Стереографическая проекция — это графический метод, позволяющий представлять трехмерную геометрическую информацию в двух измерениях и решать задачи стереометрии. В геологии эта проекция используется, главным образом, для решения задач, связанных с ориентированием прямых и плоскостей, в том числе в кристаллографии и в структурной геологии. В подобных задачах большее значение имеют углы между линиями и плоскостями, а не их расположение в пространстве.
Р. Парк «Основы структурной геологии» (2004)
Стереографическая проекция — возможно, наиболее часто применяемая и самая известная азимутальная картографическая проекция. Ее авторство обычно приписывается Гиппарху Никейскому, хотя, возможно, она была известна еще древним египтянам. Проекция впервые упоминается в трактате Птолемея «Планисферий». Оригинал этого документа на древнегреческом языке утерян, до нас он дошел в арабском переводе, автором которого был математик Маслама. Впервые труд Птолемея был напечатан в виде приложения к его «Географии» в 1507 году. В работе была описана астролябия — инструмент для определения положения звезд на небесной сфере с использованием стереографической проекции. Птолемей называл эту проекцию планисферной, и это название сохранилось до XVI века (термин «планисфера» стали применять по отношению к картам звездного неба, так как для их изготовления использовалась именно эта проекция). В Средневековье стереографическая проекция также называлась проекцией астролябии. Название «стереографическая» ввел бельгийский математик Франсуа д’Агильон (1567–1617), который в своем труде «Шесть книг по оптике, полезные для философов и математиков» (Opticorum libri sex philosophis juxta ас mathematicis utiles) изучил свойства ортографической и стереографической проекций. Название «стереографическая» происходит от греческого «стерео» — «твердое тело» и «графиа» — «рисунок, изображение».
* * *
МАСЛАМА (ОК. 950-1007)
Абу аль-Касим Маслама ибн Ахмад аль-Фаради аль-Хасиб аль-Куртуби аль-Майрити родился в Мадриде в середине X века (аль-Майрити в его имени означает «родом из Мадрида»). В юном возрасте он переехал в Кордову, где познакомился с учеными, которые способствовали распространению достижений греческой науки в Андалусии. Со временем Маслама основал в Кордове собственную научную школу. Она стала настолько известной (Масламу называли андалусским Евклидом и королем андалусских математиков), что в нее стремились ученые со всей Андалусии и других регионов. Одно из достижений Масламы — перевод «Планисферия» Птолемея на арабский, который, как и оригинал, был утерян, однако успел лечь в основу последующих переводов книги на латынь и иврит, при этом сохранились комментарии самого Масламы к Птолемею. Кроме этого, Маслама занимался разработкой методов конструирования астролябии, которым он посвятил небольшую книгу; корректировкой таблиц Аль-Хорезми и Ал-Баттани для меридиана Кордовы (Маслама сделал их более удобными и точными); он написал учебник по арифметике в торговле и трактат по астрономии, а также определил долготу звезды Кальб Аль-Асад (сегодня она называется Регул).
* * *
Хотя полярная версия этой проекции была известна уже в Античности и использовалась при составлении карт звездного неба, в конце XVI и в XVII–XVIII веках проекция применялась для изображения Земли в виде двух отдельных полушарий.
Карта мира Vera totius expeditionis nauticae («Изображение всех морских экспедиций») (1595) Йодокуса Хондиуса (1563–1612) выполнена в стереографической проекции. На карте отмечены маршруты первых кругосветных путешествий, совершенных англичанами — сэром Фрэнсисом Дрейком в 1577–1580 годах и Томасом Кавендишем в 1586–1588 годах.
Стереографическая проекция строится следующим образом: рассмотрим сферу и плоскость, которая касается сферы в точке S (например, в Южном полюсе), и построим проекцию из диаметрально противоположной точки N (в нашем случае — Северного полюса). Отображением точки А на поверхности сферы, полученным с помощью стереографической проекции, будет точка А' на плоскости, определяемая как пересечение прямой, проходящей через точки А и N, с этой плоскостью, как показано на рисунке. Иными словами, если мы представим Землю как пластиковый шар, лежащий на столе так, что точкой касания шара и стола будет Южный полюс, то эта проекция будет тенью точки, освещаемой источником света, находящимся на Северном полюсе.
