Мы познакомились с удивительными асимметриями человеческого мозга. Их открытие вызвало среди врачей и биологов настоящую сенсацию, но не поколебало широко распространенного мнения, что Земля — царство симметрии. Даже в наши дни среди биологов широко бытует представление, что принципы биологической симметрии распространяются на все многообразие свойств живых организмов, а случаи асимметрии являются исключением из этого правила и, как все исключения, лишь подчеркивают его действенность.
Вернемся к началу нашего повествования и попробуем самостоятельно решить вопрос, является ли исключительным или закономерным явлением асимметрия в развитии живых организмов. Если при рассмотрении этого вопроса спуститься на молекулярный уровень организации живой материи, посмотреть, из каких кирпичиков строят живые организмы органы и клетки своего тела, какие вещества продуцируют сами, то мы окажемся в царстве асимметрии.
Многие органические вещества могут быть образованы молекулами-близнецами, похожими друг на друга, как любой предмет на свое отражение в зеркале, как правая и левая перчатки. Если бы симметрия была насущной потребностью живых организмов, они, очевидно, создавали бы любые вещества из равного числа обоих типов асимметричных молекул. Однако живая материя безапелляционно игнорирует эту возможность и использует для собственной жизнедеятельности только один их тип.
Молекулы, имеющие одинаковый химический состав, но отличающиеся по форме, называют изомерами. Растворы изомеров обладают способностью отклонять проходящие сквозь них световые лучи, поэтому их называют оптическими. Одни отклоняют световой луч влево и называются левыми, при прохождении сквозь растворы других изомеров луч света отклоняется вправо, и изомеры называются правыми.
Все вещества, участвующие в построении нашего тела, белки, углеводы и жиры, а также биологически активные вещества — ферменты, гормоны, витамины, медиаторы имеют асимметричное строение, и живые организмы используют лишь один определенный изомер. Молекулы белков построены из левых аминокислот, а все животные сахара состоят лишь из правых молекул.
Зеркальные изомеры гормонов, витаминов, ферментов теряют свою активность и становятся для организма бесполезными, а иногда даже и вредными. Например, при добавлении к пище l-фенилаланина развивается нарушение психики. Использование d-фенилаланина не оказывает на организм человека ощутимого воздействия. Со специфичностью биологических реакций на оптические изомеры связана эффективность действия некоторых антибиотиков на бактериальные клетки. Впрочем, известны микроорганизмы и даже более развитые живые существа, у которых ни один из изомеров не отбраковывается как ненужный, но предварительно направленно перестраивается. Только тогда он может быть использован по назначению.
Известно совсем немного случаев, когда оба изомера используются без переделок. Некоторые микроорганизмы вырабатывают одновременно право- и левовращающий аланин. Однако каждый изомер используется ими для строго определенных целей, и никакой путаницы в его применении не происходит.
Закон об асимметричности живой материи настолько незыблем, что позволил решить вопрос о происхождении внеземных аминокислот метеоритов. Из двух больших небесных камней, упавших на землю, удалось извлечь свыше 30 аминокислот. Каждая была представлена равным количеством обоих видов молекул. Следовательно, они возникли не биологическим путем. Впрочем, это доказательство не абсолютно. Оптически активные изомеры при длительном хранении могут менять свою конфигурацию и в конце концов окажутся в одинаковых количествах. Однако этот процесс требует очень много времени. Для свободных аминокислот из костей динозавров и даже более древних животных он еще не закончился. А в аминокислотах, входящих в состав белков, такие превращения идут еще медленнее.
Теперь вернемся к целому организму. Мы помним, что сила земного притяжения наложила отпечаток на внешнее строение и особенно жестко на органы передвижения животных. Однако их строгая симметричность сохраняется до тех пор, пока передвижение тела в пространстве остается их единственной или, во всяком случае, главной функцией. Приведем лишь один пример. На побережьях тропических морей обитают так называемые манящие крабы — небольшие симпатичные существа, ведущие полуводный-полуназемный образ жизни. Свое название они получили за своеобразный язык жестов, используемый самцами для привлечения самок. Когда бродящий по песчаной отмели самец замечает самку, он приподнимается на лапках, чтобы его было лучше видно, и начинает приветственно махать клешней. Этот жест настолько выразителен, что даже людям, мало знакомым с жизнью братьев наших меньших, переводчик не потребуется. Совершенно очевидно, что это радушный призыв о встрече. Во всяком случае, именно так понимает его самка и спешит познакомиться с суженым.
