Глава 9 Проекция Меркатора

На сокращенной карте [карте Меркатора] румбы, или локсодромы, изображены прямыми, что относится к числу ее преимуществ. […] Кажется не слишком выгодным следовать обходным путем вдоль локсодром или больших кривых, если можно прийти в ту же точку, следуя более коротким путем. Существуют веские причины не отказываться от больших локсодром и от использования компаса, так как они не имеют недостатков…

Томас Лопес «Географические принципы в приложении к использованию карт» (1783)


Карта мира в проекции Меркатора, несомненно, знакома многим из нас (по крайней мере, людям определенного возраста) лучше всех остальных карт. Можно сказать, что на протяжении почти четырех веков это название было нарицательным. В эпоху далеких путешествий и великих географических открытий, в XVI веке, мореплавателям и торговцам требовалась карта, которую можно было бы использовать для навигации. Такую карту создал фламандский ученый и картограф Герард Меркатор.

Созданная им проекция остается самой удобной и популярной до сих пор, недаром она легла в основу системы UTM (от англ. Universal Transverse Mercator — универсальная поперечная проекция Меркатора). Эту систему используют почти все международные агентства при составлении карт большого масштаба, то есть карт участков небольшой протяженности.


Определение и картографические свойства

Средневековые карты, не имевшие научной основы и составленные без использования математических проекций, были абсолютно бесполезны в навигации и не могли применяться для каких-либо измерений. Их использование нередко вело к тому, что корабли очень сильно отклонялись от курса и даже заплывали на совершенно неизвестные территории.

* * *

ГЕРАРД МЕРКАТОР (1512–1594)

Герард Меркатор был выдающимся человеком. Он занимался как практическими дисциплинами (его можно назвать картографом, географом, каллиграфом, гравером, изготовителем измерительных инструментов и редактором), так и теоретическими науками (Меркатор проявлял интерес к математике, астрономии, космографии, изучению земного магнетизма, истории, философии и богословию). В числе разработанных им карт выделяются карта Палестины 1537 года, очевидно, созданная по причинам религиозного характера, его первая карта мира, выполненная в проекции в форме двойного сердца (автором этой проекции был Оронций Финеус), карта Европы 1554 года, выполненная в проекции Вернера, карта Меркатора 1569 года, а также глобус, датируемый 1541 годом, — самый подробный глобус того времени. Последним проектом Меркатора стала работа над картой мира, состоящей из отдельных карт разных регионов. Меркатор опубликовал первую часть своего атласа (он первым использовал термин «атлас» для обозначения собрания карт «…в честь титана Атласа, царя Мавритании, большого философа, математика и астронома») в 1585 году. В сборник вошла 51 карта. Основное внимание уделялось картам Германии, Франции и Нидерландов. В следующий том, изданный в 1589 году, Меркатор добавил 23 карты Италии и Греции. Его сын Румольд опубликовал «Атлас Меркатора» в 1595 году, добавив в него еще 28 карт различных частей Европы. В атласе Меркатора использовались самые разные картографические проекции: конические, стереографическая, проекция Сансона — Флемстида, проекции Вернера, Меркатора и многие другие.



Портрет Герарда Меркатора, выполненный в 1574 году немецким художником Франсом Хогенбергом (1535–1590).

* * *

Первую попытку составить карты, которые можно было бы использовать в навигации, предприняли сами мореплаватели. Созданные ими карты, которые назывались портуланы, были основаны на заметках, сделанных во время путешествий, на данных астрономических наблюдений и на результатах измерений углов и румбов. При их создании использовались циркуль, транспортир, линейка и компас. Однако в портуланах не учитывались геометрические особенности сферы, то есть ее форма и кривизна, и при их составлении не применялась какая-либо картографическая проекция.

Попытки решить проблему составления навигационных карт с научной точки зрения предприняли Меркатор, Абрахам Ортелий и другие картографы того времени. Целью Герарда Меркатора было составить карту мира, пригодную для использования в навигации. Для этого карта должна была сохранять румбы (иными словами, используемая в ней проекция должна была быть конформной), а локсодромы — линии румба — должны были изображаться прямыми.

Португальский астроном и математик Педру Нуниш (1502–1578) описал и подробно изучил локсодромы (на поверхности Земли они имеют форму спиралей, закручивающихся к полюсам) в своем «Трактате о навигации» (1537). В этой книге Нуниш опроверг распространенное убеждение, согласно которому при сохранении неизменного румба судно двигалось вдоль дуги большого круга, то есть вдоль кривой минимальной длины. При прокладке курса между двумя точками Земли мореплаватели пытались следовать кратчайшему пути — ортодроме. Однако для этого требовалось постоянно изменять румб, из-за чего было нетрудно сбиться с курса. Вдоль локсодромы двигаться было удобнее — достаточно выдерживать постоянный румб, однако путь при этом получался длиннее. Уже в 1541 году Меркатор изобразил на созданном им глобусе множество локсодром.

