Дорогой друг Незнайкин!
Как обещал тебе сегодня утром во время разговора по телефону, я попытаюсь кратко изложить прогресс в области полупроводниковой техники, происшедший со времени нашей последней встречи.
Создание транзистора открыло путь к миниатюризации электронной аппаратуры. Малые размеры кристаллического триода и практически полное отсутствие излучения тепла (за исключением мощных транзисторов) позволили значительно уменьшить габариты всех электронных аппаратов.
Но сейчас мы переживаем новый этап — этап микроэлектроники. Чтобы рассмотреть структуру устройств, реализуемых в настоящее время на базе полупроводниковой техники, необходимо прибегать к помощи микроскопа. Осуществленная в интегральных микросхемах плотность монтажа измеряется тысячами компонентов на кубический сантиметр.
Как достигается такое снижение размеров? Я постараюсь объяснить это тебе.
Уже существует множество новых микроминиатюрных устройств и каждый год появляются все новые. Поэтому было бы неразумно пытаться рассмотреть здесь все такие устройства.
Но было бы полезно описать основные технологические процессы, используемые для изготовления этих разнообразных приборов — от простого планарного транзистора до интегральных микросхем. (Наберись терпения, дорогой друг, чуть дальше я объясню тебе значение этих терминов.)
Так вот основные используемые в наши дни технологические процессы.
Окисление кремния. Изолирующий слой на поверхности кремния (основного используемого в микроэлектронике полупроводникового материала) может создаваться путем окисления самого кремния. Для этого кремний нагревается до температуры от 800 до 1300 °C в атмосфере кислорода или паров воды. В результате такого воздействия его поверхность покрывается тонким слоем двуокиси кремния (она известна под названием кварца), представляющего собой прекрасный диэлектрик. Толщина этого слоя меньше одного микрона или микрометра (тысячной доли миллиметра).
Эпитаксиальный процесс. Удельное сопротивление содержащего примеси кремния очень мало, что в некоторых случаях является серьезным недостатком. Его устраняют путем наращивания эпитаксиального слоя, в котором молекулы кремния образуют безупречную кристаллическую структуру. Об этом свидетельствует сама этимология термина: «эпи» по-гречески означает «над» (отсюда происходит слово «эпидермис» — кожный покров), а «таксис» — «порядок». Кремний, расположенный под эпитаксиальным слоем, служит для последнего механической подложкой.
Для формирования такого слоя, толщина которого может быть от 5 до 15 мкм, кремний нагревают в атмосфере водорода до температуры 1300 °C, а затем температуру постепенно снижают до 1180 °C, впуская в нагретую камеру тетрахлорид кремния. Последний, реагируя с водородом, образует газообразный хлористый водород и атомы кремния, которые в идеальном порядке осаждаются на поверхность полупроводника.
Фотолитографический процесс и маскирование. Изготовители полупроводниковых устройств прибегают к технике, используемой для изготовления типографских клише. Знаком ли ты с ней, Незнайкин?
Коротко говоря, процесс изготовления клише, выпуклые элементы которого смазываются краской и служат для переноса изображения на бумагу, начинается с фотографирования воспроизводимого рисунка на светочувствительной пленке. Во время этой операции можно в заданное число раз увеличить или уменьшить фотографируемое изображение. После этого пленка накладывается на цинковую пластинку, предварительно покрытую лаком, который под воздействием света отвердевает и становится нерастворимым в жидкости, в которой он обычно растворяется. Облучая цинковую пластинку, прикрытую пленкой с негативным изображением рисунка, а затем обрабатывая экспонированную таким образом пластинку жидким растворителем, удаляют лак со всей ее поверхности за исключением участков, образующих изображение. Затем незащищенные участки цинка травятся кислотой: в результате этой операции получают клише с рельефным рисунком.
Именно эта техника широко применяется в микроэлектронике. Рисунок с очень большим уменьшением фотографируют на стеклянную пластинку или на другой светочувствительный материал с прозрачной подложкой. Таким образом получают «маску», где рисунок образован непрозрачным тонким слоем хрома. Эта маска накладывается на поверхность полупроводника, предварительно покрытого светочувствительным лаком, отвердевшим при нагревании до 90 °C; этот лак наносится равномерным слоем тоньше микрометра.
Лак через маску облучается сильным светом, который делает нарастворимыми участки, не прикрытые хромовыми элементами изображения. После этого достаточно опустить полупроводниковую пластину в соответствующий растворитель, чтобы лак остался только на участках, которые были защищены.