Брачная сигнализация важная, но совсем не такая уж часто выполняемая функция, и поэтому нет никакой необходимости, чтобы обе клешни «умели» ее выполнять. Действительно, приветственные жесты крабы выполняют лишь правой клешней. Налицо явная асимметрия функций, которой соответствует аналогичная функциональная асимметрия в соответствующих ганглиях центральной нервной системы краба. Мало того, правая клешня у самцов манящего краба достигает прямо-таки гигантских размеров. Жест огромной сигнальной клешни трудно не заметить. Самки не стараются привлечь внимание самцов, и им нет необходимости обзаводиться непропорционально большой конечностью. Как и полагается представительнице слабого пола, у самки маленькие изящные клешни.
Разный размер имеют клешни у раков-щелкунов. Более крупная предназначена для производства громких щелчков. У омаров более крупная клешня служит для раздавливания панцирей морских ежей, раковин моллюсков, домиков морских желудей, а другая, более тонкая режущая клешня используется для разделки нежной добычи: креветок и рыб.
Примеры с крабами и омарами приведены для того, чтобы показать, как легко животные отступают от симметрии в функциях конечностей, если те начинают использоваться для каких-то иных целей. Поэтому нет основания удивляться возникновению функциональной асимметрии рук у наших предков, как только они из передних конечностей превратились в верхние и стали активно участвовать в различных трудовых процессах.
Конструкторам автоматов хорошо известно, насколько легче создать робота с одним захватом-манипулятором, чем с двумя. Проблема сильно усложняется, когда нужно, чтобы оба манипулятора могли совместно, на паритетных началах осуществлять любую операцию, строго координируя свои действия на основе учета состояния объекта в каждый данный момент и характера участия в операции другого манипулятора. Другое дело, когда функции между манипуляторами заранее распределены, один из них является лидером, а второй подстраивается к нему, выполняя более простую вспомогательную работу.
В той же степени это относится и к живым организмам. Для выполнения совместных действий, которые чаще всего и требуются при любой работе, неравноценность рук особенно необходима. Неудивительно, что функциональная асимметрия мозга, использование одного определенного полушария для проведения более сложной координации работы мышц, наследственно закрепилась.
Если принять это положение о причинах возникновения неравноценности наших рук, то асимметрия психических функций мозга должна восприниматься как логическая необходимость. Если сокращением любой из мышц наших конечностей руководит лишь двигательный центр одной половины мозга, почему же осуществление высших психических функций должно быть дублированным? Когда требуется принимать быстрые и ответственные решения, необходим принцип единоначалия. На поле боя распоряжается один командир, на судне бывает один капитан, посадкой или взлетом самолета лично руководит определенный диспетчер. Попробуем разобраться, являются ли наши далекие предки пионерами в области асимметрии мозговых функций, или у них были предшественники.
Мозг во многих отношениях остается еще не познанным. Кто знает, что творится у нас в «черном ящике» за стенками черепа. Даже карты морфологического строения нервной системы человека и самых различных животных продолжают пестреть бесчисленными «белыми пятнами». При таком положении внутренняя асимметрия интерьера «черного ящика» легко могла остаться незамеченной.
Число видов животных на планете велико. Из них сколько-нибудь детально изучен мозг лишь некоторых лабораторных животных: белых мышей и крыс, кроликов, кошек, собак, двух-трех видов обезьян. И тем не менее асимметрия в строении мозга обнаружена у многих животных. Она встречается и у примитивных существ вроде миног, и у высших млекопитающих.
Миноги относятся к тому же типу хордовых, к которому принадлежит человек, только стоят на самой низшей ступени. У них в промежуточном мозгу обнаружена асимметрия ядер уздечки. Слева ядро разделено на большее число долек, чем справа. Аналогичная асимметрия обнаруживается у акул и скатов, у костистых рыб и амфибий.