Для построения навигационной карты требовалось решить геометрическую задачу: найти конформную проекцию, в которой локсодромы изображались бы прямыми на плоскости. Меридианы и параллели на карте должны были изображаться перпендикулярными прямыми. При подробном анализе проекции Ламберта, описанном в главе 5, мы выяснили, что равновеликая цилиндрическая проекция Ламберта не является конформной, так как вносимые ею искажения вдоль меридианов, равные cosφ, не равны искажениям в направлении параллелей, 1/cosφ = secφ, где φ — широта рассматриваемой точки. Необходимо было изменить карту так, чтобы искажения вдоль меридианов и параллелей совпадали. В частности, карту в проекции Ламберта нужно «растянуть» в направлении «север — юг». Карта станет не сжатой (искажение вдоль меридианов равно cosφ, а вытянутой (новое искажение будет равно 1/cosφ = secφ). В этом заключается основная идея построения нужной карты. Если мы выразим это искажение математически, получим выражение, описывающее искомую проекцию — проекцию Меркатора:


где θ — долгота (θ0 — долгота центрального меридиана карты), φ — широта, а для сферической модели Земли R = 1.



Современная карта, выполненная в проекции Меркатора.


Именно это и сделал Меркатор при создании карты «Новое и улучшенное описание мира с исправлениями для использования в навигации» (Nova et aucta or bis terrae descriptio ad usum navigatum emendate accommodata) 1569 года: он построил сетку перпендикулярных друг другу меридианов и параллелей, а затем раздвинул параллели, чтобы компенсировать искажения вдоль меридианов. В результате искажения вдоль меридианов и параллелей на карте Меркатора оказались одинаковыми.

* * *

ПОРТУЛАНЫ

Карты мира, созданные в позднем Средневековье, были совершенно бесполезны для навигаторов. Мореплаватели полагались на собственные заметки, где описывались морские пути между портами, проложенные по результатам измерений, астрономических наблюдений и рекогносцировки побережий. После изобретения в XII веке компаса эти заметки стали более точными, начали появляться штурманские книги, в которых приводилась подробная информация о расстояниях и румбах. В какой-то момент на основе этих заметок начали создаваться карты побережий с информацией для мореплавателей — так называемые портуланы, которые стали первыми навигационными картами. На портуланах подробно описывались побережья и самым тщательным образом изображались порты, элементы рельефа и все, что представляло опасность для мореплавателей. Географические названия записывались перпендикулярно линии побережья, внутренние территории, как правило, оставались пустыми. На портуланах также изображались компасы и розы ветров, в которых сходились многочисленные линии румбов, внешне напоминавшие паутину, а также указывался масштаб карты. Мореплаватель с помощью линейки проводил прямую, соединявшую порт отплытия и порт назначения, после чего посредством параллельного переноса построенной прямой до ближайшей розы ветров определял румб, которым нужно было следовать. Хотя эти карты, в особенности карты средиземноморского побережья, были достаточно точными, картографическая информация в них была, очевидно, приближенной. На портуланах не учитывалась кривизна Земли, а при их построении не применялась какая-либо картографическая проекция.



Карта Европы и Средиземного моря из «Каталанского атласа» 1375 года. На иллюстрации представлена копия, выполненная в XIX веке.

* * *



Оригинальная карта Меркатора 1569 года.


В статье Джерома Сакса «Любопытная смесь карт, дат и имен» (A Curious Mixture of Maps, Dates, and Names, 1987) отмечается, что хотя в математическом уравнении проекции Меркатора используется логарифм, Джон Непер опубликовал свой труд о логарифмах лишь в начале XVII века. Кроме того, чтобы вывести уравнения проекции Меркатора, требовалось использовать методы математического анализа и дифференциальной геометрии, однако Ньютон и Лейбниц родились спустя 50 лет после смерти Меркатора, а Гаусс создал дифференциальную геометрию лишь в начале XIX века. Как же Меркатор составил свою карту в 1569 году? Видимо, не располагая методами, которые появились в математике позднее, он обладал обширными знаниями в области картографии и, как следствие, развитой интуицией.

