Рассматривая различные виды межкаскадной связи, наши друзья сосредоточили свое внимание на усилении низкой частоты. Они изучили различные схемы, но проблема выходного каскада осталась неосвещенной. Однако, когда нужно создавать значительную мощность, прибегают к особым схемам и режимам работы, которые являются предметом настоящей беседы.
Содержание: Выбор рабочей точки. Экономическая схема с плавающей рабочей точкой. Двухтактный усилитель в режиме В. Поворот фазы с помощью трансформатора. Фазоинвертор. Катодный повторитель на транзисторах. Двухтактный усилитель с дополнительной симметрией. Практическая схема выходного каскада.
Незнайкин. — Я полагаю, что с полученными мною знаниями в области низких частот смогу теперь рассчитать все элементы усилителей на транзисторах.
Любознайкин. — Я всегда восхищался твоей скромностью…
Н. — Не иронизируй. В этой области все просто и ясно. Если речь зайдет о трансформаторной связи, то я рассчитаю отношение чисел витков, дающее наилучшее согласование каскадов. И поверь мне, извлечение квадратного корня меня не испугает… Если же встанет вопрос о резистивно-емкостной связи, то разве не ты научил меня определять нагрузочную прямую? Я так проведу ее, что, будучи касательной к гиперболе допустимой мощности, она позволит иметь наибольшую амплитуду сигналов на выходе, потому что рабочая точка будет находиться посередине.
Л. — Рискуя тебя огорчить, я должен сказать, что дело обстоит не так уж просто. На первый взгляд ты прав, но при расчете усилителей нужно также учитывать и имеющуюся на входе мощность, полосу усиливаемых частот, роль обратной связи, допустимый коэффициент искажений и еще массу других обстоятельств.
Н. — И тем не менее дело выглядит достаточно просто, когда прибегают к помощи семейства характеристик и нагрузочной прямой (рис. 98).
Рис. 98. На графике видно, как ток коллектора изменяется под воздействием приложенного на вход сигнала. Последний имеет максимально допустимую амплитуду.
Наш входной сигнал (сигналом можно считать как напряжение, так и ток) имеет право занимать часть нагрузочной прямой, ограниченную двумя точками: с одной стороны точкой А у где начинается изгиб характеристик, а с другой — точкой Б, в которой ток базы приближается к нулю.
Л. — Что, как ты знаешь, является причиной нелинейных искажений.
Н. — Бесспорно. Поэтому рабочую точку Р нужно выбрать на равном удалении от точек А и Б. В этом случае максимальная амплитуда входного сигнала будет РА или РБ или, вернее, разница между соответствующими значениями тока Iб или напряжения Uб. На моем рисунке эта амплитуда порядка 275 мВ. Она изменяет ток коллектора от 7 до 57 мА при среднем значении тока 32 мА, т. е. с амплитудой 25 мА.
Л. — Чудесно, Незнайкин. Надеюсь, что ты полностью удовлетворен работой своего транзистора.
Н. — Не совсем. Насколько все идет хорошо при большом сигнале, настолько же я прихожу в отчаяние от непомерного расхода энергии при слабых сигналах или в отсутствие усиливаемого сигнала. Какова бы ни была амплитуда, потребление тока всегда одинаково — оно соответствует точке Р. А ведь для слабых сигналов рабочую точку можно было переместить ниже на другую нагрузочную прямую, соответствующую меньшим токам, например в точку P' (рис. 99). В результате потребление энергии сократилось бы и мы сэкономили бы на батареях, которые обходятся довольно дорого.
Рис. 99. Когда амплитуда сигнала снижается, выгоднее переместить рабочую точку из Р в Р'.
Л. — Ты хочешь разорить выпускающие их фирмы?
Н. — Нет, но я считаю, что, слушая симфонию, нерационально затрачивать во время пианиссимо такую же мощность, какую требуют моменты игры всего оркестра. Однако я не вижу, каким способом можно было бы заставить рабочую точку перемещаться на нижнюю нагрузочную прямую, чтобы затрачивать только мощность, строго необходимую для воспроизведения без искажений сигналов разной величины.