Слева — определение стереографической проекции. Справа — карта, выполненная в полярной стереографической проекции (центр проекции совпадает с Южным полюсом).
Стереографическая проекция имеет следующие свойства.
1. Так как она является азимутальной, карта в этой проекции имеет форму круга и охватывает всего одно полушарие. При изображении в этой проекции больших участков земной поверхности искажения слишком велики.
2. Искажение на меридианах и параллелях равно
Следовательно, эта проекция конформна, то есть сохраняет величины углов.
Однако она не сохраняет ни геодезические линии, ни площади, ни расстояния.
3. Так как эта проекция является азимутальной, она сохраняет геодезические линии, проходящие через точку касания сферы и плоскости. Иными словами, если центр проекции совпадает с одним из полюсов, меридианы изображаются прямыми, проходящими через центр карты.
4. Все меридианы и параллели (точнее все окружности сферы, в том числе большие круги) изображаются окружностями на плоскости, за исключением окружностей, проходящих через точку касания — они изображаются прямыми (это особенность отображений, называемых инверсиями, а стереографическая проекция является результатом инверсии).
5. Локсодромы (кривые на поверхности сферы, пересекающие меридианы под постоянным углом) изображаются в виде логарифмических спиралей.
6. Искажение площадей, форм и размеров вблизи точки касания невелико и возрастает по мере удаления от нее. При выходе за границы полушария, где расположена точка касания (то есть при пересечении экватора в полярных версиях проекции), искажения становятся слишком велики.
Локсодрома на земном шаре и на карте, выполненной в стереографической проекции, центр которой совпадает с Северным полюсом.
Далее мы аналогично центральной проекции рассчитаем искажения, возникающие при использовании стереографической проекции. Рассмотрим диск D достаточно малого (бесконечно малого) радиуса r, касающийся сферы в точке А широтой φ.
Примем радиус сферы равным 1, так как речь идет о сферической модели Земли. Посмотрим, как построенный нами диск изменится в стереографической проекции, и определим, какие искажения она вносит.
* * *
СУММА УГЛОВ ТРЕУГОЛЬНИКА
Все мы знаем, что сумма углов произвольного треугольника равна 180° (или π радиан) — половине полного оборота вокруг оси. Этот классический результат евклидовой геометрии упоминается уже в «Началах» (предложение 32 книги I), созданных греческим математиком Евклидом Александрийским (ок. 325 года до н. э. — ок. 265 года до н. э). Доказательство этого утверждения отличается простотой и изяществом. В данном треугольнике АВС через вершину С проводится линия, параллельная АВ, как показано на рисунке. Так как эта прямая параллельна АВ, обе они образуют равные углы с прямой АС (угол α). По этой же причине они образуют равные углы с прямой ВС (угол β). Так как прямые АС и ВС пересекаются, угол γ и противолежащий ему равны как вертикальные. Сумма трех углов при вершине С равна сумме углов треугольника α, β и γ, то есть развернутому углу — 180°.
* * *
Перед построением стереографической проекции диска на следующем рисунке обозначим через ψ угол ONA, равный углу OAN, и, поскольку сумма углов треугольника равна π, имеем:
С другой стороны, расстояние между N и А равно |NA| = 2 cosψ по тригонометрической теореме косинусов (для данного треугольника со сторонами а, b и с и углом α, противолежащим стороне а, выполняется равенство а2 = Ь2 + с2 — 2Ьс·cosα). По определению косинуса имеем, что расстояние между N и А' — стереографической проекцией точки А — равно:
Чтобы лучше понять, как изменяется диск в стереографической проекции, проведем построение в два этапа. На первом этапе диск преобразуется в диск D', лежащий в плоскости, параллельной D. Центром диска будет точка А' — стереографическая проекция точки А (см. следующий рисунок). В силу подобия треугольников (по теореме Фалеса) имеем:
Первый этап построения стереографической проекции.
Второй этап заключается в построении проекции диска D' радиуса r' на плоскость проекции Т. В направлении «запад — восток» диск D' и плоскость Т пересекаются, следовательно, проекция отрезка будет иметь ту же длину, что и сам отрезок. Это означает, что искажение вдоль параллелей равно
так как мы вычислили искажение бесконечно малого отрезка длины r, расположенного вдоль параллели.
