Глава 13. Новый огонь Прометея

На нашей планете полностью можно использовать лишь то, что превращается в энергию.

А. Эйнштейн

Мы уже упоминали, что первый известный в истории случай отравления человека загрязненным воздухом относится к 79 г. до н. э. В письме к римскому историку Тациту Плиний-младший писал, как при извержении Везувия задохнулся его дядя, Плиний-старший. Но люди начали страдать от продуктов горения — газов, копоти и дыма — гораздо раньше. Ведь человек пользуется огнем уже около 500 тыс. лет, и, надо думать, столько же времени он страдает от твердых и газообразных продуктов несовершенного сжигания дерева, угля или мазута и природного газа.

Становясь от столетия к столетию мудрее, человек стал бороться и с отрицательными последствиями горения. Уже в XVIII в. Абрагам Дерби из Колбрукдейла (Англия) пришел к мысли, что уголь перед сжиганием нужно прокалить. Таким образом, применив сравнительно простую технологию, он выгнал из него часть дыма и копоти. А полученный продукт — кокс — с тех пор дает людям больше тепла и меньше загрязнителей. Однако стремление человека к познанию не имеет границ. Именно этой безграничности познания мы обязаны тем, что сегодня все больше «кормим» тепловые электростанции, металлургические заводы, химические комбинаты и транспорт не углем и коксом, а мазутом и природным газом.

Путь человечества от примитивного сжигания дерева и угля к сложному окислению высококалорийных веществ из топливных смесей, увы, не был отмечен одними успехами. В 1930 г. от сернистых газов — иного природного происхождения, чем те, что погубили Плиния-старшего, — в долине Маас в Бельгии погибло сразу 60 человек. Меньше чем через 20 лет те же газы в промышленной агломерации Донор (США) унесли 70 человеческих жизней. Но дань прогрессу платили не только жители этих двух стран. И Лондон в прошлом был известен как город убийственных смогов.

Удары природы заставили человека опомниться. Не только чувство самосохранения, но и разум приказывали ему бороться с дымом и ядом самым действенным оружием, какое дала нам природа, — силой науки!

Все учебники химии объясняют процесс горения как «…комплекс явлений, возникающих при соединении сжигаемого вещества кислородом». И еще со школьных лет мы знаем, что если сжигать, например, углерод, то процессы горения или окисления произведут, с одной стороны, определенное количество твердых и газообразных веществ, а с другой — определенное количество тепловой энергий. Обозначим эту энергию, например, буквой Q. Величина Q при сжигании природных топлив не очень высока. Для" производства 1 кВт-ч электроэнергии нужно сжечь в тепловой электростанции больше 0,5 кг угля. Однако, сжигая 0,5 кг угля, мы произведем свыше 1,5 кг газов, золы и токсичных веществ.

На малую экономическую эффективность сжигания угля, нефти и природного газа химики и экономисты уже давно обратили внимание. Ведь пригодное для химической промышленности топливо является очень ценным сырьем! Но лишь современные совместные работы химиков, врачей, энергетиков и других специалистов вскрыли и иные противоречия. Только задумайтесь: постоянно растущая потребность в электричестве заставляет нас расширять сеть тепловых электростанций в три раза более быстрыми темпами, чем увеличивается само человечество! Учитывая высокую концентрацию вредных веществ, образующихся при сжигании природных топлив, мы вынуждены одновременно строить все более дорогое оборудование для защиты здоровья человека и природы.

А ведь к человечеству в дверь стучится не только эта проблема. Специалисты ООН подсчитали, что если мировая потребность в энергии будет и дальше расти такими темпами, как до сих пор, то мы исчерпаем запасы угля через 300, а нефти через неполные 70 лет! Но безрадостные перспективы не обескуражили человека, а заставили задуматься.