Чем выше развитие животного, тем менее выражена у него асимметрия. У речного угря различия еще отчетливы, а у гребенчатого и альпийского тритонов по размерам нервных клеток, образующих ядро, по густоте их скоплений между ядрами обеих половин имеется уже значительное сходство. У бесхвостых амфибий различия выражаются лишь в том, что в нервных клетках левого узла уздечки есть кристаллоподобные включения, а в правом ядре их не бывает.
Асимметрия в строении тела встречается у китообразных значительно чаще, чем у других млекопитающих. У дельфинов бросается в глаза асимметрия мозговой части черепа. Спереди он имеет значительное вдавление, более глубокое справа, чем слева. В соответствии со строением черепа лобная часть правого полушария дельфина-афалины на 8–15 процентов меньше левого.
Чем вызвана разница в величине полушарий дельфиньего мозга? Зоологи, обнаружившие эту особенность, склонны считать, что изменение формы черепа и размера его внутренней полости, видимо, связанные с эхолокацией, вызвали соответствующее уменьшение размеров правого полушария. Вряд ли это так. Как-то не верится, что форма и размер такого важнейшего органа зависят от размеров его вместилища.
Разница в величине больших полушарий известна и у обезьян, правда, не столь значительная, как у дельфинов. Скрупулезные промеры мозга бабуинов показали, что у большинства животных лобный выступ правого полушария выдается вперед на 1,4 миллиметра по сравнению с левым.
Обнаружена структурная асимметрия и в мозгу человека. Сильвиева борозда, отделяющая височную область от лобной, слева более глубока и имеет большую длину, чем справа. Выявлены различия в нейронной организации полушарий.
Нервные клетки, расположенные в разных слоях коры больших полушарий, объединяются в вертикально расположенные столбики. Особенно бросается в глаза упорядоченное расположение нейронов в речевых отделах левого полушария. В соответствующих участках правого полушария упорядоченность менее выражена. Интересно, что подобная тенденция выражена и в мозгу человекообразных обезьян, только здесь она менее отчетлива, чем у человека. Асимметрия врожденная, ее можно обнаружить у новорожденных обезьянок и даже у плодов во второй половине их внутриутробного развития.
Известны примеры и биохимической асимметрии. Концентрация нейромедиатора (так называют вещества, с помощью которых возбуждение передается от одной нервной клетки и другой) норэпинефрина в правой половине промежуточного мозга значительно выше, чем слева.
У неандертальца, непосредственного предка человека, жившего 30–50 тысяч лет назад, уже были развиты центры Вернике и Брока. Основание для такого заключения дало изучение черепов древнего человека. Оказалось, что области мозга левого полушария неандертальца, соответствующие речевой зоне современного человека, оставляли на внутренней стороне черепа вполне отчетливый след. Правое полушарие не оставляло отметин на внутренней поверхности своего вместилища. Это и дает основание предположить, что уже 50 тысяч лет назад левое полушарие было развито лучше правого. У питекантропов, еще более древних предшественников человека, выявить признаки асимметрии мозга не удалось.
Владели ли неандертальцы речью? Видимо, владели, хотя соответствующие расчеты, основанные на изучении черепов, показали, что форма и размер их глотки были ближе к глотке современных человекообразных обезьян, чем человека, следовательно, она еще не была приспособлена для формирования членораздельных звуков. Но должна ли речь начинаться с предварительного создания органов для генерации непременно членораздельных звуков?
Современные обезьяны широко пользуются звуковыми сигналами, хотя их немного, 20–40 сигналов у каждого вида животных. Примерно такое же количество фонем насчитывается в языках современного человечества. Можно предположить, что речь неандертальца 50 тысяч лет назад строилась из цепочек аналогичных звуков. Звуковые сигналы предков человека, постепенно совершенствуясь, в конце концов превратились в фонемы, а постоянное упражнение в их генерации дало толчок для совершенствования звукопроизводящего аппарата, в том числе глотки. Некоторые ученые думают, что даже австралопитеки владели не только языком жестов, но и речью.
