Five days after the fall of the World Trade Center towers, on Sunday, September 16th, at four-thirty in the afternoon, D. A. Henderson was sitting in the den of his house in an easy chair by the Japanese garden, getting no peace from the view.
The telephone rang. It was Tommy Thompson, the Secretary of Health and Human Services, calling from HHS headquarters, on the south side of the Mall. “Can you come to a meeting in Washington?”
“When?”
“Tonight. Seven P.M. We’re asking, What’s next?” Thompson said. “We’d like you to be there.”
Henderson told Nana where he was off to, and he got in his silver Volvo and drove to Washington. It was the end of his plans for retirement. He went to work in Thompson’s office and eventually was appointed the director of the Office of Public Health Emergency Preparedness & Response. He became, effectively, the bioterrorism czar in the government, with managerial control over an annual budget that grew to more than three billion dollars. He started getting up at five, taking an early train to Washington, and getting home late at night. He was seventy-three years old. He believed that it was only a matter of time before the bioterror attack that he had long expected finally occurred.
Henderson went to work for the federal government on a Sunday night. The next day or the day afterward — Monday or Tuesday, September 17th or 18th — someone visited a post office or mailbox somewhere around Trenton, New Jersey, and mailed letters full of dry, crumbly, granular anthrax to New York City: to the NBC anchor Tom Brokaw, to CBS, to ABC, and to the New York Post.
Peter Jahrling had been in near-daily contact with Lisa Hensley and the monkey team in Atlanta after September 11th, but by the middle of October, he became almost overwhelmed by the investigation of the anthrax attacks, the first large-scale bioterrorism event in the United States.
On the morning of the 16th, the day after it was delivered to USAMRIID, the powder in the letter mailed to Senator Daschle was being studied by John Ezzell, the civilian microbiologist who accepted it from the agents of the FBI’s Hazardous Materials Response Unit. But Jahrling wanted Tom Geisbert to get the sample under an electron microscope, and that didn’t seem to be happening fast enough. Jahrling met Ezzell in a hallway and said, in a loud voice, “Goddamn it, John, we need to know if the powder is laced with smallpox.”
Top Institute scientists were yelling in the halls about an unknown terrorist bioweapon, and the staff rallied. A technician hurried into Ezzell’s laboratory rooms and brought out two small test tubes of samples from the Daschle letter. One tube held a milky white liquid. This was from the field test done by the HMRU. The other tube contained a tiny heap of dry particles and a corner of paper cut off the Daschle envelope — the corner was about this size: L. The tubes were inside double plastic bags that were filled with disinfecting chemicals. The technician gave them to Geisbert, who took them into a Level 4 suite called the Submarine.
The Submarine is the hot morgue at USAMRIID. The main door of the Submarine is a massive plate made of steel, with a lever. It looks like a pressure door on a submarine. Pathologists wearing space suits have on one or two occasions used the Submarine for the dissection of the body of a person who was thought to have died of a hot agent, although the opportunity to do this kind of postmortem exam rarely arises.
Geisbert suited up and went through the air lock into the Submarine, carrying the tubes of Daschle anthrax. He walked past the autopsy room to a small lab. He opened the tube of milky anthrax liquid and poured a droplet onto a slip of wax. Using tweezers, he placed a tiny copper grid on top of the droplet, and he waited a few minutes while the anthrax liquid dried to a crust on the grid. Then he put the grid in a test tube of chemicals, so that any live anthrax spores would be killed. He showered out of the suite, got dressed in civilian clothes, and brought the sample up to one of the scope rooms on the second floor, where he put the tiny grid into a holder and shoved it into one of the electron microscopes, a transmission scope, which is eight feet tall. The scope cost a quarter-million dollars. Geisbert sat down at the eyepieces and focused.
The view was wall-to-wall anthrax spores. The spores were ovoids, rather like footballs but with more softly rounded ends. The material seemed to be absolutely pure spores.
Anthrax is a parasite that has a natural life cycle in hoofed animals. An anthrax spore is a seed, a tiny, hard capsule that can sit dormant in dirt for years, until eventually it may be eaten by a sheep or a cow. When it comes into contact with lymph or blood, it cracks open and germinates, and turns into a rod-shaped cell. The rod becomes two rods, then four rods, then eight rods, and on to astronomical numbers, until the fluids in the host are saturated with anthrax cells. An anthrax cell (unlike a virus) is alive. It hums with energy, and it draws in nutrients from its environment. Using its own machinery, it makes copies of itself. A virus, on the other hand, uses the machinery and energy of its host cell to make copies of itself — it cannot live an independent existence outside the cells of its host.
The anthrax cells produce poisons that cause a breathing arrest in their host. Anthrax “wants” its host to drop dead. Anthrax-infected animals can go from apparent health to death with the celerity of a lightning strike. Some years ago, researchers in Zimbabwe found a dead hippopotamus standing upright on all four feet, killed by anthrax while it was walking. The hippo looked as if it had not even noticed it was dead.
The carcass of the host rots and splits open, the anthrax cells sporulate, and a dark, putrid stain of fluids mixed with spores drains into the soil, where the spores dry out. Time passes, and one day a spore is eaten by a grazing animal, and the cycle begins anew.
Geisbert turned a knob and zoomed in. An anthrax spore is five times larger than a smallpox particle. He was looking for bricks of pox, so he was looking for little objects, searching spore by spore. The task of finding a few particles of smallpox mixed into a million anthrax spores was like walking over a mile of stony gravel looking for a few diamonds in the rough. He saw no bricks of pox. But he noticed some sort of goop clinging to the spores. It made the spores look like fried eggs — the spores were the yolks, and the goop was the white. It was a kind of splatty stuff.
Geisbert twisted a knob and turned up the power of the beam to get a more crisp image. As he did, he saw the goop begin to spread out of the spores. Those spores were sweating something.
The scope had a Polaroid camera, and Geisbert began snapping pictures. He suddenly realized his boss was leaning over his shoulder. “Pete, there’s something weird going on with these spores.” He stood up.
Jahrling sat down and looked.
“Watch,” Geisbert said. He turned the power knob, and there was a hum.
The spores began to ooze.
“Whoa,” Jahrling muttered, hunched over the eyepieces. Something was boiling off the spores. “This is clearly bad stuff,” he said. This was not your mother’s anthrax. The spores had something in them, an additive, perhaps. Could this material have come from a national bioweapons program? From Iraq? Did al-Qaeda have anthrax capability that was this good?
Jahrling got up from the microscope. “I’m going to bring this to the chain of command.”
Carrying the Polaroids in the pocket of his gray suit, Jahrling walked across the parade ground of Fort Detrick to the offices of the Army’s Medical Research and Materiel Command, which has authority over USAMRIID. It was then headed by Major General John S. Parker, a chunky man with a calm, jovial disposition, wire-rimmed glasses, and a shock of silver hair. General Parker is a heart surgeon. Jahrling walked into his office without knocking. “You need to see this,” he said, placing the pictures on the general’s desk.
General Parker listened and then asked a few questions. “I want to look at it myself,” he said. Jahrling and the general hurried back across the parade ground. It was four o’clock in the afternoon, near the end of a hot, dry October day, and the East Coast of the United States was locked in a drought. Catoctin Mountain looked dreamy and peaceful in the autumn haze. The sun was going down, and the flag in the middle of the parade ground cast a shadow toward the east over heat-scorched grass.
General Parker and Peter Jahrling went by the office of the USAMRIID commander, Colonel Ed Eitzen, and then the three men went upstairs to the scope room, where Tom Geisbert was staring at the anthrax. Geisbert stood up nervously when the general entered and started to explain what he was doing.
“It’s okay, I used to run an electron microscopy lab,” Parker said.
Parker sat down at the scope and looked. Pure spores.
That was all he needed to see. He went out into the hallway and started issuing instructions to Eitzen and Jahrling in a rapid-fire way: We’re going to put USAMRIID into emergency operations. We’re going to run this facility around the clock. He emphasized that the FBI would be using USAMRIID as the reference lab for forensic evidence from the bioterror event. FBI people would be working side by side in the labs with John Ezzell and other Army scientists. He was going to bring in microbiologists from other parts of his command to help with the work. Parker knew that Washington would be needing as much clear information as possible.
That morning, a postal worker named Leroy Richmond, who worked at the Brentwood mail-sorting facility in Northeast Washington, D.C., had called in sick. Richmond had a headache, a fever, and pain in his lower chest. He went to bed.
Later in the day, the Postmaster General of the United States John E. “Jack” Potter told his aides to ask CDC officials what should be done about postal workers “upstream” who might have handled the Daschle letter. Officials at the CDC answered that they felt there was no danger to any postal workers. They had a reason for believing that. When they had learned that Robert Stevens and Ernesto Blanco had been exposed through the mail at the American Media offices in Boca Raton, the CDC investigators had taken swab samples in post offices around the area, and they had swabbed the noses of Florida postal workers. They had discovered anthrax spores in the Florida post offices, but no postal workers had become infected. There was no reason to think that postal workers in Washington were in danger.
Tom Geisbert couldn’t keep his eyes off the weapon. He stared at it through the eyepieces of the electron microscope until he noticed that it was eight o’clock at night. He hadn’t eaten or drunk a thing all day. He felt like having some breakfast, so he drove out for the double chocolate doughnut with a large coffee that he had been thinking of getting when he had arrived at work. He brought it back to the Institute and continued to work until midnight. He and his wife, Joan, live in Shepherdstown, a long drive to the west. By the time he got home, it was one o’clock in the morning, and Joan was asleep.
That night, a postal worker at the Brentwood mail-sorting facility named Joseph P. Curseen, Jr., began to develop what he thought was the flu while working the night shift, near machines that sort mail. He had a pain in his lower chest and a headache, so he decided to go home. That same evening, one of Curseen’s coworkers, Thomas L. Morris, Jr., went bowling. He started to feel sick, and he went home and went to bed to get some rest.
Tom Geisbert couldn’t sleep. He tossed and turned and looked at the clock: it was four in the morning. He couldn’t free his mind of the view in the scope — endless fields of anthrax spores with an unknown substance dripping from them. He got up, took a shower, and left for work. He stopped to buy another double chocolate doughnut and a large coffee, then went to his lab to try to get more images of the anthrax.
At ten-thirty that morning, the House of Representatives was closed down after CDC people found anthrax spores in mail bins there. About two hundred Capitol Hill workers were told to start taking the antibiotic ciprofloxacin — Cipro. Major General John Parker went to the U.S. Senate, where he met with a caucus of the Senate leadership and their staff. He told them that he’d looked at the anthrax himself in the microscope and that it was essentially pure spores. He would later say, “The letter was a missile. The address was the coordinates of the missile, and the post office did a good job of making sure it got to ground zero.”