Л. — Стремление избежать расточительства похвально. Поэтому я охотно укажу тебе соответствующие средства. Чтобы твоя рабочая точка могла переходить с одной нагрузочной прямой на другую, надо изменять напряжение смещения[19]. Оно должно повышаться с амплитудой сигнала, и это должен делать сам сигнал.
Н. — Как? Ведь сигнал — это переменный ток, а смещение — постоянный.
Л. — Ты знаешь превосходное средство для превращения переменного тока в постоянный: это выпрямитель. Именно его и применяют, чтобы получить переменное смещение.
Вот практическая схема усилителя с «плавающей» рабочей точкой (рис. 100). Ты видишь, что усиленные сигналы, снимаемые с дополнительной обмотки выходного трансформатора, выпрямляются с помощью полупроводникового диода Д; они создают на выводах резистора R падение напряжения, которое делает точку X более или менее отрицательной. Конденсатор С сглаживает пульсации выпрямленного напряжения, так что его величина соответствует среднему значению усиливаемого сигнала.
Рис. 100. Выходной каскад с плавающей точкой смещения. Цепь автоматической регулировки смещения при увеличении амплитуды сигналов позволяет повысить напряжение смещения.
Н. — Да, это напоминает мне схему АРУ. Там мы тоже встречали конденсатор, который вместе с резистором придавал схеме АРУ инерционность подобно маховику-регулятору.
Л. — Сравнение весьма удачное, хотя наше устройство напоминает не столько обычную АРУ, сколько АРУ, работающую «наизнанку». Здесь тоже амплитудные изменения усиленных напряжений выпрямляются, после чего используются для управления смещением на входе. Действительно, напряжение прикладывается к общей точке резисторов R2 и R3, которые соединяют базу с отрицательным полюсом источника питания. Правильный выбор сопротивлений трех резисторов позволяет сделать смещение пропорциональным амплитуде сигналов. Таким образом, база становится здесь тем более отрицательной, чем сильнее сигналы. Но в отличие от знакомой тебе АРУ в ламповых приемниках увеличение отрицательного смещения в цепи базы транзистора структуры р-n-р не запирает его, а еще более открывает, увеличивая токи базы и коллектора.
Н. — Твоя схема с плавающей точкой смещения мне очень нравится. Когда я буду собирать приемник на транзисторах, то непременно поставлю на выходе прекрасный двухтактный каскад с этим устройством, дающим скользящее напряжение смещения.
Л. — В двухтактной схеме, мой дорогой Незнайкин, можно сделать лучше: ты можешь приложить там постоянное смещение, достаточно малое, чтобы в состоянии покоя ток был почти равен нулю.
Н. — Не хочешь ли ты этим сказать об усилении в режиме В? В ламповых схемах это соответствует работе на нижнем изгибе анодно-сеточной характеристики.
Л. — Да, как раз о режиме В я и хотел поговорить с тобой. Ты должен выбрать для точки Р место, соответствующее очень небольшому, но не нулевому значению коллекторного тока, так как, если ты уйдешь слишком далеко, слабые сигналы окажутся на нелинейной части характеристики (рис. 101).
Рис. 101. В режиме В рабочая точка переносится ближе к нижнему концу нагрузочной прямой, что позволяет прилагать сигналы с амплитудой, вдвое большей, чем в режиме А. Форма коллекторного тока, как это показано, сильно искажена.
Н. — Я вижу, что здесь полупериоды, которые повышают напряжение базы, вызывают значительное увеличение коллекторного тока, тогда как полупериоды с обратным направлением лишь незначительно изменяют его величину. В результате мы имеем чудовищные искажения.
Л. — Они не позволили бы применять один транзистор в режиме В. Но если ты поставишь два транзистора по двухтактной схеме, то равномерно распределишь между нами работу: один возьмет на себя положительные полупериоды, а другой — отрицательные. Благодаря симметричности схемы искажения, вносимые каждым транзистором, нейтрализуются искажениями другого транзистора.
Н. — Одним словом, такой усилитель в режиме В напоминает «грушу», которую два боксера одновременно используют для тренировки: стоя по обе стороны, они наносят по ней удары, которые поочередно отклоняют ее то вправо, то влево.
Л. — Все это верно, и вдвоем они сильнее раскачают ее, чем это мог бы сделать один боксер.
