушение равновесия, которое существовало. И тогда твердое вещество переходит в расплав, создавая магматический очаг (огненно-жидкий расплав). С помощью газа и пара, которые выделяются из очага, расплав устремляется в верхние слои земной коры, заполняя образовавшиеся полости, трещины, разломы. Так рождаются гранитные массивы. Нередко расплав выходит на земную поверхность, образуя огромного размера покровы.

Укажем также на колоссальное механическое воздействие расплава на осадочную толщу. Например, в Куларском хребте (бассейн Яны) поступление в толщу большого объема гранитных расплавов привело к образованию необычайно крупного вздутия (антиклинория), длиной около 150 км. Это же наблюдается и в других местах, в частности в верховье Колымы, в районе развития гранитных массивов Чьорго, Оханджа, Буркандя и др.

В течение многих миллионов лет осадочные породы, которыми в основном была сложена поверхность Яно-Колымской складчатой области, разрушались и сносились в пониженные части рельефа либо в морские бассейны. Процесс продолжался и в ту пору, когда стали появляться на поверхности земной коры магматические породы, находившиеся в свое время на значительной глубине. И теперь уже разрушению подверглись не только осадочные, но и магматические породы.

Так возникают на земной поверхности многие современные горные сооружения магматического происхождения. Вначале обратимся к малоглубинным, или субвулканическим, массивам. Они интересны как в теоретическом отношении, поскольку представляется возможность детально расшифровать геологические процессы, так и с практической точки зрения, ибо такие массивы обладают повышенной рудоносностью.

Начнем с Тарынского субвулканического массива, расположенного в пределах хребта Сарычева. Тарынский массив сформировался в условиях оседания, или грабенообразного опускания, крупного близповерхностного блока осадочной толщи и одновременного заполнения магматическим расплавом возникшей полости. Следует оговориться, что это не провал, в результате которого образуется впадина, а оседание блока на глубине 1–2 км от поверхности. Вследствие заполнения полости магматическим расплавом вырос субвулканический массив больших размеров: длина 100 км, наибольшая ширина около 40 км, площадь 1800 км2.

Субвулканический массив имеет дацитовый состав. Породы эти во многих местах секут вмещающую их осадочную толщу, причем по крутым, обращенным к центру массива поверхностям.

Как известно, глубоко залегающие магматические массивы сильно видоизменяют вмещающую их осадочную толщу, превращая ее в роговики на значительном удалении от контакта. Что же касается Тарынского массива, то его воздействие на осадочную толщу невелико. Это и свидетельствует о залегании массива на небольшой глубине. Кроме того, в основании глубоких врезов его обнаружена поверхность предполагаемого опущенного блока осадочной толщи — это подошва субвулканического массива. В то же время небольшие участки измененных осадочных пород сохранились и на поверхности массива. Они являются остатками кровли, от которой была оторвана опустившаяся часть блока. Такие факторы также подтверждают малоглубинный характер массива.

Поскольку формирование массива происходило неглубоко, к тому же в весьма мобильной обстановке, часть магматического расплава прорывалась на поверхность. Она-то и образовала на некоторых участках эффузивный (излившийся) покров.

Вслед за формированием субвулканического дацитового массива возникли мелкие полукольцевые и протяженные прямолинейные трещины, которые были заполнены расплавом того же (дацитового) состава. Им образованы полукольцевые дайковые тела, которые ограничивают по периферии как сам массив, так и поле эффузивов.

Наибольшая по своему размаху магматическая деятельность относится к более позднему этапу развития структуры хребта Сарычева. Это внедрение магматических расплавов, с которыми связано формирование ряда гранитных массивов, слагающих внешний пояс очень крупной концентрически-кольцевой структуры. Данные структуры играют важную роль в размещении магматических пород. Такая взаимосвязь хорошо прослеживается во многих местах земного шара. Но особенно в этом отношении показателен Северо-Восток нашей страны. Кольцевые структуры контролируют размещение магматических пород разных глубин, особенно субвулканических. Одна из таких структур прослеживается в хребте Сарычева. Размеры ее необыкновенно велики — 180 км.