A half mile away from the Senate, at the Health and Human Services headquarters, D. A. Henderson had been working with Tommy Thompson’s staff to get a stockpile of smallpox vaccine created on a crash basis.
There had been fast-paced meetings at the HHS on the subject of this stockpile. Henderson felt that the United States needed one ASAP. Thompson agreed and had just submitted a request to Congress for enough money to create three hundred million doses of smallpox vaccine — one dose for every citizen. The government hired a British-American vaccine company called Acambis PLC to make most of the doses. Acambis’s main manufacturing plant is in Canton, Massachusetts. Soldiers surrounded the plant and were stationed inside the American offices of Acambis, in Cambridge. It was thought that a terror attack on the United States with smallpox might be accompanied by an attack on the country’s vaccine facilities or an attempt to assassinate Acambis personnel who knew how to make the vaccine. The move to surround the vaccine facility in Massachusetts with military force was done rapidly, in secret, and under apparently classified conditions.
Meanwhile, Daria Baldovin-Jahrling (she uses her maiden name with her husband’s) had been getting telephone calls and visits from neighbors. The neighbors knew that Peter was a top government scientist involved with defenses against smallpox, and more than one of them quietly offered Daria money if she could get them some smallpox vaccine. “I don’t even know if I can get any for ourselves,” she answered them. “If I do, I can’t take money for it, and I have to give it to my family first.” She was very frightened. “If smallpox was going around Frederick,” she said to Peter, “could you get any of the vaccine for the children?”
He told her that if there was a smallpox emergency, their children would get a jab of something in their arms; it might not be the licensed stuff, but it would work. He would make the vaccine himself in his lab if he had to. Yet he couldn’t get his mind off the experiment by the Australians, when they had made a vaccine-resistant superpox of mice. What if the vaccine didn’t work? He felt the pressure ratcheting up.
While General Parker was telling the Senate that the anthrax was pure and the HHS people were asking for money for a smallpox-vaccine stockpile, the FBI decided, sensibly, to get a second opinion on the Daschle anthrax. The HMRU dispatched a Huey to Fort Detrick. Not a few of the FBI’s Hueys have bullet holes in them. The holes, which are covered with patches, are left over from combat in the Vietnam War. The FBI had gotten its Hueys used and cheap from the military.
The Huey touched down on a helipad across the street from USAMRIID. An agent went into the building and collected a cylindrical biohazard container called a hatbox. Inside the hatbox, inside multiple containers, was a small test tube of live, unsterilized Daschle anthrax.
The helicopter took off with the sample and thupped westward over Maryland. It touched down in West Jefferson, Ohio, near Columbus, at the Hazardous Materials Research Center of the Batelle Memorial Institute, a nonprofit scientific research and consulting organization. Batelle scientists took the hatbox into a lab. They heated the anthrax powder in an autoclave to sterilize it, and they began looking at it under microscopes.
The spores were stuck together in lumps. They did not appear to be very dangerous in the air — the lumps were too large to float easily or go deep into human lungs. The Batelle analysts conveyed their findings to the head of the FBI Laboratory, Allyson Simons. Their tests showed that the anthrax was not nearly as refined or powerful as the Army people believed.
At ten o’clock on Thursday morning, three days after the Daschle letter was opened, Lisa Gordon-Hagerty of the National Security Council conducted an interagency conference call. Such calls were made every morning in the first weeks of the anthrax crisis, and were intended to keep federal officials up to speed. Gordon-Hagerty had her hands full. There were about thirty people listening or speaking on the calls, a cloud of voices. That morning she went around to the various agencies: “FBI, what do you have to report?”
FBI executives in the Strategic Information Operations Center — the SIOC command room — spoke for the FBI. They included Allyson Simons and the head of the Weapons of Mass Destruction Unit, James F. Jarboe. They reported that they were gathering evidence and intelligence on the attacks, and were working closely with the Army to gain a better understanding of the material in the letter that had arrived at the Senate building.
“Army, what are you reporting?” Gordon-Hagerty said.
Jahrling, who was sitting in the commander’s office at USAMRIID with Colonel Ed Eitzen, spoke. Choosing his words carefully, because practically the entire executive branch of the federal government was listening to him, he said that USAMRIID had found that the anthrax powder in the letter mailed to Senator Daschle was “professionally done” and “energetic.” By “energetic” he meant that the particles had a tendency to fly up into the air if they were disturbed. A key element in the design of a military bioweapon is the weapon’s intrinsic energy — the capacity of the particles to fly into the air and form an invisible and essentially undetectable cloud, which can travel long distances and fill a building like a gas.
There were several CDC officials on the call. They were sitting around a conference table in the office of the agency’s number two person, Dr. James M. Hughes. Jahrling’s voice came out of the box on the table in a tinny way, and it’s not at all clear that they understood what he meant by the “energy” of a biopowder. They had not experienced the sight of the anthrax particles floating straight into the air off a spatula — the sight that had prompted John Ezzell to exclaim, “Oh, my God.” Furthermore, they did not know much, if anything, about how weapons-grade anthrax is made. Those methods were classified. Perhaps no one had briefed CDC officials on the methods for weaponizing anthrax spores. The CDC officials were public health doctors, and up until then, they had had no reason to learn the secrets of making a biological weapon. To the CDC officials, Jahrling’s remarks may have sounded like technical jargon, which it was.
A team of epidemiologists from the CDC was in Washington, working frantically to test five thousand workers on Capitol Hill for exposure to anthrax. They were swabbing the insides of people’s noses, concentrating on the people who had been in the Hart Senate Office Building when the Daschle letter was opened. Several buildings on Capitol Hill had been closed down for testing for anthrax spores. The CDC was stretched paper-thin. Many people had essentially stopped sleeping several days earlier, and they were making decisions in a fog of enormous political pressure and exhaustion. The CDC officials did not think that what Peter Jahrling called the “energetic” or “professional” nature of the anthrax suggested that postal workers in the facilities where the letters had been processed might be in danger.
“The significance of the words energetic and professional were lost on the CDC people,” Jahrling said to me. “In my view, at the CDC you have a culture of public health professionals who think of biological warfare as such a perversion of science that they find it simply unimaginable.”
The CDC officials on the call asked Jahrling if he could characterize the particle size. This was an important question, because if the anthrax particles were very small, they could get into people’s lungs, and the powder would be much more deadly.
Peter Jahrling replied that USAMRIID’s data indicated that the Daschle anthrax was ten times more concentrated and potent than any form of anthrax that had been made by the old American biowarfare program at Fort Detrick in the nineteen sixties. He said that the anthrax consisted of almost pure spores, and that it was “highly aerogenic.”
Jahrling now says that he was trying to get the attention of the CDC people, trying to warn them that more people could have been exposed than they realized, but it was like waving to someone across a crowded room. “The CDC people were not reacting much,” he said. “I was exasperated. I wasn’t getting any response from them when I said the anthrax was highly aerogenic. I was thinking, ‘When is this thing going to blow up and get everybody’s attention?’”
Jeffrey Koplan, the director of the CDC, was listening on the call but didn’t speak much. Months later, Koplan said to me, “If we had known that the anthrax would behave like a gas when it got into the air and that it would leak through the pores of the letters, it might have been useful. But would we have done things differently? You can’t say what you would have done differently in the heat and turmoil of an investigation, if only you had known.”
The spores of anthrax went straight through the paper of the Daschle envelope and other anthrax envelopes full of ultrafine powder that were mailed, though they had been sealed tightly with tape. It seemed that the anthrax terrorist or terrorists had not planned on having the letters kill postal workers. “They weren’t part of the target,” as Koplan put it.
Paper has microscopic holes in it that are up to fifty times larger than an anthrax spore. If a pore in the envelope paper was a window in a house, then an anthrax spore would be a tangerine sitting on the sill. If you take a sheet of paper (a page of this book, for example) and seal it against your mouth and then blow against the paper, you will feel the warmth of your breath coming through the paper. This suggests what the anthrax spores did when the envelopes were squeezed through the mail-sorting machines.
At seven o’clock that evening at the Brentwood mail-sorting facility, technicians wearing protective suits and breathing masks began to walk around the machines, testing them with swabs for anthrax spores. The Brentwood facility was up and running, and there were postal workers all around, working at their places by the machines. One of the workers asked the testers, “How come you aren’t testing the people?”
The United States had been conducting air strikes in Afghanistan for nearly two weeks, and American special forces were operating inside the country. President George W. Bush and his advisers had indicated that the United States considered Iraq to be a sponsor of terrorism, and that Saddam Hussein led “a hostile regime” that the United States would likely target for destruction when it was finished with the Taliban. In the White House, there was extraordinary concern that the anthrax attacks might have been a clandestine operation sponsored by al-Qaeda or Iraq.
Before dawn on Friday morning, four days after the Daschle letter was opened, Peter Jahrling put on a space suit and went into the Submarine and got a tiny sample of live, dry Daschle anthrax. He brought it out inside double tubes, for safety, and put the tubes in a radiation pile — a cobalt irradiator — which fried the DNA in the spores, rendering them sterile. He gave the sample to Tom Geisbert, so that Geisbert could look at the dry anthrax in a scanning electron microscope.
Geisbert carried the tube of dry anthrax into his microscope lab, set the tube in a tray, and turned his attention elsewhere. A minute later, he happened to glance at the tube. The anthrax was gone.
Yet the cap of the tube was closed.
“What the heck?” he said out loud.
He picked up the tube and stared at it. Empty. He tapped the cap with his finger, and the particles appeared and fell down to the bottom of the tube — they had gotten stuck underneath the cap, somehow.
He went back to work. A minute later, he glanced over at the tube. The anthrax was gone again. He tapped the cap, and the anthrax fell to the bottom. He stared at the bone-colored particles. Now he saw them climbing the walls of the tube, dancing along the plastic, heading upward.
His assistant, Denise Braun, was working nearby. “Denise, you’ll never believe this.”
The anthrax was like jumping beans; it seemed to have a life of its own.
He began preparing a sample for the scope. He opened the tube and tapped a little bit of the anthrax onto a piece of sticky black tape that would hold the powder in place. But the anthrax bounced off the tape. The particles wouldn’t stick. Eighty percent of the Daschle particles flittered away in air currents up into the hood. That was when he understood that the Hart Building was utterly contaminated.
He somehow managed to get some of the particles to stick to the tape. He hurried the sample into the scope room, put it under a scanning scope, and zoomed in. What he saw shocked him.
The spores were stuck together into chunks that looked like moon rocks. They reminded him of grinning jack-o’-lanterns, skeletons, hip sockets, and Halloween goblin faces. The anthrax particles had an eroded, pitted look, like meteorites fallen to earth. Most chunks were very tiny, sometimes just one or two spores, but there were also boulders. One boulder looked to him like a human skull, with eye sockets and a jaw hanging open and screaming. It was an anthrax skull.