В конце прошлого века человечество открыло для себя многие ранее не известные явления природы, в том числе и то, что ядра атомов многих элементов (например, калия, свинца, урана, ртути) распадаются сами по себе. При распаде возникают новые нестабильные ядра, а также определенная радиация. Нестабильные радиоактивные вещества испускают невидимые, но очень активные субатомные частицы — нейтроны, протоны, позитроны и т. д., которые в наэлектризованном пространстве рассеиваются, собираются и даже изменяются. Все это происходит при одновременном высвобождении энергии, которая до сих пор удерживала ядро.

Между ядром и обращающимися вокруг него электронами должно удерживаться электромагнитное равновесие. Поэтому вокруг положительно заряженного ядра водорода вращается один электрон, а 92 протона в ядре урана удерживают 92 электрона. И именно из-за этого количества субатомных частиц в ядре и вокруг него у атома урана мы считаем уран самым тяжелым естественным элементом. Водород же — самый легкий элемент.

Атомы так малы, что выстроенные в ряд 2 млн. самых больших атомов (например, цезия) протянутся менее чем на миллиметр. А если бы мы увеличили атом до размеров пятиэтажного дома, его ядро достигло бы лишь размера горошины.

Элементы с большим числом субатомных частиц в ядре стремятся избавиться от своего притяжения даже ценой превращения в совершенного другой элемент. Уран с атомным весом 238 (то есть с 92 протонами и 136 нейтронами) после 14 изменений превращается в нераспадающийся вариант хорошо известного нам свинца — Pb207.

Естественный распад радиоактивных веществ характерен тем, что длится от 1/1000 доли секунды до миллиона лет, причем высвобождается определенная энергия Q, которая до этого держала атом и его ядро в равновесии. Если мы расщепим ядро атома урана, то при этом освободится около 200 млн. электронвольт энергии.

В Яхимовских горах, богатых серебром, еще в средние века находили твердую тяжелую породу. Там, где она появлялась, серебро исчезало. Искатели, или добытчики, называли ненавистную руду «неудачницей». Не знали они, что в будущем за нее будут платить не только серебром, но и золотом! «Неудачница» содержит тяжелый элемент уран. А именно в атомах урана «живет» громадное количество крохотных, но очень сильных «муравьев» — нейтронов.

В 1919 г. новозеландец Эрнест Резерфорд бомбардировал двумя протонами и двумя нейтронами ядро атома азота. Он исходил из полученных французским ученым Беккерелем и супругами Кюри данных о естественном распаде и структуре ядра, и поэтому ему с помощью силы в 5 мегаэлектронвольт удалось впервые в истории человечества заставить распадаться радиоактивное вещество.

В течение следующих 20 лет были достигнуты новые успехи. Как из волшебной шкатулки, из ядер атомов урана начали «выпрыгивать» уже не только протоны, но и нейтроны. Их исследование показало, что они не только работящие, но и мудрые «муравьи». И этим «муравьям» человек мог доверить ответственные задачи. Например, не только вызвать расщепление ядер, но и руководить искусственно вызванной реакцией. «Покорив» нейтроны, человек нашел возможность и использовать силу атомного муравейника, и приумножить ее.

Вызванная человеком ядерная реакция обычно ассоциируется со взрывами атомных бомб над Хиросимой и Нагасаки. Атомная бомба действует следующим образом: из природного урана выделяют уран-235 или плутоний-239, способные хорошо расщепляться. Взятые в количестве, превышающем так называемую критическую массу (около 1 кг), эти элементы способны к самопроизвольной цепной реакции деления.