Интересно отметить, что у животных асимметрия чаще всего обнаруживается в строении звуковоспринимающих органов и в строении и функциях анализирующих звуковую информацию ядрах мозга. Она обычно встречается у животных с особенно тонким, изощренным слухом. Птицы не имеют ушей. У сов их заменяет лицевой диск — перья, растущие на лицевой части черепа. Форма диска и местоположение слуховых проходов у неясыти, ушастой и болотной сов резко асимметричны, а у уральской неясыти и мохноногого сычика асимметричен и череп. Обнаружена асимметрия и слуховых центров мозга сов. У дельфинов наружные слуховые проходы располагаются на боковой поверхности головы, примерно на уровне глаз, но один из них всегда значительно ближе к носу, чем другой. В строении некоторых слуховых центров их мозга также наблюдается асимметрия.
Беглый взгляд, брошенный под черепную крышку случайно отобранных животных, показал, что различия в строении правой и левой половин мозга не являются событиями чрезвычайными. Это значит, что и у животных симметричные отделы мозга обладают разными правами и разными возможностями.
Асимметрию функций мозга у животных впервые обнаружил ученик и последователь И. Сеченова, видный русский физиолог И. Тарханов. В одной из своих работ он писал, что левое полушарие с самого раннего возраста в большинстве случаев действеннее правого в деле вызова сильных движений в конечностях противоположной стороны тела. Он считал, что если этот факт, подмеченный на кроликах и собаках, окажется верным и для человека, то станет понятней причина, лежащая в основе бессознательного стремления ребенка пользоваться преимущественно правой рукой, которая благодаря систематическим упражнениям становится более развитой, чем левая.
Ожидание Тарханова в наши дни получило полное подтверждение. Можно считать, что механизм лучшего развития правой руки установлен, хотя по-прежнему неясно, в силу каких причин левое полушарие обладает большей физиологической силой, чем его правый сосед.
В нашей стране изучением парной работы больших полушарий головного мозга животных занимаются физиологи под руководством В. Мосидзе (Тбилиси) и В. Бианки (Новый Петергоф). Хотя работа организована не так уж давно, они сумели убедиться, что кошкам, мышам и крысам свойственна межполушарная асимметрия. Она может проявляться в доминировании одной из передних конечностей и, естественно, одного из полушарий мозга над другим, что, как мы уже видели, свойственно и мозгу человека.
На доминирование одного из полушарий обычно указывает поведение животных. Если в коридор пустить собаку или другое существо, оно скорее всего побежит вдоль него, придерживаясь какой-то определенной стенки, правой или левой. В любом новом коридоре это животное будет выбирать свою излюбленную сторону движения, а если на пути встретится перекресток, свернет в ту же сторону. Так ведут себя в т-образном лабиринте белые крысы и мыши, черепахи, жабы и рыбы. Даже у большинства земляных червей есть свое излюбленное направление поворота. Двигаясь в узких каналах, одни из них на развилках чаще поворачивают направо, а другие — налево.
Излюбленное направление поворота относится к индивидуальному типу межполушарной асимметрии. Среди любой группы животных правосторонних встречается примерно столько же, сколько и левосторонних. Другой вид двигательных асимметрий — предпочтение одной из передних конечностей — нередко является, как и для человека, видовым признаком. Особенно интересно, что пока не удалось найти такой вид животных, среди которых бы преобладали левши.
Многие птицы: гуси, лебеди, утки, цапли, фламинго — спят, стоя на одной ноге. Так же поступают и некоторые птицы, проводящие ночь на деревьях. Они одной лапкой держатся за ветку, а другую прячут в оперение, чтобы не мерзла. У всех видов птиц примерно одинаковое количество право- и леволапых. Зато среди домашних кошек, как и в человеческом обществе, преобладают правши. Правой лапой большинство из них во время еды придерживают корм, вытаскивают из-под дивана закатившийся туда клубок, обороняются от собаки и от чрезмерно назойливых людей.
Предпочитаемую конечность легко выявить во время выполнения животными особо сложных манипуляций. Домовых мышей, часто надоедающих нам даже в огромных каменных домах, заставляли доставать корм из небольшого круглого отверстия в центре манежа. Предварительно передние лапки животных окрашивались в разный цвет. Чтобы не обременять себя скучными наблюдениями, опыт поручили вести автомату. Он со всей скрупулезностью, на которую способны лишь машины, подсчитывал количество движений подопытного животного, определяя, сколько раз мышка лазила в отверстие правой и сколько левой лапкой. Среди домовых мышей оказалось 44 процента правшей и 28 — левшей. У остальных животных не обнаружили какого-либо предпочтения к использованию передних конечностей.