Методы Меркатора были чисто практическими и основывались на огромных таблицах с данными. При этом он не оставил никаких технических описаний процесса построения карты и соответствующих навигационных таблиц и тем более не создал практического руководства по использованию его карты для навигации. Возможно, по этой причине, а также потому, что мореплаватели считали Меркатора представителем чуждого им мира ученых, эта карта обрела широкую популярность лишь 300 лет спустя. До этого карта Меркатора использовалась считанное число раз: так, друг Меркатора, картограф Абрахам Ортелий, включил в свой атлас «Зрелище шара земного» (Teatrum orbius terrarum, 1570) восемь карт, выполненных в проекции Меркатора.

Математическое описание этой проекции дал кембриджский математик Эдвард Райт (1561–1615). В книге «Ошибки в навигации, обнаруженные и исправленные» (1599, в 1610 году было выпущено дополненное издание) он не только привел новые навигационные таблицы и инструкции по определению фиксированных румбов на картах, составленных в проекции Меркатора, но и объяснил построение подобных карт. Он представлял сферическую модель Земли как полый шар, заключенный внутри цилиндра, касающегося шара на экваторе. Затем в этот шар закачивают воздух так, что он всё больше соприкасается с поверхностью цилиндра. Точки соприкосновения шара и цилиндра являются проекциями точек земной сферы.

Проекция Меркатора распространялась довольно медленно. Голландский картограф Петер Планциус использовал ее в 1594 году при составлении навигационных карт, а Иодокус Хондиус — при построении карты «Изображение всего круга земного» (Typus totus orbis terrarum, 1597) и других. И лишь в 1646–1647 годах в этой проекции Робертом Дадли был создан первый в истории морской атлас.



Карта «Изображение всего шара земного» (Typus totus orbis terrarum, 1597), также известная как «карта рыцаря Христова» Йодокуса Хондиуса, выполненная в проекции Меркатора. В средней части карты вы можете видеть рыцаря Христова, который сражается с Грехом, Сладострастием, Дьяволом и Смертью. Кроме того, Мир подносит ему чашу с ядом вавилонской блудницы, которая иногда использовалась как символ католической церкви.

* * *

МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ ПРОЕКЦИИ МЕРКАТОРА

Чтобы оценить, на каком расстоянии от экватора должны изображаться параллели в проекции Меркатора, будем постепенно увеличивать широту, на которой мы будем применять соответствующий коэффициент масштаба. Если мы начнем отсчет с параллели широтой φ и будем откладывать небольшие интервалы длиной t, получим последовательность точек широтой t, 2t…., φt, φ , через которые будут проходить параллели. Так как искажение в направлении меридиана для широты α, как мы уже отмечали, должно равняться искажению вдоль параллели, равному sec φ, то искажение вдоль вертикали в отмеченных нами точках будет равно sec t, sec (2t), sec (φt), sec φ. Так как длина дуги сферы, заключенной между отмеченными точками, равна t, то высота, на которой будет проходить параллель широтой φ, будет равна:

t·sect + t·sec(2t) +… + t·sec(φt) + t·secφ.

Допустим, мы хотим оценить высоту, на которой будет проходить параллель широтой φ = 60°. Предположим, что выбранные интервалы имеют величину t = 10°. Так как sec 10° = 1,0154, sec 20° = 1,0642, sec 30° = 1,1547, sec 40° = 1,3055, sec 50° = 1,5557 и sec 60° = 2,0000, умножив эти числа на 10 и сложив полученные значения, получим 80,955. Иными словами, параллель широтой 60° должна будет проходить на высоте, на которой располагалась бы параллель широтой 80,955°, если бы параллели были равноудалены друг от друга.



Именно так рассуждал Эдвард Райт, можно предположить, что похожие рассуждения провел и Меркатор. Рассмотрим задачу в более современном виде. Для цилиндрической проекции, 30° в которой экватор является осью х, а параллель широтой φ — горизонтальной линией, проходящей на высоте у = h(φ), коэффициент масштаба (искажения) в направлении меридианов λ должен быть равен коэффициенту масштаба вдоль параллелей μ = 1/cos φ = sec φ. Получим:


Имеем

* * *

Вернемся к проекции Меркатора и напомним, что карта, выполненная в этой проекции, имеет следующие свойства.

1. Она имеет прямоугольную форму, так как выполнена в цилиндрической проекции.

2. Меридианы и параллели пересекаются под прямыми углами.

3. Карта выполнена в конформной проекции, которая не сохраняет расстояния, площади, геодезические линии и формы протяженных участков.

4. Искажения площадей, форм и расстояний вблизи экватора очень малы (в этой части карты используется реальный масштаб), но они значительно возрастают по мере приближения к полюсам, поэтому проекция Меркатора удобна для составления карт территорий, расположенных вблизи экватора.

