Проблема эта весьма глубока и до сих пор не решена полностью. Поэтому ограничимся здесь тем, что наметим контуры одного из возможных ответов на поставленный вопрос. Не скроем этого, он удовлетворил бы нас в наибольшей мере. Пусть имеется все та же бутылка с порохом, на сей раз крепко заткнутая пробкой, и пусть в некоторый момент вы подожгли порох каким-нибудь не оказывающим на бутылку влияния способом, например с помощью солнечных лучей, которые сфокусировали увеличительным стеклом. По мере сгорания пороха давление внутри бутылки увеличивается. Вопрос первый: почему стенки бутылки не выпускают продукты сгорания, если, как мы установили, никаких стенок на самом деле не существует, а существуют лишь атомные ядра, расположенные друг от друга на гигантских по сравнению с их собственными размерами расстояниях?
Молекулы горячих газов взаимодействуют не с самими молекулами стенок бутылок, а с чем-то, что находится в промежутках между молекулами. Что же такое там может находиться? Молекулы стенок бутылки взаимодействуют между собой, иначе говоря, они обмениваются энергией. Но мы уже говорили, что энергия может излучаться и поглощаться лишь порциями — квантами. В твердом теле такие кванты энергии получили название фононов. Промежуток между молекулами стенок бутылки заполнен большим количеством фононов.
На первый вопрос можно найти вполне удовлетворительный ответ, если предположить, что эти-то частицы и осуществляют передачу энергии между любой парой молекул, независимо от того, принадлежат они обе стенке или одна — стенке, вторая — газу. Если молекула принадлежит газу, она не может пройти сквозь стенку, поскольку этому мешают столкновения с множеством фононов. Что здесь самое замечательное? Нет нужды рассматривать отдельные акты взаимодействия. Все происходящее в нашей системе исчерпывающим образом описывается, если исходить из утверждения, что сумма количеств движения всех молекул и всех фононов либо равна нулю, либо равна количеству движения центра масс системы.
Подобные представления позволяют ответить на второй важный вопрос: почему в некоторый момент времени вылетает пробка или лопается бутылка и система, ранее представляющаяся нам как целое, разлетается на множество частей? Происходит так потому, что имеются некоторые ограничения, накладываемые на энергию фононов. Поскольку и молекулы, и фононы обладают лишь кинетической энергией (в отсутствие поля отсутствует и потенциальная энергия), мы можем, во всяком случае на данном уровне рассмотрения, обойтись без привлечения понятия потенциальной энергии.
Волчки и гироскопы
Действие закона сохранения момента количества движения наблюдал каждый ребенок, который хоть раз в жизни запускал волчок. Момент количества движения относительно данной точки — это произведение массы на скорость, с которой перемещается данная масса, на расстояние от центра масс до этой самой точки. Момент количества движения — вектор, в каждый момент времени направленный перпендикулярно к плоскости, в которой происходит движение. Так же, как количество движения, момент количества движения — величина аддитивная. Момент количества движения сложной системы относительно данной точки равен сумме моментов количества движения отдельных частей относительно той же точки. Последнее свойство, в частности, приводит к тому, что отличным от нуля моментом количества движения обладает физическая система, вращающаяся как единое целое вокруг некоторой оси. При этом направление момента количества движения совпадает с направлением оси вращения.
Закон сохранения момента количества движения утверждает, что момент количества движения любого тела или системы тел остается неизменным, если отсутствует взаимодействие этой системы с другими телами. При взаимодействии нескольких систем суммарный момент количества движения всех систем также остается неизменным. Из неизменности момента количества движения следует неизменность его направления. Проще говоря, всякое вращающееся тело сохраняет направление оси своего вращения. Поэтому волчки не падают на пол. Поэтому не падают на бок двигающиеся велосипеды и мотоциклы — их колеса сохраняют направление оси вращения. Именно поэтому Земля сохраняет направление оси своего вращения, от неизменности наклона земной оси и происходит регулярная смена времен года.
Одно из следствий закона сохранения количества движения — свойство тел сохранять состояние равномерного прямолинейного движения. Ускорение их, т. е. изменение количества движения, возможно только при наличии взаимодействия, которое часто называют силой. Этой силе ставят в соответствие равную ей по величине и противоположную по направлению силу инерции, пропорциональную произведению массы на ускорение. Вопрос о силах мы уже достаточно подробно обсудили и повторяем слово «сила» для того, чтобы сказать: с законом сохранения момента количества движения также связывают существование некоторой силы инерции.
Если угловая скорость вращения остается постоянной, а изменяется направление оси вращения (т. е. направление вектора момента количества движения), говорят о наличии специального вида ускорения, называемого ускорением Кориолиса. С кориолисовым ускорением связывают силу инерции, равную произведению момента инерции на кориолисово ускорение. Считается, что именно эта сила «сопротивляется» изменению направления оси вращения. Как и в случаях линейных перемещений, при расчете положения вращающихся тел можно обойтись без введения кориолисовых сил и все необходимые выкладки производить, основываясь на законе сохранения момента количества движения.
Стремление вращающихся тел сохранять направление оси вращения используется в конструкциях гироскопов — приборов, предназначенных для удержания заданных направлений. Гироскопы весьма широко распространены. Основная область их применения — ориентация в пространстве движущихся объектов.
Коль уж мы говорили о ракетах, имеет смысл указать, что заставить ракету лететь в заданном направлении, не обращаясь при этом к помощи внешних ориентиров (земных предметов или звезд), можно лишь с помощью гироскопа. Таким образом, современная ракета— это устройство, принцип действия которого основан на использовании закона сохранения количества движения и закона сохранения момента количества движения.
Куда направлен мир
Вращающееся тело сохраняет направление оси своего вращения. А что такое, собственно, направление? Понятие направления связано с понятием системы координат. В качестве системы координат обычно выбирают три прямые линии, три оси, взаимно перпендикулярные друг другу. Если оси выбраны, то положение предмета задают тремя числами — координатами, представляющими собой результаты измерения расстояния до каждой из осей, а направление некоторой прямой (в том числе и оси вращения) задается тремя углами, которые эта прямая составляет с каждой из осей.
В комнате осями координат можно считать линии пересечения двух смежных стенок и пола, а третья ось, направленная вертикально вверх,— линия пересечения этих стенок. Такая система отсчета неподвижна относительно Земли, но движется, причем ускоренно, вместе с Землей относительно Солнца и других звезд нашей Галактики. В тех случаях когда это движение существенно, выбирают систему отсчета, также состоящую из трех осей, направленных к каким-либо трем «неподвижным» звездам.
Принцип относительности Галилея утверждает, что абсолютной скорости не существует. Можно говорить о скорости движения относительно конкретной системы отсчета. А если наша система отсчета в свою очередь движется относительно другой системы отсчета? Скорость в этой другой системе равна сумме скорости тела в нашей системе отсчета и скорости, с которой наша система движется относительно другой системы отсчета. В специальной теории относительности утверждается, по существу, то же самое, усложняется лишь процедура сложения скоростей.
А как быть с ускорением? Рассмотрим несколько систем отсчета, движущихся друг относительно друга прямолинейно и равномерно. Такие системы отсчета называют инерциальными. Ускорение тела, если таковое имеется, будет одинаковым по отношению ко всем инерци-альным системам отсчета. В этом смысле ускорение вроде бы абсолютно.
Все сказанное справедливо по отношению к линейным скоростям и ускорениям. Что же можно сказать о вращении? Скорость вращательного движения относительная или абсолютная? С одной стороны, вроде бы относительная. Например, если представить себе вращающуюся комнату, то все расположенные в ней предметы также вращаются, но относительно комнаты остаются неподвижными. Вспомним интересный мысленный опыт, который впервые рассматривал еще Ньютон. На веревке висит ведро с водой. Закрутили веревку и дали ей возможность) свободно раскручиваться. Веревка заставляет вращаться ведро, а вращение ведра постепенно передается воде. Тот факт, что ведро вращаете», можно определить по форме водной поверхности: у неподвижного ведра водяная поверхность плоская, а у вращающегося — вода поднимается по краям и поверхность принимает форму параболоида вращения.
Степень изогнутости поверхности воды зависит от скорости вращения ведра. Абсолютна эта скорость вращения или относительна? Если относительна — значит должна существовать система отсчета, относительно которой определяется скорость. Пусть такой системой отсчета служит система с тремя осями, направленными к трем «неподвижным» звездам. Спрашивается: если оставить ведро неподвижным, а начать вращать вокруг него звезды, искривится поверхность воды или нет?
На этот вопрос современная наука пока не дает ответа. Большинство опытных данных, казалось бы, свидетельствует в пользу отрицательного ответа. Но из этого отнюдь не следует, что сам вопрос снят с повестки дня. Наоборот, это один из тех вопросов, ответы на которые» по всей вероятности, составят костяк будущей физики.
Давайте немножко пофантазируем и мы. Предположим, что поведение ведра с водой никак не зависит от поведения остальной материи Вселенной. Если так, то можно мысленно удалить всю остальную материю и считать, что законы вращения, в частности, закон сохранения момента количества движения, останутся неизменными. Поверхность воды во вращающемся ведре по-прежнему будет искривляться, а направление оси вращения сохранится. Но что значит направление в абсолютно пустом пространстве, где нет ничего, кроме вращающегося ведра? Вопрос этот далеко не праздный. Нельзя вообще говорить о направлении, если отсутствует что бы то ни было, кроме поверхности воды в том же ведре, с чем можно это направление сравнить. Не имея никаких ориентиров, как узнать, что ведро вращается?
Попробуем облегчить задачу. Предположим, в абсолютно пустом пространстве, из которого удалена вся 'материя, вы разместили три вращающихся гироскопа и объявили оси их вращения системой отсчета. Останутся ли эти направления неизменными во веки веков? Ведь тогда нашу систему следует признать абсолютной системой отсчета. А может быть, наличие одного из трех гироскопов как-то повлияет на направление осей вращения двух остальных?
И снова на эти вопросы пока нет ответов. Но задумываться над ними приходится. Теоретически установлено, что массы материи искривляют пространство. Это подтверждают эксперименты. Было обнаружено, что световой луч, проходя вблизи Солнца, искривляет свою траекторию. А если по пути такого луча пронести вращающийся гироскоп, изменится ли направление оси его вращения? Такого опыта еще никто не ставил, но есть все основания полагать, что изменится. И вообще, как можно определять направления в криволинейном пространстве?
Чтобы уж до конца запутать картину, поговорим еще вот о чем. Полагают, что для тел, движущихся со скоростями, близкими к скорости света, сокращается расстояние и замедляется течение времени. Эти утверждения обладают на сегодня достаточно убедительной суммой экспериментальных подтверждений. Но у нас было много случаев убедиться, что абсолютно твердое тело, движущееся с некоторой скоростью, всего лишь мысленная конструкция. На самом деле каждое тело представляет собой множество частиц. Мы останавливались на молекулах, но молекулы, в свою очередь, состоят из атомов, атомы — из протонов, нейтронов и электронов, протоны и нейтроны — из кварков, и что там дальше, еще не известно.
Так или иначе, нет движущихся тел, а есть множества частиц, участвующих в общем движении, которое и принимают за движение тела. Кроме того, частицы движутся каждая сама по себе, причем, как показал пример с автомобилем, скорости отдельных частиц могут во много раз превышать скорость движения центра масс. Для каждой частицы, составляющей тело, существует свое время и свое расстояние. Причем и время и расстояние различны у различных частиц. Как в таком случае следует определять центр масс? Снова вопрос, ответить на который наука пока не в состоянии.
Интересно, что все наши вопросы, список которых при желании можно сколь угодно продолжить, известны с глубокой древности и до сих пор служат предметом научного спора. Конца этому спору не видно. Сюда же относится и спор о том, чем заполнено пространство. Одно время властвовала теория эфира. Развенчанная новейшими исследованиями, и в первую очередь знаменитым опытом Майкельсона—Морли, теория эфира уступила место всевозможным полям. Но в отличие, скажем, от теории теплорода, с которой было покончено раз и навсегда, теория эфира категорически не хочет уступать своих позиций. К ней в начале нашего века возвращался Генрих Герц, к ней возвращаются некоторые современные ученые. В общем-то, понятно, почему. К чему привели исследования полей? К выводу о том, что если поле действительно существует, то оно должно быть материально, обладать всеми атрибутами материи и, конечно, массой.
Но если так, то чего, спрашивается, достигли, отменив эфир и заменив его полем? Только того, что эфир предполагался распределенным в пространстве равномерно, а интенсивность полей увеличивается по мере приближения к их источникам. Но и это не факт. Мы не знаем всех источников, а следовательно, не знаем и всех полей.
