Так обстоит дело с атомом водорода. Атомы других элементов, содержащих более одного электрона, подчиняются еще одному запрету, получившему название принципа запрета Паули: в атоме не может быть двух электронов, находящихся в точно одинаковых состояниях. Если состояние с наименьшей энергией уже занято одним электроном, то второй электрон в соответствии с принципом Паули должен занимать другое состояние, характеризуемое более высокой энергией. То же самое справедливо для третьего, четвертого электронов и т. д.

Атом любого вещества обладает строго определенной электронной структурой, подчиняющейся двум основным законам: соотношению неопределенностей и принципу Паули. Большое значение имеют также и спины электронов. В каждом состоянии атом в целом обладает запасом кинетической энергии, причем минимальная величина этого запаса устанавливается опять-таки соотношением неопределенностей и принципом Паули. Пока атом остается атомом, т. е. пока он не потерял ни одного из своих электронов, запас его кинетической энергии не может быть меньше некоторой минимальной величины. Таким образом, каждый атом представляет собой кладовую энергии, которая и называется химической.

Итак, химическая энергия — это опять-таки кинетическая энергия движения, кинетическая энергия движущихся электронов. Однако в отличие от того, с чем мы сталкивались до сих пор, значение химической энергии каждого атома строго определено.

Молекула

Не столкнулись ли мы снова с парадоксальной ситуацией? Окруженные всевозможными атомами, мы тем самым окружены поистине неисчерпаемыми запасами химической энергии. Но как ее заполучить? Мы сами выяснили, что энергия атома не может оказаться меньше своего значения в основном состоянии. Но если она не может оказаться меньше, то атом не может отдать даже маленькой части своей энергии. А коли так, спрашивается, какая нам польза от того, что эти запасы существуют? Атом отдает часть энергии, переходя из возбужденного состояния в основное. Но для этого его надо сначала возбудить, т. е. затратить ровно столько энергии, сколько потом может быть получено.

Все это правильно. Атомы как таковые действительно являются кладовыми энергии, спрятанными за семью замками. Существует ли способ разомкнуть эти замки? Да, для этого нужно, чтобы атомы объединились в молекулу. Молекула — более сложное образование, чем отдельный атом. Часть электронов атомов объединяется и становится общей для всей молекулы. При этом, естественно, изменяется электронная структура и возникают новые разрешенные энергетические уровни. Возможно одно из двух: либо суммарная энергия электронов в основном состоянии молекулы будет выше, чем сумма энергий атомов, составляющих молекулу, либо, наоборот, суммарная энергия электронов в основном состоянии молекулы будет ниже, чем сумма энергий атомов, составляющих молекулу.

Объединение атомов в молекулу, которому, возможно, предшествовало разделение других молекул на атомы, называется химической реакцией. Химические реакции бывают двух типов: эндотермические и экзотермические. Эндотермические реакции протекают в том случае, если извне поступает определенное количество тепла, т. е. энергии. Образовавшиеся в результате эндотермической реакции молекулы обладают энергией основных состояний большей, чем суммарная энергия основных состояний молекул и атомов реагентов.

Экзотермические реакции протекают с выделением тепла. Количество выделенного тепла равно разности между суммарной энергией основных состояний молекул и атомов исходных веществ и энергией основного состояния молекулы продукта реакции. Смотрите, как интересно получается! Есть возможность почерпнуть не всю энергию атома, а некоторую, как правило, малую ее часть, представляющую собой разность двух значений.


Гальвани и Вольта


В конце XVIII века житель итальянского города Болонья профессор Луиджи Гальвани совершил, как потом выяснилось, огромной важности открытие, и помогла ему в этом лягушачья лапка. Чего только не рассказывают о том, как все происходило. Одни говорят, что, будучи медиком, Гальвани препарировал лягушек исключительно в целях научного познания. Согласно другой версии профессор любил суп из лягушачьих лапок и сам его стряпал. Так или иначе, но лягушачья лапа в этой истории, несомненно, присутствовала.

Дальше опять идут разночтения. Одни утверждают, что Гальвани экспериментировал с электрической машиной и заметил, что всякий раз, когда в машине проскакивает искра, лягушачья лапка подергивается. По другой версии лягушачья лапка висела на медном крючке, укрепленном на железных перилах балкона. Она покачивалась от ветра и дергалась всякий раз, когда касалась железных перил. Возможно, Гальвани наблюдал и то и другое. Но вывод он сделал определенный: существует особое, животное электричество. Оно и заставляет подергиваться лапку.

Об опытах Гальвани узнал другой итальянец — Алес-сандро Вольта. Вольта в отличие от Гальвани с восемнадцати лет изучал различные электрические явления. Гипотеза о животном электричестве показалась ему малоправдоподобной. Электричество возникает при соединении между собой двух различных металлов, утверждал Вольта. В доказательство этого утверждения Вольта построил прибор: несколько сложенных вместе медных и цинковых пластинок, между которыми проложены кусочки материи, смоченной водой. Этот прибор, его назвали Вольтов столб, позволял получать электрический ток.

Гальвани, однако, продолжал кастаивать на своем, он так и умер, не закончив спора. Сегодня в любом учебнике физики можно прочитать, что в споре между Гальвани и Вольта прав был Вольта: электричество возникает при соединении двух разнородных металлов. Вольтов столб есть не что иное, как первая в мире электрическая батарейка. Но не станем спешить с выводами. Заметим только, что Гальвани в споре с Вольта говорил не об электричестве вообще, а о том конкретном электричестве, которое заставляет подергиваться лягушачью лапку.

Твердое тело

Тем, что окружающий нас мир таков, каков он есть, мы обязаны свойствам электрона. Конечно, ядра тоже участвуют в построении картины мира, но они создают как бы сцену, на которой, образно говоря, электроны разыгрывают свои спектакли. Достаточно изменить хотя бы что-нибудь, например разрешить электрону занимать в атоме любые энергетические уровни, как все электроны рано или поздно упадут на соответствующие ядра и мир станет выглядеть невообразимо иначе. К счастью, такого не происходит, и мы продолжаем жить в окружении твердых, жидких и газообразных тел. Сейчас нас интересуют твердые тела, еще точнее, кристаллические твердые тела.

В кристаллическом твердом теле, или, короче, кристалле, электроны всех атомов делятся как бы на две группы: сильно связанные с ядром и не сильно связанные. Последние называют также валентными. Атомные ядра вместе с сильно связанными электронами располагаются на одинаковых расстояниях друг от друга и образуют регулярную периодическую структуру — кристаллическую решетку. Электромагнитные поля всех валентных электронов и всех атомных остатков складываются, образуя общее электромагнитное поле кристалла. Поле это чрезвычайно сложное, оно обладает периодической структурой. Предположим, что вам удалось измерить, скажем, напряженность магнитного поля в некоторой точке внутри кристалла. Тем самым вы узнали величину и направление векторов напряженности магнитного поля во всех точках внутри кристалла, расположенных на одной прямой и на расстояниях друг от друга, кратных постоянной кристаллической решетки. У большинства кристаллов постоянная кристаллической решетки (она, кстати сказать, различна в различных направлениях) имеет порядок 10~* см.

Радиусы атомных ядер (мы уже говорили об этом) имеют порядок I0-13 см, а расстояния между атомными ядрами—10~8см. Переходя к привычным представлениям, можно сказать, что кристалл выглядит так же, как если бы шарики радиусом, скажем, 1 см располагались на расстояниях друг от друга порядка 1 км. Стоя возле одного такого шарика, вы просто не видели бы всех остальных.

Представляете себе только что нарисованную картину? Кристалл — пространство, заполненное электромагнитным полем, и ничтожную долю этого пространства занимают ядра. Практически все свойства кристалла, такие, как его твердость, упругость, электропроводность, теплопроводность, температура плавления и др., на самом деле представляют собой свойства электромагнитного поля. Масса кристалла почти целиком определяется массой атомных ядер, а некоторые оптические свойства — конфигурацией и постоянными кристаллической решетки.

Валентные электроны в кристалле становятся общими для всего кристалла. В атоме еще можно указать некоторую область, занимаемую тем или иным электроном, а в кристалле для всех валентных электронов такой областью является весь объем кристалла. Валентные электроны находятся в электромагнитном поле кристалла и вносят свой вклад в свойства этого поля. Единственной причиной, удерживающей атомные остатки на своих местах в узлах кристаллической решетки, является все то же электромагнитное поле.

В кристалле, как и в атоме, электроны принимают только некоторые разрешенные значения (уровни) энергии. Уровни группируются в зоны. Каждому одиночному разрешенному уровню электрона в атоме соответствует в кристалле целая разрешенная зона, заполненная уровнями. Каковы бы ни были размеры кристалла, количество уровней в каждой зоне равно количеству электронов, относящихся к этой зоне, поделенному пополам. Для кристалла также справедлив принцип Паули: каждый уровень может быть занят не более чем двумя электронами при условии, что их спины направлены в противоположные стороны.

Валентным электронам соответствует валентная разрешенная зона. Большим по сравнению с уровнями валентной зоны значениям энергии соответствуют одна или несколько свободных зон. При температуре абсолютного нуля все уровни валентной зоны заняты электронами, а все уровни свободной зоны свободны. Валентная и свободная зоны разделены промежутком запрещенной зоны. В пределах запрещенной зоны нет ни одного значения энергии, которым мог бы обладать электрон.

В зависимости от ширины запрещенной зоны кристаллические твердые тела делятся на три класса. Если ширина запрещенной зоны превышает примерно 3 эв, то такие тела представляют собой изоляторы, или диэлектрики. При отсутствии запрещенной зоны, когда валентная и свободная зоны пересекаются, мы имеем дело с проводниками. Промежуточный случай, когда ширина запрещенной зоны составляет примерно от 0,5 до 3 эв, дают полупроводники.

В обычных условиях в диэлектриках невозможно никакое упорядоченное движение электронов, они не проводят электрического тока. Почему так происходит? Про каждый валентный электрон нельзя сказать, что он принадлежит какому-то конкретному атому. Все валентные электроны в кристалле общие, и кристалл представляет собой как бы одну большую молекулу. Электроны в кристалле находятся в непрерывном движении. Правда, движутся они не совсем так, как в нашем представлении перемещаются маленькие шарики или молекулы в газе.