С кольцевыми структурами хребта Сарычева связан разновозрастной магматический комплекс. Возникновение разломов и всевозможных полостей и заполнение их магматическим расплавом явилось результатом многоэтапного развития.

Наиболее важным событием было формирование субвулканического массива, занявшего полость опустившегося блока осадочной толщи. Это происходило в такой последовательности. Под активным воздействием магматических расплавов вначале произошло куполообразное воздымание осадочной толщи. Оно способствовало возникновению обильной трещиноватости и обособлению этой толщи на отдельные блоки.

Когда подъемная сила магматических масс несколько уменьшилась, вертикально направленное напряжение ослабло, расплав начал просачиваться в образовавшиеся трещины и полости. В это время движение блоков обрело противоположное направление — началось грабенообразное опускание.

Вследствие отрыва от приповерхностной части осадочной толщи других блоков при последующем погружении начала создаваться полость, которая интенсивно заполнялась магматическим расплавом, образовавшим в конечном счете Тарынский субвулканический массив. Давление магматических масс в какой-то мере способствовало уплотнению осадочной толщи по периферии, чем и вызван небольшой наклон к центру системы (в сторону субвулканического массива), о чем упоминалось выше.

Следует подчеркнуть, что взаимодействие магматических масс и тектонических процессов было довольно активным. Поэтому, когда субвулканический массив был сформирован, вокруг него образовалась кольцевая ослабленная зона или система разломов, где и развивались последующие события. Вначале, после очередных тектонических подвижек, способствовавших возникновению глубоких трещин, они были заполнены тем же дацитовым расплавом, которым сложен массив; были образованы дуговые в виде даек тела порой большой протяженности. Следующий этап — образование вокруг субвулканического массива громадного внешнего кольцевого пояса гранитных массивов. В пределах этой же кольцевой структуры наблюдаются ступенчатые кольцевые грабены с радиусом около 5 км и амплитудой опускания 200–300 м.

Итак, в кольцевой структуре хребта Сарычева наиболее отчетливо выделяется главная из них, образованная внешним поясом гранитных массивов. Далее следуют кольцевые и полукольцевые дайки, уже значительно меньшего масштаба. Еще ближе к центру отмечаются поля эффузивов, расположенные в виде дугообразных полос. Центральное положение в этой структуре занимает Тарынский субвулканический массив.

Кольцевые и дуговые структуры широко развиты также в районе хребта Сунтар-Хаята, примыкающего к хребту Сарычева. Примерами концентрических структур здесь служат Сунтарская группа и наиболее четко выраженная Лабынкырская. Они в плане в известной мере повторяют более ранние структуры.

На стыке Яно-Колымской складчатой области и Колымского срединного массива расположен очень крупный Буордахский субвулканический массив. Он также окружен полудуговыми разломами, однако характер становления его был совсем иным, чем Тарынского массива. Воздымание кровли осадочных пород произошло в результате подъема магматических расплавов, однако последний находился намного ближе к поверхности и, что самое главное, здесь не опускалась осадочная толща. Пульсационным поступлением магматического расплава и был образован этот субвулканический массив.

Буордах занимает особое положение в структуре Яно-Колымской складчатой области. В нем весьма отчетливо проявляется взаимосвязь между вулканическими и плутоническими (глубинными) образованиями. В этом массиве можно проследить характер магматических пород на значительную глубину, изменение пород от периферии к центру и т. д.

Массив образует выступ в сторону Колымского срединного массива. От Момского поднятия он отделен длинным дуговым разломом древнего заложения. Массив вытянут в северо-западном направлении и своим северо-восточным склоном опускается в Момо-Сеймчанскую впадину. Протяженность Буордахского массива 70 км, наибольшая ширина 30 км, площадь 2000 км2.

В орографическом отношении Буордахский массив занимает наиболее высокогорную часть хребта Черского.

В более узком плане он является отрогом хребта Улахан-Чистай.

Буордахский массив сложен главным образом субвулканическими породами неглубокого залегания. Состав их повсеместно липаритовый. Эффузивные образования представлены небольшим объемом. Это наземная фация субвулканического массива. Выходу эффузивов на поверхность способствовали активные тектонические подвижки при формировании массива.