The skulls were falling apart. He could see them crumbling into tiny clumps and individual spores, smaller and smaller as he watched. This was anthrax designed to fall apart in the air, to self-crumble, maybe when it encountered humidity or other conditions. He had a national-security clearance, and he knew something about anthrax, but he could not imagine how this weapon had been made. It looked extremely sinister. He started feeling shaky.
He called Jahrling. “Pete, I’m in the scope room. Can you come up here, like right now?”
Jahrling ran upstairs, closed the door, and stared at the skull anthrax for a long time. He didn’t say much. Geisbert’s security clearance was rated secret, and the details of how this material could have been made might be more highly classified.
Not long afterward, Jahrling apparently went to the Secure Room and had the classified safe opened. He studied a document or documents with red-slashed borders that would appear to contain exact technical formulas for various kinds of weapons-grade anthrax. In the papers, there were almost certainly secrets for making skull anthrax of the type he had just seen in the scope.
Jahrling refers to the secret of skull anthrax as the Anthrax Trick, although he won’t discuss it. Could this stuff have been made in Iraq? Could this be an American trick? Who knew the Anthrax Trick?
Tom Geisbert arrived home in Shepherdstown very late. He had been going on maybe three hours of sleep a night for days, but now he had insomnia. He was afraid that his findings about the skull quality of the anthrax meant that it had come from a military biowarfare lab. Finally, he woke up Joan. “I could start a war with Iraq,” he said to her. He seemed on the edge of tears. Joan reminded him that he was a scientist and that all he could do was find the truth and report it, wherever it led. “We just have to let the data play out however it plays out,” she said. “Other people are working on the anthrax, too.”
He did not sleep that night.
Late on Sunday, October 21st to 22nd, Joseph P. Curseen, Jr., the Brentwood postal worker who thought he had the flu, felt really bad. He had not been to work since Tuesday night. He went to the emergency room at Southern Maryland Hospital Center, where doctors looked at him and sent him home. He was dying, but they didn’t see it. That same day, another Brentwood worker, Leroy Richmond, who had called in sick to work earlier in the week, was admitted to the Inova Fairfax Hospital with a presumptive diagnosis of inhalation anthrax, which had been made by an alert emergency room doctor named Thom Mayer. Richmond would eventually survive under the care of doctors at the Fairfax Hospital. That night, at about 11:00 P.M., Brentwood worker Thomas L. Morris, Jr., who had first begun to feel sick during a bowling league event some days before, called 911. He was feeling as if he was about to die, and he told the dispatcher he thought he had anthrax. An ambulance took him to the Greater Southeast Community Hospital, where before nine o’clock the next morning he was pronounced dead. Shortly after Morris died, the Brentwood mail-sorting facility was closed down by order of the postmaster general, and two thousand postal workers were told to start taking antibiotics. Joseph Curseen returned to the emergency room at Southern Maryland Hospital Center on Monday morning and died in the hospital in the early afternoon.
At the mail-sorting facility in Hamilton, New Jersey, a suburb of Trenton, postal workers had been exposed to anthrax, too, because the letters had all been mailed somewhere near Trenton. The Daschle letter had gone through the Hamilton facility en route to Brentwood. A tiny quantity of spores had ended up in the air at the Hamilton mail-sorting facility, and now three postal workers had become infected, as well, two with skin anthrax and one with the inhalation kind.
Meanwhile in Washington, the FBI Laboratory was trying to evaluate the anthrax. On the same day that the two Brentwood workers died, a meeting was held at FBI headquarters involving the Laboratory, scientists from the Batelle Memorial Institute, and scientists from the Army. Batelle and the Army people were doing what scientists do best: disagreeing totally with one another. The Army scientists were telling the FBI that the powder was extremely refined and dangerous, while a Batelle scientist named Michael Kuhlman was allegedly saying that the anthrax was ten to fifty times less potent than the Army was claiming. Allyson Simons, the head of the Laboratory, was having trouble sorting through the disagreement, and she was apparently not telling the CDC leadership much about the powder, while waiting for more data to come in. One Army official is said to have blown up at Simons and Kuhlman at the meeting, saying to the Batelle man, “Goddamn it, you stuck your anthrax in an autoclave, and you turned it into hockey pucks.” He told Simons that she should “call the CDC and at least tell them there is a disagreement over this anthrax.” She apparently did not.
The Department of Health and Human Services was not get-ting briefed about the anthrax to its satisfaction by the FBI. An HHS official who was close to the situation but who did not want her name used had this to say about the Batelle analysis of the Daschle anthrax: “It was one of the most screwed-up situations I’ve ever heard of. The people at Batelle took the anthrax and heated it in an autoclave, and this caused the material to clump up, and then they told the FBI it looked like puppy chow. It was like a used-car dealer offering a car for sale that’s been in an accident and is covered with dents, and the dealer is trying to claim this is the way the car looked when it was new.”
The FBI began delivering about two hundred forensic samples a day to USAMRIID, frequently in Hueys. Choppers were coming in day and night on a pad near the building. HMRU agents and other FBI Laboratory people began to work inside suite AA3, which ended up being dedicated entirely to forensic analysis and processing samples. The work was done by USAMRIID’s Diagnostic Systems Division, headed by an Army microbiologist, Lieutenant Colonel Erik Henchal. The samples were largely environmental swabs — from the Brentwood postal facility, from Capitol Hill, from postal facilities in New Jersey, and from New York City. Each sample was a piece of federal criminal evidence and had to be documented with green chain-of-custody forms. Institute scientists ran ten separate tests on each sample, and every sample ended up matched to an evidence-tracking folder with more than one hundred sheets of paper in it. The hallways of the Institute were jammed with filing boxes full of these folders. In the end, USAMRIID scientists would analyze more than thirty thousand samples related to the anthrax terrorism — far more than any other lab, including the CDC.
One of the many samples was a little bit of anthrax from the letter that had arrived at the New York Post. The Post anthrax was almost pure spores, like the Daschle powder, but the spores had somehow gotten glued together into glassy chunks. It looked like a glued-together version of the Daschle anthrax.
Early in the morning, nine days after the Daschle letter was opened, Major General John Parker got a call from Tommy Thompson at Health and Human Services. Thompson had been hearing rumors that the Daschle anthrax was really bad stuff, but he still hadn’t heard much about it from the FBI Laboratory. Thompson felt out of the loop, and he wanted Parker to fill him in. Parker agreed to come to Washington and brief Thompson personally. He called Peter Jahrling and asked him to come along.
Parker and Jahrling traveled to Washington in a green Ford Explorer driven by a sergeant wearing fatigues — this was the general’s staff car. They went to the sixth floor of HHS headquarters and met with Thompson, D. A. Henderson, and other senior members of the HHS staff in a large meeting room overlooking the Mall. They were surprised to find FBI officials there, including the director, Robert S. Mueller III. Also in the room were a number of obviously powerful dark-suited officials who introduced themselves in mumbling voices. They had names like John Roberts, and they said they were from some institute or other. That is, they were top management from the CIA. Their real names were classified.
Jahrling had brought Geisbert’s photographs of the anthrax particles, and he laid them out. Then he produced another something interesting for people to look at: a plastic bag containing six tubes of different orange-tan powders from the Al Hakm anthrax facility in Iraq. A friend of Jahrling’s had collected them there. The powders were anthrax surrogate — fake bioweapons. A surrogate is used for testing and development of a real bioweapon. Iraqi biowarfare scientists had been making anthrax surrogate out of Bacillus thuringensis (BT), which is closely related to anthrax but is harmless to people. (It is anthrax for insects, and it is used by gardeners to kill grubs. The Iraqis had claimed for a while that the Al Hakm facility had been built to deal with grubs in Iraq.)
He passed the bag around the room, assuring people that the vials weren’t dangerous. Everyone could see how different the Iraqi “anthrax” looked from the Daschle powder. It was heavy and crude, and contained large amounts of bentonite (a type of clay commonly used in the oil industry), and looked like lumps of dirt. It didn’t look like the Daschle powder at all. At least at the time Al Hakm was running, the Iraqi bioweaponeers had been using a different formula than what was used for the Daschle powder.
Afterward, Parker suggested to Jahrling that they brief the Pentagon on the anthrax, so they spent the rest of the day circling among the offices of assistant secretaries of defense. Toward the end of the day, they headed back up Interstate 270 to Fort Detrick. It was rush hour, and the traffic was moving like glue. Jahrling was sitting in the front seat, beside the driver, and the general was sitting in the back. On Wednesdays, Jahrling always picked up his daughter Bria at a dance class, and he was looking forward to a little bit of special time with her.
Just as the Explorer arrived at the entrance to Fort Detrick, the general’s cell phone rang. The person on the other end of the line issued some rapid instructions and added, “Where’s this guy Jahrling?”
“He’s in the car with me.” The general leaned forward to Jahrling. “We’re wanted at the White House. Right now.”
“Hey, General Parker — do we have time to stop and take a leak?”
“No.”
The sergeant whipped a U-turn around the Abrams tank at the entrance to Fort Detrick, and they sped back onto the interstate. The sergeant started popping the lights and sirens, weaving through traffic. This wasn’t helping Jahrling’s state of mind. Eventually, he remembered about Bria. He called Daria and said, “I’m not getting Bria.”
“What do you mean?” she asked.
“I can’t tell you.”
“What do you mean you can’t tell me? Where are you, Peter?”
“I can’t say where I am.”
The car was pulling onto Constitution Avenue, and he said he’d talk to her later.
“Peter, do you still have that stuff from Iraq in your pocket?” General Parker asked. “You might not want to bring it into the White House”—the Secret Service might not react well.
They were in the White House driveway, and Jahrling didn’t know what to do with his Iraqi “anthrax.” He rammed it down into the crack of the car seat.
In the foyer, cabinet officials, White House staff, members of the National Security Council, senior FBI, and top-level spooks were milling around. “Where’s the bathroom?” Jahrling muttered to the crowd. Someone directed him.
The meeting took place in the Roosevelt Room, which has ornate, high ceilings and oak doors decorated with brass fittings. There was a long table in the center of the room, with leather-upholstered armchairs placed around it. Many more chairs were placed around the walls.
A security official informed everyone that the meeting was secret. (The next morning, the meeting’s events were described in a front-page story in The New York Times. White House officials later concluded that the leak had come from a source in the FBI.) Attorney General John Ashcroft sat at the table, and Robert Mueller sat close to the center, accompanied by a cluster of FBI officials, including Allyson Simons. Tommy Thompson also sat near the center of the table. The meeting was chaired by Tom Ridge, who had recently been named director of homeland security.