Белые лабораторные мышки — правши. Если у них временно выключали левое доминантное полушарие, то их двигательная и исследовательская активность сокращалась в гораздо большей степени, чем при выключении правого полушария. Эти наблюдения подтверждают открытие Тарханова о доминантности левого полушария.
Передние лапки особенно хорошо развиты у крыс. Они во время еды умеют держать в них корм, могут лапкой вытащить из щели закатившееся туда зерно. Для цирковых выступлений удалось научить крыс, перебирая лапками шнурок, поднимать игрушечный флаг. Можно было ожидать, что здесь доминирование одного из полушарий будет проявляться особенно отчетливо. Действительно, одна из передних конечностей крысы обычно развита лучше другой. Именно ею крыса шарит в щели или берет корочку сыра. Однако в отличие от кошек у крыс нет видового предпочтения определенной конечности. Среди них одинаково часто встречаются правши и левши, а кроме того, существующее доминирование недостаточно устойчиво. Оно всегда может на время исчезнуть или смениться доминированием другого полушария.
Обезьяны, проводящие большую часть жизни в кронах деревьев, должны одинаково хорошо владеть всеми четырьмя конечностями. Неудивительно, что при наблюдении за поведением животных долго не могли заметить существенных различий в использовании ими рук. Только при выполнении особенно сложных заданий удалось убедиться, что передние конечности все-таки отличаются друг от друга. Это обнаруживается при выполнении заданий, требующих тонких движений пальцев или совместных движений обеих рук. Д. Шаллер, целый год проживший бок о бок с гориллами в конголезском заповеднике Киву, обратил внимание на то, что при жестикуляции и при использовании палки эти обезьяны пользуются определенной рукой. У шимпанзе ведущей рукой обычно бывает правая, ею животные жестикулируют и преимущественно пользуются при выполнении особенно замысловатых манипуляций. Специальные исследования показывают, что у обезьян при выработке новых навыков память о них хранится в доминантном полушарии и при его повреждении утрачивается.
О доминировании одного из полушарий можно судить по целому ряду признаков. Например, по выраженности электрических реакций. В двигательных отделах левого полушария кошки электрические потенциалы имеют более значительную амплитуду и возникают в более обширных районах, чем справа, подтверждая, что среди этих животных преобладают правши. Напротив, электрические реакции зрительных отделов позволили установить, что для зрительных функций кошки ведущим является правое полушарие.
Как и для человека, для животных очень характерно, что более способные обладают более выраженной функциональной асимметрией мозга. При выключении или повреждении доминантного полушария психические способности животных нарушаются более существенно, чем при таких же воздействиях на подчиненное полушарие.
Чем сильнее асимметрия мозга, тем более талантливо, более приспособлено к жизни животное. Еще Павлов отмечал, что собаки, имеющие сильные, подвижные, уравновешенные нервные процессы, являются более способными учениками. Недавно было установлено, что только они способны сфокусировать возбуждение в одном из полушарий мозга, что позволяет осуществлять тонкую координацию работы нервных центров, ответственных за поведенческие реакции животных.
Различная степень совершенства работы больших полушарий — не дефект головного мозга, а весьма важное усовершенствование. Зачем кошке добиваться высокого развития обеих передних лап? Никаких преимуществ это ей не даст, а энергии потребует затратить вдвое больше, чем на тренировку только одной конечности. Недаром у животных обнаруживается тенденция наследственно закрепить неравенство полушарий. Ну а от более высокого развития одной половины мозга до его специализации — один шаг, и животные склонны его сделать.
Специализация мозга животных, как и человека, выражается в том, что некоторые функции выполняются левым полушарием, а некоторые правым. Особенно поражает то, что в принципах специализации мозга животных и человека много общего. Начиная с птиц левое полушарие берет на себя функцию анализа и генерации звуковых сигналов, используемых животными для общения друг с другом. Следовательно, оно уже связано с зачатками абстрактного мышления.
Многоголосый весенний птичий хор, придающий особое очарование русскому лесу, выполняет вполне конкретную и подчас весьма прозаическую функцию. У большинства птиц вокальными талантами наделены лишь самцы, но необычайно красивая песнь соловья, дрозда или зарянки, в брачный период исполняемая крохотными солистами десятки и сотни раз в день, вовсе не предназначена для услаждения слуха их подруг. Их главная цель — оповещение обитателей леса, в первую очередь соплеменников, о том, что гнездовой участок занят. Она предназначается для соседей самцов.