Н. — Действительно, рабочая точка находится ближе к одному концу нагрузочной прямой, и для входного сигнала мы располагаем пространством, вдвое большим, чем в режиме А, где рабочая точка находится посередине нагрузочной прямой.
Л. — Ты видишь, режим В допускает амплитуды, вдвое большие, чем режим А. Расход тока, очень небольшой в отсутствие сигнала, возрастает пропорционально амплитуде сигналов. И я еще не сказал тебе, что режим В позволяет свободно превысить ограничения, наложенные гиперболой допустимой мощности.
Н. — Хочешь ли ты этим сказать, что нагрузочная прямая может пройти за пределами этой кривой?
Л. — Совершенно правильно, и без опасности для транзистора, так как рассеиваемая им мощность лишь в отдельные моменты будет превышать эту границу. Зато во время положительных полупериодов сигнала транзистор попросту запирается и практически не рассеивает никакой мощности. Однако здесь следует учитывать другую характеристику, указанную в справочниках по транзисторам: не превышать допустимое пиковое значение коллекторного тока (Iк. макс).
Н. — Я обещаю тебе никогда не превышать этой величины. И ты, не опасаясь, можешь посвятить меня во все тайны двухтактной схемы на транзисторах.
Л. — Прежде всего запомни, Незнайкин, что схемы, которые мы сейчас разберем, применяются как в режиме В, так и в режиме А. Различие состоит лишь в величине смещения. Чаще всего применяется схема с ОЭ, дающая наибольшее усиление. Однако когда хотят максимально снизить искажения, то отдают предпочтение схеме с ОБ. И, наконец, если входное сопротивление должно быть высоким, а выходное малым…
Н. — …применяют схему с ОК. Я не сомневался в этом. Что же касается поворота фазы, то я полагаю, что его легко достигают при помощи трансформатора с выводом от средней точки вторичной обмотки. Точно так же вывод от середины первичной обмотки выходного трансформатора позволит объединить выходные сигналы обоих транзисторов.
Л. — Правильно, а вот изображение двух схем: первая с ОЭ (рис. 102), а вторая с ОБ (рис. 103). Ты должен оценить исключительную симметрию этих схем.
Рис. 102. Двухтактная схема с трансформатором в качестве фазоинвертора. Транзисторы включены по схеме с ОЭ.
Рис. 103. Как и на предыдущем рисунке, фазоинвертором служит трансформатор. Транзисторы здесь включены по схеме с ОБ.
Н. — Необходимо ли применять специальные батареи для смещения, которые ты нарисовал?
Л. — Нет, смещение осуществляется классическими методами: с помощью последовательно включенного резистора или делителя напряжения, подключенного к общей батарее. Я не изобразил этих цепей (которые ты теперь уже хорошо знаешь), чтобы не нарушать ясности рисунка.
Н. — В усилителях на лампах удается получить напряжения противоположных фаз для двухтактных схем и без дорогостоящего и громоздкого трансформатора. Я думаю, что это возможно и в схемах на транзисторах.
Л. — Естественно. Ты знаешь, что в схеме с ОЭ выходное напряжение находится в противофазе с входным. Следовательно, можно поставить два последовательных каскада с ОЭ, и их выходные напряжения будут в противофазе (рис. 104).
Рис. 104. Поворот фазы с помощью транзистора, включенного по схеме с ОЭ; усиление дополнительного каскада уменьшено до единицы за счет делителя напряжения, состоящего из резисторов R2 и R3 и за счет резистора обратной связи R4.
Н. — Ну и странная же твоя схема!.. Связь между двумя транзисторами имеет здесь совершенно непривычный вид.
Л. — Резисторы R2 и R3, соединенные последовательно с конденсатором связи C1, представляют собой делитель напряжения, который должен передавать на второй транзистор только часть напряжения, создаваемого первым транзистором на резисторе R1. Кроме того, ты видишь, что в цепи эмиттера второго транзистора имеется резистор обратной связи R4.
Н. — Несчастный транзистор! Ты двумя способами снижаешь его усиление.
Л. — Это как раз то, что нужно: для того чтобы оба выходных напряжения были одинаковыми, усиление второго транзистора должно равняться единице, т. е. он не должен ни усиливать, ни ослаблять.