Последствия нам известны, и нет нужды много о них говорить. Энергия, скрытая в ядрах тяжелых элементов, проявляется в ослепительном световом эффекте, взрывная волна сметает все на своем пути, а огонь в миллионы градусов сжигает остальное. Но и это лишь прелюдия. Радиоактивные вещества начинают испускать α- и β-частицы или посылать улучи, которые вместе «набрасываются» на живые организмы, α- и β-частицы и γ-лучи отличаются последствиями своего воздействия. а-Частица — большая из двух сестер — состоит из двух протонов и двух нейтронов. Она поражает ткани на большой площади, однако ее излучение не проникает далеко. Меньшая сестра — β-частица — проникает глубже, но она состоит из двух субстанций с короткой жизнью — электрона и позитрона, — а потому она гораздо меньше ионизирует. γ-Лучи проникают глубоко в клетки, создавая радикалы, которые «обогащают» организмы новыми и часто вредными токсичными веществами.

Нейтроны мы назвали мудрыми «муравьями». Однако мыслить способен лишь человек. И если человек приказывает своим слугам уничтожать, они ему рабски повинуются. Бумеранг последствий поразит, однако, самого человека. При ядерных реакциях возникают такие радиоактивные изотопы, как цезий, тритий, радиоактивный иод, стронций. Субатомные частицы радиоактивных цезия и трития проникают глубоко в клетки, где продукты их распада оказывают разрушительное действие. Радиоактивный иод проникает в щитовидную железу, а стронций, попадая в костные ткани, поражает костный мозг. Организмы, получившие высокую дозу облучения, измеряемую в рентгенах, погибают. Кратковременные и небольшие облучения вызывают острые и хронические нарушения жизненных процессов. Разрушительное действие «легионеров смерти», однако, не прекращается с отбоем воздушной тревоги. Стронций, цезий и радиоактивный иод на длительное время укрываются в растениях и почве (цезий даже на 30 лет). Растения отдают их травоядным животным, а почва — новым урожаям. Через животных и растение радиоактивные вещества попадают в пищу человека и поражают главным образом молодое поколение, то есть детей тех, кто уцелел от первых взрывов атомных бомб. Цезий и радиоактивный иод посылают улучи, которые, проникая в клетки, нарушают их метаболизм. Радиоактивный иод, как мы уже говорили, проникает в щитовидную железу, которая перестает выполнять свои жизненно важные функции, особенно у молодых организмов.

Однако человека прежде всего интересует величина Q, то есть удовлетворение постоянно растущей потребности в энергии. А так как более мощной энергии, чем та, которую получают из ядра, у нас пока нет, то мы должны и впредь увеличивать число атомных реакторов, иными словами, повышать интенсивность и количество ядерного излучения. Ведь только в Чехословакии мы хотим иметь менее чем через 30 лет больше 30 атомных электростанций. Не повергнет ли эта гигантская концентрация ядерного излучения человечества в еще большие катастрофы, чем те, которые происходили прежде? Ведь только в Хиросиме погибло сразу 200 тыс. человек!

С 1954 г., когда в Советском Союзе была пущена в строй первая промышленная атомная электростанция, тревога о судьбе человечества в этом смысле исчезла. Социалистический строй впервые в истории показал, что ядерную реакцию можно использовать не для уничтожения, а для созидания. При этом человек не дает нейтронам приказа произвести как можно больше радиоактивных веществ, а напротив, сознательно уменьшает образование нестабильных ядер.

В процессе расщепления высвобождаются нейтроны. У тяжелых элементов — два. При этом часть нейтронов захватывается ядрами других элементов, например тория или урана-238. Если добавить в ядерное топливо, состоящее почти исключительно из урана-235 и плутония-239, например торий, то его ядра заставят «безработные» нейтроны, освобожденные при расщеплении урана, отдать свою энергию соседям. Более того, тем, что нейтроны удерживаются в ядре, они превращают торий в уран-235. Активность нейтронов-организаторов целенаправленно разделилась на производство энергии и на дальнейшее производство топлива. Реакция замедлилась, стала управляемой. Вместо одноразового гигантского выброса уничтожительной силы в тепловую систему электростанции поступает столько энергии, сколько нам нужно, так как запас топлива весьма велик.