Современная квантовая электродинамика вместо понятия поля ввела особого рода частицы — кванты, которыми заполнено пространство. Надо сказать прямо, что кванты — очень привлекательные частицы. Они отвечают всем опытным данным о дискретном характере взаимодействий. Кроме того, они позволяют ответить на многие вопросы, иначе остающиеся без ответов. Например, такой вопрос: почему интенсивность гравитационных и электромагнитных взаимодействий убывает с квадратом расстояния между взаимодействующими объектами?
То, что это на самом деле так, подтверждено бесчисленным множеством опытов и не вызывает сомнения. Многочисленные теории, основывающиеся на этом экспериментальном факте, объясняют многое и прекрасно согласуются с другими опытными данными. Но почему все-таки квадрат расстояния? Неужели все дело в том, что господь бог предпочитает параболу всем другим кривым?
. Предположение о наличии квантов дает на этот вопрос прямой ответ. Представьте себе объект, из которого во все стороны равномерно испускаются крохотные частицы — кванты. Равномерно во все стороны. Если окружить такой объект мысленной сферой, то количество квантов, приходящихся в среднем в единицу времени на единицу площади поверхности этой сферы, убывает с квадратом радиуса этой сферы, т. е. с квадратом расстояния.
Ну что ж, заполняем пространство квантами. Но ведь кванты — это тот же эфир, правда, какой-то зернистый. Список заполнителей можно было бы продолжить, включив в него и море Дирака, состоящее из еще не родившихся пар электронов и позитронов. Остается вопрос, который мы поставили в заголовке главы, но так на него и не ответили. Если считать, что объект, обладающий массой, постоянно испускает гравитоны, то почему запас гравитонов никогда не иссякает? Мы не уходим от ответа на него, но подождем еще некоторое время, пока у нас появится больше данных.
Почему пространство обязательно нужно чем-нибудь заполнять? Откуда появляется уверенность, что существует нечто, требующее заполнения? Вера в то, что существует некоторое неизменное, абсолютно пустое пространство, которое там и здесь по-разному заполняется различными телами и субстанциями, зарождается в нас с первых дней жизни и неуклонно крепнет по мере приобретения опыта. Вспомните свое детство. О существовании воздуха вы узнали не сразу. Чтобы заставить вас поверить в шарообразную форму Земли и принять ее как данность, потребовалось достаточно много усилий. А пространство вокруг себя вы восприняли сразу. Именно пустое пространство, которое все больше и больше заполняется по мере приобретения опыта и знаний.
Но мы уже привыкли, что вещи, представляющиеся наиболее очевидными, часто меньше всего отвечают реальности. Не произойдет ли и с пространством нечто подобное? Ведь вера в абсолютность пространства, т. е. в то, что его свойства, например результаты измерения длины, не зависят от происходящих в нем процессов, бесповоротно поколеблена данными общей теории относительности, от которых сейчас нельзя отмахнуться хотя бы из-за огромного количества экспериментальных подтверждений. Пространство может расширяться и сокращаться, оно может искривляться и выпрямляться. Отсюда один шаг до вопроса: существует ли абсолютное пространство, которое можно заполнять или не заполнять различными субстанциями, в том числе и эфиром?
Согласитесь, однако, если стать на такую точку зрения, что абсолютного пространства не существует, что пространство есть один из атрибутов материи, таких, как масса или количество движения, что если изъять из пространства материю, то исчезнет и само пространство, так сразу сами собой отпадут все вопросы. Пространство не надо будет заполнять эфиром — оно само есть материя.
Ответов на все эти вопросы пока нет. Но обсуждать их можно и нужно. А пока подведем итоги.
Движением макроскопических тел считают такое движение множества частиц, составляющих эти тела, в котором установлен некоторый порядок и, в частности, не равны нулю сумма количеств движения и суммарный момент количества движения. Соответственно механическая энергия — это энергия частично упорядоченного движения. Преобразование тепловой энергии в механическую сопровождается частичным упорядочением, за которое надо платить. Плата выражается в том, что в подобных преобразованиях часть преобразуемой тепловой энергии остается тепловой и коэффициент полезного действия всегда меньше единицы.
ГЛАВАЗ
Электричество
У истоков
Эту главу можно было бы начать с того, как некто Фаллес из греческого города Милета, славившийся своей рассеянностью, без малого две с половиной тысячи лет назад увидел то, на что другие не обращали внимания. Фаллес заметил, что янтарь, потертый о ткань, приобретает новое свойство — притягивает к себе мелкие предметы. От греческого слова «электрон» — янтарь подобные явления получили название электрических. А можно было бы начать с того, как датчанин Г.-Х. Эрстед (1777—1851) обратил внимание на то, что намагниченная стрелка обычного компаса показывает совсем не туда, куда ей положено указывать, если где-то поблизости оказывается проводник с протекающим по нему током.
Наконец, совсем правильно было бы начать с анекдота о том, как великий Фарадей, долго таскавший в кармане катушку с проволокой и постоянный магнит, как-то «случайно» догадался подвигать магнит внутри катушки и, по его собственным словам, превратил магнетизм в электричество. Фарадей не только осуществил взаимные преобразования электрического и магнитного полей, он первым среди своих современников и предшественников сделал попытку объяснить эти преобразования.
Пространство заполнено не имеющими толщины упругими нитями, считал Фарадей. Если в такое пространство попадает электрический заряд, нити искривляются, натягиваются и передают действие заряда другим заряженным телам. Пользуясь такими нитями или, как он их назвал, силовыми линиями, Фарадей не только дал качественное объяснение такому явлению, как электромагнитная индукция, но и провел первые количественные расчеты магнитного поля. А физики знают, что даже сегодня при наличии мощных ЭВМ расчет сложного электрического поля — задача далеко не простая.
Электрон
Первооснову всех электрических явлений создают электрические заряды, которые, как известно, бывают двух знаков: положительные и отрицательные. Носителями элементарного (т. е. наименьшего из всех возможных) отрицательного электрического заряда являются электроны, а носителями элементарного положительного электрического заряда — протоны. Существует еще довольно много частиц, несущих элементарные положительные и отрицательные электрические заряды. Например, позитрон, который во всем подобен электрону, кроме знака заряда. Но эти частицы живут очень недолго и потому не принимают заметного участия в интересующих нас явлениях. Что же касается электрона и протона, и тот и другой практически вечны. Никто пока не наблюдал разрушившегося электрона, а о времени жизни протона все еще спорят ученые, но сходятся в том, что это время, выраженное в годах, изображается единицей с большим количеством нулей.
Так незаметно для себя мы пришли к еще одному закону сохранения — закону сохранения электрического заряда.
Любое физическое тело из тех, что окружают нас, или из тех, которых мы никогда не видели, но существование которых предполагаем, состоит в конечном итоге из электронов, протонов и нейтронов. Как правило, количество протонов в теле равно количеству электронов и поэтому тело остается электрически нейтральным. Наличие в нем электрических зарядов не сказывается уже на расстоянии парадка микрометров от его поверхности. Если же количество электронов не равно количеству протонов, тело приобретает свойства электрически заряженного объекта. Так ■ происходило в опытах Фаллеса, когда прк натирании янтаря о материю часть аяежтровов переходила с янтаря на ткань.
Два электрически заряженных тела притягиваются друг к другу, если их заряды разаовмеяны, в отталкиваются друг от друга, если их заряды одвоименьш, с силой, прямо пронорииональной произведению, зарядов и обратно продорциовально* квадрату расстоянии между зарядами. Обычно эти силы имею? вполне доброоора-дочную «комнатную» величину несколько десятых или сотых долей ньютона. Два тела, несущие на себе заряды 1 Кул и разнесенные друг от друга на расстояние 1 м, взаимодействуют с силой I Н. Один кулон — огромная величина заряда, и аолучвть такой заряд в лабораторных условиях, скажем, на шарике диаметром I см.— задача достаточно сложная.
Небезынтересно произвести здесь такой расчет. Металлическим шарик диаметром 1 см содержит при мерно 1025 электродов — мы берем очень приблизительную цифру, потому что, естественно, количество электронов зависит прежде всего от металла, из которого сделан шарик. Заряд электрона составляет 1,6-10г19 Кул. Следовательно, чтобы подучить заряд 1 Кул, шарик должен потерять ила приобрести дополнительно примерно лишь одну мяллмоммуш от полного запаса своих электронов. Если бы во какой-то врвчлне шарик потерял все сваи электроны, он приобрел бы положительный заряд 1 млн. Кул. Два таких шарика, разнесенных на гигантское по сравнению с атомными размерами расстояние I м, взаимодействовали бы с силой W2 Н, или около 106 млн. т.
Сто миллионов тонн' Представьте себе вебоскреб, парящий в воздухе на высоте I м над землей, а удерживает его от падения сила отталкивания от крохотного шарика. Только осознав эти цифры, можно хоть немножко оценить, какие гигантские силы действуют в так называемом микромире. Ведь источником зарядов там остаются все те же электроны и протоны.
Поле
Электрические заряды, будь то заряды отдельных электронов или заряды шариков, взаимодействуют на расстоянии. Это дает основание считать, что пространство вокруг электрических зарядов заполнено электрическим (говорят также, электростатическим) полем или, иначе, любая точка пространства, окружающего заряд, обладает тем свойством, что если поместить в ней пробный едияичный доложитедьный электрический заряд, то на него будет действовать сила, равная по величине и направлению напряженности электрического поля в данной точке.
Хочешь не хочешь, придется повторить тот же вопрос, который мы задавали в предыдущей главе. Что же, собственно, первично: заряд или поле? По этому поводу продолжаются споры. Многим вопрос кажется чисто риторическим, вроде того, что первым появилось на свет — курица или яйцо? Действительно, можно спросить и так: нужно ли считать, что электрический заряд порождает вокруг себя поле или, наоборот, только поле представляет собой объективную реальность, а заряд есть одна на численных характеристик поля, такая же, как напряженность щщ потенциал.
Что можно сказать по этому поводу? С одной стороны, электрическое поде представляет собой единствен-«ое проявление заряда. Если бы не было поля (точнее, сил взаимодействия), мы никогда не узнали бы о существовании электрических зарядов. С другой стороны, неизменность электрических зарядов не может не заставить относиться к ним достаточно серьезно.
Нельзя сбросить со счетов и следующий факт. На сегодня установлено окончательно не только теоретически, но и экспериментально: сила взаимодействия распространяется в пространстве не мгновенно, а с конечной скоростью, равной скорости света. Что означает это применительно к нашим рассуждениям?
Пусть имеется заряд, создающий поле, и в некоторой точке поля расположен пробный заряд, испытывающий на себе его силу. Предположим теперь, что заряд, порождающий поле, по какой-то причине либо изменяет свою величину, либо просто перемещается на некоторое расстояние. Пробный заряд «узнает» об этих изменениях лишь через промежуток времени, равный расстоянию, разделяющему основной и пробный заряды, поделенному на скорость света. В течение всего этого промежутка сила, действующая на пробный заряд, остается неизменной. Поскольку основной заряд изменился (теоретически он может вовсе исчезнуть), нам не остается ничего другого, как заключить, что действие на пробный заряд оказывает именно поле.
Все это далеко не умозрительные рассуждения. Современная лазерная техника позволяет передать на расстояние сгусток электромагнитного поля, мощность которого равна мощности ядерного взрыва. Этот сгусток способен произвести колоссальные разрушения, и они будут происходить тогда, когда лазер перестал действовать, а следовательно, причина, породившая электромагнитное поле, отсутствует.
Независимо от продолжающихся споров под давлением неумолимых фактов необходимо признать, что электрическое (скоро мы начнем говорить электромагнитное) поле способно существовать хотя бы в течение малых промежутков времени независимо от своего источника, сохраняя все свои свойства. К слову сказать, современная экспериментальная техника позволяет наблюдать отдельные движущиеся в пространстве отрезки светового луча, которые опять-таки есть не что иное, как сгустки электромагнитного поля.
Пробный заряд, внесенный в поле, способен перемещаться под влиянием действующей на него силы и при этом совершать работу. Поскольку та же самая работа не могла бы совершаться в отсутствие поля (у пробного заряда не было бы причины двигаться), не остается ничего другого, как признать, что электромагнитное поле обладает определенным запасом распределенной в нем энергии. Только что сделанный вывод имеет для нас определяющее значение. У энергии всегда имеется некоторый конкретный носитель. В случаях тепловой и механической энергии такими носителями были молекулы, движущиеся беспорядочно или с частичным порядком и несущие на себе каждая порцию кинетической энергии, численно равную полупроизведению массы на квадрат скорости.