Применительно к электрону в кристалле «движется» означает одно: объект обладает кинетической энергией, или, что то же самое, окружен магнитным полем. Обладая кинетической энергией, электрон обязательно должен обладать количеством движения. Зная величину и направление напряженностей магнитного и электрического полей, можно определить величину и направление количества движения (количество движения — величина векторная). Вы хорошо прочувствовали, что для электрона в кристалле двигаться — значит быть окруженным, кроме электрического, еще и магнитным полем? Движение электронов необходимо для существования твердого тела. Между атомными ядрами и неподвижными электронами действовали бы лишь силы электростатического притяжения, и электроны упали бы на ядра. Все точно так, как и в атоме.

Два электрона могут обменяться своими уровнями. В таких случаях говорят о «столкновении» электронов. Не подумайте, что при столкновении электроны касаются друг друга — такое просто невозможно. Применительно к электронам в кристалле «столкнуться» означает обменяться занимаемыми уровнями. Естественно, при столкновении соблюдается закон сохранения количества движения, т. е. сумма (векторная) количеств движения двух электронов после столкновения равна сумме (векторной) их количеств движения до столкновения. Именно из-за возможности столкновений (обмен занимаемыми уровнями) создается впечатление хаотичности движения электронов в кристалле.

В каком-то дополнительном движении, например упорядоченном движении под действием внешнего электрического поля (электрический ток), электроны кристалла участвуют в том случае, если имеются свободные, более высокие энергетические уровни. Когда все уровни в валентной зоне заняты, никакое дополнительное упорядоченное движение электронов невозможно. Что удерживает электроны? В привычном для нас смысле этого слова они абсолютно свободны, но крепче, чем стальные канаты, удерживает электроны подчиненность принципу Паули, согласно которому два электрона ни при каких условиях не могут находиться в одном и том же энергетическом состоянии, т. е. занимать один и тот же энергетический уровень.

По какой-либо причине, например из-за увеличения температуры, отдельный валентный электрон приобретает порцию дополнительной энергии, большую ширины запрещенной зоны. Тогда электрон переходит в свободную зону, занимая там один из свободных уровней. В свободной зоне электроны могут изменять свою энергию — свободных уровней там достаточно — и участвовать в любых движениях, в том числе в упорядоченном движении по переносу электрического тока. При комнатной температуре у проводников в свободной зоне всегда есть какое-то количество электронов. Эти электроны практически не взаимодействуют с валентными электронами.

Электроны в кристалле связаны между собой, точнее, каждый электрон связан с окружающим его электромагнитным полем. Эта связь определяется принципом Паули. Переходя в другую энергетическую зону, электрон освобождается от действия принципа Паули. Находясь в свободной зоне, электроны почти столь же свободны (в смысле возможности изменять свою энергию), как если бы они находились в вакууме. Все это, однако, справедливо до тех пор, пока электрон находится в пределах кристалла.

Кристалл имеет весьма сложное электромагнитное поле с периодической структурой. Во всех случаях, не требующих учета массы, на атомные ядра в кристалле можно просто не обращать внимания. В электромагнитном поле распределены электроны. Бессмысленно говорить о местоположении отдельного электрона, но где бы он ни находился, электрон оказывает влияние сразу на все поле. Если каким-то образом из кристалла извлечь один электрон, весь кристалл, именно весь, а не какой-то его участок, приобретет свойства положительно заряженного тела.

Кристалл представляет собой как бы трехэтажный дом. В первом, самом нижнем этаже расселены сильно связанные электроны атомных остатков. Они почти не принимают участия в «событиях», происходящих в кристалле. Причем слово «расселены» применительно к электронам — это не авторская вольность, а научный термин. Второй этаж соответствует валентной зоне. Когда этот этаж заселен полностью, никакое упорядоченное движение в кристалле невозможно. Третий, верхний этаж соответствует свободной зоне. Живущие здесь электроны могут вытворять все что угодно. И знаете, что самое интересное? Порядки на каждом нз этажей ни в коей мере не зависят от того, что творится на других этажах.

Металлы

Что представляют собой металлы? Большинство из них — кристаллические твердые тела, у которых запрещенная зона отсутствует, а свободная зона пересекается с валентной. Валентные, электроны металлов могут участвовать в любых упорядоченных движениях, поэтому металлы, как правило, хорошие проводники электрического тока. Но нас интересует другое. Возвращаясь к аналогии с трехэтажным домом, скажем, что у металлов, как и у других твердых тел, нижний, энергетический этаж заселен полностью. Поэтому электроны, которым не досталась «квартира» в нижнем этаже, селятся на втором и третьем (у металлов они объединены) этажах и, следовательно, обладают высокими по сравнению с нижним этажом значениями энергии.

Так происходит всегда, даже когда температура металла равна абсолютному нулю. Наличие в металлах, как, впрочем, в любых телах, относительно энергичных электронов определяется ее тем, что кто-то (или что-то) специально сообщил им дополнительную энергию, а фундаментальным заионом природы, получившим название принципа Паули. Если электрон не успел занять квартиру в нижнем этаже, ему не остается ничего другого, как приобрести у соседей дополнительную энергию и разместиться на втором этаже, а то и на третьем. Мы уже говорили, что валентные и свободные электроны любого тела и при любых условиях, в том числе и при температуре абсолютного нуля, обладают неким запасом энергии, этот запас есть не что иное, как химическая энергия данного вещества.

Среднее значение энергии электронов — жителей верхних этажей — называется электрохимическим потенциалом. Как валентная, так и свободная энергетическая зона получается в результате расщепления одного энергетического уровня данного атома. У разных веществ эти уровни различны, разлотиы положения на оси энергий валентных и свободных зон, различны значения электрохимических потенциалов.

Есть кентакт!

Крепко прижмите друг к другу дна стержня из разных металлов. Предположим, у левого стержня электрохимический потенциал выше, у правого—ниже. Электроны справа и электроны слева обладают кинетической энергией, т. е. находятся в непрерывном движении, причем движутся беспорядочно. После того как вы нрижали стержни, часть электронов отрава перейдет в левый стержень (ведь электроны перемещаются во все стороны'), а часть электронов с левого стержня —в нравы*. Электроны с левого стержня обладают большей средней кинетической энергией, поэтому они двигаются быстрее, и в единицу времени слева направо перейдет больше электронов, чем справа налево. Постепенно электроны етаиут накапливаться в нравом стержне.

Если бы электроны можно было уподобить шарикам, переходящим с места на место, наша задача неизмеримо облегчилась бы. К сожалению, говоря «электрон движется», mt оказываемся ничуть не ближе к реальности, чем когда говорим «электрон живет в верхнем этаже энергетического дома». На самом деде все сложнее (а может быть, проще?). Электрой, который, по-нашему, движется в свободной зоне, может внезапно исчезнуть, «ировалиться» в валентную зону. Такое явление называют рекомбинацией, и есть в нем нечто примечательное. Если имеется хоть какая-то возможность говорить о пространственном положении электрона, то при рекомбинации оно сохраняется неизменным. А с точки зрения интересующих нас процессов электрон исчезает.

Попытаемся сказать иначе. Электроны в свободной зоне представляют своеобразный газ. Этот газ занимает некоторый объем (объем взятого образца) и создает определенное давление. Произведение из давления на объем пропорционально «температуре» электронного газа. Температура, в свою очередь, пропорциональна его средней кинетической энергии.

Следует признаться, что слова «объем», «давление», «температура» отражают реальность в той же степени, как и слова «поселился» и «живет» по отношению к электрону. Тем не менее продолжим наш опыт со стержнями. Электрохимический потенциал, а значит, средняя кинетическая энергия, температура и давление, слева выше, чем справа. Под влиянием более высокого давления граница, отделяющая левый стержень от правого, как бы смещается вправо. А результат? В правом стержне накапливается какое-то количество избыточных электронов, точнее, избыточный отрицательный заряд.

Наконец, третье объяснение. Вся окружающая нас природа подчиняется фундаментальному закону, известному под названием второго начала термодинамики: во всякой изолированной физической системе обязательно возникают процессы, направленные в сторону установления равновесия (если таковое еще не достигнуто). Соединив вместе два металлических стержня, вы получили неравновесную систему: потенциал слева выше, чем потенциал справа. Конфигурация электромагнитного поля (она одна изменяется на самом деле) меняется таким образом, чтобы восстановилось равновесие. Достичь этого можно единственным способом — создавая разность электрических потенциалов, равную по величине и противоположную по знаку исходной разности электрохимических потенциалов.

Это и происходит в нашем опыте. По обе стороны поверхности соприкосновения двух металлов возникает разность электрических потенциалов (электрическое напряжение), которая называется контактной разностью потенциалов, или гальвани-потенциалом.

Отчего она подергивалась?

Наличие гальвани-потенциала можно установить с помощью простого опыта. На стержне электроскопа укрепляют металлический диск, затем тонкую изолирующую прокладку и второй диск из другого металла, снабженный ручкой. Диски соединяют между собой проволочкой, например из первого металла. Составленный из двух дисков конденсатор заряжается до величины контактной разности потенциалов. Заряд сохраняется в конденсаторе и после того, как проволочку убирают. Однако контактная разность потенциалов очень мала, поэтому листочки электроскопа заметно не разойдутся.

А если поднять за ручку верхний диск? Расстояние между дисками увеличится, емкость конденсатора уменьшится. При неизменном заряде это повлечет за собой увеличение напряжения между обкладками. Листочки электроскопа разойдутся. Сейчас доказано, что в подобном опыте действует много необычных факторов. Истинную величину контактной разности потенциалов измерить невозможно — ее пока не умеют и вычислить.

Похоже, что наш рассказ, которому вполне подошло бы заглавие «Тайна лягушачьей лапки», подходит к концу. Мы не только подтвердили тот факт, что в месте соединения двух металлов возникает электрическое напряжение, но и объяснили, почему так получается. Пришлось немного погрузиться в глубины физики твердого тела, но, как говорил А. Эйнштейн: «Мы хотим не только знать, как устроена природа (и как происходят природные явления), но по возможности достичь цели, может быть, утопической и дерзкой на вид,— узнать, почему природа является именно такой, а не другой. В этом ученые находят наивысшее удовлетворение. В этом состоит и прометеевский элемент научного творчества».