5. Локсодромы, или линии румба, изображаются в виде прямых линий.



Сравнение локсодромы (линии румба) и ортодромы (линии наименьшего расстояния) между Рио-де-Жанейро и Сеулом на карте Меркатора.


С созданием этой карты мечта Меркатора исполнилась. Если мореплаватель хотел попасть из точки А в точку В, он должен был всего лишь провести на карте, выполненной в проекции Меркатора, прямую, соединяющую эти точки, и измерить румб, соответствующий этой прямой, после чего ему оставалось всего лишь точно соблюдать курс. Однако вы уже знаете, что локсодромы — это не ортодромы, и хотя они указывают простейший курс (нужно всего лишь выдерживать постоянный румб), путь вдоль локсодромы не является кратчайшим. Двигаться вдоль ортодромы сложнее, так как для этого необходимо постоянно менять румб. Мореплаватели и пилоты самолетов в конечном итоге нашли промежуточное решение этой проблемы. Чтобы попасть из пункта отправления в пункт назначения, нужно выполнить следующее.

1. Провести геодезическую линию (прямую) на карте, выполненной в центральной или азимутальной равнопромежуточной проекции с центром в пункте назначения.

2. Разбить геодезическую линию на фрагменты и определить тем самым последовательность стратегических точек.

3. Перенести эти точки на карту, выполненную в проекции Меркатора, и соединить их прямыми. Построенные прямые будут локсодромами и укажут румб, который нужно выдерживать в каждой из стратегических точек.



Метод приближения большого круга с помощью локсодром, который используется в навигации по карте Меркатора, а также, например, карты, выполненной в гномонической проекции.


Нет никаких сомнений в том, что проекция Меркатора была и остается лучшей для составления навигационных карт с момента своего появления в XVII веке. Эту проекцию используют Национальная служба по исследованию океана США (с 1910 года), Гидрографический институт Испании и многие другие авторитетные организации.

Проекция Меркатора играла огромную роль в эпоху морских путешествий. Она очень часто использовалась при составлении карт мира и была одной из самых популярных картографических проекций вплоть до начала XX века, хотя она и вносит очень большие искажения в областях, близких к полюсам. Сегодня на основе этой проекции изготавливаются настенные карты, карты в учебниках и атласах, в научно-популярных публикациях, в газетах и журналах. Американский картограф Джон Снайдер (1926–1997) из Геологической службы США, изучив различные атласы мира, опубликованные в США, Великобритании, Франции и Германии в XIX веке, определил, что чаще всего в них использовалась проекция Меркатора. Однако похожее исследование, проведенное в XX веке, показало, что начиная с 1940-х годов эта проекция практически перестала использоваться. Ей на смену пришли такие проекции, как гомолосинусоидальная проекция Гуда, тройная проекция Винкеля, проекция Робинсона, Eckert IV, проекция Ван дер Гринтена и другие.

* * *

ПУТЕШЕСТВИЕ ЧАРЛЬЗА ЛИНДБЕРГА

Американский авиатор Чарльз Линдберг (1902–1974) стал известен во всем мире как первый человек, перелетевший в одиночку Атлантический океан. В 1919 году богатый владелец нью-йоркского отеля предложил премию в 25 тысяч долларов пилоту, который первым совершит одиночный беспосадочный перелет из Нью-Йорка в Париж. Линдберг верил, что если у него будет подходящий самолет, он сможет выиграть приз, и убедил нескольких бизнесменов из Сент-Луиса спонсировать предприятие, включавшее постройку особого самолета «Дух Сент-Луиса» под руководством самого Линдберга.

20 мая 1927 года Линдберг отправился в полет с аэродрома на Лонг-Айленде, «взяв с собой четыре сэндвича, две фляжки с водой и 1700 литров бензина. Спустя 33,5 часа и 3610 миль (около 5800 км) он приземлился в Париже на глазах ожидавшей его стотысячной толпы. Линдберг, получивший прозвище Одинокий Орел, стал известен во всем мире. Свой полет он тщательно спланировал с помощью навигационных карт. Вот его слова: «…большую часть времени, когда строился самолет, я занимался навигацией и прокладывал курс будущего полета на картах. После того как я определил курс на картах, выполненных в гномонической проекции и проекции Меркатора, я вновь проверил весь путь между Нью-Йорком и Парижем по навигационным таблицам. Я начертил большой круг, соединявший Нью-Йорк и Париж. Чтобы следовать этим курсом, требовалось менять румб каждые 500 миль».