Зяблики, чье пение можно услышать даже в городских садах и парках, и самцы некоторых других птиц умеют подстраивать свою трель под песню ближайшего соседа. Это персональное обращение к определенному самцу, чьи владения очень близко расположены к участку солиста. Оно содержит настойчивое напоминание о необходимости корректного соблюдения правил территориальной неприкосновенности и предупреждение о том, что владения певца бдительно охраняются.
Все, что относится к песням, связано у птиц с левым полушарием. Если оно повреждено, песня становится невыразительной или способность петь полностью нарушается. Явная аналогия с расстройством речи у человека. Молодые зяблики после повреждения левого полушария не только никогда не научатся петь, но среди весеннего птичьего хора не смогут узнавать голоса других зябликов и уж, во всяком случае, не поймут персонального к ним обращения.
Голосовой аппарат птиц иннервируют подъязычные нервы. Если у взрослого немолодого зяблика с вполне сформировавшейся песней перерезать левую ветвь, произойдет почти полное нарушение пения. После перерезки правой из песни выпадет лишь несколько компонентов. В данном случае асимметрия поддается переделке. Перерезка левого подъязычного нерва у молодого, еще не научившегося петь зяблика, не отразится на его пении.
Сложная песня канарейки, примитивное чириканье воробья и песни других изученных видов птиц находятся под контролем их левого полушария. Только у амазонских попугаев в генерации звуков участвуют оба полушария. Но это ничему не противоречит. Все попугаи большие любители подражать самым различным звукам, а ведь и у человека в имитации звуков принимает участие правое полушарие. Возможно, и у них исконными сигналами самих попугаев заведует левое полушарие, а имитацией чужих — правое.
Обезьяны собственные голосовые реакции также анализируют в левом полушарии. Японским макакам давали прослушать два собственных сигнала, записанных на магнитную пленку. Выявилось, что они лучше их узнавали и лучше отличали друг от друга, если слушали правым ухом, то есть с помощью левого полушария. Мартышки-верветки и свинохвостые макаки, для которых голоса их японских сородичей не представляли специфического интереса, так как были звуками сугубо посторонними, воспринимали их левым ухом ничуть не хуже, чем правым. Но когда обезьяны имели дело со сложными звуками, отличающимися друг от друга как самими компонентами, так и их последовательностью, тут животным приходилось прибегать к помощи левого полушария, хотя подопытным макакам-резусам предъявлялись искусственно синтезированные звуки, весьма далекие от их собственных звуковых сигналов.
Распределение обязанностей между полушариями мозга животных имеет ту же тенденцию, что и у человека. Коммуникацией, общением между представителями одной семьи или стада руководит преимущественно левое полушарие. Оно легче справляется с обобщениями и обнаруживает зачатки абстрактного мышления, обслуживая эту сторону мыслительной деятельности животных.
Правое полушарие тоже не осталось безработным. У большинства животных здесь анализируется сложная зрительная информация. У высших обезьян в правом полушарии даже есть зона для распознавания «лиц». Весьма вероятно, что такие зоны существуют у большинства млекопитающих и птиц.
Животные, если пользуются глазами, узнают друг друга главным образом «в лицо» и делают это превосходно. Установлено, что у чаек, гнездящихся на птичьих базарах, где скапливаются сотни тысяч птиц, «супруги» узнают друг друга по индивидуальным особенностям «лицевой» части головы. Правое полушарие животных лучше разбирается в зрительных задачах, где необходимо оперировать конкретными признаками раздражителей, их величиной, формой, местоположением в пространстве, степенью удаленности от животного.
Белых крыс заставляли решать сложные зрительные задачи. Недалеко от центра светового экрана вспыхивала световая точка. Она появлялась всегда на одном уровне, но иногда загоралась на 15 миллиметров правее от середины экрана или на 15 миллиметров левее. Крысы не должны были путать эти раздражители. В других экспериментах их обучали определять местоположение светового пятна, появляющегося где-то впереди, то на 6 сантиметров ближе к животному, то на 6 сантиметров дальше от него.