Рассмотрим, что произойдет с отрезками, расположенными в направлении «север — юг», и рассчитаем при этом искажение вдоль меридианов (см. следующий рисунок). Сначала заметим, что угол SA'N равен (π/2) — ψ. Если мы будем считать, что |NA'| очень велико по сравнению с r' (изначально мы приняли размеры диска D бесконечно малыми), то можно предположить, что проекционные лучи параллельны. Следовательно, проекцией отрезка А'В' будет отрезок А'С, а отрезок В'С параллелен NA'. Угол А'СВ', равно как и угол А'В'С, равен — (π/2) — ψ. Следовательно, треугольник В'А'С равнобедренный. Как следствие, |А'С| = |А'В'| = r'. Таким образом, искажение вдоль меридианов и параллелей будет одинаковым. Более того, оно будет одинаковым во всех направлениях, а значит, стереографической проекцией D будет диск радиуса:
Это указывает, что стереографическая проекция является изогональной, то есть сохраняет величины углов.
Второй этап построения стереографической проекции.
В 1695 году английский математик и астроном Эдмунд Галлей (1656–1742) опубликовал первое доказательство конформности стереографической проекции.
Как мы уже указывали, конформные проекции сохраняют формы лишь на небольших участках, но не на всей карте. Форма границы страны или русла реки на карте определяется изменением направления, в котором мы проводим изображаемую линию. Если говорить математическим языком, их очертания определяет изменение касательного вектора рассматриваемой кривой. По этой причине сохранение величин углов обеспечивает локальное сохранение форм. Наглядным примером станет Гренландия, реальные очертания которой очень отличаются от изображения в проекции Меркатора. Однако если мы рассмотрим небольшие участки на побережье Гренландии, различия будут незначительными.
Задача изображения сетки меридианов и параллелей на карте, выполненной в полярной стереографической проекции, сводится к расчету расстояния от центра, на котором должны располагаться окружности, соответствующие параллелям, поскольку в азимутальных проекциях меридианы изображаются равномерно распределенными прямыми, проходящими через центр карты. Так, радиус окружности — проекции параллели, расположенной на широте φ, — равен
где R — радиус сферической модели Земли. Чтобы рассчитать это расстояние, нужно воспользоваться определением тангенса угла SNA (см. рисунок на стр. 109).
С древних времен до наших дней стереографическая проекция используется при составлении карт звездного неба. Полярная стереографическая проекция использовалась исключительно в этих целях со времен Древней Греции до, возможно, 1507 года, когда она впервые была применена при составлении карты Земли. Как отмечает Джон Снайдер в книге «Как Земля стала плоской» (Flattening the Earth), эту карту изготовил Вальтер Людд из Сан-Дье. Первые печатные карты звездного неба, созданные с помощью полярной стереографической проекции, принадлежат знаменитому немецкому художнику Альбрехту Дюреру (1471–1528): в 1515 году он создал карту Северного полушария небесной сферы Imagines coeli septentrionales cum duodecim imaginibus zodiaci («Изображение северного звездного неба с двенадцатью зодиакальными созвездиями») и карту Южного полушария небесной сферы Imagines coeli meridionales («Изображение южного звездного неба»). Центры проекций этих карт располагались в Северном и Южном полюсах эклиптики соответственно. За ними последовали многие другие, например карты полушарий небесной сферы, выполненные Галлеем примерно в 1678 году, или опубликованная в «Бюллетене Французской академии наук» в 1756 году «Карта мира, содержащая небесные созвездия» (Planisphere contenant les constellations celestes) французского астронома Никола Луи де Лакайля (1713–1762), на которой изображены звезды, видимые в Южном полушарии. Карта Лакайля была включена в знаменитый атлас звездного неба Флемстида 1776 года.
Многие другие карты звездного неба в полярной стереографической проекции были созданы в золотой век небесной картографии великими астрономами, картографами и математиками: Иоганном Доппельмайером, Пьером Шарлем Ле Моннье, Жаном Домиником Кассини и многими другими.