Оставшийся лак делают еще более прочным путем нагрева до 150 °C. И теперь наш полупроводник готов для обработки жидкостями, способными стравить поверхность, или парами, вносящими примеси p-типа или n-типа, или подвергнуться металлизации частичками алюминия или другого металла с целью соединения различных точек будущей схемы проводящими ток полосками.
Для полноты картины я должен добавить, что в последнее время имеется тенденция вместо видимого света все чаще использовать ультрафиолетовые лучи. Я догадываюсь о твоем удивлении, дорогой друг. Но для такой замены есть две причины. Во-первых, химическое воздействие ультрафиолетовых лучей сильнее, чем видимого света. (Ты, вероятно, еще не потерял свой бронзовый загар от высокогорного солнца, богатого ультрафиолетовыми лучами.) Во-вторых, использование этих очень коротких волн объясняется также и тем, что другие волны… слишком длинные. Да, мой дорогой друг, волны видимого света длиной от 0,38 мкм (фиолетовый) до 0,78 мкм (красный) слишком длинные. Видишь, до чего мы дошли.
После завершения серии операций, начавшихся с равномерного нанесения лака на поверхность полупроводниковой пластины, лак местами удаляют, образуя «окна», т. е. участки, открытые для различных видов обработки.
Одна из наиболее часто выполняемых после образования «окон» операций заключается в удалении изолирующего слоя двуокиси кремния, покрывающего поверхность полупроводника. Для этой цели полупроводниковую пластину погружают в ванну, содержащую плавиковую кислоту и фтористый аммоний, которые растворяют все незащищенные участки двуокиси кремния.
Диффузия. В эти же участки полупроводника можно ввести некоторое количество примесей p-типа или n-типа, если нагреть пластинку в атмосфере паров соответствующих веществ. Примеси можно также наносить на пластинку, нагретую до температуры, необходимой для проникновения примесей через окна, в результате этой операции в полупроводнике в зависимости от используемых материалов образуются p-зоны или n-зоны.
Теперь, после того как мы проанализировали основные фазы производства, в качестве примера рассмотрим, каким образом изготовляют одну из наиболее распространенных разновидностей транзисторов — планарный эпитаксиальный транзистор.
Надеюсь, что ты не забыл, что я некогда рассказывал тебе о меза-транзисторе. Можно сказать, что планарный является его прямым потомком. Как показывает само название[20], ему совершенно несвойствен рельеф, характерный для мезатранзистора. Кроме того, он полностью выполняется в тонком эпитаксиальном слое и большая его часть прикрыта двуокисью кремния. По своим размерам он значительно меньше своего предшественника мезатранзистора. На одной подложке (так называется тонкий диск кремния) одновременно изготовляют несколько десятков или даже сотен транзисторов.
Вот последовательные стадии производства планарного транзистора структуры n-р-n:
1. Подложка (пластина кремния с проводимостью n-типа) чистится и полируется.
2. Уже описанным мною способом на ней выращивается эпитаксиальный слой, не превышающий по толщине 15 мкм и тоже содержащий примеси n-типа.
3. Поверх эпитаксиального слоя наносится изолирующий слой двуокиси кремния (рис. 131, а).
Pиc. 131. Последовательные стадии производства планарного транзистора структуры n-р-n.
4. Методом фотолитографии с химическим травлением при использовании соответствующей маски в изолирующем слое создается «окно».
5. Через «окно» с помощью диффузии вводят примеси p-типа (обычно бор) — таким образом формируется зона, служащая будущему транзистору базой (рис. 131, б).
6. Всю конструкцию вновь покрывают изолирующим слоем двуокиси кремния.
7. Вторая фотолитографическая операция с химическим травлением позволяет вскрыть «окно» в центральной части р-зоны.
8. Через это отверстие с помощью диффузии вводят примеси n-типа (например, фосфор) — таким образом формируется эмиттер транзистора (рис. 131, в).
9. В третий раз вся конструкция покрывается слоем двуокиси кремния.
10. Также в третий раз используют фотолитографию, чтобы прорезать крохотные отверстия: одно в зоне эмиттера, а другое в зоне базы.
11. Через эти отверстия наносят слой металла (для этой цели часто используют алюминий), который образует контактные площадки.