Если признать все проведенные рассуждения справедливыми, а похоже, что ничего другого не остается, то окажется, что мы столкнулись с некоторым новым видом энергии, распределенным в пространстве. При этом сразу многое становится неясным. Вся ли электрическая энергия распределена в поле или она как-то делится между полем и заряженными частицами? Электрическая энергия, распределенная в поле, и энергия, связанная с зарядами, представляют собой одно и то же или это различные физические сущности? Возможны ли взаимные преобразования между различными видами энергии, и если да, то по каким законам они совершаются? Все это вопросы отнюдь не простые, и мы попытаемся до конца этой главы дать на них хотя бы частичные ответы.
Как построить поле?
В предыдущей главе мы, казалось бы, полностью разделались с силой, а в этой главе, похоже, снова вернулись к этому понятию и пользуемся им для определения характеристик электромагнитного поля. Еще раз повторяем: мы не имеем ничего против понятия силы. Очень часто оно оказывается весьма плодотворным. Понятием силы пользуются авторы самых современных учебников физики. Но важно отдавать себе отчет и в другом. Существует наука описательная (говорят, феноменологическая) и существует наука фундаментальная, ставящая себе цель не столько описать те или иные явления, Сколько вскрыть их взаимосвязи, понять причины и следствия. Обе части составляют вместе единое целое и не мыслимы одна без другой. Понятие силы удобно при феноменологических описаниях, хотя бы потому, что оно позволяет относительно легко перекинуть мостик от описываемого явления к нашим ощущениям. Но понятие силы совершенно непригодно, когда следует выявить взаимосвязь явлений, поскольку, поверив в физическую сущность, которая может произвольно исчезать и появляться, теряешь основу для логических рассуждений. Остается лишь повторять: мир таков, потому что он таков.
Представьте себе два электрических заряда, разнесенных на очень большое расстояние друг от друга. Если заряды одноименные, они взаимно отталкиваются и сблизить их можно, лишь преодолевая это отталкивание. Если все-таки их сблизить, а потом отпустить, заряды вновь разойдутся на весьма большое (теоретически бесконечное) расстояние. При этом будет проделана определенная работа. Что это значит? Система, состоящая из двух зарядов, находящихся на заданном расстоянии друг от друга, обладает энергией, численно равной работе, которая обязательно совершится, если заряды предоставить самим себе. Можно даже сказать, во что превратится эта работа. Разлетаясь в разные стороны, заряды приобретут скорости, а следовательно, и кинетическую энергию.
Итак, если предоставить самим себе два электрических заряда, находящихся на заданном расстоянии друг от друга, то в конечном итоге они приобретут кинетическую энергию. Энергия системы из двух зарядов и равна этой суммарной кинетической энергии. Где хранится эта энергия? Поскольку с самими зарядами как при сближении их, так и при их самопроизвольном разлете ничего не происходит, ясно, что энергия хранится в поле, образованном двумя одноименными зарядами, находящимися на определенном расстоянии друг от друга.
Как же энергию подсчитать иначе? Зная, что взаимодействие зарядов пропорционально произведению их величин и обратно пропорционально квадрату расстояния между ними, можно вычислить, что энергия системы из двух зарядов равна произведению их величин, деленному на расстояние между ними. В случае разноименных зарядов все точно так же, только на удаление зарядов на бесконечно большое расстояние друг от друга нужно затратить определенную работу. По этой причине энергии двух разноименных зарядов, находящихся на данном расстоянии друг от друга, присваивают знак минус.
Пойдем дальше. Добавим к системе из двух зарядов, первого и второго, находящихся друг от друга на некотором расстоянии, третий заряд. Электрические поля обладают очень важным свойством, получившим название свойства суперпозиции. В чем оно состоит? Третий заряд взаимодействует с первым так, как будто второго не существует, а со вторым так, как будто не существует первого. Это значит, энергия системы из трех зарядов равна произведению величин первого и второго зарядов, поделенному на расстояние между первым и вторым зарядами {будто третьего не существует), плюс произведение величин первого и третьего зарядов, поделенное на расстояние между первым н третьим зарядом (будто второго не существует) плюс произведение величин второго и третьего зарядов, поделенное на расстояние между вторым и третьим зарядом (будто первого не существует). Уверенно суммируем полученные значения, потому что знаем: энергия всегда аддитивна. Знаем мы и то, что с зарядом никогда ничего не случается и поэтому, например, величина первого заряда останется неизменной независимо от того, с каким количеством других зарядов он взаимодействует.
Теперь без всяких колебаний можем утверждать, что энергия системы, состоящей из любого числа зарядов, произвольным образом расположенных в пространстве, равна сумме энергий попарных взаимодействий этих зарядов. При составлении такой суммы, естественно, следует учитывать знаки слагаемых. Для каждой пары одноименных зарядов энергия берется со знаком плюс, а для каждой пары разноименных зарядов — со знаком минус. Итак, электрическое поле произвольного числа произвольно расположенных зарядов содержит в себе энергию. Пока мы установили, что если заряды неподвижны, эта энергия равна той работе, которую потребовалось затратить, чтобы разместить заряды по своим местам.
Мы освежили в памяти хотя и известный из курса средней школы, но довольно-таки сухой материал. Чтобы немножко развеяться, предлагаем поработать физически. Но чтобы для такой работы был повод, сначала ответьте на вопрос. Вот построили вы систему зарядов, посчитав при этом работу, а потом дали возможность зарядам разбежаться в разные стороны. Заряды (счита-" ем для простоты одноименные) разбегутся на очень далекие друг от друга расстояния и при этом вся затраченная вами работа превратится в кинетическую энергию движущихся зарядов. Так что же, теперь энергия (кроме уже упомянутой кинетической) разбежавшейся1 системы равна нулю?
С одной стороны, вроде бы да, ведь работа, которую в свое время затратили на стаскивание зарядов в систему, полностью перешла в кинетическую энергию, а дальше зарядам разбегаться, кажется, некуда — они и так на бесконечных расстояниях друг от друга. С другой стороны, каждый заряд окружен электрическим полем. Так что, это какое-нибудь другое поле?
Конечно, нет. Чтобы убедиться в этом на собственном; опыте, постройте сами электрический заряд. Пусть где-то очень далеко имеется склад электрических зарядов. .,3*1 паситесь терпением и начните таскать их оттуда малена* \ кими порциями в заданное место, ну, например, в комнату, где вы находитесь.
Первую порцию вы принесете беспрепятственно, ведь в комнате нет никаких других зарядов и вашей порции не с чем взаимодействовать. Начиная со второй порции, задача осложняется. Чтобы принести ее, надо преодолеть взаимное отталкивание уже принесенной и вновь подносимой порции. Поместить их в одно и то же место также нельзя — мы установили, что если расстояние между зарядами равно нулю, то на создание такой системы нужно затратить бесконечно большую работу. Складывайте порции зарядов на некоторых расстояниях друг от друга в пределах сферы данного радиуса. Принесли вторую порцию, пошли за третьей. Ясно, что третью порцию нести труднее, чем вторую, потому что противодействует теперь заряд, состоящий из двух порций. Четвертую порцию соответственно нести еще труднее, чем третью, и т. д. Но не отчаивайтесь. Чем тяжелее труд, тем приятнее потом отдых. А отдых наступит, когда вы создадите заряд конечной величины Q.
Когда заряд наконец создан, вы можете сесть и подсчитать всю проделанную работу. Если работу, затраченную на перенос первой порции, принять за единицу, то на перенос второй порции будут затрачены две такие единицы, на перенос третьей — три и т. д. Не забывайте еще одно обстоятельство: по мере заполнения сферы вы размещаете порции, вообще говоря, на неодинаковых расстояниях друг от друга. В результате на постро-
О2
ение заряда величиной Q вы затратили 3/5 единиц
работы, где R — радиус заполненной зарядами сферы. Именно такой будет энергия электрического поля одиночного заряда.
Начинаются трудности
Рассмотрим факт, который представляет собой на сегодня, пожалуй, единственное уязвимое место в кажущемся безупречным здании квантовой электроники. Вот перед вами электрон. Он имеет отрицательный элементарный электрический заряд и, следовательно, окружен электрическим полем. В поле сосредоточена энергия, и довольно просто подсчитать, что плотность энергии в каждой точке пропорциональна квадрату напряженности поля в этой точке. Напряженность поля, со своей стороны, убывает обратно пропорционально квадрату расстояния от центра электрона до данной точки.
Зная все это, вы можете без всяких трудов вычислить полное количество энергии, содержащейся в пространстве, окружающем электрон. Если предположить, что электрический заряд равномерно распределен по
поверхности электрона, то это количество равно g— TV
А если считать, что электрический заряд равномерно распределен по всему объему электрона, то полное ко-
5
личество энергии равно—-—, где qe — заряд электрона;
те — радиус электрона, иначе говоря, радиус некой шаровой поверхности, отделяющей то, что мы собираемся называть электроном, от того, что мы по тем или иным соображениям электроном не считаем. Оговоримся сразу: мы присвоили электрону шарообразную форму без малейших на то оснований. Но если даже это не так, если электрон больше похож на кубик или кольцо, то изменятся лишь коэффициенты, а полное количество энергии, распределенной в пространстве вокруг электрона, останется пропорциональным квадрату заряда, поделенному на некую величину, которую можно понимать как размер электрона.
Если имеется какое-то количество энергии, то, согласно знаменитой формуле Эйнштейна, которая сегодня не вызывает ни малейших сомнений, это количество энергии обладает массой. В частности, масса электрического поля, окружающего электрон, или, если вам по какой-либо причине не хочется произносить слово «поле», то масса, распределенная в пространстве, окружающем электрон, равна где с — скорость света; а — некоторый коэффициент (обычно 2/з или 3/5), зависящий от того, какой вы представляете себе форму электрона и как вы представляете себе распределение заряда внутри электрона. И вот теперь внимательно посмотрите на формулу
Во-первых, какими бы вы ни выбрали величины а и ге, электромагнитное поле всегда обладает массой. Сам электрон тоже обладает массой, что подтверждено огромным количеством опытов. Какая же часть массы электрона принадлежит собственно электрону, а какая часть — окружающему его полю? Ответ на это г вопрос зависит от того, какой мы представляем себе величину ге. Если г* относительно велико, можно считать, что большая часть (но не вся) массы электрона принадлежит собственно электрону, а меньшая ее часть — полю. Полагая форму электрона шарообразной с радиусом, равным примерно 1,7-10-13 см, мы приходим к интересному выводу. Сам по себе электрон вообще не обладает массой, а вся его масса, кстати сказать, равная 9,1-Ю-28 г, полностью распределена в окружающем пространстве. Конечно, вам не терпится задать вопрос: что же такое тогда электрон? Не станем, однако, торопиться — самое интересное нас ждет впереди.
Предположим, что электрон — шар, а радиус этого шара меньше, чем 1,7-10~13 см. Тогда масса электрического поля оказывается больше массы электрона. Если радиус электрона равен нулю, то масса электрона оказывается равной бесконечности. Бессмыслица? Не торопитесь с выводами. В том-то и дело, что об этом можно было бы и не говорить, если бы не одно «чрезвычайно досадное» обстоятельство. Большинство имеющихся на сегодня теоретических положений и опытных данных свидетельствует как раз о том, что электрон не имеет размеров — его радиус равен нулю. Известный физик, лауреат Нобелевской премии Ричард Фейнман писал по этому поводу:
«Мы вынуждены прийти к заключению, что представление, будто энергия сосредоточена в поле, не согласуется с предположением о существовании точечных зарядов. Один путь преодоления этой трудности — это говорить, что элементарные заряды (такие, как электрон) на самом деле вовсе не точки, а небольшие зарядовые распределения. Но можно говорить и обратное: неправильность коренится в нашей теории электричества на очень малых расстояниях или в нашем представлении о сохранении энергии в каждом месте порознь. Но каждая такая точка зрения все равно встречается с затруднв ниями. И их никогда еще не удавалось преодолеть; существуют они и по сей день».
Такова первая, но далеко не последняя трудность на нашем пути. К этому добавим еще кое-что. Когда вы строили систему из одноименных зарядов, они, будучи предоставленными самим себе, тут же разлетались. А вот электрон не разлетается. Никому никогда не приходилось наблюдать половинку или четвертушку электрона. Спрашивается, что удерживает заряд электрона от распадения на части? Если «внутри» у электрона какой-то твердый шарик, то как увязать это с предположением о точечных размерах? Ведь тогда получится бесконечно большая плотность материи.