Значит, Вольта оказался прав, а Гальвани — нет? Что ж, конец истории? Нет, не станем торопиться. Для того чтобы произошло какое-то событие (в том числе и подергивание лягушачьей лапки), необходимо затратить хоть ничтожное, но все же конечное количество энергии. В электрических цепях энергия пропорциональна произведению величины напряжения на силу тока. Следовательно, одного напряжения недостаточно, нужно еще, чтобы в цепи протекал ток.

Составьте последовательную электрическую цепь из металла А, металла Б и какого-нибудь проводника В. Пусть металл А имеет электрохимический потенциал а, металл Б — электрохимический потенциал б, проводник В — электрохимический потенциал в. Проводник В — совсем не обязательно металл, поскольку электрохимическим потенциалом обладает любое вещество.

Посчитайте теперь сумму гальвани-потенциалов. На границе между металлами Л и £ он равен а минус б. Пойдем дальше вдоль последовательной цепи. На границе между Б и В гальвани-потенциал равен б минус в и на границе между В и А он равен в минус а. А в сумме? В сумме нуль. Такой же результат получится, сколько бы проводников вы ни брали и какие бы сложные разветвленные цепи из них ни составляли.

Величина электрохимического потенциала не зависит от того, что происходит с веществом. Она зависит от распределения энергетических уровней, т. е. в конечном итоге от структуры атома. Если бы разность электрохимических потенциалов могла служить причиной протекания тока, такой ток протекал бы всегда и получился бы вечный двигатель. Нет, не контактная разность потенциалов была причиной подергивания лягушачьей лайки в опытах Гальвани! Понадобилось еще что-то. И поскольку ничего, кроме лапки, медного крюка и железных перил, в опыте не было, это «еще что-то» должно таиться в самой лягушачьей лапке.


Жидкости

Мы потратили много времени на изучение физических законов, обидно те верь использовать приобретенные знания только на разбирательство спора Гальвани с Вольта. Посмотрим, как в свете наших знаний выглядят жидкости.

Всякая жидкость — сложное электромагнитное поле, в которое то здесь, то там вкраплены атомные ядра и электроны. Чем отличаются жидкости от кристаллов? Отличий два. Первое состоит в том, что жидкости не обладают периодической и вообще никакой постоянной структурой. Структура жидкости зависит от многих причин, в том числе от формы еосуда, куда жидкость налита. Второе отличие в том, что электроны в жидкости не являются общими, а в той или иной степени связаны с атомами и молекулами, правда, не обязательно со своими.

Среди прочих жидкостей для нас интереснее всего растворы, т. е. когда молекулы какого-нибудь вещества перемешаны с молекулами воды. Для водных растворов весьма характерно явление диссоциации, когда некоторые молекулы растворенного вещества распадаются на отдельные части — ионы. Ион — это осколок молекулы, заряженный положительно или отрицательно. Например, молекула поваренной соли NaCl распадается (диссоциирует) в растворе на положительно заряженный ион Na+ и отрицательно заряженный ион С1~.

В чем различие между раствором поваренной соли и кристаллом той же поваренной соли? В кристалле атомы натрия и атомы хлора, отделены друг от друга, они расположены в чередующихся узлах кристаллической решетки. Но при этом и атомы натрия и атомы хлора не имеют своих валентных электронов. При образовании кристалла они потеряли их и превратились в положительно заряженные ионы. Валентные электроны всех атаиов объединились в создали общее электромагнитное поле, удерживающее систему в равновесии. t

В растворе атомы натрия я хлора также расселены. Но. если атомчважржя тернка свой; единственны* валентный электрон, то атом хлора приобретает дополнительный электрон. В растворе каждый элеетоон принадлежит какому-нибудь атому, энергетические зоны отсутствуют, а энергия каждого электрона определяется одним вз разрешенных уровней атома.

Но почему так происходит? Почему одни и те же атомы ведут себя по-разному в кристалле и в растворе? Молекулы воды представляют собой электрические диполи или, образно говоря, как бы стержня, имеющие явно выраженные положительный и отрицательный концы. Молекула поваренной соли также не совсем симметрична. С одной ее «стороны» слегка преобладает положительный заряд, с другой — отрицательный.

Что случается, когда в воду попадает молекула поваренной соли? Ее окружают молекулы воды. Своими положительными концами они притягиваются к отрицательной стороне молекулы поваренной соли, а отрицательными концами — к положительной стороне. Возникает резко несимметричное электромагнитное поле. Молекула поваренной соли разрывается на два иона, и они, в свою очередь, тут же оказываются окруженными молекулами воды. Подобное разделение молекул вещества на ионы и называют диссоциацией.

Самой большой потенциальной энергией обладает электрон, не связанный ни с какими атомами. Такую энергию электрона обычно принимают за нуль отсчета. В атоме, находясь в электромагнитном поле ядра и других электронов, каждый электрон обладает меньшей (отрицательной) потенциальной энергией. Представьте себе такую картину. Электрон с нулевой потенциальной энергией попадает в поле положительно заряженного ядра — допустим, речь идет об атоме водорода. Электрон притягивается и движется в сторону ядра, пока не занимает положенное ему в атоме место. Но когда электрон двигается под действием силы, совершается работа. Потенциальная энергия электрона в атоме численно равна нулю (энергия свободного электрона) минус количество работы, совершенной на его пути к атому.

В молекуле потенциальная энергия электрона еще меньше — вычитается доля работы, совершенной при образовании молекулы. В нашем случае энергия иона С1~ в растворе оказывается меньше его энергии в кристалле. Из первоначального запаса вычитается также и доля работы, совершенной при разрывании молекулы.

Скажем короче. Когда ион С1~ или любой другой отрицательный ион в растворе оказывается окруженным молекулами воды, образуется электромагнитное поле, энергия которого минимальна. Один из фундаментальных законов природы гласит: всякая физическая система стремится принять такое состояние, в котором ее собственная энергия минимальна. Почему поваренная соль растворяется в воде? Потому что в растворе достигается меньшая, чем в кристалле, энергия.

Природа ленива — вот и ключ к разгадке тайны лягушачьей лапки. Ее заставлял дергаться электрический ток, воздействовавший на нервные окончания. Ток возникал на границе между металлом и электролитом, в роли которого выступали жидкости, наполняющие клетки тканей лягушачьей лапки.

На границе

Вы уже знаете, что происходит на границе двух металлов. А что случится, если опустить, например, цинковую пластинку в раствор щелочи КОН? Металл цинк — это кристаллическое твердое тело, где имеются валентные электроны и атомные остатки (ионы) Zn++, несущие положительный электрический заряд, равный по абсолютной величине удвоенному элементарному заряду.

Обсуждая свойства кристаллов, мы в основном интересовались поведением электронов. Многое из сказанного относительно электронов справедливо и для ионов. Как и электроны, ионы взаимодействуют с общим электромагнитным полем. В этом поле ион обладает определенной потенциальной энергией, численно равной (со знаком минус) той работе, которую надо затратить, чтобы извлечь ион из кристалла. Средняя величина потенциальной энергии всех ионов Zn++ представляет собой одну из составляющих электрохимического потенциала цинка.

При погружении цинковой пластинки в раствор молекулы КОН в основном уже продиссоциировали на ионы К+ и ОН-. Отдельные ионы Zn++ могут переходить в раствор и образовывать соединение ZnO по схеме Zn+++20H—*-ZnO + H20. Окись цинка ZnO в растворе также частично диссоциирует. Каждый акт перехода одного иона Zn++ из металла в раствор —- событие случайное. Вполне возможны и противоположные события, когда ионы Zn++ переходят из раствора в металл. Однако средняя энергия ионов Zn++ в растворе меньше,-чем? средняя энергия тех же ионов в цинковой пластивввеа Поэтому в раствор переходит больше ионов, чем из рас»» вора.

Покидая цинковую пластинку, каждый ион оставляет там двойной элементарный отрицателвадй; заряд или два электрона, заряды которых не CKOMOfile сированы положительными зарядами. Пластинка постепенно заряжается отрицательно, а жидкость вблизи.'ЩШ-ковой пластинки — положительно. Между пластинкой и раствором устанавливается разность электрических по? тенциалов. Когда же наступает равновесие? Когда разность электрических потенциалов (гальвани-потенциалов) становится равной исходной разности средних энергий ионов Zn++ в металле и растворе. Электрическое поле препятствует дальнейшим переходам ионов Zn++ из металла в раствор. Среднее число таких переходов в единицу времени равно среднему числу переходов из раствора в металл за то же время. Чтобы учесть факт образовання электрического июля, схему реакции записывают так: Zn++-f-20H—*ZnO+H20+2e. Слагаемое 2е — это два электрона, оставшиеся в цинковой пластинке после того, как нз вес ушел ион Zn++.

Пока все происходит, как и в случае контакта двух металлов. Казалось бы, единственное отличие состоит в том, что металлы обмениваются электронами, а на границе металла и раствора происходит обмен ионами, поскольку в растворе свободных электронов нет.


В кольце

Чтобы образовать замкнутую электрическую цепь, в сосуд со щелочью опустите не одну, а две цинковые пластинки. Для разнообразия соедините их медной проволокой. Ваша замкнутая электрическая цепь содержит четыре контакта между разнородными проводниками. В каждом контакте возникает контактная разность потенциалов (гальвани-потенциал), но подсчет суммы гальвани-потенциалов снова дает нуль. Ничего нового, непонятно, зачем было начинать все сначала?

Однако (в который раз!) не будем спешить. Повторим тот же опыт, но вместо второй цинковой возьмем пластинку из платины. Что происходят на границе раствора и цинковой пластинки, вы уже знаете. А что происходит на границе раствора и платиновой пластинки? Платина—- металл благородный и. своих ионов не отдает. Но соединенная с цинковой пластинкой, пластинка из платины приобретает избыточный отрицательный электрический зарад. Молекулы воды частично диссоциируют, образуя ионы. Н+ и ОН-. Электроны в платиновой пла-стишсе получают возможность переходить в раствор и соединяться с ионами Н+, образуя атомы водорода, Реакция идет по схеме НаОНге-*Н-1г ОН-.

Если м>ежду плативкиюв пшастянвож и раствором существует контактна» разность потенциалов, она обязательно отличается от развести потенциалов между цинком и раствором хотя бы потому, что в первом случае происходит обмен электронами, а во втором—иоиами. Следовательно', теперь, сумма гальвани-потевциалов в замкнутой цеив не равна нулю в в цепи может протекать той. Так и есть ва самом деле, причем в металлических проводниках вереносчдаками тока являются электроны, а в растворе — ионы ОН- которые перемещаются от платиновой пластинки к цинковой.