Карта звездного неба Альбрехта Дюрера «Изображение северного звездного неба», на которой изображено Северное полушарие небесной сферы.
Полярная стереографическая проекция начала использоваться для составления карт Земли в начале XVI века. Немецкий гуманист Грегор Рейш (ок. 1470–1525) использовал ее в своей энциклопедии «Жемчужина философии» (1512) при составлении простой карты с центром в Северном полюсе. Немецкий картограф Петер Апиан (1495–1552) включил в свою «Космографию» (1524) небольшую карту Северного полушария до 25-го градуса южной широты. Французский картограф Гийом Делиль (1675–1726) в своем «Новом атласе, содержащем все части мира» (1730) привел карты Северного и Южного полушария, выполненные в полярной стереографической проекции. Аналогичные карты создал его племянник, картограф Филипп Буше (1700–1773). Так, ему принадлежит знаменитая «Карта южных земель между тропиком Козерога и Антарктическим полюсом, изображающая новые земли к югу от мыса Доброй Надежды, открытые в 1739 году». Существует два варианта этой карты: в одном из них отсутствует Антарктида, в другом на ее месте изображены две большие части суши. Последний вариант был составлен задолго до подробных исследований Австралийского континента, поэтому ее порой использовали, чтобы доказать существование Атлантиды.
Вслед за этими картами были созданы многие другие похожие карты двух полушарий, а также разработаны карты, на которых полушария изображались совместно, например «Карта магнитных меридианов и параллелей» (Karte Der Magnetischen Meridiane und Parallel-Kreise) и другие, включенные в «Физический атлас» (Physikalischer Atlas, 1848) немецкого картографа Генриха Бергхауза (1797–1884). Эти карты использовались в качестве иллюстраций к труду «Космос, или Физическое мироописание» немецкого натуралиста и путешественника Александра фон Гумбольдта (1769–1859).
«Карта магнитных меридианов и параллелей», на которой изображены два полушария в стереографической проекции, составленная немецким географом Генрихом Бергхаузом.
* * *
КАРТЫ ЗВЕЗДНОГО НЕБА, ЧАСТЬ ВТОРАЯ
Звезды на небе располагаются равномерно, и когда мы смотрим на них ночью, то кажется, что они закреплены на огромной сфере, заключающей в себе наш мир. Причина в том, что звезды находятся очень далеко от нас. Идеальная сфера неопределенного радиуса, центр которой совпадает с центром Земли и на которой, как нам кажется, находятся звезды, называется небесной сферой.
Существует две системы небесных координат, аналогичных земным, с небесным экватором, Северным и Южным полюсами мира, небесными меридианами и параллелями и углами, определяющими положение каждой звезды на небосводе подобно широте и долготе. Первая система небесных координат, которая чаще применялась в Античности, — это эклиптическая система. В ней за основу взята плоскость эклиптики — плоскость вращения Земли вокруг Солнца, которая играет роль небесного экватора. В основе второй, более современной системы координат, находится земной экватор. Зенит — это наивысшая точка небесной сферы над головой наблюдателя, надир — точка, диаметрально противоположная зениту.
Небесную сферу, для которой известны положения звезд и созвездий в этих координатах, можно спроецировать на плоскую поверхность и получить карту звездного неба подобно тому, как строятся карты Земли. При создании карт звездного неба применяются те же проекции, что и при составлении карт Земли. Однако в картах звездного неба чаще всего используются гномоническая, стереографическая и равнопромежуточная проекции. С их помощью можно создать карты, центром которых будет зенит, так как в этих проекциях искажения вокруг центра одинаковы. Кроме того, с помощью этих азимутальных проекций проще определить направление, вдоль которого следует смотреть, чтобы увидеть определенную звезду. Подходящая проекция выбирается в зависимости оттого, чего мы хотим: чтобы звезды, находящиеся на одном большом круге, были изображены на одной прямой; чтобы карта сохраняла углы; чтобы искажения были не слишком велики.
Карта участка небесной сферы вблизи Южного полюса мира, составленная Никола Луи де Лакайлем, приведенная в четвертом издании атласа звездного неба Флемстида.