Если в электростанциях, где тепловая энергия создается за счет окисления ископаемых топлив, то есть там, где реакции проходят лишь в электронной оболочке атомов, мы вынуждены сжигать много веществ, то в ядерных реакторах «работают» не только оболочка, но и ядро атома. Поэтому такие станции потребляют очень мало топлива. Для работы первой промышленной атомной электростанции в СССР достаточно 13 г урана в день.

Следующий пример: для производства такого количества электроэнергии, которое потребляется за год в ЧССР, нужно сжечь около 32 млн. т угля — «кусок» размером в 250 куб. км! Ту же работу мог бы для нас произвести «кусочек» урана всего лишь в 2 куб. м. Именно в этом самое большое преимущество атомных электростанций. Облегчается тяжелый труд горняков, исчезают пыль, дым и копоть. Не нужно засыпать плодородную землю и нагружать углем длинные составы.

Однако не будем излишне оптимистичны. И наши милые работники «показывают свои зубки» уже при добыче урановых руд. В штольнях урановых рудников образуются два очень нестабильных радиоактивных газа — родон и торон. Мы вдыхаем их, поэтому излучение этих газов поражает как наружные, так и внутренние ткани. Мы спасаемся от них с помощью вентиляции. Из урановых рудников вытекают и загрязненные воды. Если такую воду пьют домашние животные, то нестабильные радиоактивные вещества откладываются в их костных тканях, а потом попадают и в пищу человека.

Больше всего нестабильных радиоактивных изотопов возникает в так называемых первичных циклах атомных электростанций, то есть там, где «горит» ядерное топливо. Количество радиоактивных веществ мы обозначаем единицами, называемыми кюри. Образование нестабильных радиоактивных веществ равняется одному кюри, если за 1 с происходит 3,7 × 1010 распадов, то есть 37 млрд. распадов в секунду. В ядерном реакторе возникает активность 108 и 109 кюри в секунду. Если бы эти радиоактивные вещества вырвались наружу, то вместе с радиоактивными веществами естественного распада и радиоактивными веществами возможных отходов атомных электростанций они составили бы «мощное сообщество». Они уничтожили бы леса, отравили воду и урожаи. Клетки организмов, пораженные концентрированным действием радиоактивных веществ, погибают.

Именно поэтому, прежде чем строить первые атомные установки, были определены твердые стандарты и нормы допустимой концентрации радиоактивных веществ. Их придерживаются до сих пор, что говорит о совершенстве технических мер безопасности при работе с радиоактивными веществами. Но внимание! Мы живем в 70-е годы, и в мире действует лишь 75 атомных электростанций. Уже в 2000 г. их будет около 5500. Опасность того, что число «ядерных сообществ» будет возрастать, не исчезла. Именно поэтому необходимо и дальше совершенствовать технические меры безопасности.

С ростом числа атомных электростанций появится необходимость изолировать их от окружающей среды. В системе атомный реактор — человек — природа пока еще не все изучено. Наряду с использованием ядра в энергетических целях необходимо тщательно измерять степень естественного излучения всюду, где планируется размещение атомных электростанций и создание так называемых замкнутых охлаждающих систем, необходимо прослеживать путь радиоактивных веществ через растения и животных к человеку, развивать технику безопасности в рудниках и т. д.

Именно чувство ответственности мудрого, а потому прозорливого человека заставило человечество задуматься о дальнейшем. Ведь только представьте: к 2000 г. потребление энергии в мире по сравнению с 1965 г. повысится на 250 %. Если доля атомных электростанций в производстве электроэнергии в 1965 г. составляла менее 1 %, то к 2000 г. она достигнет 50 %! Но и после 2000 г. потребность в энергии будет расти громадными темпами. Если бы, например, в 2030–2050 гг. эту потребность мы захотели покрыть исключительно за счет атомных электростанций, то понадобилось бы пускать в строй ежедневно по две такие станции мощностью 1000 МВт.