Jahrling started to sit on one of the chairs against the wall, but someone took him by the arm, and he was shown to a chair at the center of the table, where he faced cabinet members wearing dark charcoal suits. Jahrling was wearing his gray suit with a candy-striped shirt and a snappy necktie. The doors were closed by the Secret Service.
Tom Geisbert had been looking for Jahrling around the Institute and couldn’t find him. He got worried and called Jahrling’s home, and got Daria. “Where is Peter?” she asked him. “He didn’t pick up Bria!” She let Geisbert have it.
“She was as mad as a hornet,” Geisbert recalled. He tried to reassure her, but he didn’t know where Jahrling was either.
Daria loved Peter. It was a strong marriage, but she thought that, national crisis or not, her husband owed it to the family to at least tell them where he was.
John Ashcroft led off the meeting. He did not mince words. There was an obvious lack of communication between the Army, the FBI, and the CDC, he said, and the purpose of this meeting was to determine why the CDC hadn’t realized that the anthrax was weapons-grade material and hadn’t taken action faster on the Brentwood mail facility. There was a feeling that whoever had released the anthrax could do it again, perhaps with a massive release inside a landmark building or into the air of a city. This was an urgent national threat. Where did the communication break down? Had the Army given the information to the FBI? Had the FBI informed the CDC about the highly dangerous nature of the anthrax?
Ashcroft was Robert Mueller’s boss, and he looked straight at the FBI director. Mueller turned his gaze to General Parker. Mueller thanked the Army for bringing the nature of the anthrax to the FBI’s attention. He said that the FBI had received conflicting data on the anthrax. The FBI had been trying to sort this issue through, but Mueller now acknowledged that the Army had been right: the Daschle anthrax was a weapon.
Then twenty people around the table started arguing: what is a biological weapon?
John Ashcroft cut everyone off. “Okay, okay! All this discussion about what’s a biological weapon is angels dancing on the head of a pin. I want to hear what the professor has to say.” He pointed with his finger to someone seated behind Jahrling.
Jahrling, who is not a professor, turned around and looked. Then he realized the attorney general meant him. Jahrling cleared his throat and directed everyone’s attention to Geisbert’s pictures of the anthrax skulls. (Staffers had passed them around.) He pointed out the fried-egg goop flowing off the spores in some photographs. This, he said, was probably an additive.
Someone asked, Does the professor think this anthrax could be a product of Iraq?
The best Jahrling could say was that it could be Iraqi anthrax, but all the samples they’d seen from Iraq, so far, were entirely different. The Iraqi anthrax had been mixed with bentonite, and these spores didn’t have clay in them. He said that by tomorrow the Army would have a better idea of what the additive was.
The meeting raced off on the question of whether a “state actor” could have been behind the anthrax attacks. The atmosphere in the room started to feel like a war council deciding whether or not to attack Iraq.
Jahrling got scared. “Whoa!” he blurted. “This anthrax isn’t a compelling reason to go to war. It isn’t necessarily the product of a state actor.” He flushed and stopped talking: saying “Whoa!” to the Cabinet seemed flippant. Then he went on. He said that a few grams of highly pure anthrax could have been made in a little laboratory with some small pieces of equipment. “This anthrax could have come from a hospital lab or from any reasonably equipped college microbiology lab.” The FBI officials posed the question: how would investigators look for “signatures” of a small terrorist bioweapons lab? Jahrling answered that a small lab for making anthrax might go virtually unnoticed, and in any case would be hard to recognize.
Ashcroft closed the meeting by taking the FBI, the Army, and the HHS to the woodshed. He gave them a stern warning to get their acts together and start communicating with one another more effectively. He made it perfectly clear that those who serve at the pleasure of the president can cease to serve in an instant.
“Well, professor, you did okay,” Parker said to Jahrling on the way back to the Institute. Jahrling leaned back on the seat, and the night rushed by. He began to wonder more deeply about what he had said at the meeting — that the anthrax could have come from a small lab, a few pieces of tabletop equipment. What would it take to do the Anthrax Trick? It could be done by an individual, perhaps, or by two or three people. He started thinking about labs. There was a lab in the west…. There was also USAMRIID. Could that be possible? Could this be an inside job? Could it be terror coming from within the Institute? Peter Jahrling had the dizzying thought that the terror might just be coming from someone he knew or knew of.
He got home after midnight. Daria had retrieved Bria at the dance class and had put Kira to bed. She was sitting in the kitchen grading a pile of English papers. “Where have you been? I’m sure it was somewhere important.”
“I was at the White House.”
“Okayyy.”
“No, really.”
“And you couldn’t tell me.”
“No, really, I couldn’t.”
Some days later, the general’s driver stopped by Jahrling’s office with the bag of Iraqi “anthrax.” He said he had found it stuck in his car seat.
Ken Alibek is a quiet man, in early middle age, with youthful looks. He dresses elegantly, in fine wool jackets and subdued ties. He comes from an old Kazakh family in Central Asia. Alibek arrived in the United States in 1992, through a chain of events that involved the CIA. Before then, he was Dr. Kanatjan Alibekov, the first deputy chief of research and production for the Soviet biological-weapons program, Biopreparat. Dr. Alibekov had thirty-two thousand scientists and staff working under him. When he arrived in the United States, he was overweight and depressed, and he spoke no English.
Ken Alibek has a doctor of sciences degree in anthrax. It is a kind of super-degree, which he received in 1988, at the age of thirty-seven, for directing the research team that developed the Soviet Union’s most powerful weapons-grade anthrax. He did this work when he was head of the Stepnagorsk bioweapons facility, in what is now Kazakhstan; it was at one time the largest biowarfare production facility in the world. The Alibekov anthrax became “fully operational” in 1989, which means that it was loaded into bombs and missiles.
The Alibekov anthrax, as Alibek described it to me, is an amber-gray powder, finer than bath talc, with smooth, creamy, fluffy particles that tend to fly apart and vanish in the air, becoming invisible and drifting for miles. The particles have a tendency to stick in human lungs like glue. Alibekov anthrax can be manufactured by the ton, and it is believed to be extremely potent.
One day, Alibek and I were sitting in a conference room in his office in Alexandria, Virginia, and I asked him how he felt about having developed a powerful biological weapon. “It’s very difficult to say if I felt a sense of excitement over this,” he said. His English is perfect, though he speaks it with a Russian accent. “It wouldn’t be true to say that I thought I was doing something wrong. I thought I had done something very important. The anthrax was my scientific result. My personal result.”
I asked him if he’d tell me the formula for his anthrax.
“I can’t say this,” he answered.
“I won’t publish it. I’m just curious,” I said.
“You must understand, this is unbelievably serious.”
Alibek gave me the formula for his anthrax in sketchy terms. The formula appears to be quite simple and is not exactly what you might expect. Two unrelated materials are mixed with pure powdered anthrax spores. If you walk into a Home Depot and look around, you may find at least one of the materials and possibly both of them. To have perfected this trick, though, must have taken plenty of research and testing, and Alibek must have driven his group with skill and determination.
“That was my contribution,” he said.
When Ken Alibek defected, his CIA debriefers discovered that they did not understand what he was talking about. Since the end of the American bioweapons program in 1969, the CIA had lost most of its expertise in biology. The Agency called in William C. Patrick III to help with the debriefings. Patrick, who is a tall, courtly, genial, balding man, now in his seventies, had been the chief of product development for the Army’s biowarfare program before it was shut down in 1969. Bill Patrick holds a number of classified patents — so-called black patents — on the ways and means of making a biopowder that vanishes in the air and can drift for many miles.
Patrick and Alibek had long conversations in motel rooms, always observed and managed by handlers. The two bioweaponeers were among the very top scientists in their respective programs, and they discovered that they talked the same scientific language. As they became acquainted with each other, they found that they and their research teams had independently discovered the tricks that make biopowders fly into the air and vanish. Patrick and Alibek became friends. Patrick and his wife, Virginia, began having Alibek over for Thanksgiving and Christmas, because they felt he was lonely.
One day a few years ago, I drove up the slopes of Catoctin Mountain on a winding country road. It was a cold, raw day, and winter clouds over the mountain formed lenses that let in loose splashes of sunshine. The Patricks live in a comfortable house that resembles a Swiss chalet. It sits at the high point of a small meadow on the mountain, looking down on Fort Detrick. From the house, you can see the roof and vent stacks of USAMRIID, nestled among trees in the distance.
“Come in, come in, young man,” Patrick said. He squinted up at the sky. He is exquisitely sensitive to weather.
We sat in the living room and chatted. “There’s a hell of a disconnect between us fossils who know about biological weapons and the younger generation,” he said. After the offensive program was closed down, Patrick joined USAMRIID for a while, doing peaceful work, but he became quite certain that one day some knowledgeable person was going to use a germ weapon in a terrorist attack, and he began a personal campaign to warn the government of the danger. He was a consultant to various agencies and governments, including the city of New York, and he gave presentations in which he described what small amounts of different powdered bioweapons would do in the air. He also gave estimates of casualties. His projections for a bioterror attack in New York City would appear to be classified.
A few minutes after I arrived, Ken Alibek showed up, driving a silver BMW. After lunch, we settled around the kitchen table. Patrick brought out a bottle of Glenmorangie single-malt whisky, and we poured ourselves drams. The whisky was golden and warm, and it moved the talk forward.
“There seems to be a belief among many scientists that biological weapons don’t work,” I said. “You hear these views quoted a lot.”
The two ex-bioweaponeers looked at each other, and Bill Patrick let out a belly laugh, put his head down, and kept on laughing. Ken Alibek looked annoyed. “This is so stupid,” Alibek said. “I can’t even find a word to describe this. You test the weapons to find out what works. I can say I don’t believe that nuclear weapons work. Nuclear weapons destroy everything. Biological weapons are more… beneficial. They don’t destroy buildings, they only destroy vital activity.”
“Vital activity?”
“People,” he said.
Patrick invited us into his basement office. We followed him down a spiral staircase to a room that had sliding glass doors. He took a paper bag out of a filing cabinet, and he pulled out a little brown glass bottle. The bottle had a black plastic cap that was screwed on tightly, and it was half full of a cream-colored, ultrafine powder. “That’s a simulant anthrax weapon,” he said. “It’s BG”—Bacillus globigii, a harmless organism related to anthrax. “Take a look at that, Ken.”
Alibek held the bottle up and shook it. The powder turned into a cloud of smoke inside the bottle. The smoke swirled around, and the bottle went opaque.
“Now, that is a beautiful product,” Patrick remarked.
Alibek nodded. “It has the characteristics of a weapon.”
Patrick removed an insecticide sprayer from the paper bag. It was an old-fashioned hand-pump flit gun. He pumped the handle, and a cloud of white smoky powder boiled out of the nozzle. “Isn’t that a beautiful particle size?”