Как объяснить это явление? Чем отличается контакт двух металлов от контакта металла и раствора? На этот счет имеется несколько версий. Можно сказать, например, что электроны, перешедшие через границу двух металлов, притягиваются к оставшимся «на родине» положительным зарядам, и это не позволяет им отойти далеко от границы раздела. Ионы ОН-, окруженные молекулами воды, слабо взаимодействуют друг с другом. Они свободно перемещаются (диффундируют) во все стороны, но те из них, что случайно оказываются возле цинковой пластинки, вступают в реакцию окисления цинка н выбывают из игры. Предлагая такое объяснение, говорят, что наличие тока в цепи объясняется наличием в растворе (электролите) переносчиков заряда — ионов.

Согласно второй версии основными виновниками считаются атомы водорода. В реакции Zn+++20H--*Zn04-+ Н20+2е каждая молекула ОН" разделяется на ионы 0~ и Ht, Ион О— вступает в реакцию с ионами 2П++, образуя молекулу ZnO. Иои Н+ в составе молекулы воды путешествует к ндатиыовой аластннке, т.е. служит пере-аостгвш аможихелыюго заряда, и участвует там в ре-«тиы HsOi^e—"Й-т-ОН-. Тавое «водородное* ©бъяене-*»е имеет свои преимущества.

И все же более соответствует природе вещей, хотя и менее наглядно, следующее объяснение. В реакции, проходящей на границе цинк — металл, образуется новое вещество — окись цинка. Цимк окисляется или попросту сгорает. Поскольку средняя потенциальная энергия ионов Zn++ в металле больше, чем в окиси, в ходе реакции выделяется энергия. Зга избыточная энергия позволяет совершить работу, связанную с ярохождением тока в замкнутой иедн. Система, состоящая из банки со щелочью, цинковой и ллатийовой лластишж, представляет собой маленькую тепловую электростанцию.

Да, да, тепловую — мы не оговорились. В этой системе, называемой, к слову сказать, гальваническим элементом, ироисходит процесс сжигания щшка. В результате выделяется тепловая анергия (тепло — это движение частиц). Только в вашем случае эта энергия проявляется не в форме беспорядочного донжемия молекул, а в форме упорядоченного движения электронов в металле и переносчиков в растворе. Благодаря упорядоченности качество энергии оказывается выше.

Гальванический элемент обладает многими существенными достоинствами. Поскольку химическая энергия топлива (цинка) превращается в нем непосредственно в энергию электрическую, минуя промежуточные стадии, кпд таких элементов равняется 60%, а у лучших образцов доходит до 80%, в то время как у настоящих тепловых электростанций кпд не бывает выше 30%. Но вот беда! Если вместо медного проводника включить, скажем, электрическую лампочку, она загорится, но — увы! — перестанет гореть через несколько минут. Виноват во всем водород. Пузырьки водорода покрывают платиновую пластинку сплошным слоем и изолируют ее от раствора. Такое явление называется поляризацией. Наша конструкция гальванического элемента требует усовершенствования.

Электроды

Реакцию, которая происходит между цинковой пластинкой и раствором, называют электродной. Кроме обычных для химических реакций исходных веществ, в процессе электродных реакций выделяются (или поглощаются) еще и электроны. Процесс, в результате которого у атомов вещества (в нашем случае цинка) отнимаются электроны, называют окислением. Электрод, на котором протекает окислительный процесс, т. е. тот электрод, в который уходят электроны, называется анодом. Соответственно второй электрод, из которого электроны поступают, называется катодом. Электродную реакцию окисления называют анодной реакцией. Совсем не обязательно электроды должны быть металлическими или даже твердыми. Часто используют, например, газообразные электроды. Переносчик ионов (электролит) тоже совсем не обязательно должен представлять собой раствор. Электролиты бывают разные, в том числе и твердые.

Попытаемся усовершенствовать гальванический элемент. В уже знакомую вам банку со щелочью КОН поместим цинковую пластинку и электрод, представляющий собой решетку из окиси серебра Ag20. Окись серебра взаимодействует с раствором, происходит реакция Ag20+H20+2e—*2Ag+20Н~.

В процессе окисления окисляемое вещество отдает свои электроны. В молекуле окиси серебра валентные электроны атомов серебра отданы «на общие нужды», они участвуют в формировании структуры молекулы. Получая от электрода два дополнительных электрона, молекула окиси серебра распадается на два нейтральных атома серебра и ион кислорода О— с двумя лишними электронами. Всякая реакция, в ходе которой атомы вещества получают электроны, называется реакцией восстановления. В нашем случае чистое серебро восстанавливается из окиси и выделяется на электроде, который мы условились называть катодом. Поскольку в ходе реакции участвуют электроны, ее также называют электродной, в отличие от реакции с цинком это не анодная, а катодная электродная реакция.

Освободившиеся в результате катодной реакция ионы кислорода реагируют с водой, образуя два, иов£ ОН-. Эта реакция, по сути дела, не является электро-ной, однако в ее ходе в электролит переходят отрица^ тельно заряженные ионы. Электролит постепенно np$r обретает отрицательный заряд. Если электроды, ид соединены, между электродом и раствором устана.вл^ вается равновесная разность электри^ескрх^1п^уен,Ц}1^лЖ опять-таки равная исходной ря№ЖЩ-!ШЩШ11рШ9*Ш* потенциалов,— все точно так же* в ре$фздн^^^вк<щ,,

Если соединить электроды проводвдеязд^ра^еОД замкнутая электрическая цепь, и по ней «потечет ток. При этом поддерживается равенство: на каждый окислившийся (сгоревший) атом цинка приходятся два атома восстановившегося серебра. Равенство это поддерживается потому, что в катодной реакции участвуют только электроны, пришедшие с анода.

Ну а в электролите? Здесь снова предлагаются два описания. Согласно первому образовавшиеся в результате катодной реакции ионы ОН~ перемещаются к аноду и там участвуют в анодной реакции. Согласно второму объяснению полученные в результате анодной реакции атомы водорода в составе молекул воды путешествуют к катоду. Но теперь они не выделяются на катоде (поляризация), а соединяются с освободившимися в результате катодной реакции атомами кислорода, давая все тот же ион ОН-.

Еще одна подробность, на которую стоит обратить внимание. Ионы ОН- согласно одному из описаний, путешествуют от катода к аноду. Но на самом деле это не обязательно. Конечно, ничто не преиятствует какому-нибудь конкретному, рожденному у катода иону ОН-совершить путешествие через всю банку к аноду. В отличие от электронов ионы достаточно четко локализованы в пространстве, и в принципе такое путешествие можно было бы даже проследить. Но необходимости в таком путешествии нет. Все что нужно — это чтобы общая концентрация ионов ОН- в электролите поддерживалась постоянной. Ведь фактически расходуются только цинк, необратимо переходящий в окись цинка, и окись серебра, из которой выделяются атомы серебра. Для протекания тока не нужно, чтобы молекулы окиси цинка переходили к катоду или атомы серебра к аноду.

Что же касается ионов ОН-, то вполне допустимо и такое описание. Вблизи катода ионы ОН- присоединяют к себе ионы водорода и образуют воду, а вблизи анода вода диссоциирует и образует ионы ОН-. Общий баланс вещества при этом не меняется. Это особенно справедливо для электронов. Совершенно не обязательно, чтобы длиннейшее' путешествие от анода к катоду совершал какой-либо конкретный электрон. Физикой установлено, что электроны не имеют индивидуальности. Электрон, как уже говорилось, вполне может «исчезнуть» (например, «провалиться» на один из низких уровней) у анода и в тот же миг «родиться* (выскочить на уровень свободной зовы) у катода. Важно, чтобы общее количество электронов, выделившихся у анода, было равно общему количеству электронов, потребленных у катода.

Аккумуляторы

Серебряно-цинковый гальванический элемент обладает еще одним замечательным свойством. Нормально при протекании тока расходуются цинк и окись серебра. Теоретически ток протекает до тех пор, пока не израсходуется весь цинк или вся окись серебра, или то и другое вместе. На самом деле ток перестает протекать (мы говорим, батарейка сгорела) гораздо раньше.

Что произойдет, если серебряно-цинковый элемент подсоединить к внешнему источнику электрической энергии анодом к отрицательному полюсу, а катодом — к положительному? На аноде образуется избыток электронов. Обладая относительно высокой средней энергией, они поступят в раствор и послужат причиной реакции восстановления: ZnO+H20-r-2e—*Zn+20H-. Наоборот, атомы серебра на катоде, отдавая свои электроны внешнему источнику электрической энергии, окисляются:

2Ag-f-20H Ag20 + H20-r-2e. Через некоторое время

элемент приходит в такое состояние, как будто в нем не расходовались цинк и окись серебра.

Электродные реакции, легко' протекающие как в одну, так и в другую сторону, называют обратимыми. Элементы с обратимыми электродными реакциями называют аккумуляторами. Аккумулятор можно заряжать от внешнего источника электрической энергии и разряжать, подсоединяя к его электродам какой-нибудь потребитель, например электрическую лампочку. Теоретически количество циклов заряда-разряда может быть сколь угодно большим, на самом деле оно, конечно, ограничено. Свойством обратимости электродных реакций и, следовательно, способностью работать как аккумуляторы обладают далеко не все гальванические элементы.


Элемент Лешмннве

Вы куш ил в магамие батарейку для карманного фонарика яяв транзисторного радиоприемника. Знаете ли вы, что она представляет собой? Маргаачево-адщювый

элемент или батарею, состоящую из нескольких таких элементов. Первый маргаииево-дииховый элемент в 1865 году создал французский инженер Ж.-Л. Лекланше. Элемент состоял из стеклянной банки с раствором хлорида аммония (нашатыря) NH4CI, в который были погружены цинковый стержень (отрицательный электрод) и керамический пористый сосуд, аашлнеяяый смесью двуокиси марганца Мп02 я порошка кокса, с угольным стержнем — токоотводом (положительный электрод). В 1868 году было изготовлено более 20 ООО таких элементов.