* * *
Полярная стереографическая проекция достаточно часто используется при составлении карт приполярных территорий, так как если не рассматривать участки, далекие от центра проекции, общие искажения очень малы. Эту проекцию часто используют при составлении карт Антарктиды и территорий, лежащих за Северным полярным кругом, Геологическая служба США и многие другие международные агентства, например Центр изучения снега и льда (The National Snow and Ice Data Center) и Национальное управление океанических и атмосферных исследований США (National Oceanic and Atmospheric Administration). Применяется она и в случае, когда необходимо использовать конформную проекцию, например при составлении метеорологических карт, карт ветров Антарктиды и других.
Эта проекция лежит в основе системы координат UPS (универсальной полярной системы координат), которая вместе с системой UTM (от англ. Universal Transverse Mercator — универсальная поперечная проекция Меркатора) представляет собой систему координат, или проекций, для изображения всей земной поверхности. Система определяет ряд зон среднего размера, которые можно изобразить в выбранной проекции с очень малыми искажениями. Благодаря этому систему UPS использует большинство картографических служб мира при составлении карт определенных размеров. Мы вернемся к этой системе координат в главе 9, посвященной проекции Меркатора.
Полярная стереографическая проекция также применяется при составлении карт областей среднего размера, близких к полюсам: в картах России, Европы или некоторых европейских стран, в частности Швеции, а также в картах Австралии и Северной Америки.
Погодная карта Европы, выполненная в полярной стереографической проекции.
Еще одна разновидность стереографической проекции — экваториальная, в которой точка касания сферы и плоскости проекции, то есть центр карты, находится на экваторе. Эту проекцию использовал арабский математик Аз-Заркали при конструировании астролябии, а для создания карт Земли она начала применяться с XVI века. Старейшая карта в этой проекции, дошедшая до наших дней, — это простая карта двух полушарий, составленная французским картографом Жаном Ротцем.
* * *
АЗ-ЗАРКАЛИ (ОК. 1029–1100)
Абу Исхак Ибрахим ибн Яхья ан-Наккаш аз-Заркали родился в Толедо. Прозвище Арзахель (латинизированный вариант имени «аз-Заркали») означает «голубоглазый». По некоторым источникам, он был подмастерьем в мастерской своего отца и не получил образования (некоторые историки отмечают, что он был неграмотным). Арзахель начал изготавливать измерительные инструменты, в частности астролябии, для астрономов тайфы Толедо и постепенно самостоятельно изучил астрономию. После завоевания Толедо Альфонсо VI в 1085 году аз-Заркали переехал в Кордову, где и умер в 1100 году. Он известен благодаря созданию измерительных инструментов, составлению астрономических таблиц и различным теоретическим исследованиям. Самый известный из созданных им инструментов — заркала, универсальная астролябия, которую можно было использовать на любой широте. Заркала применялась в Европе вплоть до XVI века. Он также сконструировал водяные часы, установленные на берегу реки Тахо, которые позволяли определять время днем и ночью. Аз-Заркали был автором нескольких трактатов по конструированию и применению инструментов, в частности уже упомянутой заркалы, экваториума, армиллярной сферы и других. Исследователь откорректировал астрономические таблицы Аль-Хорезми и Ал-Баттани для меридиана Толедо, создав так называемые Толедские таблицы; он также провел собственные наблюдения и включил в свой «Альманах» исправленные астрономические данные, которые впервые были получены древними греками. Эти данные позволяли определять положение планет, Солнца, Луны и других небесных тел напрямую, не прибегая к объемным вычислениям, а также предсказывать солнечные и лунные затмения. Аз-Заркали написал несколько трактатов, в которых изложил результаты своих наблюдений Солнца, Луны и Меркурия, проведенных им в течение жизни.
* * *
Экваториальная стереографическая проекция в течение нескольких столетий была стандартной для изготовления карт мира благодаря Румольду Меркатору, сыну и наследнику Герарда Меркатора, который использовал ее в карте «Краткое описание мира» (Orbis terrae compendiosa descriptio, 1587), включенной в издание Атласа Меркатора 1595 года.