* * *

Поскольку в проекции Меркатора экваториальные зоны изображаются практически без искажений, она очень удобна для составления карт этих областей. Она использовалась в морских картах, составленных лейтенантом американского флота Мэтью Фонтеем Мори (1806–1873). В этих картах содержалась информация о погоде, ветрах, течениях и другие результаты гидрологических и метеорологических наблюдений, а также были указаны морские пути.

Наконец, укажем, что проекция Меркатора используется при построении карт мира в некоторых современных интернет-проектах, в частности «Картах Google» и Virtual Earth. Пользователь этих интерактивных карт может просматривать увеличенное изображение малых областей, которые отображаются практически без искажений. Причина в том, что проекция Меркатора является конформной, то есть на локальном уровне, для небольших областей, вносимые ею искажения невелики.


Поперечная проекция Меркатора

Если мы повернем цилиндр, на который проецируется сфера, на 90° так, что линией касания будет меридиан, то получим поперечную проекцию Меркатора с центром на этом меридиане. Эта проекция также будет конформной и не будет вносить больших искажений в областях, близких к касательному меридиану. Поперечная проекция очень удобна для изображения участков Земли, протяженных с юга на север, например Американского континента или Индии.

Эту картографическую проекцию впервые описал Ламберт в 1772 году. Позднее, в 1822 году, эллипсоидную разновидность этой проекции изучили Карл Фридрих Гаусс и математик и топограф Луис Крюгер (1857–1923), поэтому она также называется проекцией Гаусса — Крюгера. Она обладает следующими свойствами.

1. Меридианы, параллели и, в общем случае, локсодромы изображаются кривыми линиями.

2. Проекция конформна: она сохраняет углы и формы на локальном уровне.

3. Искажения в областях, близких к центральному меридиану, очень малы (вдоль центрального меридиана искажения отсутствуют) и постепенно растут по мере удаления от него.



Карта Америки, выполненная в поперечной проекции Меркатора. Это изображение привел Ламберт в качестве примера созданной им проекции.


Как следствие, эта проекция идеально подходит для составления карт участков, протяженных с севера на юг, а также для небольших областей — достаточно правильно выбрать центральный меридиан, проходящий через изображаемую территорию. Именно эта проекция использовалась в различных атласах при составлении карт Северной Америки, западной части бывшего СССР, Индии, стран Востока, Юго-Восточной Азии, восточной части Австралии и Африки. Она широко применяется почти всеми европейскими странами. Так как проекция прекрасно подходит для изображения небольших территорий, она легла в основу системы топографических координат, в частности британской системы координат (1919) и американской системы SPCS (1930). В своем окончательном виде, который на сегодняшний день является универсальным, система координат была разработана в 1947 году Картографической службой армии США. Эта система получила название UTM (от англ. Universal Transverse Mercator — универсальная поперечная проекция Меркатора).

В UTM поверхность земного шара между 84° с.ш. и 80° ю.ш. разделена на 60 зон по 6° долготы. При изображении каждой из этих зон используется поперечная проекция Меркатора, центральный меридиан которой проходит по центру изображаемой территории. Зоны пронумерованы от 1 до 60. С севера на юг земная поверхность разделена на 20 зон по 8° широты, которые обозначены буквами. Так, Бильбао находится в зоне UTM ЗОТ, Нью-Йорк — в зоне 18Т, Сидней — в зоне 56Н, Александрия — в зоне 35R. Для приполярных областей, расположенных севернее 84° с.ш. и южнее 80° ю.ш., используется система UPS (универсальная полярная система координат).

Систему UTM использует большинство топографических, геодезических, картографических служб мира, военных и морских министерств для составления карт в масштабе 1:500000 и более. В национальной топографической карте Испании, составленной Национальным географическим институтом и являющейся основой для всех карт страны, используется система UTM для карт в масштабе 1:200000, 1:50000, 1:25000 и более. Геологическая служба США (USGS) использует эту систему координат с 1977 года.



Карта зон UTM. Если мы хотим составить топографическую карту местности, где мы находимся, нужно посмотреть, в какой зоне UTM она располагается, чтобы правильно выбрать проекцию Меркатора.


Косая проекция Меркатора

Можно рассмотреть и косую проекцию Меркатора, в которой линия касания цилиндра и сферической модели Земли проходит вдоль произвольного большого круга, который не является экватором или меридианом. Косая проекция Меркатора, очевидно, также конформна: искажения в областях, близких к большому кругу касания, малы. Благодаря этому свойству проекция подходит для изображения областей, протяженных вдоль выбранного большого круга.