Со временем цинковый стержень заменили цинковым стаканом, который одновременно служил и анодом, и корпусом элемента. Смесь марганца и порошка шкса вместо керамического сосуда стали помещать в тканевый мешочек или бумажный патрон. В 1880-х годах начали использовать так называемый загущенный злектролят, и элементы Лекланше превратились в сухие элемеяты. В таком виде практически почтя без изменений они до-


жили до наших дней. Сейчас во всем мире ежегодно производится 7—9 млрд. элементов.

Так же, как и в серебряно-цинковом элементе, в элементе Лекланше топливом служит цинк.

Оказалось, однако, что элементы Лекланше не удовлетворяют всем требованиям. На смену им приходят щелочные марганцево-цинковые элементы. Первый такой элемент был предложен в 1912 году, но только в 60-х годах в результате интенсивных работ, начатых в СССР и впоследствии проводимых в разных странах, были созданы улучшенные варианты щелочных марганцево-цинковых элементов, которые и получили сегодня широкое распространение.

Для питания наручных электронных часов и карманных калькуляторов чаще всего используются ртутно-цинковые элементы. По сравнению с любыми другими химическими источниками тока у ртутно-цинковых элементов удается снять самое большое количество энергии с единицы объема. Маленькие батарейки в ручных электронных часах работают без смены целый год, а то и больше. Ртутно-цинковые элементы в принципе можно подзаряжать, но заряжаются они плохо. Поэтому в тех случаях когда расход энергии относительно велик, например в слуховых аппаратах и карманных фонариках, лучше пользоваться аккумуляторами.

Топливные элементы

Все знают, как незаменим бывает электрический фонарик темной ночью в лесу. Приятно взять с собой на загородную прогулку транзисторный приемник или магнитофон, если, конечно, не включать их на полную мощность, отравляя тем самым существование окружающим. Не менее хорошо мы знаем и то, как быстро садятся батарейки, особенно в карманных фонариках. И никому не приходит в голову построить, скажем, автомобиль, приводимый в движение от гальванических элементов.

Кпд гальванических элементов очень высок. Топливо в них используется эффективнее, чем у тепловых электростанций, однако в качестве топлива применяют остродефицитные и дорогие металлы, такие, как цинк, кадмий, ртуть. Кроме того, существующие конструкции гальванических элементов не позволяют добавлять топливо по мере его расходования. Да в этом и нет необходимости, вряд ли кто-нибудь станет серьезно говорить об автомобиле или тепловозе, у которых в качестве горючего предлагалось бы использовать цинк или кадмий. Уделом гальванических элементов, по всей вероятности, так и останется питание радиоприемников, магнитофонов, электронных часов, карманных фонариков и калькуляторов.

А как обстоит дело с аккумуляторами? Тяговые аккумуляторы широко выпускаются промышленностью. И в нашей стране, и за рубежом давно уже созданы и опробованы образцы легковых и грузовых автомобилей, электрокаров и т. п. с питанием от аккумуляторов. Проблема создания электромобилей стала сейчас особенно насущной в связи с необходимостью всеми силами бороться за чистоту окружающей среды.

Тяговые аккумуляторы дают возможность автомобилю проехать без подзаряда 100—130 км. Однако и тут есть свои неприятности. Их много, а главная состоит в том, что заряд аккумулятора — процесс длительный. Для полного заряда свинцового аккумулятора требуется 16— 20 ч. Это время можно существенно уменьшить, и все же мы не согласимся проводить на заправочной станции по 2—3 ч после каждых 100 км пробега. В чем здесь причина? В аккумулятор не добавляется топливо. Оно лишь восстанавливается при протекании электрического тока. Как было бы заманчиво создать гальванический элемент, в который добавляют топливо по мере его расходования и в качестве топлива используют легкодоступные и дешевые вещества.

В 1839 году английский исследователь У. Гров пропускал электрический ток через два платиновых электрода, опущенных в раствор серной кислоты. В результате на одном из электродов выделялся водород, а на втором — кислород. Гров заметил, что после отключения источника тока между электродами сохраняется небольшое напряжение, и если замкнуть их проволочкой,, то по ней течет электрический ток. Того же эффект (Можно добиться, если получать кислород и водород неврезультате разложения электролита (электролиз), а подводить эти газы к электродам по трубкам.

Происходящие здесь реакции не составляют для нас ничего нового. Если опустить два электрода в раствор щелочи и обдувать их: один — водородом, а другой ки-


слородом, то на водородном (отрицательном) электроде будет происходить реакция H2-f-20H_'^> Н20 + 2е. Два электрона освобождаются в результате реакции и переходят в раствор. Мы теперь знаем, почему. Потому что энергия электрона в атоме водорода выше, чем энергия электрона в кристаллической решетке металла. Водород теряет электроны, т. е. окисляется, сгорает. На кислородном электроде происходит реакция '/2024-+Н20+2е *20Н_. Реакция идет с присоединением двух электронов, т. е. электрод заряжается положительно. Все остальные детали мы уже обсуждали.

После опытов Грова стало ясно, что кислород можно добывать из обычного воздуха, а водород — из различных природных видов топлива, например природного газа. Отсюда в 1889 году возникло название «топливный элемент».

В 1894 году известный немецкий физикохимик В. Оствальд впервые высказал идею о том, что использовать топливо в топливных элементах намного выгоднее, чем-в тепловых электростанциях, поскольку кпд топливных элементов значительно больше (до 80%).

В 1947 году советский иследователь О. К. Давтян опубликовал первую монографию по топливным элементам. В 1958 году Ф. Бэкон в Англии создал установку мощностью 5 кВт на основе кислородно-водородных элементов. Кислородно-водородные установки с топливными элементами (электрохимические генераторы) использовались на борту американских космических кораблей «Джемини» и «Аполлон». Они снабжали космонавтов не только электроэнергией, но и водой.

В конце 60-х годов американская фирма «Юнион кар-байд» продемонстрировала четырехместный легковой электромобиль, оборудованный водородно-воздушным электрохимическим генератором мощностью 6 кВт. Запас водорода в баллонах обеспечивал пробег до 320 км при скорости около 60 км/ч. В 1973 году в нашей стране был создан электрокар с электрохимическим генератором, работающим на водороде и воздухе.

Хотя до сих пор промышленностью еще не выпускаются электрохимические генераторы, есть все основания полагать, что выпуск их и широкое использование в самых различных областях начнутся в обозримом будущем. Какие трудности стоят на этом пути? Их несколько, и среди них выделяются две главные. Первая состоит в том, что водород как топливо хотя и не дефицитен — его можно получать, например, из воды, но достаточно дорог. Можно добывать водород из обычного топлива, если измельченный уголь обрабатывать водяным паром. Происходит реакция С+Н20—*СО+Н2. Полученную смесь СО и Н2 еще раз обрабатывают водяным паром, после чего образуется двуокись углерода С02 и дополнительный водород. Но подобная добыча водорода сопряжена с затратами энергии, поэтому кпд электрохимических генераторов, работающих с такими видами топлива, как уголь и природный газ, оказывается не более 40%.

Но это еще полбеды. Хуже обстоит дело со второй трудностью. О ней мы должны были бы сказать в самом начале обсуждения принципа действия гальванических элементов. Не случилось этого потому, что, поскольку речь шла о батарейках для карманных фонариков и магнитофонов, нас мало интересовал, скажем, максимальный ток, который создает элемент, или все тот же кпд.

На что же следовало обратить внимание? Электродные реакции проходят с.определенной скоростью. Например, количество ионов цинка, переходящих в раствор в единицу времени из металла в электролит, определяется химической активностью выбранной пары цинк—электролит. Повысить это количество можно одним-единетвен-ным способом, увеличив поверхность соприкосновения цинка с электролитом. В частности, для этого использовались порошковые цинковые электроды. В случае топливных элементов все обстоит сложнее. Здесь в одном месте должны встретиться не две, а три фазы: твердый электрод, жидкий электролит и газ (водород или кислород). Скорость реакции существенным образом зависит от того, сколько газа растворено в электролите, а водород и кислород растворяются очень плохо.

Одно из решений этой проблемы состоит в том, чтобы использовать пористые электроды — у них большая поверхность. Электрод изготовляется из смеси двух веществ, одно из которых хорошо смачивается водой,— такие вещества называют гидрофильными. Поры в гидрофильном веществе заполняются электролитом. Другое вещество, наоборот, отталкивает воду — такие вещества называют гидрофобными. Поры в нем заполняются газом. Все это хорошо на бумаге, а в жизни встречаются все новые и новые трудности, из-за которых мы до сих пор не имеем дешевых и эффективных электрохимических генераторов, хотя, казалось бы, есть все основания для оптимизма.

Животное электричество

Заканчивая эту главу, мы познакомимся еще с одной идеей. Как и в топливном элементе, в живой клетке реакции, сопровождающиеся выделением энергии, происходят либо в жидкой фазе, либо на границе жидкой и твердой фаз. Поэтому участвовать в реакциях могут только газы, растворенные в жидкости. Кислород и водород растворяются плохо — это одна из важных трудностей при изготовлении топливных элементов. Эта проблема решается путем использования пористых электродов из гидрофильных и гидрофобных веществ.

Природа решила эту проблему иначе. В живой клетке кислород и водород присутствуют не в чистом виде. Молекулы кислорода и водорода присоединяются к молекулам специальных веществ-переносчиков. Переносчиком кислорода служит гемоглобин и сходные с ним вещества. Одна молекула гемоглобина может перенести до четырех молекул кислорода.

Переносчиками водорода служит целая группа химических соединений, среди которых наибольшее значение имеет никотинамидаденинуклеотид (НАД). НАД не только переносит водород, но и «выдирает» атомы водорода из окисляемых молекул пищи. За каждый заход молекула НАД забирает по два атома водорода, одновременно способствуя тому, чтобы один из них распался на две заряженные частицы: протон и электрон. Причем отрицательный электрон остается присоединенным к молекуле переносчика, а положительный протон (ион водорода) переходит в раствор.

В топливных элементах «выдирание» атомов водорода из молекул топлива осуществляется, например, при обработке угля водяным паром. Но для этого нужны высокие температуры. В клетках та же задача решается с помощью специальных химических веществ — ферментов.

Известно, что отдельные ферменты можно извлекать из клеток и использовать в технологических процессах. Это давно применяется в виноделии, хлебопечении, сыроварении. Но извлечь комплексно несколько десятков ферментов, чтобы перерабатывать, скажем, глюкозу в водород, связанный с переносчиком, пока еще практически невозможно.