Ну а что говорят об этом эксперименты? Опыты по взаимодействию протонов с электронами показали, что при расстояниях между ними, больших Ю-13 см, эти частицы ведут себя как точечные электрические заряды и подчиняются закону Кулона. А при меньших расстояниях все обстоит не так. При расстоянии порядка 10~и см взаимодействие ослабевает в 10 раз. Значит, либо электрон, либо протон — не точка, а заряд, распределенный в конечном объеме. Ученые склонны полагать, что таким свойством обладает именно протон. Кстати, из этих же опытов можно сделать и другой вывод: электрон проникает внутрь протона. Ставились и такие опыты, когда протоны пронизывались другими частицами насквозь Вывод однозначный: никакого твердого, монолитного вещества в природе не существует.
Но все же, что такое электрон? Конечно, замавчиво предположить: то, что мы считаем электроном, только мысленная точка, центр масс. Сама масса электрона, она же энергия, распределена в электрическом поле, окружающем эту точку. Но такое предположение не вяжется с другими известными свойствами, например с наличием у электрона момента количества движения — спина. Обо всем этом мы еще поговорим, а пока дадим возможность читателю немножко пофантазировать.
Электрический ток
Наверное, не стоит излагать здесь содержание учебника физики, поэтому ограничимся короткой справкой. Электрическим током называется движение электрических зарядов. Соответственно силой тока называют количество зарядов, прошедших за единицу времени через поперечное сечение проводника. Ток 1 А — это такой ток, когда за 1 с через поперечное сечение проводника проходит 1 Кул.
Но только давайте сразу внесем ясность. Во-первых, движение каких зарядов? Мы установили, что реальными носителями электрического заряда могут быть либо электроны, либо протоны. Другие заряженные частицы живут настолько мало, что, во всяком случае, в явлениях, описываемых в этой главе, они никакого участия не принимают. Во-вторых, какое движение? Если электроны или положительно заряженные ионы (мы не оговорились, положительный заряд иона — это заряд протонов атомного ядра) движутся совершенно беспорядочно, никакого тока нет. Ток возникает тогда, когда движение становится хотя бы частично упорядоченным, т. е. когда среднее количество движения всех заряженных частиц оказывается отличным от нуля.
Здесь в точности та же ситуация, как и в рассмотренных раньше примерах с теплотой и механическим движением. Соответственно и понятие электрического тока можно определить по-другому. Можно сказать, что сила электрического тока равна количеству заряженных частиц, участвующих в процессе, умноженному на среднюю скорость этих частиц. При вычислении средней скорости нужно учитывать реальные скорости, причем скорости положительно заряженных частиц брать со знаком плюс, а отрицательных — со знаком минус.
Протекание электрического тока по проводнику сопровождается преобразованием электрической энергии в тепловую. До чего же завидно становится, когда думаешь, какой простой и прозрачной была физика XIX века. Вот, например, электрический ток. Движется по проводнику рой маленьких твердых блестящих шариков — электронов. Двигаясь, они сталкиваются тоже с твердыми блестящими, но побольше размером, шариками — атомами. Что случается, когда сталкиваются два шарика? Тот, который двигался, отдает часть своей энергии и замедляется, а тот, который был неподвижен (атом), начинает двигаться. Поскольку заранее никак не угадать, с какой стороны и в какой бок ударит по атому электрон, то и движение атомов оказывается совершенно беспорядочным. А это и есть тепловое движение.
Прелесть, а не картина! До того все хорошо, что даже в самых современных книгах мы нет-нет да и пытаемся объяснить электрическое сопротивление именно таким образом. Но вот ведь беда какая! Охладим этот самый проводник до температуры, близкой абсолютному нулю. Что произошло? Электроны остались, атомы остались и даже в еще большей степени находятся на своих местах, чем в случае нагретого проводника. Под действием электрического поля электроны могут двигаться — им до температуры никакого дела нет. Однако электрическое сопротивление, правда, не у всех проводников, но у многих, падает до нуля. Проводник превращается в сверхпроводник. Почему-то электроны перестают сталкиваться с атомами.
Скорость электрона, движущегося в проводнике, примерно 1 см/с. На пути в 1 см электрон встречает около 100 млн. атомов и не сталкивается ни с одним. Скажем, более того: на сегодня единственная возможность как-то объяснить многочисленные явления, связанные с поведением электронов в твердом теле, состоит в том, чтобы полностью отказаться от взаимодействия электронов с атомами. Холодный проводник или нагретый — электроны свободно проходят через всю чащу атомов или, точнее, атомных ядер, не взаимодействуя ни с одним из них. 0;»;.Цо з>лектрическое сопротивление все же есть? Да, есть.' И причина в том, что электроны взаимодействуют с особого рода частицами, называемыми фононами.
В кристаллическом твердом теле атомные ядра довольно прочно закреплены в определенных местах, называемых узлами кристаллической решетки. Они могут совершать лишь малые колебания относительно своих положений равновесия. Тем не менее они взаимодействуют друг с другом. Стоит одному ядру как-то изменить свое состояние, все остальные это сразу «чувствуют». Чувствуют потому, что ядра непрерывно обмениваются фононами. Чем выше температура, тем больше фононов, тем чаще взаимодействуют с фононами электроны, передавая им свою энергию. Но почему электроны сталкиваются с фононами (которых, может, на самом деле п не существует) и не взаимодействуют с ядрами? Опять-таки единственное разумное объяснение этого обстоятельства таково: не взаимодействуют потому, что электрон — это все что угодно, но не твердый шарик.
В начале нашего века ученые вынуждены были смириться с мыслью, что электроны, как и вес прочие элементарные частицы, имеют двойственную природу. Где-то они проявляют себя как твердые материальные частицы, а где-то как волновые процессы. Мы не станем сейчас обсуждать вопрос о том, насколько такое представление о двойствености элементарных частиц проясняет физическую картину. Вместо того чтобы говорить, что электрон когда-то обладает свойствами частицы, а когда-то свойствами волны, можно сказать просто и ясно: электрон обладает свойствами электрона, а дальше описать эти •свойства. Описать их на языке математики, как это повсеместно принято в современной науке, и не пытаться найти аналогию с предметами, знакомыми на основании свидетельств наших органов чувств, по той простой причине, что такой аналогии нет.
Нравится нам это или не нравится, но современная физика не оставляет никаких сомнений: элементарные частицы — не станем забывать, что из них, и только из них, создан мир,— не имеют аналогов среди привычных нам вещей. Они не почти шарики, и не наполовину шарики, и не чуть-чуть шарики, они просто не шарики. Поэтому движущиеся в проводнике электроны не взаимодействую* с относительно большими и достаточно хорошо знакомыми нам (во всяком случае, нам так кажется) атомными ядрами и при этом взаимодействуют с трудно представимыми фононами.
Но факт есть факт: электроны передают часть своей энергии фононам, фононы, в свою очередь, отдают эту энергию ядрам. Запас тепловой энергии проводника увеличивается. В этом, кстати, причина и другого явления. Предположим, что внутри проводника создано электрическое поле. С каждой точкой поля связаны его напряженность и потенциал, численно равный работе по перенесению единичного пробного заряда из бесконечности в данную точку.
Будучи заряженным объектом, электрон испытывает со стороны поля силу, равную заряду электрона, помноженному на напряженность поля. Под действием этой силы, как следует из второго закона Ньютона, электрон должен двигаться ускоренно. Но ускоренное движение — такое движение, когда скорость увеличивается с течением времени. Значит, и сила тока, пропорциональная скорости, должна увеличиваться с течением времени. А вот на практике ничего подобного не наблюдается.
Если поле в проводнике постоянно, то и ток постоянный,.
Чем это объясняется? Тем, что не vcneeT электрон как следует разогнаться в поле — тут же сталкивается с фононом. Отдает ему свода энергию, снова разгоняется, опять сталкивается и т., д.. В- результате средняя скорость электрона да и всех его, собратьев, остается пхэстоаюной, а в проводнике выделяется тепло. Постоянное электрическое поле вызывает появление в проводнике (и только в проводнике, скажем, в вакууме все выглядело, бы иначе) постоянного электрического тока. Чем больше в. проводнике фононов, тем чаще столкновения, тем меньше ток, тем сильнее нагрев. В, этом! смысле состояние- юро>-водника принято описывать его электрическим соиротив!-леннем. Электрическое поле в проводнике характеризуется не напряженностью, а потенциалом, что,, в общем-та, ничего, не меняет,, а еще точнее, разностью потенциалоа на концах проводника.
Так вот, если при разности потенциалов на ковдах проводника 1 В сила тока в проводнике оказывается равной 1 А, то сопротивление такого проводника принимают равным 1 ому. Сила тока в проводнике прямо пропорциональна разности потенциалов и обратно пропорциональна сопротивлению. Эта истина, получившая название закона Ома, известна всем с детства! Кроме того, в проводнике выделяется тепло при передаче энергии от электронов фононам.
Всюду поперек
Любой электрический заряд, движущийся в пространстве, вызывает появление в этом пространстве еще одного поля — магнитного. Странное это поле! Электрическое поле можно обнаружить всегда, когда в него вносят электрический заряд, а магнитному полю одного заряда мало. Как обнаружить наличие магнитного поля? Нужно, чтобы этот заряд (по-прежнему назовем его пробным) двигался с некоторой скоростью. С каждой точкой магнитного поля связывают векторную величину, называемую магнитной индукцией и равную по величине и направлению той силе, с которой магнитное поле действует на движущийся единичный электрический заряд.
Представьте себе игрушечный кубик. Вот он перед вами, повернут к вам какой-то гранью, значит, видите вы, в общем-то, не кубик, а квадрат. Задержите внимание на левом нижнем углу квадрата. Применительно к кубику это вершина. Из нее отходят три ребра: одно — вправо, второе — вверх, а третье — назад. Так вот, если направление скорости заряда совпадает с ребром вправо, а направление векторной величины, называемой магнитной индукцией, совпадает с ребром назад, то направление силы, действующей на заряд, совпадает с ребром вверх. Так обстоит дело с направлениями этих трех векторных величин. Что касается силы, то она равна произведению трех величин: самого заряда, его скорости и магнитной индукции. Вы, конечно, помните, что за направление электрического тока принимается направление движения положительных электрических зарядов. Если ток образуется отрицательными зарядами, его направление противоположно направлению движения зарядов. То же самое справедливо и для магнитной индукции.
В электрическом поле его напряженность совпадает по направлению с силой, действующей на пробный заряд. В случае магнитного поля магнитная индукция перпендикулярна направлению действия силы. Так сложилось исторически — вектор магнитной индукции решено было направлять в ту сторону, куда отклонялась магнитная стрелка в опытах Эрстеда. Сейчас можно было бы придумать другое определение магнитной индукции, но это мало что дало бы, поскольку все равно сила, действующая на заряд, остается направленной перпендикулярно направлению движения заряда. Такое уж это интересное поле — магнитное: оно направлено всюду поперек.
Как образуется магнитное поле? От читателя потребуется сейчас пространственное воображение. Положите перед собой лист бумаги и в любом его месте поставьте карандашом точку. Пусть это будет точка, в которой надо определить магнитную индукцию. Представьте, что какой-то положительный электрический заряд движется вдоль вертикальной прямой линии снизу вверх. И пусть эта линия пройдет через лист бумаги в какой-то другой точке. Соедините карандашом эти две точки прямой линией, а из той точки, в которой определяется индукция, проведите вторую линию, перпендикулярную первой и направленную от вас. Это и есть направление магнитной индукции поля, порождаемого движущимся зарядом.
Что касается величины магнитной индукции, то она прямо пропорциональна величине заряда и его скорости и обратно пропорциональна квадрату расстояния от заряда до точки, в которой определяется индукция. Очень важно, что именно квадрату расстояния. Это роднит магнитную индукцию с напряженностью электрического поля. А в остальном, как видите, снова все повсюду «поперек». Чтобы быть совсем строгим, следует добавить, что пооизведение величины заряда и его скорости, поделенное на квадрат расстояния, нужно еще помножить на синус угла между направлением движения заряда и ^линией, соединяющей местоположение заряда с точкой, в которой определяется индукция.
Так что же такое магнитное поле? Коротко можно сказать, что это пространство, в котором обнаруживается взаимодействие двух движущихся электрических зарядов. Достаточно одному из них, любому, стать неподвижным, как магнитное взаимодействие между ними немедленно прекратится. И еще интересное свойство. Посмотрите на ваш лист бумаги и проведите на нем окружность произвольного радиуса с центром в точке, где траектория движущегося заряда проходит через лист. В какой бы точке этой окружности вы ни определили магнитную индукцию, она всегда направлена по кёсатёЛЬнОй; и, обойдя вокруг, вы вернетесь в ту же точку, откуда начали. Говорят, что линии магнитного поля не имеют источников в отличие от поля электрического, у которого все векторы напряженности в конечном итоге выходят из точки, где расположен заряд. Часто считают, что магнитные силовые линии Земли выходят из магнитных полюсов. Это неверно. Магнитные силовые линии пронизывают земной шар, а магнитные полюса — это лишь точки, через которые проходит наибольшее число линий. Что из этого следует? Не существует никаких магнитных зарядов, в том числе и одиночных пробных.