Происхождение этой проекции не вполне ясно. Первыми ее использовали Макс Розенмунд при составлении карты Швейцарии в 1903 году и Жан Лабор при составлении карты Мадагаскара в 1928 году. Начиная с этого времени косая проекция Меркатора используется на картах Американского континента и его частей, картах Евразии, Австралазии и более мелких регионов, в частности Вест-Индии (Багамских и Антильских островов), Гавайских островов, Новой Зеландии, Италии и Аляски. Эту проекцию применяют Национальное географическое общество и другие службы.

XX век стал периодом развития грузового и пассажирского транспорта. Все новые и новые авиакомпании покрывали огромные расстояния и даже предлагали клиентам трансатлантические перелеты. Эти маршруты по возможности прокладывались вдоль больших кругов — чтобы сократить время в пути и сэкономить горючее.

Аэронавигационные карты — это, как правило, складные карты, ориентированные вдоль направления, соединяющего аэропорт вылета и аэропорт прилета, на которых узкой полосой показаны территории, расположенные вдоль маршрута, поэтому с точки зрения картографии они не очень интересны. Косая проекция Меркатора по своим свойствам идеально подходит для прокладки курсов самолетов вдоль больших кругов. Так, в 1947 году Национальная служба по исследованию океана США применила эту проекцию для составления первой аэронавигационной карты маршрута, проходившего вдоль большого круга и соединявшего Чикаго и Гандер. В те времена аэропорт города Гандер на острове Ньюфаундленд был обязательным местом дозаправки при трансатлантических перелетах. На этой карте был не только изображен маршрут вдоль ортодромы — ее также можно было использовать для прокладки нового курса и измерения расстояний по маршруту, так как искажения расстояний и углов на этой карте были невелики.



Аэронавигационная карта маршрута Чикаго — Гандер, выполненная в косой проекции Меркатора.


С началом запуска спутников NASA в 1972 году эта картографическая проекция получила новое применение. Спутники, которые движутся по орбите, близкой к большому кругу земного шара, начали делать снимки земной поверхности. Эти снимки отличались от полученных при аэрофотосъемке и представляли собой результат сложного анализа земной поверхности. Огромные массивы полученной информации требовалось преобразовать в плоские изображения, то есть карты, с минимально возможными искажениями. Чтобы решить задачу составления карт на основе спутниковых изображений, Джон Снайдер, Алден Колвокорессес и Джон Джанкинс из USGS в 1976 году разработали космическую косую проекцию Меркатора на основе обычной косой проекции Меркатора.


Петерс против Меркатора

История, которой мы закончим эту книгу, началась примерно в 1967 году, когда немецкий историк Арно Петерс представил на конгрессе Венгерской академии наук свою «новую» проекцию. Расскажем немного о ней.

Шотландский священник Джеймс Галл (1808–1895) на конференции 1855 года описал проекцию, идентичную проекции Петерса, которая известна как ортографическая проекция Галла, и опубликовал описание этой и двух других картографических проекций своего авторства в «Шотландском географическом журнале» в 1885 году. Галл разрешил бесплатно использовать все три созданные им проекции при условии указания авторства.



Карта, выполненная в ортографической проекции Галла, или Галла Петерса, и изображение секущего цилиндра, на поверхность которого проецируется поверхность сферы.


Эта проекция строится аналогично равновеликой цилиндрической проекции Ламберта, которую мы рассмотрели в главе 5, с одним отличием: вместо цилиндра, касающегося сферической модели Земли вдоль экватора (в прямой разновидности этой проекции), используется цилиндр, рассекающий сферу вдоль двух параллелей. В ортогональной проекции Галла, которая в конечном итоге стала называться проекцией Галла — Петерса, параллели пересечения цилиндра и сферы, которые являются стандартными линиями карты, отстоят от экватора на 45° широты. Эта проекция является равновеликой, подобно другим похожим проекциям, которые отличаются от нее расположением стандартных параллелей. Так, в проекции Бермана 1910 года стандартные параллели отстоят от экватора на 30°, в проекции Тристана Эдвардса 1953 года — на 37° и 52°, в проекции Хобо — Дайера 2002 года — на 37°.

* * *

АРНО ПЕТЕРС (1916–2002)

Согласно записи в метрической книге, Арно Петерс родился в Берлине в 1916 году. Он изучал историю, историю искусства и журналистику в Берлинском университете. В бурные 1930-е годы Петерс работал режиссером, в 1945 году получил степень доктора, защитив диссертацию о политической пропаганде под названием «Использование кино как средства пропаганды», а также работал журналистом. Петерс вошел в историю как создатель «справедливой» и точной карты мира — знаменитой карты Петерса, подробно описанной в его книге «Новая картография». Главной работой Петерса, не относящейся к картографии, стал труд «Синхронно-оптическая история мира», в котором он изложил историю человечества, посвятив каждому столетию одинаковое число страниц. В 1974 году он стал сооснователем Бременского института всеобщей истории.