Н. — Значит, его роль строго ограничивается поворотом фазы.
Л. — Действительно, это все, что от него требуется…
Имеется и другой способ получить два противофазных напряжения с помощью только одного транзистора, включая последний по смещенной схеме с ОЭ и ОК с двумя нагрузочными сопротивлениями (рис. 105). Сигнал на выходе 1 находится здесь в противофазе, а сигнал на выходе 2 совпадает по фазе с сигналом на входе.
Рис. 105. Фазоинвертор в схеме с разделенной нагрузкой.
Н. — Но это точное воспроизведение лампового фазоинвертора, в котором сопротивления нагрузки включаются в анодную и катодную цепи.
Л. — Ты узнал эту схему в ее «транзисторном» виде.
Н. — Все показанные тобой схемы для меня старые знакомые, ведь я хорошо помню их ламповые варианты.
Л. — Однако на лампах нельзя осуществить двухтактную схему без фазоинвертора.
Н. — Мне не верится, что такое чудо можно сделать с транзисторами.
Л. — Тем не менее это факт, а чудо и в этом случае заключается в дополнительной симметрии транзисторов структур р-n-р и n-р-n. Проанализируй внимательно схему, где я изобразил два транзистора, включенных по схеме с ОЭ (рис. 106).
Рис. 106. Двухтактная схема без фазоинвертора, работающая на транзисторах с дополнительной симметрией, включенных по схеме с ОЭ.
Н. — Поступим, как обычно… Допустим, что первый полупериод входного сигнала делает обе базы более отрицательными. В этом случае транзистор структуры р-n-р усилит сигнал, а транзистор структуры n-р-n останется запертым. При следующем полупериоде, который сделает базы более положительными, транзистор р-n-р останется безучастным, а транзистор n-р-n пропустит коллекторный ток. Чудесно! Ловко! Умно!
Л. — Умерь свой энтузиазм, дорогой друг. Эта схема требует применения двух батарей (или но крайней мере батареи со средним выводом), что несколько усложняет положение. С этим же мы сталкиваемся и в аналогичном двухтактном каскаде при включении транзисторов по схеме с ОБ (рис. 107).
Рис. 107. Еще одна двухтактная схема без фазоинвертора, но с включением транзисторов по схеме с ОБ.
Н. — Действительно, эта схема должна работать так же хорошо, как и предшествующая. Здесь транзистор структуры р-n-р реагирует на положительные полупериоды сигнала, приложенного к его эмиттеру, а транзистор структуры n-р-n включается в работу при отрицательных полупериодах. Но я опасаюсь, что эти две батареи не очень удобно применять для питания других транзисторов, которые могут иметься в схеме.
А теперь я хочу просить тебя об одном одолжении. Я хотел бы собрать усилитель на транзисторах для своего портативного радиограммофона. Мог бы ты начертить мне практическую схему его оконечного каскада? Я хочу иметь достаточно мощный двухтактный усилитель.
Л. — Вот схема, которую ты просишь, Незнайкин (рис. 108). Достаточно ли она ясна для тебя?
Рис. 108. Практическая схема двухтактного каскада с отрицательной обратной связью и температурной стабилизацией. Резистор R6 и конденсатор С4 образуют развязку цепей питания предшествующих каскадов.
Н. — Боже мой, на первый взгляд она совершенно классическая. Входной трансформатор… Параллельная обратная связь для каждого транзистора, осуществленная включением между коллектором и базой последовательно соединенных цепочек R1C1 и R2C2. Смещение задается делителем напряжения R3R4. Резистор R5 служит для ослабления влияния температуры; он блокирован конденсатором С3… Все это стало для меня уже совершенно обыденным. Однако какую роль играет в схеме развязка, состоящая из резистора R6 и конденсатора С4?
Л. — Принимая во внимание значительные изменения тока, отбираемого от источника питания мощными транзисторами в режиме В, целесообразно развязать этот источник, чтобы предотвратить реакцию на предыдущие каскады. Такова роль R6 и С4, к которым в точке А присоединяются коллекторные цепи каскадов, предшествующих выходному. Удовлетворен ли ты моим ответом?
Н. — Вполне, и я спешу приняться за работу. Поэтому позволь мне раскланяться с тобой.