В зависимости от того, на какой части экватора располагается центр одного из полушарий (центром второго полушария будет диаметрально противоположная точка небесной сферы), карта мира будет выглядеть по-разному. На картах Румольда Меркатора, в «Новом и точнейшем представлении о мире» (Nova et accuratissima terrarum orbis tabula, 1664) голландского картографа Яна Блау (1596–1673), сына картографа Виллема Блау, или в «Новом точнейшем представлении мира» (Orbis terrarum nova et accuratissima tabula, 1666) Петера Гооса (на этих картах Калифорния изображена как остров, и эта картографическая ошибка повторяется на многих картах XVII и XVIII веков), центр расположен на меридиане Каспийского моря, поэтому на одном из полушарий изображены Европа, Африка, Азия и часть Океании, на другом — Тихий океан и Америка.
Карта двух полушарий «Краткое описание мира» (Orbis terrae compendiosa descriptio, 1587) Румольда Меркатора, выполненная в экваториальной стереографической проекции. На карте можно увидеть, как картографы того времени представляли себе Америку и Антарктиду.
Другие картографы, подобно Иодокусу Хондиусу (он в своем «Изображении всех морских экспедиций» (Vera totius expeditionis nauticae, стр. 106) отметил маршруты кругосветных путешествий Фрэнсиса Дрейка и Томаса Кавендиша), строили эту проекцию с поворотом на 90° и располагали центры полушарий в Атлантическом и Тихом океане соответственно. Некоторые изображали Европу и Африку в центре одного из полушарий — такую карту составил немецкий картограф Филипп Эккебрехт (1594–1667) в 1630 году для трактата по астрономии, написанного немецким математиком и астрономом Иоганном Кеплером (1571–1630).
Начиная с этого времени экваториальная стереографическая проекция стала использоваться для составления карт различных участков земного шара. Так, немецкий картограф Иоганн Баптист Гоманн (1664–1724) использовал эту проекцию не только в типичной для того времени карте мира, разделенной на два полушария, но и в картах Европы, Азии, Африки и Америки. По его стопам пошли и другие картографы, например Йодокус Хондиус, применивший эту проекцию для «Вновь начерченной карты Америки» (America noviter delineata, 1640).
Косую стереографическую проекцию первым использовал при составлении карт звездного неба в IV веке н. э. греческий математик и астроном Теон Александрийский, возможно, последний управитель Александрийской библиотеки и отец известной женщины-математика Гипатии. Сегодня стереографическая проекция указывается в числе рекомендуемых для составления карт звездного неба наряду с другими азимутальными проекциями, гномонической и равнопромежуточной.
Использовать косую стереографическую проекцию для составления карт Земли предложил австрийский картограф Иоганнес Стабиус (1450–1522). Эта проекция стала популярной благодаря немецкому математику Иоганнесу Вернеру (1468–1522), который включил ее в перевод «Географии» Птолемея на латынь. Следует учесть, что одной из основных задач, связанных с использованием новых проекций, было не их геометрическое определение, а создание методов их построения, что в те годы происходило вручную. Так, в книге Джона Снайдера «Как Земля стала плоской» (Flattening the Earth) приведены некоторые методы построения стереографической и других картографических проекций.
В XVI и XVII веках эта проекция использовалась очень редко. Одним из исключений стал атлас мореплавателя и космографа Жака де Воля (ок. 1555–1597), который в 1583 году построил карту двух полушарий в этой проекции. Центр первого полушария располагался в Париже, центр второго, с изображением Антарктиды, был диаметрально противоположен ему. Эта проекция также использовалась в картах Европы и Азии английского историка Джона Спида (1552–1629). Хотя косая стереографическая проекция не снискала большой популярности, она применяется до сих пор: в публикации «Картографические проекции Европы» (Map Projections for Europe, 2003) Института экологии и окружающей среды ЕС (Institute for Environment and Sustainability) отмечается, что эта проекция используется, например, при составлении карт Нидерландов, Польши и Румынии. Применяла ее и Геологическая служба США при составлении карт Луны, Марса и Меркурия. Кроме того, на основе этой проекции Анри Руссель в 1922 году создал новую проекцию, которая использовалась в СССР и Геологической службой США.