В далеком будущем может не хватить и атомной энергии. Следует продолжать поиски. А так как к углю и нефти возврата не будет, не исключено, что человечество пойдет по пути совершенствования ядерной энергетики.

Мы уже говорили, что в трудную минуту человек всегда черпал вдохновение у природы. Чем умнее становился человек, тем совершеннее перенимал он ее опыт. Ведь и идею ускорения ядерной реакции он нашел в космосе. Высоко над нами субатомные частицы движутся с фантастической скоростью, скрывающей в себе энергию до 100 млрд. электронвольт. Если бы мы захотели их изучить, то вынуждены были бы подняться очень высоко. Чтобы сократить этот путь, человечество должно было бы спуститься под землю и построить там протонные синхротроны и синхроциклотроны, в которых ускорился бы ход процессов в ядерном ядре. Человек вырвал у природы новую тайну и начал создавать так называемые ускоряющие реакторы (ускорители). Но и это не все.

Чтобы уже через 50 лет каждый день не пускать в строй по два реактора, а следовательно, с такой же скоростью не придумывать и не строить при них защитные сооружения, мы обратили свой взор к звездам — небесным телам, которые светятся, то есть излучают гигантское количество энергии, практически не потребляя ее. Они светят одинаково интенсивно, не уменьшая своего объема, в течение всех тех столетий, что человек наблюдает их.

И человек постепенно подходит к раскрытию «звездной» тайны. По современным представлениям каждая звезда, по-видимому, является гигантским реактором, в котором, однако, происходит не только распад ядер, но и их соединение, синтез/Сложный процесс соединения легких ядер приводит к тому, что создается такое количество и такой энергии, которое способно компенсировать энергию, излучаемую поверхностью звезды в космическое пространство.

Звезда имеет определенный элементарный состав, определенную материю и гравитационные отношения. Под влиянием термоядерных реакций, происходящих в ней, температура от центра к поверхности, распределена неравномерно. Гравитационные и тепловые соотношения создают условия для определенных типов термоядерных реакций, а также для их времени и интенсивности. Звезда, так же как и реактор, доводит свою тепловую мощность до определенного уровня, а этому уровню затем соответствуют тепловые отношения на поверхности и внутри звезды.

В «реакторе» звезды, по-видимому, происходят термоядерные реакции, которые используют в 10 раз больше внутренней энергии, чем атомные реакции, о которых мы говорили до сих пор. Чтобы понять их, надо вернуться с конца таблицы Менделеева в ее начало, поскольку если до сих пор мы занимались ядрами тяжелых атомов, то теперь обратимся к ядрам самых легких атомов, особенно водорода и гелия.

Исследования показали, что масса ядра немногим меньше, чем сумма масс ядерных частиц — протонов и нейтронов, из которых состоит ядро. Разница, названная позднее дефектом массы, у легких элементов больше, чем у тяжелых, потому что, как только частицы ядра (нуклоны) соединяются в ядро, освобождается их энергия и соответственно уменьшается и масса возникшего ядра.

При термоядерных процессах мы используем энергию субатомных частиц и заставляем уже не только ядро отдавать нам часть «деструктивной» силы, которая его ослабляет, но и принуждаем каждую субатомную частицу работать так, чтобы она превращалась в новую, которая бы уже не разбивала ядра, а способствовала их вечному обновлению.

Основная задача в создании условий для использования термоядерной энергетики — достигнуть того, чтобы плазма (смесь атомов без электронов), сосредоточенная и сжатая магнитными полями, удерживалась в таком состоянии хотя бы около секунды. До сих пор удалось экспериментировать с плазмой лишь сотые доли секунды, Но и это обнадеживает, потому что показывает человеку путь, по которому он будет следовать в своих поисках. Более того, это вселяет надежду, что человек сможет решать свои энергетические проблемы, не задыхаясь в отходах, не спасаясь от распадающихся радиоактивных элементов.