Alibek started laughing. “Don’t point that thing at me, Bill!”
“It’s actually my wife’s bath powder.” A pleasant scent of baby powder filled the room.
The room had become a bit stuffy with the powder, so we went outdoors on the lawn in front of the house. Alibek lit a cigarette, and we admired the view down the meadow and over the piedmont of Maryland to a blue line in the distance, the Mount Airy ridge. The patchy clouds now covered the sun.
“Wind’s ten to twelve miles an hour, gusting a bit,” Patrick said. “Which way is the wind going, Ken?”
Alibek turned around and looked up. He seemed to be feeling the air with his face. “East? It’s going east.”
“Smallpox would get to Frederick from here on a day like today,” Patrick remarked.
Alibek nodded in agreement and pulled on his cigarette.
“Hold on,” Patrick said abruptly, and he strode up the hill and disappeared around the corner of the garage. We heard the electric motor of the garage door. He returned in a few moments, carrying a mayonnaise jar that contained a powder. He unscrewed the metal lid and showed me the jar’s contents. It was half full of an extremely fine powder of a mottled, pinkish color. He explained that it, too, was a simulated bioweapon. The pink color in the powder came from the blood of chicken embryos. The powder was a surrogate of a weaponized brain virus called VEE, which travels easily in the air — but the powder was sterile and had no infectious material in it. He shook the jar under my face, and smoky, hazy tendrils wafted toward my nose. I fought an urge to jerk my head back — the mind may know the fog is harmless, but the instincts are hard to convince.
Patrick walked across the lawn with the jar and stood by an oak tree. Suddenly, he straightened his arm and heaved the contents of the jar into the air. The powder boiled out, making a small mushroom cloud, and then the simulated brain virus blasted through the branches of a dogwood tree and took off down the meadow, moving at a fast clip toward Frederick. Within seconds, the cloud started becoming transparent, and then, abruptly, it vanished. The particles seemed to be gone. It had looked like steam coming out of a teapot.
“See how it disappears instantly?” Patrick remarked.
Alibek watched, tugging at his cigarette, mildly amused. “Yeah. You won’t see the cloud now,” he said. “Depending on the altitude of the dispersal, some of those particles will go fifty miles.”
“Some of them’ll get to the Mount Airy ridge. It’s twenty miles away,” Patrick said. The simulated brain weapon would arrive at the ridge in a couple of hours. A couple of hours after that, the simulated brain virus would be beyond the horizon.
Patrick was eyeing the clouds, seeming to sniff the wind. He turned to Alibek. “Say you wanted to hit Frederick today, Ken, what would you use?”
Alibek glanced at the sky, weighing the weather and his options. “I’d use anthrax mixed with smallpox.”
Tom Geisbert drove his beat-up station wagon to the Armed Forces Institute of Pathology, in Northwest Washington, carrying a whiff of sterilized dry Daschle anthrax mounted in a special cassette. He spent the day with a group of technicians running tests with an X-ray machine to find out if the powder contained any metals or elements. By lunchtime, the machine had shown that there were two extra elements in the spores: silicon and oxygen.
Silicon oxide.
Silicon dioxide is glass.
The anthrax terrorist or terrorists had put powdered glass, or silica, into the anthrax. The silica was powdered so finely that under Geisbert’s electron microscope it had looked like fried-egg gunk dripping off the spores.
Geisbert called Jahrling on an open telephone line and said, “We have a signature of something.” Jahrling asked him to stop talking on an open line.
Geisbert asked someone if he could use the stew phone, and he was shown into a secure room. The stew phone looked like a normal telephone, except that it had an LCD screen and an encryption lock. They gave Geisbert the encryption key, and he unlocked the phone.
Jahrling, meanwhile, had gone to the Secure Room at USAMRIID. He unlocked his stew phone and waited. Geisbert called in, they spoke a few words in open mode, and then Jahrling pushed a button on the phone. The screen flashed: GOING SECURE.
The phones went silent. The two men waited half a minute. Then the screen on the stew phone read: US GOVERNMENT SECRET, and their voices came back on the line, distorted.
“So — what — do — you — have?” Jahrling said.
“Wisten, Weet! We ow-wowo-wooow, wow.” Geisbert’s voice turned into a stretched-out robo-gargle.
“Slow — it — up.”
“We fow wow-wow!”
“Whoa. You — have — to — speak — distinctly.”
“Pete! There’s — glass — in — the — anthrax.”
You could go on the Internet and find places to buy superfine powdered glass, known as silica nanopowder, which has industrial uses. The grains of this type of glass are very small. If an anthrax spore was an orange, then these particles of glass would be grains of sand clinging to the orange. The glass was slippery and smooth, and it may have been treated so that it would repel water. It caused the spores to crumble apart, to pass more easily through the holes in the envelopes, and fly everywhere, filling the Hart Senate Office Building and the Brentwood and Hamilton mail-sorting facilities like a gas.
No one knows how many anthrax spores leaked into the air at the Brentwood mail facility. At least two letters containing dry skull anthrax went through the machines. The skulls were crumbling and falling apart, and individual spores were leaking through pores in the paper and perhaps coming out through the corners of the letters. If all of the spores that went into the air inside the Brentwood building were gathered into a heap, it’s doubtful they would have covered the head of a thumbtack. The Environmental Protection Agency spent an estimated thirty million dollars trying to get rid of the spores there.
The Washington field office of the FBI is a new stone-and-glass building at Fourth and F streets, a few blocks east of the FBI headquarters, on the edge of Chinatown. The Washington office was given overall management of the criminal investigation into the anthrax attacks, which came to be called Amerithrax. There were five homicides in the Amerithrax case. Robert Stevens in Boca Raton and the two Brentwood postal workers, Joseph Curseen, Jr., and Thomas Morris, Jr., were the first to die. Then a sixty-one-year-old woman in New York City named Kathy Nguyen became ill and died of inhalation anthrax; the source of her exposure was never identified. On the day before Thanksgiving, in Connecticut, a ninety-four-year-old woman named Ottilie Lundgren also died of anthrax. The source of her exposure was not found either, but was likely to have been a few spores that she inhaled from a piece of mail that had touched some other piece of mail that had gone through the Hamilton, New Jersey, sorting facility and had probably been in close contact with an anthrax letter. This was a murder and terrorism case that cut across jurisdictions. The FBI termed it Major Case 184.
The Washington field office was run by an assistant director of the FBI named Van A. Harp. Directly under him were three special agents in charge of the office, or SACs. One of the SACs was Arthur Eberhart, who had served earlier as a section chief at Quantico, overseeing the Hazardous Materials Response Unit. In early October, as the first anthrax deaths occurred, Eberhart began assembling assets — calling people into the team, sometimes drafting them out of other units, “for the needs of the Bureau.” A working group formed up quickly, and eventually it became two squads, known as Amerithrax 1 and Amerithrax 2. Eberhart put John “Jack” Hess in charge of Amerithrax 1 and David Wilson in charge of Amerithrax 2. Hess’s squad handled much of the classic detective work, while Wilson’s squad took care of the scientific side of the investigation. Jack Hess and David Wilson were basically given the job of solving the Amerithrax case.
I first met David Wilson in 1996, when I was doing some research at the FBI Academy at Quantico, and he had just been assigned to the HMRU as an agent. He was a quiet man who stayed in the background and said little, but like many FBI people, he had a casually aware manner, as if there was a part of him that was always evaluating things. At that time, FBI scientists were saying that a bioterror attack could be very difficult to solve, because the evidence left in its wake might only be dead people with a strain of a micro-organism in their bodies, and precious little else. One evening, I drank beers with some FBI scientists at the Quantico Boardroom, a bare-bones cafeteria and pub, and they started tossing out all sorts of ideas about how you would actually solve a bioterror crime. Most of them were high-tech solutions, involving sensor machines and exotic lab techniques, but a section chief named Randall Murch, who had created the Hazardous Materials Response Unit, told the group that he thought that, in the end, traditional detective work would solve a biological crime. “Ultimately, humans make mistakes,” Murch said.
David Lee Wilson is a tall man in his mid-forties, with broad shoulders and large hands. He has straight brown hair, dark eyebrows, and pale gray eyes. On the job, he usually wears a starched white button-down shirt. He was raised in Tennessee, in a farmhouse that his grandfather built out of sawn planks of poplar, and he has a Tennessee accent. When he speaks, his voice goes along rapidly and softly over a wide range of topics. He has a degree in botany, with an emphasis on marine biology. He spent time on research ships studying the biological productivity of seas full of phytoplankton. When he joined the FBI, he gravitated to the forensic examination of trace evidence. At home, to relax, he picks a Martin acoustic guitar. He picks precisely and with a flowing musical sense. He told me that he doesn’t like attention. “It makes me uncomfortable to have any kind of single focus on me,” he said. He was careful to explain to me that he was only one member of a large FBI operation. “Teamwork is critical for this case,” he said. “A major case is like an organism. It is almost alive. It changes in response to evidence that comes in, and it has feedback loops.”
Wilson was the head of the HMRU between 1997 and 2000, and during those years the number of credible bioterror threats or incidents rose dramatically, up to roughly two hundred a year, or one biological threat every couple of days. Most of them were anthrax hoaxes. The HMRU teams were constantly doing flyaways, taking helicopters or FBI fixed-wing aircraft to various places around the United States in order to assess a threat of anthrax and collect evidence. Running the HMRU was a little like running a firehouse that went out on a lot of false alarms, and Wilson got a little tired of it, particularly because he was trying to build a national program and kept finding himself sitting on a jump seat in a Huey loaded with biohazard equipment, flying to another bioscare. His young daughter would ask her father to leave his cell phone behind when they went to a restaurant, and if his pager beeped, she would roll her eyes and say, “Not again, Daddy.” Wilson wanted to supervise field investigations in which he could develop and pursue criminal cases. He ended up transferring to the Washington Field Office. Then along came Amerithrax, and they put him in charge of the science in the case.
Wilson’s case strategy for Amerithrax 2 involved reaching out across the spectrum of scientific talent in the United States and getting help wherever he could find it. He developed relationships with the national laboratories (which are run by the Department of Energy), with the Defense Department, the CIA, and with the National Academy of Sciences and the National Science Foundation. He recruited dozens of outside scientists — chemists, biologists, geneticists. He pulled in a Navy expert in anthrax named James Burans, and he took in a CDC epidemiologist, Dr. Cindy Friedman, who joined Amerithrax 2 as a full-time squad member.