Это обстоятельство не дает покоя некоторым ученым. В периодической печати появляются сообщения о том, что то ли уже открыт, то ли вот-вот будет открыт так называемый магнитный монополь — магнитный заряд одного знака. Однако вскоре выясняется, что это была ошибка. Сегодня можно уверенно сказать, что никаких монополей пока не найдено. Более того, вероятность обнаружить магнитный монополь весьма мала.
Обладает ли магнитное поле энергией? Если да, то какой? Все дело опять-таки в свойстве магнитного поля быть всюду «поперек». Энергия — это способность совершать работу, а работа численно равна произведению силы на отрезок пути, пройденный под действием этой силы. Так вот, в магнитном поле сила действует в направлении, перпендикулярном к направлению движения заряда, и ничто, кроме заряда, наличие магнитного поля не ощущает. Изменится направление движения заряда — изменится и направление силы. Ну а ясно, что сила, направленная поперек направления движения, работы совершить не может — вспомните лебедя., рака и щуку!
Приведем интересный пример. Сейчас все большее распространение получает транспорт на магнитной подвеске. Железнодорожные вагоны на магнитной подвеске уже вышли из стен лабораторий и в самом скором, времени появятся на стальных магистралях. Стоит задуматься, насколько это важно. Вся история развития транспорта—это история борьбы с трением. Борясь с трением, в свое время человек изобрел колесо,, а затем и подшипники качения. Этой же цели служит рельс и асфальтовое покрытие шоссейных дорог. Борьба с трением снабдила транспортные средства крыльями и. перевела их в воздушную стихию. Водный транспорт также постепенно «взобрался» на подводные крылья, а затем на воздушные подушки. Но полностью от трения избавиться так и не удалось. Ведь и у самолета большая часть тяги двигателя затрачивается на преодоление сопротивления воздуха.
А тут вагон, который абсолютно ничего не касается, удерживается на весу исключительно силами магнитного поля. Вы. скажете, что трение о воздух все-таки остается. Правильно. Но если самолету и кораблю, на воздушной подушке воздух необходим, то вагону на магнитной подвеске воздух ни к чему. С наличием воздуха попросту приходится мириться: если понадобится, то вагон на магнитной подвеске можно поместить в трубу, а воздух оттуда выкачать.
Расчеты' показывают, что на создание магнитного поля, которое удерживало бы на весу движущийся железнодорожный вагон (представьте себе эту грандиозную картину!), нужно затратить мощность всего 60 Вт, т.е. такую же, какую потребляет одна не слишком яркая электрическая лампочка. В этом нет ничего удивительного, ведь силы поля, удерживающие вагон на весу, направлены снизу вверх. Но в этом направлении вагон не движется. А если не движется, значит, магнитное поле не совершает никакой работы. Не совершает работы — не нужны затраты энергии. Еще раз обратим ваше внимание, ведь это так интересно: железнодорожный вагон несется вперед, ничего не касаясь! И при этом теоретически не требуется никаких затрат энергии. Не надо даже периодически менять стершиеся подшипники у колес, которых нет, или обновлять смазку. Затраты энергии нужны лишь на трогание и торможение и, конечно, на компенсацию потерь (на тепло) в проводах, подводящих электрический ток.
Но как же так — никаких затрат? А 60 Вт? Они тратятся лишь на поддержание вагона в вертикальном положении. Тут мы сталкиваемся с одним примечательным свойством, которым обладают и магнитное поле, и электрическое, и вообще все поля, у которых сила взаимодействия обратно пропорциональна квадрату расстояния. Заключается оно в том, что, как система, составленная из одних электрических зарядов, так и система, составленная из одних проводников с током, оказывается неустойчивой. Если взять только электрические заряды, положительные и отрицательные, то невозможно найти такую их конфигурацию — взаимное расположение, при котором они оказались бы в равновесии. Как ни располагай такие заряды, стоит предоставить их самим себе, они тут же придут в движение. Оно закончится лишь тогда, когда заряды либо соберутся все вместе, либо разлетятся на бесконечные расстояния друг от друга. То же самое справедливо и для магнитного поля. Вы можете легко убедиться в этом, взяв два постоянных магнита и стальной шарик. Сколько бы вы ни мучились, вам не удастся найти такое положение, чтобы шарик оставался неподвижным между двумя магнитами. Он обязательно в конце концов притянется к одному из них, и его дальнейшее движение прекратится за счет чисто механического контакта.
Подвесить вагон только с помощью системы постоянных магнитов, какими бы мощными эти магниты ни были, невозможно. Он обязательно или упадет, или притянется к одному из магнитов, а тогда возникнет механическое соприкосновение и, конечно, трение. Но вагоны на магнитной подвеске существуют! И уже сегодня перевозят людей и грузы. Делается вот так. Вагон снабжают специальным прибором — датчиком, который измеряет высоту расположения вагона. Измеряет очень точно, с ошибкой, не превышающей доли миллиметра. Сигнал от датчика управляет силой электрического тока, образующего магнитное поле подвески.
Стоит вагону чуточку опуститься, немедленно подается сигнал — магнитное поле усиливается и вагон подтягивается вверх. Наоборот, стоит вагону чуточку подняться, снова сигнал — поле ослабляется и вагон опускается. Все это, вместе взятое, называется следящей системой, а в результате вагон остается подвешенным и лишь слегка подрагивает: вверх-вниз-вверх-вниз. На эти-то подрагивания и затрачиваются работа, а следовательно, и энергия — те самые 60 Вт. Как тут снова не вспомнить штангиста. У него все происходило точно так же.
Вроде бы напрашивается вывод, что постоянное магнитное поле не совершает и не может совершить работу, а вот переменное... Но не станем торопиться. Рассмотрим еще одно интересное свойство, в данном случае касающееся одновременно и электрического и магнитного полей. Сначала немного теории. Пусть где-то в пространстве имеются два постоянных поля: электрическое, например между пластинами заряженного конденсатора, и магнитное, например между полюсами подковообразного постоянного магнита. Магнит и конденсатор расположены таким образом, что напряженность электрического поля повсюду направлена перпендикулярно магнитной индукции.
Что показывает теоретический анализ? В пространстве, занятом такими полями, равномерно распределено количество движения. Каждый кубический сантиметр такого пространства обладает количеством движения, величина которого пропорциональна произведению напряженности электрического поля и магнитной индукции. Направлено это количество движения опять-таки поперек, т. е. перпендикулярно плоскости, в которой лежат векторы напряженности электрического поля и магнитной индукции.
Но откуда же количество движения, если и электрическое и магнитное поля постоянные? Здесь нет никаких объектов, которые бы двигались, более того, величины, характеризующие систему, не меняются. Свыкнуться с тем, что количество движения все-таки имеется, чрезвычайно трудно даже человеку, искушенному в физике. Количеством движения, например, обладает свет. Но световой луч все-таки движется! А здесь полное постоянство. Причем, заметьте, что если между пластинами конденсатора, как говорят, нет утечки, изоляция идеальная, то система из конденсатора и магнита может просуществовать хоть миллион лет и ничто в ней не изменится. Электрическое и магнитное поля останутся теми же самыми. Может, здесь вкралась какая-нибудь ошибка?
Достоверность всякой теории подтверждается экспериментом. Такой эксперимент был поставлен. Конденсатор, состоящий из двух цилиндров — внутреннего и наружного, подвесили на тонкой шелковой нити между полюсами постоянного магнита. Конденсатор зарядили, и, как следовало ожидать, ничего не произошло. В пространстве между цилиндрами действовало, во-первых, электрическое поле, направленное к оси цилиндров, во-вторых, магнитное поле, направленное снизу вверх. Как полагали теоретически, всюду в пространстве между цилиндрами существовал вектор количества движения, направленный против часовой стрелки. Поскольку пластины конденсатора имели форму цилиндра, то здесь речь шла о моменте количества движения.
Система оставалась в покое сколь угодно долго, и ничего в ней не менялось. Изоляция между пластинами конденсатора была хорошей, а постоянный магнит — на то он и постоянный. Но вот разрядили конденсатор, причем не прикасаясь к пластине, а осветив воздух между пластинами рентгеновскими лучами и сделав его тем самым проводящим. Исчезло электрическое поле, исчез и момент количества движения. Но как может исчезнуть момент количества движения? Ведь он подчиняется закону сохранения. Правильно, не может. Поэтому цилиндры на нитке начали вращаться. Момент количества движения, на этот раз обычного механического движения, оказался равным теоретически рассчитанному моменту, пропорциональному, как мы и говорили, произведению напряженности электрического поля и магнитной индукции. Теперь приходится признать, что электрическое и магнитное поля, направленные перпендикулярно друг другу, обладают магнитной индукцией.
Так что же все-таки движется?
Чтобы не оставалось никаких сомнений в том, что электрический ток — это действительно движение электрических зарядов, в частности электронов, в 1916 году американцы Стюарт и Толмен поставили такой опыт. Они раскрутили катушку с проводом, а потом быстро ее затормозили. В момент торможения присоединенный к концам провода гальванометр зарегистрировал прохождение электрического тока. Казалось бы, что может быть убедительнее? Раскручиваем катушку с проводом, и находящиеся в проводе электроны раскручиваются вместе с катушкой. Потом катушка резко тормозится. Но электроны в проводнике свободны. После того как катушка остановилась, они продолжают двигаться по инерции, как положено материальным объектам, обладающим массой, н создают электрический ток.
Стюарт и Толмен не первыми обнаружили факт появления тока. Еще до них, в 1913 году это сделали русские физики Л. И. Мандельштам и Н. Д. Папалекси. Но Стюарт и Толмен в своем опыте определили очень важную величину: отношение заряда электрона к массе электрона. Эта величина также определялась до них в других опытах, но важно было то, что результаты Стюарта и Толмена совпали с ранее полученными значениями.
Нам хотелось бы предостеречь вас. Опыт Стюарта и Толмена, казалось бы, восстанавливает в нашем сознании старую картину. Проводник наполнен маленькими шариками — электронами. Раскрутили катушку, раскрутились и шарики. Затормозили катушку — шарики продолжают двигаться но инерции. Почему? Потому что, раскручивая катушку, сообщили шарикам определенный запас кинетической энергии, а энергия не исчезает бесследно. После остановки катушки шарики сохраняют свой запас кинетической энергии, т. е. движутся с определенной скоростью. Количественное совпадение результатов Стюарта и Толмена с результатами других опытов свидетельствует о том, что каждый электрон обладает именно тем запасом кинетической энергии, который был ему сообщен при раскручивании катушки.
Поразительно, до чего все представляется простым, когда только скользишь по поверхности явлений. Но как же быть с магнитным полем? Откуда оно берется, если вся энергия движущегося электрона — это механическая кинетическая энергия, равная полупроизведению его массы на квадрат скорости? Именно такую величину энергии и дает опыт Стюарта и Толмена.
С одной стороны, движущийся электрон обладает не только кинетической энергией, но и количеством движения, равным произведению массы электрона на его скорость. С другой стороны, электрон, как и всякий электрический заряд, окружен электрическим полем, напряженность которого направлена вдоль линий, исходящих из электрона как из центра. Возьмите ваш лист бумаги (мы надеемся, что вы его еще не выбросили) и снова представьте себе, как электрон, а еще лучше положительный заряд — тогда вам не придется думать о знаках — движется вдоль прямой линии, пронзающей лист бумаги снизу вверх и перпендикулярной к его плоскости. Представьте себе, что заряд именно в сию минуту проходит сквозь лист бумаги. Проведите прямую линию из точки, где заряд протыкает бумагу, в данную точку. Продолжите ее и пририсуйте на кончике стрелку. Это и есть вектор напряженности электрического поля для описанной ситуации.
Ну а вектор магнитной индукции? Мы уже не раз имели случай убедиться: он исходит из той же точки, но перпендикулярен к линии, соединяющей точки, т. е. перпендикулярен к вектору напряженности электрического поля. А вектор количества движения? При таких условиях он перпендикулярен к листу бумаги и направлен в ту же сторону, куда движется заряд. Итак, электромагнитное поле, окружающее движущийся заряд, обладает собственным количеством движения, причем если аккуратно посчитать, то получается, что полное количество движения всего поля равно массе этого поля (помните, мы однажды установили, что поле облаоает массой), помноженной на скорость движения заряда.