12. К маленьким металлическим площадкам припаиваются проволочки, служащие выводами для эмиттера и базы; для коллектора, состоящего из той части эпитаксиального слоя, которая не подверглась воздействию диффузии в предыдущих операциях (операции № 5 и 8), вывод создается путем прикрепления к подложке металлической пластинки (рис. 131, г, д).
Теперь изготовленный описанным способом транзистор остается лишь поместить в корпус. У тебя, дорогой друг, может сложиться впечатление, что описанные мною двенадцать операций обходятся так дорого, что планарный транзистор практически недоступен для применения в аппаратуре. Дело обстоит совершенно иначе — не забывай, что на одной подложке одновременно формируются если не сотни, то десятки транзисторов.
Если ток, идущий от эмиттера через базу к коллектору, велик, то в планарном транзисторе надлежит увеличить площадь перехода эмиттер — база. Однако это одновременно приводит к увеличению емкости между этими двумя зонами. А мы с тобой знаем все вытекающие отсюда отрицательные последствия и в первую очередь ограничения по частоте.
Тем не менее можно без увеличения площади перехода пропускать относительно большие токи (достигающие нескольких сотен миллиампер и даже нескольких ампер); такой результат достигается удлинением контактной линии между зонами эмиттера и базы. Для этого с помощью соответствующих масок эмиттеру придают более или менее причудливую форму. Вместо прямоугольника или круга делают зигзаг, звезду или любую другую сложную фигуру, образованную узкой линией (рис. 132).
Рис. 132. В планарном транзисторе можно пропускать относительно большие токи, удлиняя контактную линию между зонами эмиттера и базы.
Верхний предел по частоте у высокочастотных планарных транзисторов удается расширить путем создания эмиттера, состоящего из нескольких соединенных параллельно маленьких зон, и размещения в этой конструкции выводов эмиттера и базы относительно далеко от этих зон.
Подумай только, дорогой Незнайкин, что все это осуществляется на кусочках подложки, внешние размеры которых в некоторых случаях не превышают трети миллиметра! Такие сложные структуры в таком небольшом объеме… Есть от чего прийти в восхищение.
Я полагаю, что теперь ты лучше поймешь значение термина микроэлектроника. Но на этом твои восхищения не закончатся.
Создав на крохотной пластинке кремния такой сложный ансамбль, как планарный транзистор, специалисты пошли дальше, сформировав на одном и том же кусочке полупроводника блок из двух взаимно дополняющих транзисторов (транзистор со структурой р-n-р и транзистор со структурой n-р-n); этот блок, как ты знаешь, используется в некоторых схемах усилителей низкой частоты. С такой же легкостью им удалось создать в одном кристалле кремния несколько диодов, а затем и других приборов: канальных транзисторов, стабилитронов и т. д.
И, что очень важно, эти различные элементы соединены между собой выводами, сделанными методом металлизации, который я тебе уже описал. Это означает, что таким образом создаются уже не отдельные элементы радиосхемы, а интегральные микросхемы — т. е. совокупность многих элементов, образующих одно или несколько функциональных устройств, конструктивно оформленных как один элемент. Такие схемы могут содержать и пассивные компоненты: резисторы, конденсаторы, катушки индуктивности.
Резисторы. Эти элементы формируются в виде линий, где вводимые в полупроводник примеси дозируются таким образом, чтобы получить заданное сопротивление. Резисторы можно создать также путем нанесения между контактными площадками по поверхности диэлектрика (двуокиси кремния) тонкого слоя резистивного материала, удельное сопротивление которого, длина и сечение рассчитываются с целью получения заданного сопротивления. Для этого часто используют нихром; придавая резистивному слою самые разнообразные рисунки, можно увеличить длину резистора.
Конденсаторы. Процесс их изготовления более сложный. Для получения конденсаторов небольших емкостей делают просто диоды, включенные в обратном направлении; эти диоды не пропускают электрический ток, но обладают некоторой емкостью.
Можно также сделать и настоящие конденсаторы; для этого на полупроводник наносят тонкий слой двуокиси кремния, служащий диэлектриком, и покрывают его слоем металла, образующего вторую обкладку конденсатора. Но следует отметить, что все создаваемые в интегральных микросхемах конденсаторы имеют небольшую емкость.
Катушки индуктивности. Ограничения по величине, о которых я говорил тебе применительно к конденсаторам, еще сильнее проявляются при изготовлении индуктивностей. Можно, конечно, нанести на полупроводник проводящий слой в виде спирали, обладающий определенной индуктивностью. Так делают в схемах, предназначенных для использования на сверхвысоких частотах. Но в принципе в интегральных микросхемах избегают использования катушек индуктивности.