Составную часть массива образуют обособленные куполовидные выступы, которые хорошо фиксируются в рельефе. Размеры невелики — несколько сот метров в поперечнике, иногда чуть больше километра. Крутизна контактов их с вмещающими породами 30–35°, иногда больше. В некоторых местах встречаются дайки, связь которых с субвулканическим массивом несомненна.

К северо-западу от Буордахского массива, по правобережью Индигирки, встречаются и другие субвулканические тела. Интересным представляется Сары-Кыллахский массив площадью 100–110 км2. Он хорошо просматривается с юго-западной стороны. Массив сильно расчленен эрозионными процессами, что дает возможность проследить его строение на значительную глубину. Часть массива, расположенная по левобережью Индигирки, имеет глубину вреза до 150 м.

Формирование Сары-Кыллахского массива происходило в несколько сближенных по времени импульсов. Состав пород ограничивается липаритами и дацитами; последние преобладают, покрывая около 90 % площади массива.

К юго-востоку от Сары-Кыллаха находится массив Хатысский. Площадь его не превышает 50 км2. Он опоясан несколькими разломами, которые образуют вокруг массива почти замкнутую кольцевую структуру. Эти разломы по времени опережают формирование Хатысского субвулканического массива. Он расположен в том же тектоническом поясе, что и предыдущие. Да и состав его примерно тот же: липариты, дациты и отчасти андезиты.

Субвулканические тела, близкие по составу к вышеописанным, обнаружены и в других местах Яно-Колымской складчатой области, в бассейнах Индигирки (преимущественно), Колымы и Яны.

Расскажем еще об одном, довольно обширном районе, расположенном в северной части хребта Полоусного и Приморской низменности. Здесь отчетливо выступают многочисленные субвулканические тела небольших размеров, расположенные в пределах двух протяженных зон глубинных разломов. Один из них, Чохчуро-Чокурдакский, имеет протяженность 250 км. В нем выявлены магматические породы двух возрастов — более древние гранодиориты и кварцевые диориты, во вторую фазу образовались породы липарит-гранитного состава.

Восточнее Чохчуро-Чокурдакского разлома находится Бёрёлёхский глубинный разлом протяженностью около 120 км. В нем прослеживаются субвулканические тела разного состава, но наиболее рудоносные близки к породам Буордахского массива.

Малоглубинные массивы можно встретить во многих местах Яно-Колымской складчатой области, а также вдоль границы Колымского срединного массива, хребтов Полоусного и Улахан-Сис.

Породам малоглубинных тел в большей степени, чем породам других магматических образований, свойственно значительное разнообразие текстурных разновидностей.

Наиболее выразительной является столбчатая отдельность. Образуется она вследствие сжатия остывающего расплава. Необходимо при этом и равномерное распределение напряжений в магматическом расплаве. И еще одно условие для образования столбчатой отдельности — неподвижность расплава. В то же время температурный режим должен быть аналогичен движущемуся расплаву.

Именно в таких закрытых условиях вблизи поверхности и находится расплав, что способствует обеднению его летучими компонентами и тем самым более быстрому остыванию. Конечно же, магматический расплав в этот момент должен обладать и определенной вязкостью. Обычно расплав, из которого образуются субвулканические тела, имеет большую вязкость. Столбчатость же присуща маловязким расплавам (в основном базальтам). Но это только кажущееся противоречие. Вся суть вопроса заключается в том, что при высоких температурах кислый расплав (липаритовый, дацитовый) имеет умеренную вязкость, при которой и формируется столбчатая отдельность.

В поперечном разрезе столбы имеют чаще всего четырех- и пятигранные, реже шестигранные призмы. Средний размер столбчатой отдельности равен 50 см. Высота столбов — от нескольких метров до 100–150 м, причем в ряде случаев она прослеживается по вертикали почти непрерывно.

Породы со столбчатой отдельностью в субвулканических телах занимают значительные площади, а некоторые куполовидные выступы целиком сложены ею. Таким образом, формирование столбчатой отдельности в субвулканических породах происходило при таком режиме, когда расплав еще имел определенную эластичность, но в то же время остыл до такой степени, что это способствовало растрескиванию монолитов.