Так что же обладает количеством движения? Электрон или поле? И еще один вопрос. Из приведенных рассуждений вроде бы следует, что электромагнитное поле, в частности его магнитная составляющая, обладает массой. Действительно, есть магнитная составляющая — есть количество движения, нет магнитной составляющей — нет количества движения. Обладать массой — все равно что обладать энергией. Вообще, давайте постепенно привыкать, что масса и энергия — это просто два различных слова, обозначающих одно и то же свойство материи. Но если все так, что же тогда обладает кинетической энергией? Движущийся электрон или его электромагнитное поле? Конечно, можно предположить, что энергия как-то делится. Часть ее принадлежит электрону, а часть — полю. Но ведь в опыте Стюарта и Толмена явно было показано: вся кинетическая энергия электронов есть полупроизведение массы на квадрат скорости.
Остается еще маленькая надежда. Может быть, магнитное поле в отличие от электрического не несет в себе энергию? Ведь оно действительно вроде бы неспособно совершить работу. Может быть, магнитное поле лишь свидетельствует о том, что заряд движется и обладает кинетической энергией? Что ж, давайте посмотрим, какими фактами мы располагаем.
Представьте себе такой опыт. Раскручиваете катушку с проводом, такую же, как в опыте Стюарта и Толмена, только к концам провода подсоединен не гальванометр, а электрическая плитка. Раскрутили катушку, а потом резко ее затормозили. Сначала в катушке потечет ток. Но ток этот постепенно уменьшается до тех пор, пока вся запасенная электронами кинетическая энергия не превратится в тепло в электроплитке. Количество тепла можно измерить. Но не надо даже тратить время на подобные измерения. Из многочисленных опытов, проделанных ранее, не совсем, правда, таких, как только что описанный, с полной очевидностью следует: количество выделившегося тепла равно той кинетической энергии, которую сообщили электронам, раскручивая катушку. Снова все, казалось бы, свидетельствует о том, что никакой энергией магнитное поле не обладает.
Но тогда следующий опыт. Не станем больше вращать катушку, это далеко не самый эффективный способ создать в проводнике ток. Возьмем лучше проводник, а еще лучше сверхпроводник, чтобы не мешали процессы, связанные с выделением тепла, и подсоединим к нему батарейку. По проводнику потечет ток. Отключим батарейку и замкнем концы проводника между собой. Поскольку это сверхпроводник, протеканию тока в нем ничто не мешает, и ток продолжает протекать, несмотря на отсутствие батарейки. И это не какой-то мысленный опыт. Именно сверхпроводниковые катушки используются в магнитах, удерживающих железнодорожные вагоны в системах магнитной подвески.
Представьте себе колечко из сверхпроводника, по которому течет ток и которое окружено магнитным полем. Если это сверхпроводник, продолжаться так может сколь угодно долго. А теперь проделаем следующее. Поднесем к сверхпроводниковому колечку другое колечко, такое же по размерам, но выполненное из обычного проводника, обладающего сопротивлением. Ток в сверхпроводящем колечке уменьшится. Возможно, что второе колечко придется подносить и отводить несколько раз. Но результат известен и однозначен. Закончатся все эти опыты полным прекращением тока в сверхпроводящем .колечке.
Куда же девалась кинетическая энергия электронов? Вдумайтесь, и вы сами придете к выводу, что на этот вопрос есть единственный ответ. Через магнитное поле кинетическая энергия электронов передалась колечку из обычного проводника, а там превратилась в тепло. Мгновенно это произойти не могло. Любое взаимодействие совершается не быстрее, чем со скоростью света. Значит, в течение какого-то времени, пусть очень короткого, магнитное поле обладало энергией, которую оно отдало проводящему колечку.
Можно продолжать эти рассуждения, приводить аргументы еще и еще, но, наверное, вы уже почувствовали единственный вывод, который не вызовет чувства протеста: энергия, причем именно вся кинетическая энергия движущегося заряда, сосредоточена в его электромагнитном поле. А отсюда с неизбежностью следует: электрон — это не шарик. Электрон — это не шарик наполовину и не шарик на одну четверть. То, что мы называем массой электрона, и то, что проявляется как масса в опыте Стюарта и Толмена, это свойство всего комплекса, существенную часть которого составляет электромагнитное поле.
Говорит Москва
Магнитное поле не имеет источника. Линии магнитного поля всегда замкнуты, нигде не начинаются и нигде не кончаются. В противоположность этому электрическое поле имеет источник, причем таким источником является заряд, порождающий поле. Всегда ли? Нет, не всегда. Электрическое поле возникает всякий раз, когда изменяется поле магнитное. Это и есть знаменитый закон магнитной индукции, открытый Фарадеем. Помните, он долго носил в кармане магнит и катушку, дома, в гостях, в театре нет-нет да доставал магнит и катушку из кармана и пытался как-то их совместить. Наконец догадался, что надо подвигать магнит внутри катушки. При движении магнита изменяется магнитное поле и тут же возникает поле электрическое. Электрическое поле — ему придумали специальное название «электродвижущая сила», или сокращенно эдс,— приводит в движении электроны в проводнике.
Наоборот, меняющееся электрическое поле обязательно порождает поле магнитное. С одним частным случаем этого явления вы уже познакомились, когда рассматривали движущийся заряд. Если заряд движется, напряженность электрического поля в любой неподвижной точке меняется. Но оказывается, можно обойтись и без движущегося заряда. Каким бы способом вы ни меняли электрическое поле, каждый раз эти изменения порождают магнитное поле.
И вот теперь рассмотрим такую ситуацию. В некоторой области пространства имеется постоянное электрическое поле, порождаемое каким-нибудь источником. Например, заряженным конденсатором, как в рассмотренном ранее примере. А теперь уничтожим источник, разрядив конденсатор (опять-таки как в предыдущем примере). Исчезнет ли поле? Нет, не исчезнет. Ведь электрическое поле — уж это-то мы знаем точно — содержит в себе запас энергии, а энергия не исчезает. Но существовать без источника электрическое поле тоже не может. Как только конденсатор разряжается, поле начинает убывать. Эти изменения тут же порождают магнитное поле. Постепенно все электрическое поле сходит на нет и передает свою энергию магнитному полю. Теперь уж нам некуда деваться, приходится признать, что магнитное поле обладает энергией и, в частности, ему может быть передан весь запас энергии, содержавшийся ранее в электрическом поле.
Но магнитное поле тоже не существует само по себе. В предыдущих примерах магнитное поле порождалось током, теперь — меняющимся электрическим полем. Электрическое поле, по нашему собственному признанию, сошло на нет. Как только это произошло, начинает убывать поле магнитное. А убывание, т. е. изменение, магнитного поля порождает поле электрическое и т. д. Качок вправо — качок влево. Ну а энергия? Энергия, как и положено быть, остается неизменной. Электрическое поле передает свою энергию магнитному, а магнитное — электрическому. Бывают мгновения, когда существует одно электрическое поле или одно только магнитное, а бывают мгновения, когда энергия как-то распределена между тем и другим.
Так выглядит этот процес во времени. Ну а в пространстве? Происходят ли взаимные преобразования в одном и том же месте или как-то иначе? Мы уже настолько подкованны, что ответим на такой ^вопрос, не заглядывая в учебник. Всегда, когда в одной и той же области пространства имеется и электрическая и магнитная составляющая электромагнитного поля, такая область обязательно обладает каким-то количеством движения. В рассматриваемом случае это количество движения проявляется явно, и сгусток переплетенных друг с другом и взаимопревращающихся электрического и магнитного полей движется в пространстве со скоростью, равной скорости света.
Также не заглядывая в учебник, можно сразу ответить на вопрос, куда движется сгусток полей, или, как его иначе называют, электромагнитная волна? Движется он туда, куда направлен вектор количества движения, а направлен он перпендикулярно плоскости, в которой лежат векторы напряженности электрического поля и магнитной индукции. Можно сказать и иначе. Векторы напряженности электрического поля и магнитной индукции в электромагнитной волне всегда направлены перпендикулярно направлению ее движения, а заодно и перпендикулярно друг другу. Говорить о реальности описанного процесса не приходится. Именно так осуществляются телевизионные и радиопередачи.
Трансформатор
Похоже, что наш рассказ об электрической (теперь, наверное, следует сказать электромагнитной) энергии подходит к концу. Энергия эта сосредоточена в электромагнитном поле. Электрическая и магнитная составляющие этого поля способны взаимно переходить друг в друга. При этом энергия передается от электрического поля магнитному и от магнитного поля электрическому. Все это подтверждено огромным количеством опытов и лежит в основе принципа действия всевозможных приборов и устройств. Известно также, что количество энергии, приходящееся на 1 см3 пространства, заполненного магнитным полем, пропорционально квадрату магнитной индукции. Все точно так же, как было в случае электрического поля. Возьмите катушку с проводом и подсоедините концы этого провода к источнику переменного электрического напряжения. По проводу потечет ток, тоже переменный. Переменный ток образует вокруг катушки переменное магнитное поле, а переменное магнитное поле вызовет появление электрического поля, которое, в свою очередь, создаст между концами провода переменную разность потенциалов. Эта переменная разность потенциалов получила свое специальное название: эдс самоиндукции. В любой момент времени эдс самоиндукции равна по величине и противоположна по знаку эдс внешнего источника. Поэтому если сопротивлением провода, из которого намотана катушка, можно пренебречь, энергия в такой системе не тратится. Происходит периодический обмен. Сначала за счет энергии, забираемой от внешнего источника, образуется окружающее катушку магнитное поле. Затем это магнитное поле начинает убывать (напоминаем, ток переменный) и накопленная в нем энергия возвращается в источник.
На этом явлении основан принцип действия дросселей (катушек индуктивности), включаемых последовательно с хорошо известными всем электролюминесцентными лампами, или, как их называют в быту, лампами дневного света. Задача дросселя — не дать току, протекающему через лампу, превысить некоторое определенное значение. Чем больше ток, тем больше магнитное поле, тем больше эдс самоиндукции. Но эдс самоиндукции имеет противоположный знак и, следовательно, вычитается из напряжения источника. Увеличение тока сопровождается уменьшением напряжения на лампе и соответственно уменьшением тока. При самопроизвольном уменьшении тока все происходит наоборот.
Примерно то же самое происходило бы в том случае, если последовательно с лампой дневного света включить обычный проводник, обладающий сопротивлением. Но при этом часть электрической энергии, получаемой от сети, преобразовывалась бы в тепло. А зачем нагревать атмосферу? Зимой еще куда ни шло, а летом? Дроссель тем и хорош, что в нем энергия почти не затрачивается и ни во что не преобразовывается. В течение какого-то промежутка времени (говорят, в течение полупериода) энергия забирается из сети и расходуется на образование магнитного поля. В течение другого какого-то промежутка времени (вторая половина периода) магнитное поле сходит на нет, а накопленная в нем энергия возвращается обратно в сеть. Все получается очень хорошо, только уж очень гудят эти дроссели.
Теперь проделайте такой опыт. Поместите в магнитное поле катушки с переменным током еще одну такую же точно катушку. Что произойдет? Да ничего нового. Магнитное поле создает в обеих катушках, если они находятся в одинаковых условиях, одинаковые эдс. Только эдс первой катушки называется эдс самоиндукции, а эдс второй катушки — просто эдс индукции.
Казалось бы, ничего нового не происходит. В первой катушке электрическая энергия от источника переменного напряжения преобразуется в энергию магнитного поля, а во второй катушке энергия магнитного поля снова превращается в электрическую энергию.
Такая конструкция из двух катушек называется трансформатором. Для того чтобы обе катушки, или, как говорят, обе обмотки, трансформатора находились по возможности в одинаковых условиях, внутрь катушек помещают металлический сердечник, который сосредоточивает в себе магнитное поле, не дает ему «расползаться». Где только их нет, этих трансформаторов! Начиная с огромных, величиной с дом на трансформаторных подстанциях в линиях1 электропередач и кончая крохотными трансформаторчиками карманных радиоприемников.
Снова, кажется, все ясно, но посмотрим чуть подробнее. Две катушки находятся в одинаковых условиях в общем магнитном поле. Катушки одинаковые (т. е. одинаково число витков), значит, и эдс в них одинаковые. Замкнем накоротко выводы второй катушки. Очевидно, по ней потечет ток. Этот ток, в свою очередь, вызовет появление своего, нового магнитного поля. Но эдс самоиндукции имеет знак, противоположный знаку эдс внешнего источника, подсоединенного к первой катушке. А коли так, ток во второй катушке будет направлен противоположно току первой катушки. Противоположно будет направлено и магнитное поле, создаваемое током второй катушки. Магнитное поле второй катушки вычитается из магнитного поля первой катушки, и в сумме они дают нуль. Да, да, именно нуль. Так происходит в любом трасформаторе. Энергия, передается из первой катушки во вторую, но при этом в пространстве, окружающем обе катушки, нет никакого поля, ни магнитного, ни электрического. В реальных трансформаторах магнитное поле все-таки есть. Но это так называемое поле рассеяния, возникающее из-за того, что катушки всегда немного неодинаковы.