Запомни, Незнайкин, что обычно стремятся сделать так, чтобы интегральная микросхема состояла в основном из транзисторов и диодов. При некоторой изобретательности удается заставить эти устройства выполнять самые различные функции: усиление во всех диапазонах частот, генерирование колебаний различной формы и частоты, коммутацию (запирание или открывание цепи — поэтому такие схемы иногда называют «вентилями») и т. д.
Дорогой друг, ты несомненно догадался, что сокращение МС обозначает микросхема. Это название охватывает широкую гамму разнообразных устройств; в производстве которых используют уже рассмотренные нами технологические процессы: изоляцию, применение масок, фотолитографию, диффузию, металлизацию и т. д. Но если проанализированное нами в качестве примера производство планарного транзистора требует дюжины операций, то изготовление МС обычно требует значительно большего количества операций.
Интегральные микросхемы формируются одновременно десятками или сотнями на одной пластине-подложке, имеющей диаметр 3 см и толщину 0,25 мм.
Среди микросхем, которые обычно делают на подложке из изоляционных материалов, в зависимости от метода изготовления различают: тонкопленочные микросхемы, получаемые вакуумным напылением или катодной бомбардировкой, и толстопленочные, получаемые путем нанесения соответствующих материалов по заранее созданному рисунку.
Сами интегральные микросхемы занимают ничтожный объем. Но их необходимо соединить золотыми проволочками (проволочки припаиваются под бинокулярным микроскопом) с контактами корпусов, в которые они помещаются. В этом-то и заключается драма! Объем корпуса, который может достигать одной пятой части кубического сантиметра, в тысячу раз больше объема самой МС. Не находишь ли ты в этом сходство с пауком, лапки которого занимают больше места, чем тело?.. Я добавлю, что в производстве интегральных микросхем дороже всего обходятся припайка выводов и монтаж микросхемы в корпус.
Тем не менее, дорогой Незнайкин, не будем злословить по поводу МС, являющихся прекрасной победой человеческого разума в области технологии.
В дополнение к своей исключительной портативности они обладают многочисленными достоинствами. Прежде всего следует назвать их высокую надежность. Этот термин означает, насколько можно полагаться на исправную работу устройства. А вероятность отказа у МС очень низкая, так как они сделаны из одного куска твердого тела. В них нет паек, нет и более или менее надежных контактов… Это прочная конструкция, и на нее можно положиться!
При производстве в больших количествах МС обходятся дешевле эквивалентных схем, собранных из дискретных компонентов. Применение МС позволяет существенно снизить затраты на рабочую силу.
И, наконец, малые размеры МС дают еще одно преимущество, о котором часто забывают — очень малое время перехода. В современных электронных вычислительных машинах некоторые операции производятся за время, измеряемое наносекундами, т. е. миллиардными долями секунды. Но какой путь за такую долю секунды может пройти луч света или электрический ток в прекрасном проводнике? Попробуй ответить на этот вопрос, не читая моего письма дальше и не приступая к расчетам, учитывающим скорость 300 000 км/с.
Согласен поспорить, Незнайкин, что твоя оценка далека от истины, а она гласит, что за одну наносекунду свет или электрический ток проходит 30 см. Это означает, что в ЭВМ, насчитывающих тысячи микросхем, их нужно расположить достаточно близко одну к другой, чтобы время прохождения тока не замедляло выполнения операций.
Появление МС настоятельно требует новой философии конструирования электронной аппаратуры. Некогда разрабатывали схемы включения компонентов, из которых собиралась аппаратура. В наши дни инженер должен придумать цепочку функций, каждая из которых выполняется одной МС.
Эволюция МС продолжается; возможности их становятся все более разнообразными. ЭВМ выступают в качестве крупных потребителей так называемых бинарных схем, обладающих двумя устойчивыми состояниями: они открыты для прохождения тока или закрыты. Я тебе уже говорил, что их называют также «вентилями».
Другие схемы называются линейными, так как их выходное напряжение изменяется пропорционально изменениям сигнала на входе.
Ничто не останавливает прогресса в этой области, мой дорогой друг Незнайкин. Если ты перечитаешь-это письмо через несколько лет, то невольно улыбнешься, так как многое несомненно изменится. Лишь одно останется неизменным — дружба, в которой заверяет тебя
Твой Любознайкин
* * *