Kenneth C. Kohl, an assistant U.S. attorney, was attached to the Amerithrax squads full-time, and he moved into an office in the building on Fourth and F streets. He advised agents about developing evidence that could be used in court. The FBI was mindful of the case of Richard Jewell, a security guard whom the FBI had suspected of planting a bomb in Centennial Park in Atlanta during the summer Olympics in 1996. Jewell was exonerated, and it was a huge embarrassment to the FBI; it made the Bureau look incompetent and prejudiced, and the case is still unsolved. Of all the pressures hitting the Amerithrax agents, the most potent was the knowledge that, in the end, all the paths of Amerithrax led to a jury.
It was quite possible that if anyone was charged with the Amerithrax crimes, Kohl might seek the federal death penalty. But to bring a prosecution in a multiple murder case in which the murder weapon was a living microbe, the evidence would have to be tight and clear, persuasive to a jury, and sharp with proof — probatory, in the language of police work. There would not necessarily be any testimony from eyewitnesses. The crimes could have been perpetrated by one person acting alone, and so the Amerithrax case might have to be tried largely on forensic evidence: on the science squad’s work. “I wonder, though, if Randy Murch’s words of yesteryear may prove prophetic for Amerithrax,” Wilson said, recalling that evening in the Quantico Boardroom. “We just don’t know how it’s going to go, and sometimes you just get lucky. Somebody calls you and says, ‘You know, I saw something.’ And you say to yourself, ‘That’s it.’ ”
Amerithrax became one of the most complex cases ever run by the FBI. The two Amerithrax squads occupied half of the seventh floor of the Washington field office. Each squad was small, with only about ten or so members, but they were supported by teams of analysts, and the squads were given the power to order practically anyone in the FBI to follow a lead or accomplish a task. There are twenty-five thousand people in the FBI. The Amerithrax squads used them to cover thousands of leads, and they relied on the work of many other people across the federal government.
Trenton was an obvious place to examine, and FBI agents went all over the area, looking for sites where the letters had been mailed, setting up surveillance, checking out connections to possible al-Qaeda suspects. But there was remarkably little to go on. Wilson and his squad began grinding on the science of the case. “Not that Dave won’t work the case to death,” a former top FBI official said to me, “but basically all the leads, all you get, are what is captured in the biological material in the letters, in the tape that sealed the letters, and in the writing in the letter itself.”
The Quantico behavioral profilers went to work on the handwriting and language of the letters. The profilers came to be convinced that the anthrax terrorist was a white male, a loner, perhaps quite shy, with a grudge, and with scientific training, and they felt the terrorist would be a native speaker of English, not Arabic. A native speaker of Arabic would be more likely to have written “God is great,” not “Allah is great.”
On November 16th, another anthrax-laden letter was found in a sealed plastic bag full of mail. This letter was addressed to Senator Patrick Leahy of Vermont. It was among the mail in the Hart building that had been sequestered. The Leahy letter contained something like a gram of finely powdered anthrax spores, bone white, treated the same way as the Daschle spores. The FBI delivered the Leahy letter to USAMRIID, where diagnostic scientists began analyzing the powder.
FBI forensic experts in hair and fiber analysis also examined the letter, most particularly the tape that sealed the envelope. Tape is a valuable forensic material because it picks up dust, including tiny fibers of hair, carpet, and clothing. Forensic samples that are collected from criminal evidence are known as questioned samples, or Q samples, because they come from an unknown (“questioned”) source — which may be associated with the unidentified perpetrator of the crime. These Q samples may be matched to known samples, or K samples, which are reference samples that are fully identified. In this way, trace evidence can be understood and can be linked to a known source, such as the perpetrator or the perpetrator’s environment. A single human hair can contain unknown human DNA — a questioned sample of DNA — which can be matched to a known sample of a person’s DNA. The FBI’s hair and fiber experts can take a particular questioned fiber and match it precisely to a fiber that has come from a known manufacturer in a particular color and style. Manufacturers use constantly changing formulas for dye and for materials, and fibers can come in all sorts of sizes and shapes — round, delta, trilobal, oval, wrinkly. The top hair-and-fiber person in the FBI is a unit chief named Douglas Deedrick, who works at the Laboratory at FBI headquarters. They say that Deedrick has a near photographic memory for fibers he may have seen just once before in his career. He’ll throw out a line of patter: “I’ve seen this before…. I know this fiber…. That’s a carpet fiber from a stinkin’ seventy-three Bonneville,” is the sort of thing he can say when he’s working.” If a Q sample can be matched to a K sample, it can have probative value — it can lead to a suspect and, ultimately, to a conviction in a criminal trial. (When O.J. Simpson struggled to put on the glove at his murder trial, he gave a dramatic show to the jury of an apparent blundering attempt by the prosecution to try to match something questioned to something known — the glove to his hand.)
The FBI’s forensic scientists apparently had great difficulty getting Q samples from the letters. They won’t comment, but it seems that they found no hairs or fibers of particular interest on the tape. The anthrax terrorist or terrorists had perhaps been quite careful to load the letters in an environment that was free of dust and hair — possibly inside a laminar flow hood. They did find that the cut edges of the strips of tape matched one another. The perpetrator had loaded and taped the envelopes one after the other using the same roll of tape. They tested the paper of the envelopes for human DNA, using the PCR (polymerase chain reaction) method, which can amplify tiny trace amounts of DNA. The method is so sensitive that if a person breathes on a sheet of paper, the paper can retain fragments of the person’s DNA that can be detected. There was apparently no questioned human DNA found on the envelopes or on the stamps. This suggested that the perpetrators might have worn a breathing mask while loading the letters. There were no questioned fingerprints on the letters, either, which probably meant that the perpetrators had worn rubber gloves. The anthrax terrorist or terrorists seemed to have been careful to avoid leaving any evidence on any of the letters. What was left was the powder inside the envelopes, and the handwriting and contents of the letters. Those were apparently the best Q samples that the FBI had to go on, and it was precious little.
In November, the microbiologist Paul Keim, working with his group at Arizona State University in Flagstaff, identified the strain in all the anthrax letters as the Ames strain. It had been collected from a dead cow in Texas in 1981, and had ended up in the labs at USAMRIID. USAMRIID scientists had later distributed the Ames strain to a number of other laboratories around the world. By showing that the strain in the letters was the Ames strain, Paul Keim gave the FBI a sort of incomplete or partial K sample: it was not a really precise K sample, but further analysis of the strain in the letters might provide a tighter match to some known substrain of the Ames anthrax. The Ames strain was natural anthrax. It had not been “heated up” in the lab — had not been genetically engineered to be resistant to antibiotics. Nowadays it is so easy to make a hot strain of anthrax that’s resistant to drugs, intelli-gence people simply assume that all military strains of anthrax are drug resistant. The fact that the Amerithrax strain wasn’t military pointed to a home-grown American terrorist rather than to a foreign source, to someone who had perhaps not wanted large numbers of people to die. Someone who might have wanted to get attention.
The CIA had a secret program called Bacchus, in which a group of researchers with the Science Applications International Corporation (SAIC), working at the U.S. Army’s Dugway Proving Ground in Utah, built a miniature anthrax bioproduction plant using inexpensive, off-the-shelf equipment. The idea of the experiment was to see if it would be possible for terrorists to buy ordinary equipment, make anthrax with it, and not be noticed. In January and February 2001, roughly ten months before the anthrax terror event, the Bacchus team succeeded in making a powdered anthrax surrogate, BT, but it was crude. Now the FBI investigators focused a lot of attention on scientists who had access to Dugway, where the U.S. military tests various biosensor systems and where there are stocks of anthrax.
The Amerithrax squads seemed to have a case that was cooling off. The FBI was letting it be known — whether accurately or not — that the list of potential suspects had never gone below about eight individuals and was really more like twenty to thirty people.
There were mysteries and loose ends that seemed to baffle the FBI, including hints that the anthrax might have been part of an al-Qaeda terror operation. In January 2001, several of the men who would later hijack the four airplanes involved in the September 11th attacks rented apartments near Boca Raton, Florida. The real-estate agent the men dealt with was the wife of an editor at American Media, where Robert Stevens, the first man to die of the anthrax, worked — but the real-estate agent felt that the hijackers could not possibly have known that her husband worked there. Mohammad Atta, who was believed to be the operational leader of the hijackers, made inquiries at airports in Florida about renting crop-dusting airplanes: he obviously had it in mind to spray something from the air. In June 2001, two men, Ahmed al-Haznawi and Ziad al-Jarrah, who would later be among the hijackers of United Flight 93, which crashed in Pennsylvania, went to the emergency room of the Holy Cross Hospital in Fort Lauderdale. Al-Haznawi was complaining of an infection on his leg, and an emergency-room doctor named Christos Tsonas examined him. The man had a blackened sore on his leg that he told Dr. Tsonas he had gotten from bumping into a suitcase. The doctor didn’t think that sounded likely. He prescribed antibiotics to al-Haznawi and never heard from the men again. Tsonas contacted the FBI in October and told agents that the sore had been consistent with cutaneous anthrax. Agents apparently went through the hijacker’s possessions and swabbed them for anthrax spores, and found none. “We’ve debated that one informally a lot around our shop,” an FBI source at Quantico told me. “Everything I’ve heard basically discounts it.”
In Trenton, FBI investigators became interested in various people living in an apartment complex called Greenwood Village. They arrested a man, Mohammad Aslam Pervez, who was listed in the phone book as living there. Pervez was thirty-seven years old, a naturalized American citizen born in Pakistan, and he had recently worked at a newsstand in the Trenton train station and also at a newsstand in the Newark train station with Mohammad Jaweed Azmath and Ayub Ali Khan, who were arrested on September 12th on an Amtrak train in Fort Worth, Texas, carrying box cutters, five thousand dollars in cash, and hair dye. The FBI evidently suspected that they were al-Qaeda hijackers who had not been able to get on a plane. Pervez had lived with them in an apartment in Jersey City, while listing his address as Greenwood Village, and he was allegedly moving large amounts of money around. The FBI charged Pervez with lying to federal investigators about the nature of more than $110,000 in checks and money orders. The neighbors in Greenwood Village told reporters that they had noticed unusual numbers of Arabic-speaking men congregating in Pervez’s apartment during the summer, in the months before September 11th. A reporter from The Wall Street Journal managed to get inside the Jersey City apartment, where he found articles clipped from Time and Newsweek on the use of sarin nerve gas and biowarfare agents. On October 29th, FBI agents raided another apartment at Greenwood Village. Eight to ten agents carted away many trash bags full of evidence. An FBI spokesperson, Sandra Carroll, told reporters that the September 11th and anthrax investigations were “not necessarily separate.”
But it just didn’t seem to go anywhere.
A few months before the first anniversary of the anthrax attacks, I visited the Amerithrax squads in the Washington field office. The two squad supervisors, Jack Hess and David Wilson, had offices side by side, facing an open floor of cubicles. The CDC doctor on the squad, Cindy Friedman, was meeting with two FBI agents, talking about something in low voices. They asked me to stand out of hearing when there were any discussions about the case. Large posterboards leaned against filing cabinets, covered up from view.