Благодаря богатству геометрических свойств стереографическая проекция нашла применение во многих областях науки, в частности в таких разделах математики, как комплексный анализ, неевклидова геометрия, дифференциальная геометрия, аналитическая геометрия и топология. Эта проекция используется в физике, структурной геологии и инженерном деле, а также применяется в кристаллографии для изучения свойств симметрии кристаллов, так как благодаря конформности она сохраняет углы между гранями и ребрами кристаллов. В фотографии эта проекция используется при конструировании широкоугольных объективов типа «рыбий глаз» с максимально широким углом обзора.
Фотографии, выполненные в стереографической проекции широкоугольным объективом типа «рыбий глаз», стали популярными в фотоискусстве
(источник: Александр Дюре-Лутц).
Конформные проекции особенно удобны, когда важны углы или направления (румбы), например в морской и воздушной навигации. Помимо уже упомянутых ортодром, в навигации важную роль играют локсодромы (кривые, пересекающие меридианы под постоянным углом), так как при прокладке курса вдоль локсодромы нужно всего лишь держаться одного и того же румба, указываемого, например, стрелкой компаса. По этой причине сохраняется актуальность проекции Меркатора, в которой локсодромы изображаются прямыми, следовательно, их можно легко начертить на карте. Так как эти проекции сохраняют величины углов, они также применяются в геодезии, метеорологии (для изображения, например, направлений ветров или перпендикулярных им изобар) и океанографии. Они также находят применение при анализе распространения волн, например сейсмических или радиоволн, которое, как известно, происходит радиально: не будем забывать, что в конформных проекциях окружности изображаются как окружности или прямые. Наконец, как показала американский биоматематик Моника Хёрдал из Университета штата Флорида, конформные проекции важно использовать при составлении карт мозга.
Квинкунциальная проекция Пирса — это конформная проекция, определяемая с помощью методов комплексного анализа на основе стереографической проекции. В квинкунциальной проекции Пирса сфера принимает форму квадрата.
Наконец, так как конформные проекции сохраняют формы на локальном уровне, они удобны для составления карт небольших участков земли.
Чаще всего используются следующие конформные проекции: уже рассмотренная нами стереографическая проекция, проекция Меркатора, равноугольная коническая проекция Ламберта и биполярная косая равноугольная коническая проекция. Существуют и другие конформные проекции, например проекция Лагранжа, представленная Ламбертом в 1772 году, проекции Августа и Айзенлора, представленные около 1870 года, квинкунциальная проекция Пирса, в которой Земля изображена в виде квадрата (1879), и квадратная проекция Гойю (1887).
Важнейшая конформная проекция после стереографической, о которой мы только что рассказали, и проекции Меркатора, о которой мы поговорим в главе 9, — это равноугольная коническая проекция Ламберта, которая, как следует из названия, относится к третьей группе картографических проекций после азимутальных и цилиндрических. В геометрических (а следовательно, и алгоритмических) конических проекциях сферическая модель Земли проецируется на касающийся ее или пересекающий ее конус, который затем разворачивается на плоскости. Чтобы развернуть конус на плоскости, его нужно разрезать вдоль меридиана. Конус, подобно цилиндру, используется потому, что его можно развернуть на плоскости так, что его метрические свойства останутся неизменными. Кроме того, окружности сечения конуса сферой являются стандартными линиями, то есть линиями, изображаемыми на карте в реальном масштабе. Иными словами, масштаб карты вдоль этих линий является линейным.
Изображение, спроецированное на поверхность конуса и развернутое на плоскости.
Все прямые конические проекции, то есть проекции, в которых вершина конуса лежит на оси «север — юг», а линия касания конуса и сферы проходит вдоль параллели, обладают следующими свойствами.
1. Меридианы изображаются прямыми линиями, исходящими из одной точки, и разделены интервалами, имеющими одинаковые угловые размеры. Угловое расстояние между меридианами уменьшается в фиксированном масштабе.
2. Параллели отображаются в виде дуг концентрических окружностей, пересекающих меридианы под прямым углом. Искажения вдоль каждой параллели постоянны.
Эти свойства означают, что карта в конической проекции имеет форму кольцевого сектора, а положение меридианов и параллелей задается угловым расстоянием между меридианами и расстоянием между параллелями. Эти параметры, а также стандартная параллель (параллели) и определяют внешний вид карты.