Сложнее оказалось крысам научиться не путать совсем коротенькие световые вертикальные линии с наклонными. Увидев вертикальную линию, животные должны были нажимать один рычаг, наклонную — другой. Временное функциональное выключение левого полушария никак не отражалось на решении крысами сложных зрительно-пространственных задач. При выключении правого полушария животные обнаруживали явную неспособность справляться с заданиями. Следовательно, правое полушарие решало задачи самостоятельно, левое никакой помощи ему не оказывало.
В отношении зрительных функций большие полушария менее специализированы. Во многие сугубо зрительные проблемы способно вникать и левое полушарие, но делает это недостаточно квалифицированно. В петергофской лаборатории крысам придумали много различных задач. Их учили не путать световые фигуры, имеющие разную форму, но одинаковую площадь, различать фигуры по их ориентации в пространстве, не путать разные узоры, составленные из 18 одинаковых небольших фигур, наконец, оценивать величину фигуры.
В решении этих зрительных задач ведущую роль играло правое полушарие. При его выключении крысы гораздо хуже справлялись с заданиями, но и выключение левого полушария не проходило бесследно. Оно тоже отражалось на точности зрительного различения, но не так резко, как выключение правого.
Некоторые зрительные задачи, когда от животных требовалось не опознание одинаковых изображений, а умение отыскать похожие, то есть способность обобщить зрительные впечатления, больше отвечают возможностям левого полушария. Еще во времена академика Павлова был придуман эксперимент, показавший, что животные способны разобраться, в каких отношениях находятся между собой отдельные свойства или признаки раздражителей, что они могут усвоить такие понятия, как «больше» и «меньше», «громче» и «тише», «легче» и «тяжелее».
Для того, например, чтобы животное сформулировало понятие «меньше», сначала добиваются от него четкого различения двух вполне конкретных фигур, предположим, двух треугольников, площади которых относятся как один к двум.
Животное помещают в специальное помещение с двумя кормушками. Что в них находится, не видно. Определить, в какой из кормушек есть корм, можно лишь по картинкам, повешенным над ними. Там, где на желтом фоне нарисован маленький черный треугольник, можно найти кусочек мяса, а кормушка, отмеченная большим черным треугольником на том же желтом фоне, — пустая.
Ситуация опыта несложная. Крысам разобраться в ней нетрудно. Теперь, попав на манеж, они стремглав несутся туда, где в данный момент находится меньший треугольник. Когда задание усвоено, можно проверить, какое заключение сделало для себя животное. Запомнило ли оно конкретный треугольник и поэтому бежит всегда к той кормушке, где находится фигура с площадью, равной 50 квадратным сантиметрам, или сделало заключение, что корм появляется там, где находится меньший треугольник? Для этого нужно поместить над кормушками тот же треугольник площадью в 50 и вдвое меньший, площадью в 25 квадратных сантиметров. Если теперь крыса побежит к большему треугольнику, значит, она не смогла сделать никаких обобщений и реагирует лишь на конкретный привычный раздражитель. Однако чаще животные выбирают меньшую фигуру, убеждая ученых, что даже крысы способны к абстрактному мышлению. Способность животных сформулировать для себя правило: искать корм там, где находится маленький треугольник, и строго его придерживаться называется рефлексом на отношение раздражителей.
Еще отчетливее способность животных к отвлечению от конкретных признаков и их обобщению выявляется, если вместо треугольников предъявлять для дифференцирования пару других фигур: разных по величине кругов, квадратов, прямоугольников или большие и маленькие кучки каких-то мелких предметов. При замене треугольников, ставших для крыс уже привычными, на другие фигуры, например круги разных размеров, животные чаще всего будут выбирать меньший круг.
Выполнение аналогичных задач, когда временно выключено одно из полушарий, показало, что во всех тестах по различению величины треугольников, их оценку и соответственно выбор кормушки ведет правое полушарие. В случаях же переноса навыка на другие фигуры функции полушарий различны. При выключении левого полушария крыса чаще выбирает круг с площадью 50 квадратных сантиметров, то есть обращает внимание лишь на конкретный признак раздражителя. После выключения правого полушария животное в большинстве случаев решает задачу, опираясь на относительный признак раздражителей, выбирая из двух предъявленных кругов меньший.