Субвулканическим породам свойственна и плитчатая отдельность. Она в ряде случаев перемежается со столбчатой, иногда же прослеживается в более глубоких горизонтах. Важная роль в образовании плитчатой отдельности принадлежит направленному давлению.

Мощность пород с этой текстурой не превышает 100 м. Толщина плит небольшая — 10–15 см. Нередко в них наблюдается хорошая делимость, в других случаях намечается лишь слабое обособление. Местами видна ясная граница между столбчатой и плитчатой отдельностью.

В субвулканических породах, преимущественно вблизи контактов, встречается полосчатая текстура. Она присуща большей частью плотным породам, которые занимают небольшие площади. Мощность самих полосок невелика — от долей сантиметра до 3–4 см.

Изучение многочисленных субвулканических тел разных районов земного шара показало, что во многих местах они обладают повышенной рудоносностью. К ним приурочены месторождения золота, олова, серебра, вольфрама, меди, ртути, свинца, цинка и других металлов.

Рудоносность субвулканических образований обусловлена прежде всего характером формирования их на малых глубинах. Доказано, что в приповерхностных условиях имеет место резкий перепад температуры и давления. Это оказывает большое воздействие на растворы — они становятся пересыщенными, что и приводит на определенных уровнях глубинности к выпадению избыточного количества отдельных компонентов.

На юго-востоке Тарынского субвулканического массива известно рудопроявление олова. Оно локализовано в сильнодробленых породах. На этом участке обнаружены цинк, свинец, серебро, в том числе и самородное.

Почти в центре массива и в его западной части отмечены низкотемпературные рудопроявления серебра, цинка, свинца и других металлов. В рудных телах присутствуют касситерит, блеклая руда, самородная медь, свинцовая охра и т. д.

В Буордахском субвулканическом массиве часто встречаются жильные образования, среди которых наиболее обильны кварцевые жилы. В них содержатся свинец и цинк. В некоторых местах встречен шеелит (вольфрамовая руда). В Сары-Кыллахском и Хатысском субвулканических массивах также найдены олово, ртуть, медь, цинк и другие рудные компоненты. Убедительные данные о рудоносности субвулканических образований на Северо-Востоке приводятся для северной части хребта Полоусного и Приморской низменности, к которым приурочены оловорудные месторождения.

Оловоносность в этом протяженном поясе магматических образований известна с верхней юры и нижнего мела (такой же возраст рудопроявлений и в субвулканических массивах). В этой связи любопытно отметить, что в более молодых субвулканических породах гранит-липаритового ряда содержание олова в 3–5 раз выше, чем в породах такого же состава верхней юры и нижнего мела. Это свидетельствует не только о преемственности в металлоносности субвулканических комплексов, но и о достижении самой высокой концентрации олова в магме очагов, которые возникли на завершающем этапе долгоживущего тектоно-магматического цикла развития Яно-Колымской складчатой области. Вариации в изменении содержания олова и сопровождающих его компонентов свидетельствуют о полной зависимости их от характера магмы на всем протяжении ее эволюции.

Связь рудоносности с малоглубинным магматизмом отмечается и в других местах Северо-Востока, в частности в Охотско-Чукотском поясе, где в золотоносных районах имеются многочисленные выходы субвулканических интрузий.

Формирование субвулканических массивов — важный этап в эволюции магматизма Северо-Востока. Завершающий период его относится к более позднему времени, когда произошло внедрение гранитоидных расплавов; их объемы преобладали над объемами осадконакопления. Этот расплав, поступавший из недр земли, остывал на сравнительно небольшой глубине — 5–6 км от поверхности — и образовал пояс, сложенный в основном гранитами. Пояс гранитов простирается на 1100 км, а ширина его местами достигает 400 км. Гранитами нередко сложены целые хребты, в частности хребет Черского. По своему расположению он почти копирует общее направление бывшего прогиба (геосинклинальной зоны). В хребте Черского прослеживается главный пояс гранитоидных массивов. Кульминационный период этого магматического цикла относится к верхнеюрскому — нижнемеловому времени (130–120 млн. лет назад), когда и были сформированы гранитные массивы.

Следует отметить, что субвулканические и гранитные массивы пространственно связаны между собой, но последние явно преобладают.