David Wilson led me to his office, where we ate salads from the FBI canteen for lunch. The Capitol’s dome and the top of the Hart Senate Office Building were visible from the window. His office was almost bare. Three heavy briefcases sat on a desktop, and a table had a full in-box. “Until we have someone under arrest and charged with a crime, we literally can’t rule anything out,” he said to me. The Amerithrax case held many dimensions of crime, but at bottom it was murder. “I don’t give a rat’s tail for what they thought they were doing when they mailed the letters. People died,” Wilson said. “Damaged facilities can either be repaired or replaced. The Brentwood building can be fixed. But the deaths can’t be fixed.”
One day, I spoke with a scientist who is an expert in forensic evidence, knows a lot about biology, and until recently was an influential executive in the FBI. “The Unabomber took seventeen years to solve,” he said. “We just don’t know who these perpetrators are, and it could be years before we get a break. I’m saying ‘they.’ I personally find it hard to believe that it was done by only one person. That’s just gut. I don’t know why, I can’t put my finger on it, but if I wanted to keep tight operational security I would send a package of anthrax to someone else with instructions for how to load the envelope and mail it — you know, ‘Don’t lick the envelope, do this, do that.’ I would do it with opsec.”
“Opsec?”
“Opsec — operational security. It’s a standard security approach for making yourself as invisible as possible. There’s a leader who organizes and directs an operation, and a different person carries it out.” The person who does the operation is expendable. The September 11th attacks were done with opsec, and the Palestinian suicide bombings feature opsec. He went on: “I have a feeling that, in the end, it’s going to be like one of our fugitive cases, where a girlfriend rats on the guy or someone talks. I’m a forensic scientist, but unfortunately I have a feeling that traditional investigation is going to solve this case in the end, not science.”
Barbara Hatch Rosenberg, the chair of the Federation of American Scientists’ Biological Arms Control Program and a professor of environmental science at the State University of New York at Purchase, believed that the anthrax terrorist was an American scientist. She began speculating, in speeches and on a website, that the terrorist was a white male who had worked in classified programs for the government. She wondered publicly if the terrorist had once worked for USAMRIID or another government laboratory. She felt that the terrorist might have been a contractor working for the CIA, with access to secret information about government involvement with offensive biowarfare programs. Rosenberg is a trim, middle-aged woman with a forceful manner, and she is not afraid to speak her mind. Her web site got a lot of traffic, and in late June 2002, Senators Tom Daschle and Patrick Leahy asked her to come meet with them. She was very happy to oblige them.
A few days later, the FBI searched the apartment of Dr. Steven Hatfill, in Frederick. Hatfill, the colorful Ebola researcher who had trained Lisa Hensley in blue-suit work and who liked to eat candy bars in his space suit, had left USAMRIID in 1999 and gone to work for Science Applications International Corporation, the defense contractor that conducted the CIA’s Bacchus program. Hatfill was divorced and had continued to live in Frederick after he left USAMRIID. He lived by himself in the Detrick Plaza apartments, a brick complex right next to the gate of Fort Detrick, a stone’s throw from the Abrams tank. From his apartment unit, he could look over a fence and across a lawn, where he could see the FBI helicopters coming and going next to USAMRIID, ferrying evidence from the Amerithrax case. FBI agents arrived at Hatfill’s apartment with a rented Ryder truck. (The apartment manager told a reporter that Hatfill was “traveling abroad” when the FBI came.) They put on bioprotective suits and searched the apartment, and then removed some computer devices and plastic bags of Hatfill’s possessions, which they loaded into the truck and took away. Hatfill had consented to the search. He had a storage facility in Ocala, Florida, two hundred and fifty miles from Boca Raton. He also had access to a cabin in a remote part of Maryland. It was reported that he had asked visitors to take Cipro before entering it. The storage facility was not far from a ranch in Ocala called Mekamy Oaks, where Hatfill’s parents, Norman and Shirley Hatfill, raised Thoroughbred horses.
The FBI said that Steve Hatfill was not a suspect in the case. He told journalists that he was cooperating with the authorities in an effort to clear his name, and he insisted that he had absolutely no involvement with the anthrax attacks. In February 2002, Scott Shane, a reporter for the Baltimore Sun, became interested in Hatfill. Shane spoke with Hatfill on the phone and asked him some questions, and then talked with some people who knew Hatfill. A month later, Hatfill lost his job at SAIC. Soon afterward, he telephoned the Baltimore Sun and left a message with the paper’s ombudsman. “I’ve been in this field for a number of years, working until three o’clock in the morning, trying to counter this type of weapon of mass destruction, and, sir, my career is over at this time,” he said. The FBI interviewed Hatfill several times, but there was nothing particularly unusual in this; the Amerithrax investigators had interviewed a number of American scientists more than once. FBI agents gave a polygraph test to Tom Geisbert.
Nonetheless, Hatfill’s background attracted investigators’ attention. “The Bacchus program suffered from a lack of adult supervision,” a scientist said to me. (It didn’t, however, produce anthrax that was anywhere near as pure as the Daschle anthrax.) Hatfill had a secret-level security clearance, and he knew Ken Alibek and Bill Patrick. Soon after he went to work at SAIC, Hatfill and a colleague commissioned Patrick to write a study on the effects of anthrax mailed in letters. Patrick, who had done many studies of this sort for the government, worked out a scenario in which a letter containing two grams of dry anthrax spores was opened inside an office building. The anthrax in Patrick’s study was pure spores. Bill Patrick had imagined key elements of the Amerithrax attacks at the request of SAIC and Steve Hatfill.
Hatfill’s résumé said that he had served with the Rhodesian Special Air Squadron (SAS) and with the Selous Scouts, the white antiguerrilla forces. In 1979 and 1980, during and after the Rhodesian civil war, an anthrax outbreak occurred in livestock in Rhodesia that killed large numbers of cattle, gave ten thousand people cutaneous anthrax, and killed a hundred and eighty people. The U.S. government was said to have had suspicions, and perhaps evidence, that this anthrax outbreak might have been an act of biowarfare caused by the SAS or by agents working for the clandestine South African internal-security service, the Civil Co-operation Board (the CCB). During those years, CCB people had been using biowarfare agents for assassination attempts. When he was studying medicine in Zimbabwe, Hatfill had reportedly lived a few miles from a neighborhood called Greendale. The return address of the letter to Senator Daschle was the fourth grade of the Greendale School.
After the FBI searched his apartment again, this time with a criminal search warrant, one of Hatfill’s lawyers, Victor Glasberg, wrote an angry letter to Kenneth Kohl, the assistant U.S. attorney working with Amerithrax, saying that “improper decisions” had been made in the FBI’s treatment of Hatfill, and that Hatfill was doing everything he could to cooperate fully with the FBI. He said he was “working with Dr. Hatfill on how to address a flurry of defamatory publicity about him which has appeared in the press, on TV, and on the Internet.” Shortly afterward, Steve Hatfill read a statement to the press in front of his lawyer’s office, in which he forcefully defended himself, and said he was a loyal American who loves his country, and he assailed “calculated leaks to the media” concerning him. “Does any of this get us to the anthrax killers?” he said. “If I am a subject of interest, I’m also a human being. I have a life. I have, or I had, a job. I need to earn a living. I have a family, and until recently, I had a reputation, a career, and a bright professional future.”
I became acquainted with Dr. Steven Hatfill and interviewed him in 1999, a few months before he left USAMRIID. He worked in the virology division, and he was closely connected with Peter Jahrling’s research group. He was doing research in Ebola and monkeypox. Hatfill had a tiny office, with no windows, white walls, and little in the way of decoration, but he filled the room with his physical and intellectual presence. He was a vital, engaging man, with a sharp mind and a sense of humor. He was forty-five years old, with a good-looking face, brown hair, and a neatly trimmed brown mustache. He was heavy-set but looked fit, and he had dark blue eyes. I sat on top of a counter in a corner of the room, and he sat in the center of the room, in a chair at his desk, leaning back and looking up at me, and he told me a little about his life.
“I was in the Army for twenty years,” he said. “I was a captain in the U.S. Special Forces, and I was in Rhodesia — Zim — but I can’t say what I was doing there. I went to medical school in Rhodesia and graduated in 1984. I have two C.V.s, the classified one and the unclassified one. I’ve seen a lot of diseases. There was an outbreak of anthrax in Rhodesia when I was there.” He went on to say that the South African CCB had been blamed for the anthrax, but he didn’t think it was likely. “It was not a weapon. It was a natural outbreak that happened because there was a harsh terrorist war going on and a breakdown of veterinary health.”
He was having a great time doing research at USAMRIID. “Where else can you work with monkeypox in the morning and Ebola in the afternoon?” he said. He explained that he was working to develop antiviral drugs for smallpox. His quest was similar to Lisa Hensley’s and Peter Jahrling’s. Like them, he regarded smallpox as the number one threat. He wanted to find some way to test and develop drugs that would work on smallpox. He had an idea that smallpox and drugs could be tested directly on human tissue with the help of machines.
Hatfill’s office had small pieces of equipment sitting in it, of types that I did not recognize. Hatfill was a gadgeteer. He picked up a glass cylinder about the size of a soda can, with metal ends, and handed it to me. “Take a look at that.”
I held it, but I had no idea what it was.
“It’s a bioreactor. It’s called an STLV. It was developed at NASA. You can grow human tissues in it and then infect them.” He explained that using a device of this sort, you could test new drugs against smallpox and other exotic diseases that could not be tested ethically in people. In other words, you didn’t necessarily have to test smallpox in animals — you might be able to test the virus in a machine. He was optimistic that there would be drugs to cure smallpox, and he felt that machines would speed up the discoveries. “You can put a bit of tonsil tissue in this thing, and it actually grows a tonsil,” he said.
“The bioreactor grows a tonsil?”
He grinned. “You get a tonsil. The architecture of the tissue is preserved.”
“Could you grow a finger?”
Hatfill started laughing, and explained that someday we might actually be growing spare body parts in bioreactors. He explained how it worked. “What you do is, you collect tissue from the body, and you chop it up. You can use prostate tissue, lung-cancer tissue, liver, lymph, spleen. You put the tissue pieces in the reactor, and you fill it with growth medium. The bioreactor turns around on a motor.” He demonstrated by turning the device in his hands. “As it turns around, you get excellent perfusion of the tissues, and the blood vessels start to go everywhere. Then you add Ebola, and then you can do tests of drugs. I’ve got four of these units running in BL-4 right now.” He added that he had another device in the hot lab that looked like “something out of Star Trek.” He was using it to run tests on monkey blood infected with monkeypox.