А если поступать иначе? Если использовать живые клетки? Интересную идею конструкции электрохимического генератора предложил доктор медицинских наук И. С. Балаховский. Взвесь одноклеточных организмов, например дрожжей, в жидкости, содержащей питательные вещества, заключают в герметичный сосуд. Клетки активно поглощают питательные вещества и превращают их в угольную кислоту и водород, присоединенный к переносчику. Водород не окисляется, поскольку кислорода в сосуде нет. Вместо этого в сосуд подается пировино-градная кислота, которая легко проникает сквозь оболочки клеток и, присоединяя к себе два атома водорода, превращается в молочную кислоту. Молочная кислота также легко проникает сквозь оболочки клеток и может быть выведена из сосуда и подведена к водородному электроду топливного элемента. Здесь она окисляется, превращаясь в пировиноградную кислоту, цикл повторяется.

Кпд такой системы невысок, и сама идея требует экспериментальной проверки. Но познакомившись с ней, мы вправе спросить: можно ли называть электричество, вырабатываемое при посредстве живых клеток, животным электричеством? Кто же все-таки оказался прав — Гальвани или Вольта?

Конечно, никакого животного электричества нет. Электричество, т. е. электрические заряды и электромагнитные поля, едино по своей природе и лежит в основе всей окружающей нас материи. Как это часто бывает в науке, правыми оказались оба, и Гальвани, и Вольта, хотя они высказывали на первый взгляд противоположные мнения.

В любой батарейке или, выражаясь более научно, в любом химическом источнике тока окисляется, т. е. сгорает, топливо, как в топке парового котла. Однако в топке котла молекулы топлива и кислорода сталкиваются случайным образом. Выделяющаяся при этом энергия расходуется на увеличение скорости движения молекул, причем это движение происходит хаотически. Иначе говоря, энергия, выделяющаяся при химической реакции окисления, расходуется на повышение температуры.

В химическом источнике тока энергия, выделяющаяся


в результате химической реакции окисления, также затрачивается на организацию движения ионов в электролите и электронов в проводнике. Но это движение упорядоченное. Оно совершается преимущественно в одном направлении. Чтобы заставить частицы материи двигаться упорядоченно, создают специальную систему из электродов и электролита. Благодаря различию электрохимических потенциалов на границах между веществами возникают как бы потенциальные горки (говорят, потенциальный рельеф). Электроны и ионы скатываются по этим горкам в заданном направлении. Любой химический источник тока объединяет в себе два различных процесса: освобождение химической энергии и упорядочение возникающего при этом движения. Благодаря наличию второго процесса получается энергия более высокого качества, чем тепловая.


ГЛАВА 5

Атомы и атомная энергия

Секреты

В августе 1945 года мир узнал о варварских атомных бомбардировках японских городов Хиросимы и Нагасаки. Все простые люди земного шара были возмущены этой совершенно ненужной в военном отношении акцией США. Вот при таких трагических обстоятельствах стало известно, что ученым удалось овладеть одним из самых сокровенных, по тогдашним представлениям, секретов природы — секретом атомной энергии.

Каково было настроение умов предвоенного времени? Подавляющее большинство научно-фантастических романов посвящалось либо космическим полетам, либо атомной энергии. Достижения науки эпохи бури и натиска подготовили общественное мнение к возможности революционных преобразований в науке и технике. Рассматривались многочисленные проекты космических кораблей и атомных электростанций. Тем не менее и к космическим полетам, и к атомным энергетическим установкам относились как к весьма заманчивой, но очень далекой, почти несбыточной мечте. Пожалуй, никто из людей 30-х годов (за исключением, конечно, специалистов) серьезно не рассчитывал стать свидетелем атомного взрыва или пуска атомной электростанции. Отсюда, наверное, и та настойчивость, с которой атомная тема повторялась в научной фантастике.

Первое искусственное расщепление ядер произвел Резерфорд, в 1919 году он бомбардировал альфа-частицами азот. В результате такой бомбардировки образовались отдельные протоны и неустойчивый изотоп фтора, который быстро превращался в изотоп кислорода-17. В 1930 году при бомбардировке альфа-частицами бериллия получили излучение с весьма большой проникающей способностью. Д. Чедвик сразу предположил, что ''это" поток ранее неизвестных частиц — нейтронов, во всем, за исключением заряда, подобных протону. Тем же Чед-виком нейтрон был вскоре обнаружен экспериментально. Произошло это в 1932 году. Наконец, в 1936—1937 годах немецкие ученые О. Ган, Лиза Мейтнер и Ф. Штрас-ман проводили опыты с целью получить трансурановые элементы, т. е. элементы с атомным номером более 92. В результате оказалось, что ядро изотопа уран-235 захватывает нейтрон, а после этого делится на два осколка со средними атомными весами и испускает несколько нейтронов.

За неполные 40 лет физика прошла путь, начиная от обнаружения естественной радиоактивности и кончая во всяком случае теоретическим предсказанием возможности осуществления цепной реакции по превращению тяжелого элемента уран-235 в два других элемента, расположенных в средней части таблицы Менделеева. Тогда же выяснилось, что при распаде ядер урана выделяется очень большое количество энергии.

Результаты перечисленных работ, не исключая опытов Гана, Мейтнер и Штрасмана, широко публиковались. Поэтому после 1937 года каждый старшеклассник мог представить себе четко реакцию ядерного распада. Бомбардируем уран-235 нейтронами. Нейтрон попадает в ядро, разбивает его на два осколка, при этом образуются, скажем, два новых нейтрона. Если хотя бы один из двух нейтронов вызывает деление соседнего ядра, то дальше процесс развивается самопроизвольно: второе расколотое ядро снова порождает два нейтрона, хотя бы один из них разбивает третье ядро и т. д.

При распаде каждого из ядер выделяется около 150 млн. эВ энергии. Вы представляете себе, что это такое? 1 эВ эквивалентен 1,6-Ю-12 эрг. Энергией 1 эрг обладает шарик массой 1 г, движущийся со скоростью примерно 1,5 см/с. Энергия 150 млн. эВ соответствует 2 4-Ю-4 эрг. Такой энергией обладает тело массой 1 мг, движущееся со скоростью 0,7 см/с. И то и другое — величины, вполне доступные нашим органам чувств. Энергии, которая выделяется при распаде одного-единствен-ного ядра атома урана, достаточно, чтобы подбросить небольшую песчинку. Наш пример еще раз подтверждает мысль, которую мы последовательно проводим в этой книге:'не существует какого-то микромира и какой-то особой физики, справедливой лишь в микромире.

Мышеловки

Итак, после 1937 года каждому старшекласснику могло быть ясно, как высвободить излишки энергии, хранящиеся в атомах урана, т. е. вызвать цепную реакцию. Но в проводимых тогда опытах почему-то ничего подобного не получалось. Более того, сам Резерфорд категорически не верил в реализуемость атомных взрывов и атомных энергетических установок. Свое неверие он сохранил до самой смерти. Не очень верил в атомную бомбу и Альберт Эйнштейн. Правда, он подписал письмо к тогдашнему президенту США Рузвельту, в котором указывал на возможность создания атомного оружия в фашистской Германии. Сделал он это не потому, что верил в такую возможность. Эйнштейн считал, что в столь серьезном деле никакая предосторожность не окажется лишней. Не верил в реализуемость атомных взрывов и Нильс Бор. Не верил до тех пор, пока такая возможность не стала очевидной.

В чем же дело? Значит, все-таки был секрет, которого не знал Резерфорд и до последнего момента не знали Эйнштейн и Бор? В первых общедоступных публикациях об атомной бомбе все объяснялось именно так, как мы описали. Один нейтрон (он может залететь, например, вместе с космическими лучами) расщепляет одно атомное ядро урана. В результате расщепления выделяются энергия и несколько нейтронов, способных расщепить соседние атомные ядра.

Представляете себе, что будет, если выстрелить по кирпичу? Кирпич развалится на части, если, конечно, пуля в него попадет. При этом не выделится никакой энергии — энергия пули целиком уйдет на разрушение кирпича. В середине 50-х годов на лекциях по физике в Московском энергетическом институте демонстрировалась модель атомной бомбы, сделанная из... мышеловок. На лабораторный стол устанавливалось штук тридцать мышеловок, обычных, с дужками. Все мышеловки взводили и на каждую дужку клали по два грузика. На одну из дужек укладывали один грузик, а второй бросали на нее. Мышеловка срабатывала. Грузик, положенный на дужку, взлетал вверх. Дальше все зависело от того, насколько плотно располагались мышеловки. Если они стояли далеко друг от друга, то взлетевший грузик падал, как правило, на стол и ничего не происходило. Если же мышеловки располагались вплотную друг к другу, упавший грузик заставлял подскакивать два. Те падали на две мышеловки. Они, в свою очередь, подбрасывали четыре грузика — срабатывали четыре мышеловки и т. д. Зрелище получалось весьма впечатляющее.

Вот теперь наметилось нечто подобное секрету. Чтобы модель работала, необходимо заранее ввести в нее запас энергии, сжимая пружину мышеловки. Грузик (нейтрон) лишь высвобождает этот запас. Модель иллюстрировала понятие критической массы.

Мы не раз говорили, что атомные ядра — это очень маленькие объекты. Маленькие по сравнению с расстояниями между ними. Попасть в такой объект не так-то просто, особенно нейтрону, испущенному в произвольном направлении. Помните опыты Резерфорда с бомбардировкой металлических листиков альфа-частицами? Из 100 тыс. альфа-частиц примерно одна взаимодействовала с ядром и возвращалась назад. Для того чтобы каждый из испущенных ядром нейтронов вызвал расщепление очередного ядра, нужно, чтобы ядра располагались близко друг к другу, что невозможно, или чтобы этих ядер было достаточно много. Ученым удалось подсчитать, что цепная реакция в уране-235 возможна, если сосредоточить примерно 20 кг урана. Двадцать килограммов — это и есть критическая масса. Меньше 20 кг урана не взрывается, а больше 20 кг взрывается самопроизвольно, потому что один нейтрон всегда Найдется.

Ядра и радиоприемники

Значит, секрет атомной бомбы заключается в критической массе? Критическую массу, конечно, надо знать, но главное состояло не в этом. Нет, не было никакого секрета. Нужно было понять, как именно выглядит атомное ядро, а для этого полностью, именно полностью, а не частично, отказаться от привычных представлений. Замечательнее всего, что и Резерфорд, и Эйнштейн, и многие другие ученые рангом пониже, будучи сами творцами современной физики, не могли до конца поверить в собственные идеи.