Гранитные массивы почти везде увенчаны гребневидными выступами, обрывистыми скалами. Местами скалы сложены плитчатой отдельностью. Отполированные водой и минеральной пылью, они словно покрыты лаком. Многие массивы разбиты трещинами на глубину 300–500 м. Некоторые гранитные массивы образуют внешние пояса кольцевых структур. К таким массивам относится Булгуньяхский. В плане он имеет форму дуги протяженностью 30 км, обращенной выпуклой стороной к северо-западу. Подобную форму массива можно объяснить природой заполненной им полости — массив является фрагментом огромной кольцевой структуры.

Составная часть этой структуры — крупный Нельканский массив (площадь около 1200 км, высота 2350 м). Конфигурация оконечности массива подчеркивает кольцевой изгиб, обусловленный нарушениями, которые произошли до его формирования. В массиве видны крутые, подчас отвесные скалистые уступы. Он был внедрен в ослабленную зону земной коры до глубины 5–6 км от поверхности, где и остывал длительное время. Лишь через многие десятки миллионов лет гранитный массив вследствие разрушения осадочного покрова оказался на поверхности земной коры.

Впечатляет также массив Порожный, протянувшийся в широтном направлении на 80 км. Наиболее эффектны его обнажения на берегах Индигирки, которая его рассекает вкрест простирания. В осевой части массива видны островершинные выступы, а в средней — глубокие циркообразные врезы с отвесными стенками скал и очень узкие гребневидные выступы водоразделов.

Вблизи южной границы с Колымским срединным массивом, по право- и левобережью Индигирки находится живописный Чималгинский массив. Сложен он гранитами серыми и розовыми. Цвет гранитов обусловлен окраской некоторых минералов, изменивших свой состав в близ-поверхностных условиях.

Еще два гранитных интрузива — Эрикитский и Дарпирский — расположены вблизи Буордахского субвулканического массива. Они интересны тем, что в некоторых местах внедряются в субвулканические породы, несколько изменяя их. Тем самым молодой возраст гранитов доказывается вполне определенно.

Подобные соотношения между гранитами и субвулканическими породами прослеживаются и в других местах.

На территории Северо-Востока широко развиты дайковые образования, во многих случаях не связанные с гранитными и другими массивами. Обычно это протяженные уплощенной формы тела, возникшие в результате застывания огненно-жидкого расплава в трещинах. Некоторые дайки имеют плитообразную форму с очень извилистой линией контакта с вмещающими их осадочными породами. Форма дайки целиком зависит от заполненной расплавом трещины.

Возрастной диапазон даек довольно широк. Большинство из них появилось еще до формирования глубинных и малоглубинных массивов. Во многих случаях они пересекаются и тем самым дают возможность проследить последовательность внедрения в осадочную толщу. Дайки размещены на площади не равномерно, а сгруппированы отдельными свитами. Такое распределение объясняется приуроченностью к разным нарушенным зонам. Одни из них тяготеют к разломам меридионального направления, другие — широтного, а третьи расположены дугообразно, заполняя кольцевые трещины.

Состав даек довольно разнообразный, но в возрастной последовательности в общем следует от основных (габбро) к кислым (гранитам) породам. Длина даек — от нескольких сот метров до 1–3 км, а мощность 20–30 м.

В некоторых местах толщи осадочных пород настолько насыщены дайками, что по своему объему превосходят их. Такое обилие даек наблюдается вблизи гранитных массивов Морджот, Буркандя и др. (верховье Колымы).

В дайках встречается турмалин. Он либо бесцветен, либо имеет слабо-зеленоватый оттенок. В отдельных разновидностях пород этот минерал является поисковым признаком на некоторые металлы.

В дайках можно обнаружить и гранат. Благодаря оранжевой окраске он очень хорошо выделяется на светлом фоне породы. Размеры зерен граната измеряются несколькими миллиметрами, единичные — больше 1 см.

С гранитными массивами и дайками пространственно ассоциируются рудопроявления ряда металлов, в частности олова, золота, вольфрама, серебра, цинка, свинца, ртути и др. Как указывает Н. А. Шило, основной этап рудо-образования приходится на конец юрского периода и меловой, т. е. на то время, когда и были сформированы гранитные и другие массивы.

Загрузка...