* * *



Цилиндрические равновеликие проекции. Стандартные параллели расположены на разных широтах в зависимости от того, как цилиндр проекции рассекает сферическую модель Земли.


Арно Петерс представил свою проекцию как оригинальную. Когда ему напомнили, что Галл создал аналогичную проекцию на сто лет раньше него, Петерс возразил, что создал ее самостоятельно и совершенно независимо от кого бы то ни было. Научное сообщество не уделило проекции Петерса особого внимания, но не по личным причинам, а потому, что она не была принципиально новой либо оригинальным вариантом одной из уже существующих проекций. В науке ценится нечто исключительно новое — теоремы, гипотезы или доказательства. Например, ученые часто приводят новые доказательства уже доказанных математических теорем, более простые и понятные, чем исходные, либо сформулированные с использованием каких-то новых методов.

В 1973 году, когда Петерс рассказал о своей проекции на пресс-конференции в Бонне, история получила продолжение. Петерс передал журналистам копии своей карты мира и брошюру «Европоцентричная природа нашего изображения мира и его завоеваний», представив свою карту как единственно правильную с точки зрения социологии и картографии в отличие от проекции Меркатора. Основной аргумент Петерса заключался в том, что проекция Меркатора искажает площади различных частей земного шара, и страны так называемого третьего мира (Африка, Центральная и Южная Америка) на ней выглядят меньше, чем государства так называемого первого мира (Северная Америка, Европа и Россия). Страны третьего мира населяют люди с темным цветом кожи, страны первого мира — люди с белым цветом кожи, поэтому проекция Меркатора является расистской и от нее следует отказаться, утверждал Петерс. После этого Петерс представил «свою» карту мира как единственно возможную альтернативу.

Пресс-конференция дала начало дебатам, в ходе которых средства массовой информации (сравнивавшие Петерса с Давидом, вышедшим на бой против Голиафа) и некоторые гуманитарные и религиозные организации, не принимая в расчет научные критерии, отстаивали правильность карты Петерса. Несколько лет спустя такие организации, как Всемирный совет церквей, Лютеранская церковь Америки, различные агентства Организации Объединенных Наций и некоторые международные негосударственные организации начали использовать проекцию Петерса и способствовать ее распространению. Выдвигались следующие мнения:

«Проекция Меркатора переоценивает белого человека и искажает изображение мира в пользу сторонников колониализма» (Петерс);

«Это карта будущего справедливого мира»;

«[Петерс,] неизменно движимый стремлением к справедливости, выбрал путь картографии, чтобы создать образ мира, в котором каждый народ занимает соответствующее место как с географической, так и с политической точки зрения»;

«В карте Петерса исправлены ошибки карты Меркатора […] она точнее с научной точки зрения».

Петерс воспользовался доверчивостью людей и отсутствием у них даже начальных знаний о картографии. В результате его карта стала считаться «единственной справедливой картой» и, что еще хуже, «единственной точной картой» с точки зрения математики и картографии.



Искажение площадей в областях, близких к полюсам, в проекции Меркатора очень велико. К примеру, Гренландия выглядит больше, чем Африка, хотя площадь Гренландии составляет всего лишь около 2175 000 км2 по сравнению с площадью африканского континента, равной 29 800 000 км2.


Петерс, который был докой в пропаганде, свел обсуждение к противостоянию между «расистской» картой Меркатора и своей «справедливой» картой, умолчав о более сложных картографических аспектах, в том числе о научном подходе к составлению карт и о существовании сотен различных проекций, которые можно использовать в разных целях и многие из которых являются равновеликими. Кроме того, в книге «Новая картография» (1983) Петерс поместил истинные утверждения (например, что карта Меркатора искажает площади и центральным в ней является Гринвичский меридиан или что проекция Петерса является равновеликой) рядом с ложными (так, он указывал, что равновеликие проекции, созданные до него, «были столь неудобны и содержали столько ошибок…» или что карта Петерса обладает «достоверностью масштаба»), применив псевдонаучный язык.