Так что, произошло очередное чудо? Снова, в который уже раз, на страницах этой книги мы сталкиваемся с одной и той же ситуацией. Все зависит от того, как рассуждать. Если рассуждать, пользуясь понятиями эдс, силы тока, магнитной индукции, то иначе как чудом только что рассмотренную ситуацию не назовешь. Действительно, вторая катушка замкнута накоротко и полностью изолирована от внешнего мира. В окружающем ее пространстве ничего нет: ни электрического, ни магнитного поля. Тем не менее эдс в ней существует и ток через нее протекает.
Секрет в том, что и сила тока, и эдс, и магнитная индукция так же, как и сила в предыдущей главе,— все это выдуманные величины, а значит, не подчиняющиеся законам сохранения, поэтому они могут возникать не из чего и исчезать бесследно. Вспомните, ведь магнитная индукция — это просто сила, а электрический ток — количество заряда, проходящего через сечение проводника. А проходит ли этот заряд, мы так до сих пор толком и не знаем.
Те же самые рассуждения звучат совсем иначе, если за основу взять величину, подчиняющуюся закону сохранения, в данном случае энергию. С самого начала мы условились считать, что сопротивления проводников, из которых намотаны катушки, или равны нулю, или настолько малы, что ими можно пренебречь. Что происходит во второй катушке с учетом последнего условия? Энергия в ней не превращается в тепло, а следовательно, не тратится. Коли так, то не нужно компенсировать затраты, т. е. не нужно передавать энергию из первой катушки во вторую. А раз энергия из первой катушки во вторую не передается, ни к чему и магнитное поле. Как видите, с позиций «правильных» физических законов никаких чудес не происходит. А значит все сказанное лишь то, что в идеальном трансформаторе без потерь (на самом деле такого, конечно, не существует) отсутствие затрат энергии во вторичной обмотке влечет за собой отсутствие затрат энергии и в первичной обмотке.
Три трудности
Вы скажете:
— Ток во второй катушке, или, говоря более привычным языком, во вторичной обмотке трансформатора все-таки протекает. Причем ток — это объективная физическая величина, его можно измерить амперметром!
Что касается последного замечания, то позвольте с вами не согласиться. Не существует амперметра, между зажимами которого не было бы хоть крохотного, но все же отличного от нуля сопротивления. При протекании тока через амперметр на его сопротивлении падает какое-то напряжение. Произведение этого напряжения на силу тока дает мощность. Отклонение стрелки амперметра пропорционально именно мощности. Другими словами, чтобы отклонить стрелку амперметра, нужно затратить работу, и работа эта выполняется за счет энергии, потребляемой амперметром из электрической цепи, в которой производится измерение. С помощью одного тока, без затраты энергии стрелку амперметра не отклонишь. Следовательно, измерив ток, мы вывели из системы часть ее энергии, а это повлечет за собой уменьшение этого самого тока. Здесь имеет место уже знакомая нам ситуация с температурой, которую мы якобы ощущаем.
Мы вынуждены констатировать, что в этой главе столкнулись по меньшей мере с двумя непреодолимыми трудностями. Первая связана с радиусом электрона. Если он равен нулю, то энергия электрического поля обращается в бесконечность. Если он не равен нулю, то, спрашивается, что у электрона внутри? Все это подробно обсуждалось в начале главы. Вторая трудность, связана с тем, что все же остается непонятным, как взаимодействуют катушки трансформатора. Хоть явных нарушений физических законов тут не видно, но должна быть какая-то причина появления эдс и тока во второй катушке. Повторим еще раз: вопрос с радиусом электрона на сегодня не снят. Можно сделать лишь одно замечание, которое совсем не претендует на решение этого вопроса, а только позволит читателю кое о чем задуматься. Нет ли в проблеме радиуса электрона чего-нибудь общего со старой проблемой Ахиллеса и черепахи?
Вспомните, как вы создавали заряд. Носили маленькие его порции из бесконечности в данную точку. При этом мы сразу договорились, что в одном и том же месте
две порции не разместишь, поэтому носили вы их в разные места внутри какой-то сферы. Ну а если электрон имеет точечные размеры? Это значит, что все порции заряда вам надо носить в одно и то же место. В одно и то же место нельзя, но сколь угодно близко подойти к этому месту можно. Делается это уже известным приемом: пройти столько, потом еще полстолько, потом четверть столько и т. д. В результате получается бесконечное число шагов.
Бесконечность получается потому, что мы предполагаем пространство однородно заполненным полем и пространство это мы считаем бесконечно делимым. Никакой бесконечности не будет, если считать, что поле состоит из маленьких порций — квантов. В конечной области пространства квантов тоже будет конечное число.
Развивая ту же идею, можно снять и вторую трудность. Представьте себе, что первая катушка порождает магнитное поле в виде множества частичек — квантов. Кванты эти движутся от первой катушки к второй. Когда вы замыкаете выводы второй катушки, по ней начинает течь ток и возникает магнитное поле, также состоящее из квантов, движущихся от второй катушки к первой. Пространство между катушками оказывается заполненным квантами, движущимися в противоположные стороны. Кванты есть, а суммарное количество их движения равно нулю. Поэтому вы и не воспринимаете то, что находится в пространстве между катушками. Ситуация похожа на то, что происходит в неподвижном твердом теле. Молекулы его движутся, а сумма их количеств движения равна нулю, и тело остается неподвижным.
Привлекая принципы квантовой механики, можно довольно правдоподобно объяснить, что происходит внутри цилиндрического конденсатора, подвешенного между полюсами постоянного магнита. Электрическое поле — постоянное, магнитное поле — постоянное, а кванты электромагнитного поля движутся и создают отличный от нуля момент количества движения. Не замечаем мы движения квантов потому, что движутся они по замкнутым траекториям. Стоит одному кванту уйти из некоторой области пространства, как туда сразу приходит другой, и среднее количество квантов, приходящееся на единицу объема, не меняется. Похожая картина получится, если заставить воду течь по круговому замкнутому желобу. Вы никак не сможете обнаружить это течение, потому что количество воды в единице объе-' ма все время одно и то же. Чтобы обнаружить течение воды, нужно бросить в нее щепку. Примерно то же самое делают, разряжая конденсатор.
Мы не претендуем здесь на решение проблем, которые в современной физике остаются нерешенными. Мы лишь сообщаем читателю некоторые идеи, демонстрирующие, в частности, плодотворность квантового представления электромагнитных полей. Но самая главная трудность у нас впереди. Чтобы уяснить, в чем эта трудность состоит, давайте совершим небольшое путешествие в вагоне на магнитной подвеске.
Представьте себе для простоты, что вагон движется с постоянной скоростью вдоль прямолинейного пути. Для того чтобы вагон не падал на землю, к нему нужно приложить силу, направленную вертикально вверх. Вы уже знаете, что такая сила действует на электрический заряд, движущийся в ту же сторону, что и вагон, если при этом создать магнитное поле, индукция которого лежит в горизонтальной плоскости и направлена перпендикулярно направлению движения вагона.
Все это совсем нетрудно организовать. Вагон надо зарядить. Двигаясь сам, он двигает вместе с собой электрический заряд, а магнитное поле, как это нетрудно сообразить, возникнет в том случае, если вдоль пути вагона проложить проводник и пропустить по нему постоянный электрический ток в том же направлении, в котором движется вагон. Нужно как следует представить себе эту картину, и если вам, дорогие читатели, что-то остается неясным, перечитайте начало этой главы или школьный учебник физики. Мы очень просим вас сделать это, потому что вывод, к которому мы сейчас придем, честное слово, заслуживает усилий.
Стоим на платформе и провожаем глазами уносящийся вдаль вагон на магнитной подвеске. Все происходит как положено. Вагон несет на себе электрический заряд, этот заряд движется с заданной скоростью, и направленная вертикально вверх сила удерживает вагон от "'Падения. Мы можем быть спокойны за судьбу отправившихся в путешествие. А теперь представьте себе, что вы находитесь внутри вагона. Что вы видите? Вы видите то, что электрический заряд неподвижен. Раз он неподвижен, магнитное поле на него не действует. Вагон должен обрушиться вниз. Ну что вы на это скажете?
Если мы и совершили какую-нибудь ошибку, то совершили ее гораздо раньше. Тогда, когда стали утверждать, что магнитное поле, мол, действует на движущиеся заряды и не действует на неподвижные. Хорошо известно, что не существует абсолютного движения и абсолютного покоя.
Придется начинать рассуждения сначала, и прежде всего представьте себе проводник, тот самый, который служит для создания магнитного поля. Проводник, как и все прочие тела, состоит из положительно заряженных атомных ядер и отрицательно заряженных электронов. Атомные ядра в основном остаются неподвижными относительно проводника. Следовательно, положительные электрические заряды также неподвижны относительно проводника. Электроны же (правда, не все, но сейчас это не существенно) могут свободно перемещаться относительно проводника. Это мы знаем точно. Достаточно вспомнить хотя бы опыт Стюарта и Толмена.
Пусть для начала никакого тока но проводнику не течет. Важное свойство всех окружающих нас тел, в том числе и проводников, состоит в том, что в обычных условиях они, как говорят, электрически нейтральны. Это значит, что количество положительных зарядов равно количеству электронов и уже с очень небольших, порядка нескольких микрон, расстояний от проводника никаких зарядов в этом проводнике обнаружить не удается. Положительные заряда ядер компенсируются отрицательными зарядами электронов.
Если проводник длинный, то лучше говорить не о полном количестве электронов и атомных ядер, оно, очевидно, зависит не от длины проводника, а от количества тех и других, приходящихся на единнау длины проводника, скажем на 1 см. От этого, правда, ничего не изменится. Количество положительных зарядов, приходящихся на 1 си длины проводника — эту величину называют плотностью положительного электрического заряда,— равно количеству электронов, приходящихся на 1 см длины проводняха — плотности отрицательных зарядов. Сумма этих плотностей равна нулю, если, конечно, при сложении плотность отрицательных зарядов брать со знаком минус.
Если вы стоите «а некотором расстоянии от проводника, то для вас он полностью электрически нейтральный. Нейтрален каждый его отдельный сантиметр, нейтоальны они все, вместе взятые. Не существует такого опыта, даже мысленного, с помощью которого вы могли бы обнаружить отдельные электрические заряды в проводнике.
Пусть теперь по проводнику течет ток. Положительные заряды ядер остаются неподвижными, а электроны движутся с некоторой заданной скоростью, зависящей в данном случае от силы тока. Изменится ли что-нибудь для наблюдателя, находящегося на некотором расстоянии от проводника? Легко сообразить, что ничего не изменится. Здесь полная аналогия с потоком воды в замкнутом желобе. В отрезок проводника длиной 1 см поступает ровно столько электронов, сколько его покидает. Количество электронов, находящихся в пределах этого сантиметра, остается постоянным независимо от того, течет ток или нет, и равным количеству положительных зарядов. Проводник с током представляется неподвижному наблюдателю таким же электрически нейтральным, как и проводник, по которому ток не течет.
Если поблизости от проводника с током разместить неподвижный относительно проводника электрический заряд, неважно, положительный или отрицательный, он тоже «не почувствует» никаких зарядов в проводнике. Для такого электрического заряда проводник как бы отсутствует: есть он, нет его — никакой разницы. '.Представьте себе, наконец, что вы перемещаетесь относительно проводника с током. Скажем для простоты, что вы двигаетесь в ту же сторону, что и электроны, и с той же скоростью. Вы видите неподвижные электроны и положительные заряды, которые для вас теперь перемещаются в сторону, противоположную вашему движению. Изменилось ли что-нибудь? Для электронов ничего ие изменилось — они неподвижны. А для положительных зарядов изменилось многое. То, что в случае неподвижного проводника было I см, теперь стало короче, скажем 8 мм. Согласно законам специальной теории относительности движущиеся линейки становятся короче. Наоборот, в том, что вам представляется сантиметром -(ведь вы не обязаны знать, перемещаетесь вы относительно проводника или нет), на самом деле укладывается более длинный отрезок проводника, скажем 12 мм. Но в более длинном отрезке проводника помещается больше положительных зарядов. И вот вывод: в вашем сантиметре, т.е. в том, что представляется вам сантиметром длины проводника, электронов укладывается столько же, что и в том случае, когда вы были относительно проводника неподвижными, а положительных зарядов больше.