Hatfill felt strongly that a bioterror event could happen one day, and he feared it could be very bad. He took me down the hall to see a bioterrorism-emergency storeroom. The room was full of racks holding boxes of safety gear and face masks and portable Racal space suits. “If there’s an attack on a city with a large area of coverage,” he said, “one third of the population will try to flee, and so you won’t be able to get into the city by road. We can stockpile emergency supplies on trains. The system we envision has twenty-seven trains, to address what to do with twenty thousand casualties. Do you know what this is?” He showed me another gadget, a big one, a kind of motor with tubes, sitting next to a biohazard stretcher. “That’s a mobile embalming pump.” He explained that USAMRIID’s emergency planners kept one on hand for disinfecting the bodies of the victims. “Once you’ve got the formalin in you, you’re no longer infective, and we can give you some semblance of a Judeo-Christian burial,” he said.
Some of Steven Hatfill’s claims about himself didn’t check out: the Army said he had not served in the U.S. Special Forces. On at least one of his résumés, he had claimed to have a Ph.D. in cell biology from Rhodes University in South Africa; officials there insisted he had never been awarded a Ph.D from that institution. He was given a secret-level national-security clearance in 1999, around the time he went to work for SAIC. Then, in 2001, he had applied for a higher-level clearance, and so he was given another background check. The government suddenly removed all of his security clearances in August of 2001, two months before the anthrax letters were mailed.
Microbiologists are naturalists, and like naturalists everywhere, they like to collect examples of interesting creatures. They can amass large and varied collections of microscopic life-forms, and often they have their own freezers and their own private labeling systems for vials. When a researcher retires, dies, or moves on, his or her freezer typically hangs around. As long as a freezer is plugged in and running, whatever is inside it will continue to exist. Once the freezer’s owner is gone, the freezer can just sit there unnoticed, a mystery freezer. One day in August 2002, somebody noticed such a freezer sitting in hot suite AA5 at USAMRIID — the Ebola suite. The freezer had been used by Dr. Steven Hatfill when he worked as a postdoc there. It contained many vials and samples of pathogens with which Hatfill had been working. An FBI HMRU team put on space suits, entered AA5, put evidence tape around Hatfill’s freezer, and brought it out of the hot zone and transported it inside a sealed biohazard container to the CDC, where it was placed in the Maximum Containment Lab.
During the anthrax event, Lisa Hensley kept her head down and worked on her smallpox data. Nobody from the FBI called her or gave her a polygraph exam, and she felt oddly disappointed about that. She was not involved with the anthrax investigation at USAMRIID. Meanwhile, the scientific community had begun to hear rumors that Peter Jahrling and his team had re-created smallpox in monkeys and that Jahrling had plans to write a paper about it. D. A. Henderson, who was now working inside the U.S. government, was clearly not happy about this monkey work, but he couldn’t speak out in public because the official policy of the government was to develop alternatives to the traditional vaccine.
Henderson felt that a stockpile of the traditional vaccine would be more than adequate. He worked with officials from the CDC to develop a national plan for a smallpox emergency. The CDC would give ring vaccinations to the affected populations, and if those failed, everyone who could tolerate the vaccine would get it. At the same time, the U.S. Public Health Service (the parent of the CDC) would institute quarantines around cities. The National Guard would most likely have to be involved, and so the plan had elements of martial law.
When Henderson had retired as the dean of the Johns Hopkins School of Public Health, he was replaced by an epidemiologist, Dr. Alfred Sommer, who had worked in the CDC’s Epidemic Intelligence Service during the years of the Eradication. In 1970, when the cyclone hit Bhola Island, which would inspire Larry Brilliant and Wavy Gravy to go there to try to help, Al Sommer was already there. He happened to be stationed in Bangladesh with the CDC, and he ended up organizing help in an area of jungle islands in the Ganges Delta known as the Sunderbunds, not far from Bhola Island. He pioneered some of the first techniques of disaster-assessment epidemiology, methods that are now used everywhere to monitor diseases in populations that have been hit with a natural disaster.
Not long afterward, Bangladesh won its independence from Pakistan. During the civil war, ten million refugees ended up living in camps just inside India, where smallpox broke out. Sommer fought smallpox for two months in the refugee camps, often the only medical doctor at the scene. “It was just me and a couple thousand cases of smallpox, which meant five hundred to eight hundred deaths,” he said. He discovered that local cemeteries were a good place to trace the movement of the virus. “People buried their dead in Bangladesh rather than cremating them, as they do in India,” he said, “and they always knew when a person died of smallpox.” He studied the registries of burials, and he could see the rising and falling of the generations of the virus. He used this information to determine where to set up a ring, where to vaccinate people. Today, Sommer keeps a certificate from the WHO on the wall of his office, noting his participation in the Eradication. He is as proud of it as of his Lasker Award, which is the most prestigious award in medicine. He received the Lasker for research in vitamin A deficiencies and blindness.
One day in January 2002, Sommer was having lunch at the Hamilton Street Club in Baltimore, which is frequented by journalists and literary types. An editor from the Baltimore Sun showed him a front-page article from the day before, about Peter Jahrling and his work with smallpox at the CDC, and said, “The USAMRIID people are killing monkeys with smallpox, and they’re proud of it. What do you think of that, Al?”
Sommer said that his reaction was, “Excuse me? They’re what?” He stared at the newspaper and couldn’t believe what he was reading. “I started to vibrate at the visceral level,” he said. “We could have eradicated smallpox completely if we had just destroyed the stocks a couple of years after the Eradication. And now there was Peter Jahrling exulting in the fact that he could kill these monkeys with smallpox. I went bananas.” Sommer was leaving on a trip to Thailand the next morning, but he whipped off an op-ed piece for the paper.
It began: “One needn’t be a Luddite to recognize an idiot — and the government scientists gloating… over their ability to infect monkeys with smallpox are idiots of the worst sort.” Sommer says that the editors wanted to tone him down, so they took out the following sentence: “I am not sure if they are homicidal idiots or suicidal idiots.”
He felt that the biggest danger of Jahrling’s research was that it would look suspicious to other countries and would encourage them to do their own experimentation. “We could start an arms race over smallpox, and the thinking would go, ‘You could be bioengineering smallpox, so I’m going to bioengineer a smallpox, as well.’ I don’t think it would be hard to bioengineer smallpox,” he went on. “My virologist friends are always bioengineering viruses. I could see a bioengineered strain of smallpox getting into a terrorist’s hands, and that’s my fear. And then when we get a terrorist attack with smallpox, and the smallpox doesn’t respond to the vaccine, we’re in trouble.” He wanted the United States and Russia to get together to destroy their stocks, jointly scour the world for stray stocks of smallpox, and use every effort to persuade other countries to destroy them. He wanted to create an international abhorrence for any nation that would keep smallpox around. He wanted the demon cast out. “It still rankles me,” he said, “that we are giving smallpox to animals that could not get smallpox naturally, in order to protect humans, when the last time a human had smallpox was 1978, and humans shouldn’t naturally get it today. This is my circular indignation.”
I visited D. A. Henderson at his home in Baltimore a little over two months after the anthrax attacks. I arrived in the late afternoon, bringing smoked salmon and a bottle of Linkwood malt whisky. Nana Henderson spread out the salmon with lemon and onion on a table in the family room. Their son Doug, who is now a composer, was there. As a teenager, Doug had traveled with his father, and had vaccinated many people himself. In the cool, dry light of a winter’s afternoon, the Hendersons and I poured out glasses of Linkwood and picked away at the salmon. D.A. talked about why people had joined the Eradication: “Some of them were looking for themselves, and some of them got involved with feeling what a difference you could make if you could end this disease.” The sky began turning to dusk. Pots of dead thyme sat on the deck, silvery and dry. “Smallpox was the only disease we know of for which there were deities,” he said. “It was the worst human disease. I don’t know of anything else that comes close.”
Later, on the subject of Peter Jahrling’s work infecting monkeys with variola, Henderson said he was not optimistic that it would lead to new drugs or vaccines. “Do we need to do the research? There are some scientists who feel it’s important and should be pursued. But is it really going to work? Peter Jahrling gave the monkeys a huge dose of virus, but it isn’t going to be very helpful for testing a new vaccine, because what we really need is an inhaled dose of smallpox in a monkey to test a vaccine, since people inhale the virus.” He sounded discouraged, emotionally drained over the fight to destroy the public stocks of smallpox. He was working for the government, and government policy was to look for new cures for smallpox, and that meant doing experiments with variola. He said that he had taken care of his emotions over the issue of destroying the known stocks of smallpox. “Everything is in neutral right now,” he said. “There is no point in my entering a battle where the cards are stacked. I’m playing along with what they’re doing. I’m asking them to pursue the research.” Henderson had gone so far as to suggest to Peter Jahrling that he try an African strain of smallpox, Congo 8, on the monkeys, because it might look more like human smallpox. “If it works, Peter, I want the credit,” he said to Jahrling.
“When the research with variola has been pursued to some reasonable point, then I want to revisit the question of destruction,” he said. “The subject should be reopened.”
He had thanked me for the smoked salmon that day. “It’s really large,” he remarked. “I wonder: is it one of the newer genetically engineered salmon? It’s fairly simple to add one gene to a salmon. Or to any organism in the lab. Will people change organisms in the lab to make them more dangerous? Can it be done? Yeah. Will it be done? Yeah, it will be done,” he said. “And there will be unexpected crises.”
On April 30th, 2002, a group of six experts on the spread of infectious diseases met under conditions of secrecy in a conference room at the John E. Fogarty International Center at the National Institutes of Health (the NIH), in Bethesda, Maryland. Each expert had been asked to create a model of the spread of smallpox in the United States, starting with a small number of infected people. One of the experts — Dr. Martin Meltzer of the CDC — found that smallpox could be easily controlled with ring vaccination using the traditional vaccine. He felt that the virus was not very infective in people and would be unlikely to spread fast or far. The other five experts disagreed with one another, sometimes sharply, but in general they found that smallpox would spread widely and rapidly. They argued forcefully with each other (as scientists do), but in the end, none of the experts could predict what smallpox would do — not to the satisfaction of the other experts. “Our general conclusion was that smallpox is a devastating biological weapon in an unimmunized human population,” one of the participants said. “If you look at the real-world data from a 1972 outbreak in Yugoslavia, you find that the multiplier of the virus was ten: the first infected people gave it to ten more people, on average. Basically, if you don’t catch the first guy with smallpox before he kisses his wife, it goes out of control. We could be dealing with hundreds of thousands of deaths. It will absolutely shut down international trade, and it will make 9/11 look like a cakewalk. Smallpox can bring the world to its knees.” The experts were told by NIH officials that they should not publicize their findings.