В то время общество уже было готово использовать карты мира, составленные в проекциях, отличных от проекции Меркатора: картографы прекрасно понимали, что эта проекция превосходна, но не подходит для изображения всей планеты из-за больших искажений в определенных областях. Петерсу удалось положить конец многолетней популярности проекции Меркатора и вывести на первый план свою карту, оставив в стороне широчайший спектр картографических проекций, сохраняющих площади (например, гомолосинусоидальную проекцию Гуда, проекцию Моллвейде, синусоидальную проекцию Сансона-Флемстида и проекцию Eckert IV), другие параметры (например, равнопрямоугольную проекцию Миллера) и иные компромиссные варианты с очень малыми вносимыми искажениями (например, проекции, использованные Национальным географическим обществом, проекция Артура Робинсона 1961 года и тройная проекция Винкеля 1921 года).



Тройная проекция Винкеля — это компромиссное решение: она не сохраняет ни одно из метрических свойств, однако вносимые ею искажения невелики.

* * *

ПРОЕКЦИЯ ДИМАКСИОН

Ричард Бакминстер Фуллер, создатель геодезического купола, разработал собственную картографическую проекцию. Его идея заключалась в проецировании земной поверхности на правильный или полуправильный многогранник с последующим развертыванием этого многогранника на плоскости. В проекции Димаксион (от англ. DYnamics MAXimum tensiON — «максимальное динамическое растяжение»; это название не является торговой маркой, а выражает основной принцип, которым руководствовался Фуллер), запатентованной в 1946 году, Фуллер использовал кубоокгаэдр (многогранник, имеющий восемь треугольных и шесть квадратных граней), а в версии этой проекции от 1954 года он применил слегка видоизмененный икосаэдр (многогранник, имеющий 20 треугольных граней). Использованная Фуллером проекция не является гномонической, а определяется построением, подобным тому, что используется при изображении геодезического купола. Для карты, составленной в проекции Димаксион, характерны малые искажения площадей и форм. Кроме того, вносимые ею искажения достаточно равномерны. Хотя многогранник, используемый в этой проекции, можно развернуть на плоскости разными способами, как правило, используется развертка, в которой Северный полюс оказывается примерно в центре карты. На карте в проекции Димаксион изображен мир, в котором нет ни севера, ни юга. Эту карту можно рассматривать с любой стороны, а континенты выглядят не разделенными частями суши, а скорее островами посреди океана.



Карта в проекции Димаксион, выполненная на основе икосаэдра. Пунктиром отмечены линии сгиба.

* * *

Возмущение научного мира было вызвано, с одной стороны, тем, что общество пренебрежительно отнеслось к их работам в области картографии, с другой стороны — тем, что Петерс при защите своей проекции умело манипулировал аргументами. Существование проекций, сохраняющих площади, доказывается в статье Ламберта от 1772 года, в которой он представил свою равновеликую цилиндрическую проекцию, а также еще одну, азимутальную. Позднее было описано множество других равновеликих проекций. Кроме того, проекция Галла — Петерса сохраняет площади, однако искажение форм на ней очень велико: территории, изображенные в центре карты, значительно вытягиваются в направлении «север — юг», а участки земной поверхности, расположенные севернее 45° с.ш. и южнее 45° ю. ш. — сжимаются. По иронии, искажение форм заметнее всего проявляется на территории Африки, Центральной и Южной Америки, а на территории Европы, США и Канады, которые находятся ближе к параллели 45° с.ш., искажения меньше. Приведем несколько любопытных цитат и карту в проекции Снайдера:

«[Карта мира в проекции Петерса] не лучше других, похожих карт, которые использовались последние 400 лет»;

«Проекция Петерса, по-видимому, перешла в ту же плоскость, что и «единственная вера» или «лекарство от всех болезней». В попытках привлечь интерес общества к своей карте Петерс забыл об объективности и важных научных фактах».



Карта мира, выполненная в гомолосинусоидальной проекции Гуда, сохраняющей площади, начала использоваться в атласах мира, а также в научных и научно-популярных публикациях, в СМИ и в учебниках. Эта проекция остается популярной и сегодня.


Карта Снайдера, представленная на иллюстрации, не без доли юмора и иронии показывает, что одного лишь сохранения площадей на карте недостаточно: необходимо учитывать и другие параметры. Кроме этого, важно уделять внимание сохранению форм стран и континентов.

Как бы то ни было, в этой книге мы доказали, что точных карт Земли не существует: все они вносят те или иные искажения. Существует несколько сотен различных проекций: так, в книге «Как Земля стала плоской» (Flattening the Earth) Джона Снайдера описывается порядка 300 их вариантов. При составлении атласа мира, содержащего карты в различных масштабах (то есть карты мира и отдельных континентов, стран и мелких регионов), для каждой карты в отдельности следует выбрать наиболее подходящую проекцию.


Загрузка...