Когда вы двигаетесь относительно проводника с током, он представляется вам заряженным положительно. То же самое «чувствует» электрический заряд. Если он движется относительно проводника с током, то для него проводник представляется заряженным, а значит, окруженным электрическим полем. Заряд реагирует на это поле. Например, если заряд отрицательный и движется в ту же сторону, что и электроны в проводнике, он притягивается к проводнику.
Все сказанное справедливо и для положительных зарядов, если бы они имели возможность двигаться. Это наблюдалось на опытах уже давным-давно. Если два проводника расположены параллельно друг другу и электрические токи по ним текут в одинаковых направлениях, то такие проводники притягиваются. Наоборот, если токи в параллельных проводниках текут в противоположных направлениях, то такие проводники отталкиваются.
Вот и разгадка. Вагон, движущийся относительно проводника с током, притягивается к нему и не падает. Напротив, вагон, неподвижный относительно проводника, не будет притягиваться и коснется земли. Собственно, это от него и требуется. Зачем удерживать на магнитной подвеске вагон, который никуда не движется? Важно, что все зависит от движения вагона относительно проводника. А что там видит наблюдатель и где он при этом находится, совершенно несущественно для взаимодействия проводника и вагона.
Один из выводов теории относительности состоит в том, что никакого магнитного поля на самом деле не существует. То, что называли этим словом, на самом деле представляет собой электрическое поле, возникающее из-за нарушения взаимной пространственной компенсации положительных и отрицательных зарядов. Подобный взгляд объясняет многое. Прежде всего то, почему у магнитного поля нет и не может быть источника.
Не следует только думать, что новая точка зрения содержит в себе ответы на все вопросы. Ничего подобного! Мы знаем, например, что изменяющееся магнитное поле может порождать поле электрическое, а оно, в свою очередь, порождает магнитное поле. Все это происходит без каких бы то ни было зарядов, как движущихся, так и неподвижных. Все, что мы можем в настоящее время, это задуматься над некоторыми вещами. Например, над тем, стоит ли продолжать населять пространство неважно чем: силовыми линиями, эфиром или квантами? Населяя пространство, мы тем самым молчаливо соглашаемся, что пространство существует само по себе, независимо от того, чем мы его населяем. А ведь сколько существует непреложных фактов, свидетельствующих об обратном! Пространство искривляется вблизи тяготеющих масс. Пространство сокращается и растягивается в различных системах отсчета. Есть очень много данных за то, что пространство расширяется вместе с нашей расширяющейся Вселенной, а вне Вселенной нет и пространства.
Подождем, однако, делать выводы — нам еще есть о чем рассказать. А пока констатируем, что электрическая энергия — это энергия, распределенная в пространстве. Пространство, заполненное электрической энергией, называется электрическим (можно по-прежнему называть его электромагнитным) полем. Свойства электрического поля мы постарались по возможности подробно описать в этой главе. Плодотворной и весьма удобШЙ' оказывается теория, описывающая электричесШр$6\п1,^вд состоящее из отдельных частиц — квантов. 5таполучила название квантовой электродина-
мики'. В квантовой электродинамике сейчас не осталось почти никаких противоречий, кроме отмеченных выше трудностей. Но серьезный разговор о квантах нам предстоит. Заметим в заключение, что в этой главе мы ввели еще один закон сохранения — закон сохранения электрического заряда.
Огонь
«Когда мне было лет около пяти и отец мой однажды сидел в одном подвальчике, в каковом учинили стирку и остались ярко гореть дубовые дрова, Джованни, с виолой в руках, играл и пел один у огня. Было очень холодно; глядя в огонь, он вдруг увидел посреди наиболее жаркого пламени маленького зверька, вроде ящерицы, каковой резвился в этом наиболее сильном пламени. Сразу поняв, что это такое, он велел позвать мою сестренку и меня и, показав его нам, малышам, дал мне великую затрещину, от каковой я весьма отчаянно принялся плакать. Он, ласково меня успокоив, сказал мне так: «Сынок мой дорогой, я тебя бью не потому, чтобы ты сделал что-нибудь дурное, а только для того, чтобы ты запомнил, что эта вот ящерица, которую ты видишь в огне, это саламандра, каковую еще никто не видел, из тех, о ком доподлинно известно». И он меня поцеловал и дал мне несколько кватрино».
Этот эпизод рассказал знаменитый флорентийский скульптор и золотых дел мастер Бенвенуто Челлини в своей биографии. Огонь! Средневековые алхимики считали, что огонь — одна из четырех стихий, из которых состоит мироздание. Огонь — поток раскаленных газов, возникающий' в результате преобразования химической энергии в энергию тепловую. Процесс подобного преобразования называют также горением. При горении сжигается топливо. Общеизвестно знаменитое высказывание Д. И. Менделеева о том, что топить нефтью — это все равно что топить ассигнациями. Сжигать любое топливо равносильно сжиганию ассигнаций, потому что запасы топлива или вообще невосполнимы (нефть, уголь), или восполняются очень медленно (дрова). Тем не менее современное человечество большую часть своих энергетических потребностей удовлетворяет за счет запасов химической энергии.
Что же такое химическая энергия? Ответить на этот вопрос, значит, по существу объяснить, почему мир именно таков, каков он есть, и нам придется ненадолго обратиться к истории физики.
ГЛАВА4
Химическая энергия
Резерфорд и Бор
К концу прошлого века ни у кого из серьезных физиков не оставалось сомнений в том, что все тела состоят из атомов, а все разнообразие окружающего нас мира обеспечивается разлжчными сочетаниями простейших веществ-—элементов. Элементы заняли подобающие им места в периодической таблице Менделеева. Менделеев установил также, что химические и физические свойства элементов изменяются периодически по мере возрастания1 их атомного веса. В 1897 году Дж. Дж. Томсоном был открыт электрон, и сразу стало ясно, что электроны входят в состав всех атомов. Однако считалось, что атомы представляют собой твердые шарики. Тот же Томсов предложил свою «кекеовую» модель строения атома, согласно которой электроны в атоме вкраплены в положительно заряженное вещество, примерно как изюминки в тесто.
В 1909 году английский физик Эрнест Резерфорд, работая в Манчестерской лаборатории, закончил свой исторический цикл экспериментов. Тонкие металлические листочки оа облучал альфа-частицами, получающимися при распаде радия. Как и следовало ожидать, большинство альфа-частиц беспрепятственно проходило сквозь листочки. Но главное не это. Отдельные альфа-частицы все же отскакивали от листочка и поворачивали вспять.
О чем свидетельствовал этот факт? Внутри металлического листочка есть нечто, отталкивающее от себя альфа-частицы. Это нечто, по всей вероятности, заряжено положительно, потому что альфа-частицы заряжены положительно, а отталкиваются одноименные заряды. Это нечто должно быть относительно невелико, потому что из общего потока альфа-частиц лишь ничтожная их часть испытывает отталкивание.
Так появилась планетарная модель атома Э. Резер-форда. Положительно заряженное нечто было объявлено атомным ядром. Из того, что ядро относительно невелико (сейчас известно, что размеры ядра составляют примерно одну стотысячную долю от расстояния между ядрами), следовало, что электроны не вкраплены в ядро, как полагал Томсон, а вращаются вокруг него точно так же, как планеты вращаются вокруг Солнца.
Но тут возникло непреодолимое препятствие. Согласно всему тому, что ученые знали об электричестве, заряд, движущийся с ускорением, должен излучать электромагнитные волны, а значит, постепенно терять свою энергию. Движение по окружности или по эллипсу — это движение с ускорением. Электрон в планетарной модели Резерфорда обязан был излучать электромагнитные волны и постепенно, теряя энергию, падать на ядро. Ничего подобного не наблюдалось. Это побудило Резерфорда к собственной модели относиться с известной долей недоверия.
Летом 1912 года Нильс Бор, молодой сотрудник Резерфорда, уезжал домой в Копенгаген на собственную свадьбу с Маргарет Норвунд. Перед самым отъездом на семи листах, подклеенных друг к другу, он составил памятную записку, в которой делился с учителем своими идеями. Записка не понадобилась, потому что перед отъездом Бору предоставилась возможность поговорить с Резерфордом и лично сообщить ему свои соображения. Но памятная записка сохранилась в архиве Бора. В ней, в частности, Бор указал, что место, занимаемое каждым элементом в таблице Менделеева, определяется не атомным весом, как считалось тогда, а зарядом ядра. Элементы с различными атомными весами могут занимать одну и ту же клетку таблицы Менделеева, если заряды их ядер одинаковые. Много позже подобные элементы получили название изотопов, т. е. занимающих одно и то же место. Не атомный вес, а электрический заряд ядра ответствен за физико-химические свойства элементов, а следовательно, за все разнообразие мира.
В той же записке, правда не совсем еще в явной форме, Бор высказал мысль о том, что среди всех возможных орбит электронов в ядре существуют особые стационарные орбиты, находясь на которых электрон не излучает энергию. Это такие орбиты, при движении по которым момент количества движения электрона равен целому числу, помноженному на постоянную Планка. Эти числа получили название квантовых чисел.
В 1913 году в трех статьях Бор оформил свои предположения и сформулировал количественную теорию. Теория Бора объясняла многие из накопившихся к тому времени экспериментальных фактов, в том числе распределение спектральных линий. В результате в физике создалось поистине невыносимое положение. С одной стороны, многочисленные экспериментальные подтверждения боровской теории заставляли относиться к ней серьезно. С другой стороны, оставался все тот же проклятый вопрос: почему не излучает электрон, движущийся с ускорением, хотя бы и по избранным, стационарным орбитам? Бор лишь провозгласил правило, но не дал ему никакого объяснения.
Бор утверждал, например, что электрон излучает кванты электромагнитной энергии, перескакивая с орбиты на орбиту. Но тогда непонятно, откуда электрон, начиная свой переход, знает, на какой орбите он остановится? Ведь квант электромагнитной энергии электрон излучает сразу, целиком. Отзвуки этих недоумений сохранились до настоящего времени.
Полтора десятилетия, последовавшие за первыми публикациями Бора, получили в истории науки название эпохи бури и натиска- Была предложена не одна, а две теории: матричная механика В. Гейзенберга и волновая механика Э. Шредингера. В дальнейшем, правда, оказалось, что это одна и та же теория, только описанная в разных математических терминах. Создание реальной модели атома потребовало полного отказа от привычных представлений. Ответы на большинство вопросов были получены лишь тогда, когда в 1927 году Вернер Гейзен-берг сформулировал свое знаменитое соотношение неопределенностей.
Мы повторяем эти общеизвестные факты для того, чтобы выделить интересную особенность. До самой последней возможности ученые цеплялись за «твердый мир», состоящий из шариков-электронов и твердых атомных ядер.
Атомы
Что такое атом в соответствии с современными воззрениями? Как и во времена Резерфорда, считается, что атом состоит из положительно заряженного ядра и некоторого количества электронов. Электроны не падают на ядро потому, что электрон вообще не может находиться в определенном месте, будь то ядро или что-нибудь другое. Это объясняется тем, что электрон вовсе не твердый шарик. Любые попытки нарисовать портрет электрона, пользуясь привычными нам образами, усугубляют непонимание. Остается еще раз повторить, что мир не таков, каким мы его себе представляем. Наши органы чувств, в том числе и вооруженные физическими приборами, в большинстве случаев воспринимают не реальную действительность, а усредненные эффекты многочисленных воздействий.
Тем не менее, не умея нарисовать портрет атома, можно с достаточной степенью достоверности описать его количественно. В простейшем атоме водорода, содержащем один электрон, этот электрон занимает объем в полном соответствии с соотношением неопределенностей. При этом электрон обладает совершенно определенным количеством движения. Действительно, если бы количество движения равнялось нулю (т. е. не содержало бы неопределенностей), то объем, занимаемый электроном, должен был бы равняться бесконечности. Наоборот, если бы равнялся нулю объем, то в бесконечность обращалось бы количество движения электрона.
Итак, из соотношения неопределенностей следует определенная величина объема, занимаемого электроном, и определенная величина количества движения. Обладая количеством движения, электрон, а точнее атом, поскольку электрон принадлежит атому со всем своим «имуществом», должен иметь определенный запас кинетической энергии. Минимальным запасом он обладает всегда, даже при температуре абсолютного нуля — этот запас и есть неотъемлемое свойство электрона как такового. Мы снова пришли к уже знакомой нам формулировке основных законов современной физики: можно все, кроме того, что нельзя. В данном случае роль запрета играет соотношение неопределенностей. Произведение из неопределенности в количестве движения на неопределенность местоположения не может быть меньше постоянной Планка.
Кроме основного состояния, электрон, а точнее — весь атом, может принимать и другие, строго определенные энергетические состояния. Атом способен переходить из состояния с большей энергией в состояние с меньшей энергией. При каждом таком переходе излучается порция электромагнитной энергии.