Правда, ядерная энергетика уже вышла из пеленок. Она вступает в пору промышленного использования, а с этим связаны свои проблемы. Одной из таких проблем, например, является вопрос, что делать с отработанным ураном, который все еще содержит столько опасных радиоактивных веществ, что способен нанести серьезный вред многим экологическим системам. Проблема требует своего решения, и, конечно, сегодня нас мало утешает мысль о том, что у термоядерной энергетики такие заботы исчезнут. Единственным ее отходом будет газ гелий, который можно сравнительно легко улавливать и использовать.

Топливо атомных электростанций в отличие от будущих термоядерных после отдачи части энергии на производство электричества не исчерпало своей силы. В специальном оборудовании из него с помощью кислот извлекают остатки плутония и урана и некоторые другие продукты. Однако оставшиеся отходы на 99 % радиоактивны, а поэтому смертельно опасны для живых организмов и природы. И снова встает вопрос: как долго длится эта опасность?

Отходов ядерного топлива пока относительно мало, во всем мире их около 1500 куб. м. Но уже и этот объем причиняет нам немалые заботы. Отходы жидкие, а потому не только способны отравлять почву и воду, но и неудобны для транспортировки.

Трудность транспортировки последнее время пытаются устранить введением новой технологии обработки отходов. По новейшей методике жидкие отходы проходят по трубам, в которых к ним добавляется стеклянная пыль, и собираются в бронированных емкостях. Там вместе с пылью отходы плавятся. и превращаются в стекловидную массу, которая постепенно затвердевает и становится нерастворимой.

Но если вопрос транспортировки практически решен, то проблемы складирования остаются, ибо процессы распада в отходах не прекращаются. Возникает значительная тепловая энергия, которая не позволяет складировать отходы стабильными пластами — высокая температура и процесс распада действуют на упаковку и отходы проникают в почву или воду. Проблема до сих пор не решена, если не считать «решением» такие оригинальные предложения как, например, складывать отходы в виде пирамиды, которая должна быть очень высокой, чтобы овевающие ее ветры охлаждали отходы. Соперница пирамиде Хеопса!..

Имеются и более серьезные предложения. Отходы рекомендуется складировать в заброшенных соляных шахтах. Хотя выделяемое ими тепло и будет действовать на консистенцию соляных слоев, но опасность будет минимальной, ибо в соляных слоях нет воды и, следовательно, некому выносить отходы на поверхность.

В западном полушарии отходы еще очень часто сбрасывают в море. Однако соленая вода, тепло Ц внутренние процессы, происходящие в отходах, через определенное время нарушают структуру упаковки, и радиоактивные вещества проникают в планктон, кораллы, в рыбу и… на наш стол.

Так же нереально предложение отправлять отходы атомных электростанций на Луну или другие планеты. Разумно ли повышать и без того высокую радиоактивность космоса?

Следует на Земле самым серьезным образом задуматься об эффективном использовании радиоактивных отходов. Ведь мы уже заставили служить нам отходы- в виде ила. Обработанными отходами целлюлозно-бумажных предприятий мы кормим домашних животных. Извлеченная из нефти «вредная» сера широко используется для нужд химической промышленности и т. д. Подобным образом и «умирающие» топливные элементы из атомных электростанций смогут защищать наши сады от насекомых, способствовать затвердению эластичных пластмасс, стерилизовать продукты и лечить людей. Однако чтобы все это стало возможным, необходимо претворить в жизнь то, чего требовал от нового прогрессивного строя еще Карл Маркс — устранить углубляющийся разрыв между человеком и природой и использовать подчиненные человеку силы природы не для уничтожения, а во благо людей, Овладение одной из Сил природы — водой — некогда заложило славу Египта. Овладение энергией атомного ядра во много раз повысило экономический потенциал многих стран, особенно тех, где передовой общественный строй создал все условия для того, чтобы интересы человека гармонично сочетались с интересами природы как при использовании ее источников, так и при охране ее репродукционных способностей.

Загрузка...