Таким образом, левое полушарие крысы оценивает раздражители по их относительным признакам, оставив на долю правого полушария их конкретные характеристики. Иными словами, правое полушарие имеет дело с оценкой сиюминутной, конкретной ситуации и дальше этого не идет, а левое пытается делать обобщения.
Пристрастие левого полушария к обобщению проявляется и в том, что оно способно признать треугольником не только ту черную фигуру на желтом фоне, которую привыкло видеть во время тренировки, но любой другой треугольник, в какой бы цвет его ни окрасили и на каком бы фоне ни изобразили. Если животное узнает треугольник независимо от его величины, изображенный контурно, сплошной и даже пунктирной линией, перевернутый на 45, 90 или 180 градусов, — это заслуга левого полушария. Бывают случаи, когда узнать изображение мешают какие-то помехи, нечетко прорисованные линии, кляксы или другая грязь, скрывающая от глаз часть рисунка. Борьба со зрительным «шумом» входит в функцию правого полушария. Зато помехоустойчивость двигательной сферы находится в ведении левого полушария, во всяком случае у крыс. У кошек сравнивали помехоустойчивость зрительных функций больших полушарий к световым помехам. Оказалось, что помехоустойчивость левого полушария выше, чем правого.
Работу большие полушария животных выбирают себе по вкусу. Если приходится вести одновременный анализ сразу нескольких раздражителей, это дело правого полушария, если анализируются последовательно предъявляемые раздражители, в том числе зрительные, такую работу выполняет левое полушарие. В общем, правому полушарию свойствен метод дедукции, путь от общего к частному. Левое опирается на индукцию, то есть использует логический метод познания от частных, единичных случаев или явлений к общим, от отдельных фактов к обобщениям. Все точно так же, как и в мозгу человека.
Левое полушарие, видимо, производит оценку времени, во всяком случае крысы, пользуясь лишь правым полушарием, теряют способность точно измерять продолжительность действия раздражителей. Животных приучали при включении электрической лампочки на 5 секунд открывать одну дверь, а при включении на 10 секунд — другую. Когда крысы разобрались в ситуации, у них выключали то правое полушарие, то левое. Выключение правого полушария никак не отражалось на реакциях животных, а при выключении левого полушария крысы путали раздражители и открывали не те двери.
Специализацию мозга животных долго не замечали, видимо, потому, что не обращали внимания на половые различия. Между тем у некоторых видов они значительны. Мозг крыс-самок менее асимметричен, чем самцов. Анализ сложных зрительных раздражителей у самцов осуществляется преимущественно правым полушарием, а у самок в обеих половинах мозга. Примерно такие же различия и в организации зрительной функции между мужчинами и женщинами.
Возможно, этим объясняется неспособность самок быстро ориентироваться в сложной зрительной обстановке. Обмен мнениями между двойняшками требует времени! Во всяком случае, чтобы научиться различать замысловатые изображения, им необходимо в 1,5–2 раза больше тренировок, чем самцам.
Случайны ли перечисленные выше совпадения в распределении функций между полушариями мозга животных и человека? Безапелляционно ответить на этот вопрос пока еще невозможно. Однако от нашего горделивого утверждения о том, что асимметрия и специализация есть чисто человеческие свойства мозга, необходимо категорически отказаться. Не трудовая деятельность первобытного человека и не возникновение речи дали толчок к развитию асимметрии нашего мозга. Она существовала уже у нашего весьма далекого обезьяноподобного предка, наоборот, глубокая асимметрия мозга наших человекообразных предков явилась той необходимой предпосылкой, без которой развитие трудовых навыков и речи было бы крайне затруднено.
Совершенствование мозга в процессе эволюции живых организмов шло от диффузного распределения функций внутри центральной нервной системы и постепенной локализации их в различных отделах мозга. В ходе специализации функций мозга и возникла его асимметрия. Пока еще не удалось установить, когда, на каком уровне филогенетического развития она появилась. Вероятно, достаточно рано. Скорее всего функциональной асимметрией обладал уже мозг рептилий. Но не исключено, что она существовала даже у рыб и амфибий. Во всяком случае, на всех уровнях развития организмов встречаются виды животных с несимметричным распределением функций в их нервной системе.