Эйнштейн так и не поверил, что, по его собственному выражению, бог бросает кости перед тем, как вызвать к жизни то или иное явление. Иначе говоря, Эйнштейн не верил, что мир можно описывать в терминах теории вероятностей. Эрвин Шредингер — творец волновой механики — потратил много сил на то, чтобы примирить свою механику с классической. Пожалуй, самым последовательным из создателей новой физики был Нильс Бор, но и у него, как мы видели, оставались сомнения. В необходимости отрешиться от представлений классической физики и содержался великий драматизм эпохи бури и натиска.

Зачем нужно было отказываться от привычных представлений, чтобы понять механизм расщепления ядер урана? А вот зачем. Продолжим опыт с кирпичом. Вы стреляете из винтовки в кирпич, желая расколоть его на части. Что надо для того, чтобы кирпич раскололся? Во-первых, в него попасть, причем по возможности в середину. Если пуля лишь чиркнет по поверхности, кирпич либо вообще не расколется, либо от него отвалится небольшой кусок. Во-вторых, чтобы пуля обладала необходимой энергией. Пуля на излете кирпича не расколет.

В случае с атомами урана-235 все обстоит наоборот. Нейтрону попадать в само ядро не обязательно — достаточно оказаться на определенном расстоянии. В атомной физике существует понятие эффективного сечения — площадки, в пределах которой должен оказаться нейтрон или другая бомбардирующая частица, для того чтобы произошла реакция деления. Эффективное сечение гораздо больше размеров самого ядра. Но далеко не всякий нейтрон вызывает реакцию деления. Если энергия нейтрона меньше, чем надо, реакции не произойдет. Это понятно — все так же, как с кирпичом.

Но реакция деления не произойдет и в том случае, если энергия нейтрона слишком велика! Не произойдет, даже если нейтрон пролетит через самый центр ядра. Подобная ситуация представляется совершенно парадоксальной: слабый медленный нейтрон раскалывает ядро, а быстрый и энергичный — нет. Но все именно так, а не иначе. Почему? Потому что и нейтрон, и атомное ядро — это все что угодно, только не твердый шарик.

Кстати, мы сказали «нейтрон пролетит через самый центр ядра» исключительно для красного словца. Нейтрон не может пролететь через середину ядра по той простой причине, что ни у нейтрона, ни у ядра нет сере*-дины. Как у любых объектов реального мира, у них нет точного положения в пространстве. Это следствие уже много раз упоминавшегося соотношения неопределенностей.

Ядро ведет себе вовсе не как кирпич, а, скорее, как радиоприемник. Антенна радиоприемника испытывает воздействие огромного количества радиосигналов. Но слышим мы передачи только той станции, на волну которой настроен приемник. То же самое и с ядром. Оно может подвергаться воздействию огромного количества разных частиц, не обязательно нейтронов, но прореагирует лишь с частицей, обладающей строго определенной энергией. Аналогия с радиоприемником окажется полной, если вспомнить, что, согласно гипотезе де Бройля, гипотезе, которая со временем превратилась в строгую физическую теорию, каждой материальной частице соответствует волна, а длина этой волны обратно пропорциональна энергии частицы. Именно в физическую реальность волн де Бройля ученым труднее всего было поверить. Согласитесь, если окончательно допустить, что, скажем, молоток — на самом деле не молоток, а волна, то вряд ли что-нибудь останется от столь любезной нашему сердцу классической физики.

Неумолимые опыты подтвердили: ядра урана-235 почти не реагируют на нейтроны, образующиеся при расщеплении этих ядер. Не реагируют потому, что энергия нейтронов чересчур велика. Продолжая аналогию с радиоприемником, скажем, что расщепляющиеся ядра излучают на коротких волнах, а сами они настроены на длинные волны — приема не получается. Но если радиостанция расположена очень близко, вы все же услышите ее сигналы даже с помощью ненастроенного приемника. То же самое происходит и с ураном-235. Вероятность взаимодействия ядра с нейтроном очень мала. Но если ядер много, то одно из них в конце концов прореагирует с нейтроном. Отсюда критическая масса.

Но вот беда — в природном уране изотоп уран-235 содержится в ничтожно малом количестве. В основном природный уран содержит изотоп уран-238, очень неохотно расщепляющийся при взаимодействии с нейтронами. Поскольку уран-238 и уран-235 изотопы, они обладают одинаковыми химическими свойствами. Различить их по химическим свойствам невозможно, единственное отличие — масса ядра. Физики знают хороший способ разделения ядер с различными массами. Образуют струю ионизированных ядер (вещество распыляется) и эту струю пропускают сквозь магнитное поле. В магнитном поле заряженные ядра отклоняются, причем более легкие отклоняются на больший угол, так как у них меньше; инерция. Прибор, работающий по этому принципу, называется масс-спектрографом.

Согласитесь, что набирать 20 кг урана-235 по одной ■ молекуле — задача нереальная. Поэтому основную часть усилий, связанных с созданием атомной бомбы, затратили на изыскание способов разделения изотопов урана. Снова секрет без секрета. Итак, что означало раскрыть секрет атомной бомбы? Окончательно поверить в то, что ядро — это не твердый шарик и ведет оно себя не как кирпич, а как радиоприемник. Поверить, а не узнать, потому что теоретикам все это было известно. Затем требовалось найти подходящий материал, что не представляло особого труда, и наконец найти способы разделения изотопов урана. Все это давно позади, а мы с вами постараемся уяснить, откуда берется энергия при расщеплении ядра.


Нуклоны


В квантовой физике действует закон сохранения, с которым мы уже знакомы. Это закон сохранения электрического заряда, который гласит: при процессах (говорят, реакциях) исчезновения и рождения частиц сумма электрических зарядов до реакции должна быть в точности равна сумме электрических зарядов после реакции. Электрический заряд нейтрона — нуль. Сумма плюс единицы (протон) и минус единицы (электрон)


также равна нулю. Закон сохранения заряда удовлетворяется, а значит, ничто не запрещает нейтронам исчезать, а протонам и электронам рождаться. Вот они и исчезают и рождаются. Не забывайте только, что распадаются лишь свободные нейтроны. Нейтроны, входящие в состав ядер, устойчивы.

В каждом атомном ядре имеются и протоны и нейтроны. У легких ядер количество нейтронов в ядре примерно равно количеству протонов, например, знаменитые альфа-частицы (ядра гелия), содержащие два протона и два нейтрона. Количество протонов определяет заряд (зарядовое число), а следовательно, и химические свойства элемента. Заряд ядра соответствует месту данного элемента в периодической таблице Менделеева, и поэтому его называют также атомным номером. Общее количество нуклонов определяет массу ядра (массовое число). Ядро урана, к примеру, содержит 92 протона. Его заряд равен 92, и занимает уран 92-ю клетку в таблице Менделеева. Всего в ядре урана 238 нуклонов (имеется в виду изотоп уран-238). Значит, в ядре урана на 92 протона приходится 146 нейтронов.

Почему протоны ядер, несущие на себе одноименные заряды и, следовательно, отталкивающиеся друг от друга с гигантскими силами, учитывая малость расстояния между ними, не разлетаются в разные стороны? Вопрос этот достаточно помучил физиков в свое время. Он был снят, когда окончательно, в том числе и опытным путем, было доказано, что нуклоны способны взаимодействовать друг с другом на расстоянии с помощью особого поля, в корне отличного от электромагнитного и получившего название поля сильных взаимодействий. Это поле в несколько миллионов раз мощнее электромагнитного. Поэтому применительно к нуклонам в ядре можно забыть об электромагнитном отталкивании и считать, что между ними действуют лишь сильные взаимодействия.

Под влиянием сильных взаимодействий все нуклоны притягиваются друг к другу, причем два нейтрона притягиваются точно так же, как протон с нейтроном или как два протона. Правда, поле сильных взаимодействий проявляется на ничтожно малых расстояниях, порядка 10-13—Ю-12 см. Стоит, скажем, двум протонам оказаться разнесенными на расстояние, большее чем Ю-11 см, как поле сильных взаимодействий перестает быть заметным и остается электромагнитное взаимодействие, которое растолкнет протоны в разные стороны.

Истинное устройство атомных ядер прояснилось позже устройства атома. Поэтому удалось обойтись без вопросов типа: почему нуклоны, притягиваясь столь сильно, не падают друг на друга? Они не падают друг на друга по той простой причине, что не могут оказаться в одной и той же точке пространства. Устройство ядра в той же степени, как и устройство атома, вытекает из соотношения неопределенностей. Каждый нуклон и все они, вместе взятые, занимают определенное пространство. Нуклоны массивнее электронов, обладают гораздо большей энергией и, следовательно, большим количеством движения. Поэтому пространства им нужно значительно меньше, чем электронам (произведение из неопределенности координаты на неопределенность количества движения не может быть меньше постоянной Планка, помните?). Радиус атомного ядра равен примерно 1,4-Ю-13 см умножить на корень кубический из общего числа нуклонов. Эта цифра хорошо совпадает с тем, что было измерено еще Резерфордом.

Нуклоны в ядре обладают количеством движения. Но опять-таки ученые на этот раз избавились от необходимости рассуждать о том, по каким таким орбитам движутся нуклоны: в ядре и места нет для движения по орбитам. Остается еще раз признать, что двигаться это совсем не означает быть сейчас здесь, а через некоторое время — в другом месте, как мы считаем на основе повседневного опыта.

Строим ядро

Строить ядро вы можете точно так же, как в свое время строили атомы. Пусть у вас есть какое-то количество протонов и нейтронов, собранных в одном месте, и попробуйте подтащить туда еще один протон. Сначала это довольно трудно, потому что при переноске протонов вам противодействует сила электромагнитного отталкивания. Стоит, однако, перейти заветный рубеж 10~п см, как протон вырвется у вас из рук и устремится к своим собратьям. При этом с лихвой компенсируются ваши труды по преодолению действия электромагнитного поля и совершается еще довольно большое количество работы. Да-да, последние ферми (в атомной физике принята единица расстояния 1 Ф, равная Ю-13 см) протон проходит под действием притяжения со стороны других нуклонов и, следовательно, выполняет работу.