В конических проекциях сетка меридианов и параллелей имеет характерную форму. Примером конической проекции является равновеликая коническая проекция Альберса (1805).
Искажения, вносимые коническими проекциями, вблизи стандартной параллели (или параллелей) невелики и возрастают по мере приближения к полюсам. В силу этого конические проекции обычно используются для карт стран, регионов и территорий с умеренным климатом, в то время как азимутальные и цилиндрические проекции, как правило, применяются при построении карт полярных и экваториальных территорий соответственно. Так, конические проекции подходят для изображения участков земли, заключенных между двумя не слишком удаленными друг от друга меридианами: например для карт Испании, Франции, Монголии или Аляски. В этой же проекции можно составлять карты более широких областей, простирающихся в направлении с востока на запад, например карты России, Европы или США.
Кроме стандартных, или полярных, конических проекций, также существуют экваториальные и косые конические проекции. Если не соблюдать условия построения конических проекций, мы получим так называемые псевдоконические (на них меридианы изображаются кривыми) и поликонические (где параллели не являются концентрическими окружностями) проекции.
Карта полуострова Флорида, выполненная в равновеликой конической проекции Альберса.
Птолемей создал две конические проекции (хотя в их описании он ни разу не упоминает конус), на которых параллели изображались дугами концентрических окружностей. В первой проекции меридианы изображались прямыми линиями (см. иллюстрацию на стр. 126), во второй — дугами окружности (стр. 12). Труды Птолемея оказали большое влияние на картографию Возрождения: в частности, с начала XVI века конические и псевдоконические проекции постепенно начали изучать и использовать видные картографы: Герард и Румольд Меркаторы, Виллем Блау, Иодокус Хондиус, Гийом Делиль, Джон Спид и другие. Некоторые из этих проекций имели очень любопытную форму, например, Иоганнес Вернер или французский картограф Ригобер Бонне (1727–1795) создали проекции в форме сердца, а французский математик и картограф Оронций Финеус (1494–1555) — проекции в форме двойного сердца.
Вверху — карта мира, составленная Птолемеем в конической проекции. Внизу — карта, созданная на основе проекции в форме двойного сердца, разработанной Оронцием Финеусом (1538).
Цилиндр и плоскость можно рассматривать как предельные случаи конуса: чтобы получить цилиндр, необходимо удалить вершину конуса на бесконечно большое расстояние, а плоскость образуется, если вершина конуса принадлежит его основанию. Ламберт использовал все доступные ему математические инструменты (математический анализ, геометрию, алгебру и тригонометрию) для создания семейства конформных конических проекций с двумя стандартными параллелями. Предельными случаями этих проекций являются стереографическая проекция (азимутальная) и проекция Меркатора (цилиндрическая).
Затем эта проекция была забыта, и о ней вновь вспомнили во Франции во время Первой мировой войны. Позднее равноугольная коническая проекция Ламберта стала одной из самых популярных для составления карт большого масштаба, уступая лишь проекции Меркатора. Ее используют Геологическая служба США и многие международные агентства, а Европейская комиссия рекомендует применять эту проекцию для составления конформных карт Европы в масштабах, меньших или равных 1:500000. Часто она используется и при составлении навигационных карт.
Политическая карта Европы, выполненная в равноугольной конической проекции Ламберта.
Перечислим некоторые другие конические проекции. Во-первых, это косая биполярная проекция, предложенная в 1941 году Осборном Миллером и Уильямом Бризмейстером из Национального географического общества для создания карты всего Американского континента. В этой проекции, которая широко используется до сих пор, были применены две разновидности косой равноугольной конической проекции Ламберта. Во-вторых, это равновеликая коническая проекция Альберса, созданная немецким картографом Хейнрихом Альберсом в 1805 году, а также коническая равнопромежуточная проекция, напоминающая ту, что используется в карте Птолемея, и поликоническая проекция, авторство которой обычно приписывают швейцарскому топографу Фердинанду Хасслеру (1770–1843). В поликонической проекции используются различные конусы, а карта в этой проекции внешне схожа с нефроидой — кривой, по форме напоминающей почку.
Карта Америки, выполненная в биполярной косой проекции.