Но если совершена работа, значит, суммарная энергия нуклонов в ядре должна быть меньше, чем энергия тех же нуклонов, разнесенных на большие расстояния друг от друга? Так и есть. Разность между суммарной энергией нуклонов, находящихся на больших расстояниях друг от друга, и суммарной энергией тех же нуклонов, составляющих ядро, называют дефектом массы, или энергией связи нуклонов в ядре. На один нуклон приходится энергия связи, близкая к 8МэВ. Это энергия именно связи, поскольку, для того чтобы извлечь нуклон из ядра, противодействуя при этом сильным взаимодействиям, нужно затратить 8МэВ. Сравните: энергия связи электрона в атоме составляет около 10 эВ, т. е. примерно в миллион раз меньше.

Домните ваше путешествие с протоном? Так и хочется уподобить его походу в горы. Сначала вы как бы поднимаетесь в гору, преодолевая взаимное отталкивание положительных зарядов протона и ядра. Вот наконец достигнут заветный перевал. На перевале протон обладает самой большой энергией, поскольку к той энергии, которую он имел, находясь на бесконечном расстоянии от ядра, прибавилась энергия, полученная из работы, затраченной на преодоление электромагнитного взаимодействия. Пройдя через перевал, протон скатывается, как на горных лыжах. При этом он выполняет работу и, следовательно, тратит запас энергии. По обе стороны от перевала энергия протона меньше, чем на самом перевале. Этот перевал в физике называется потенциальным барьером. Говорят также, что нуклоны в ядре находятся в потенциальной яме. Слово «потенциальный» означает здесь, что потенциальная энергия нуклона, находящегося в пределах ядра, меньше потенциальной энергии нуклона, находящегося на вершине перевала, т. е. на расстоянии около Ю-11 см (десятки ферми) от точки, которую условно принимают за центр ядра.

Может ли протон самопроизвольно покинуть ядро? Рассуждения с позиций классической физики приводят нас к однозначному выводу: это невозможно. Находясь в ядре, протон испытывает притяжение со стороны других протонов. Кроме того, он движется, т. е. обладает кинетической энергией. Но энергия связи, равная 8 МэВ, как раз свидетельствует о том, что силы притяжения во много раз превышают силы инерции. Поэтому вопрос о протоне эквивалентен следующему вопросу. Пусть на земле стоит гиря массой 1 кг. Такая гиря испытывает силу земного притяжения около 10 Н. Вы потянули эту гирю вверх с силой 1 Н. Поднимется ли она в воздух? Жизненный опыт наш утверждает, что такого не бывает.

Попробуем рассуждать с позиций современной физики. Противоречит ли выход протона из ядра каким-нибудь запретам? Вопрос важный, и потому остановимся на нем подробнее. Находясь в ядре, протон обладает некоторым запасом энергии. На границе ядра, или, как мы говорили, на перевале, энергия этого протона на 8 МэВ больше. Но затем она опять станет меньше. По ту сторону перевала снова спуск, только более пологий. Значит, вполне возможно, что на большом отдалении от ядра протон обладает той же энергией, которой он обладал, находясь в ядре. Следовательно, самопроизвольный выход протона из ядра закону сохранения энергии не противоречит. Поразмыслив, вы сообразите, что не противоречит он и другим законам сохранения. Раз так, то ничто не мешает протону покинуть ядро. Можно все, кроме того, что нельзя. Иное дело, что такие события происходят с различной вероятностью. Математический аппарат квантовой физики в основном занимается подсчетом таких вероятностей.

Изотопы

Существует несколько элементов и изотопов, объединяемых пвд общим названием «радий». Радий С имеет всего 214 нуклонов, из них 83 протона. Распад радия С может происходить двумя путями. В первом случае ядро радия С расстается с одним электроном (такое тоже возможно — испускание электронов называется бета-распадом) и превращается в другой элемент — радий С', имеющий 214 нуклонов, из которых 84 протона. Испускание электрона ядром всегда сопровождается увеличением на единицу атомного номера и, следовательно, смещением элемента на одну клеточку в таблице Менделеева вправо — это правило смещения.

Во втором случае ядро радия С испускает альфа-частицу и превращается в радий С", имеющий 210 нуклонов, из которых 81 протон. Испускание альфа-частицы сопровождается уменьшением атомного номера на 2 и смешением элемента на две клеточки влево в таблице Менделеева.

Все эти факты служат экспериментальным подтверждением того, что отдельный протон или альфа-частица может покинуть ядро, хотя их энергия ни в какой момент не превышает потенциального барьера. Протон как бы прорывает туннель в потенциальном барьере. Такие явления и называют туннельным эффектом. Туннельный эффект совершенно невозможен с позиций классической, физики, тем не менее наблюдается он довольно часто. Вероятность самопроизвольных распадов атомных ядер измеряют периодом полураспада, т. е. промежутком времени, в течение которого распадается ровно половина от первоначально взятого количества ядер.

Период полураспада радия С равен всего 10~6 с, т. е. одной миллионной доле секунды. Период полураспада радона составляет 3,8 суток. А период полураспада ура-на-238 равен 4,4 • 109 лет. Есть элементы, распадающиеся еще медленнее. Например, период полураспада тория составляет 1,8-1010 лет, рубидия — 4,3-10" лет, самария— 1,2-1012 лет и, наконец, калия — 1,3-1013 лет. Вы, наверное, не знали, что обычный калий — радиоактивный элемент. Не знали потому, что распадается он весьма медленно и заметить его распад можно при наличии очень точных приборов и в результате длительных наблюдений.

Снова лесенка

Почему периоды полураспада так сильно отличаются друг от друга? Дело в том, что нуклоны в ядре, как и электроны в атоме, не могут принимать любые значения энергии. Как для электрона в атоме, для нуклона з ядре имеется лесенка разрешенных уровней. Мы снова сталкиваемся с универсальностью законов квантовой физики. Среди различных уровней, опять-таки как и для электронов в атоме, имеются уровни, соответствующие основным и возбужденным состояниям ядра. Но есть и отличия.

Возбужденный электрон в атоме всегда может перейти в основное состояние, излучив квант энергии. В ядре при определенных конфигурациях возможны лишь возбужденные состояния. Такие ядра называются возбу-

146 жденными. Перейти в основное состояние, т. е. в состояние с меньшей энергией, возбужденное ядро может, расставшись либо с несколькими протонами, либо с электроном. Этот переход и называется радиоактивностью. Чем больше возбуждено ядро, тем с большей вероятностью совершается его распад. Какие ядра самые устойчивые? Те, у которых выдерживается определенное соотношение между количествами протонов и нейтронов.

Легкие ядра — такие, у которых протонов примерно столько, сколько нейтронов, а тяжелые ядра — такие, у которых протонов немного меньше, чем нейтронов.

5 Но особенно важно четное или нечетное число протонов и нейтронов. Самые стабильные ядра те, у которых и число протонов и число нейтронов четное. Их называют четно-четные. Пример — уран: число протонов — 92 (четное), число нейтронов — 146 (тоже четное). Менее стабильны четно-нечетные и нечетно-четные ядра. Наконец, самые нестабильные ядра те, у которых и число протонов и число нейтронов нечетное. Вот и получается, что примерно из девятисот известных на сегодня ядер (как разбухла таблица Менделеева!) только 280 являются стабильными.

Туннели и капли

Несутся по шоссе автомобили. Мы так давно не возвращались на шоссе, с которого начали наше путешествие, что читатель, возможно, забыл о нем. Но эта дорога незримо присутствует в нашем повествовании. Что же другое, как не хребты Родоп, навеяли нам образ потенциального барьера? Вернемся, однако, в машину, несущуюся по автостраде. Рокочет двигатель, и высокооктановый бензин превращается в нем в выхлопные газы. Затрачивается высококачественная, как мы установили в прошлой главе, химическая энергия. Но на что затрачивается? Ведь хорошо известно, что при перемещении тела по горизонтали без трения из пункта А в пункт Б никакой работы не совершается. Иное дело, если машина идет на подъем.

Интересно, есть ли среди наших читателей приверженцы классической физики? Наверное, есть. Строгий рецензент по поводу нашего замечания о простоте квантовой физики считает, цитируем: «Спрашивается, для кого эти науки (имеется в виду квантовая физика.— А. и Т. Ш.) так уж просты? Специалисты высшей квалификации до сих пор спорят и не приходят к единому мнению по самому «простому» разделу «простой» классической физики — механики». Не знаем, о чем спорят механики высшей квалификации, но для приверженцев классической физики сейчас самое время задать нам ка-верзный вопрос.

— Вы утверждаете, что законы квантовой физики едины и в микромире и в макромире. Но тогда почему автомобилю все-таки приходится напрягаться на подъемах, вместо того чтобы туннельно просочиться сквозь гору?

Вопрос справедливый, но и ответ на него недвусмыслен. Автомобиль не может просочиться туннельно сквозь гору по той простой причине, что такого объекта «автомобиль» на самом деле не существует. Есть множество атомов, образующих автомобиль и состоящих из электронов и ядер, состоящих, в свою очередь, из нуклонов. Каждый атом живет своей жизнью, и если вы хотите описывать поведение автомобиля как единого целого, что вам остается делать? Рассматривать не реальные процессы, происходящие с реальными атомами, а пользоваться средними по множеству атомов величинами. Конечно, для средних величин и законы иные. Именно в силу того, что поведение каждого атома подчиняется законам случая, они не могут все вместе одновременно вести себя одинаково. Мысленная точка — центр масс автомобиля — сквозь гору не просачивается.

Простите нас за это маленькое отступление, поводом к которому явились высказывания строгого рецензента. Так на что тратится энергия топлива, сжигаемого в автомобильном двигателе? Она тратится на преодоление трения и сопротивления воздуха. Преодоление сопротивления воздуха составляет довольно большую часть общих энергетических затрат, поэтому кузову автомобиля, как правило, придают специальную форму. Особенно это заметно у автомобилей гоночных.

Интересно, как вы представляете себе форму тела, наилучшим образом проникающего сквозь плотную среду? Атмосфера при больших скоростях — среда достаточно плотная, недаром она удерживает самолет, веся» щий несколько десятков тонн. Ну что вам тут же прихо« дит в голову? Наверное, известная поговорка «входит как нож в масло». Сразу представляешь себе острив ножа. А известно ли вам, что большие куски масла в продовольственных магазинах ножами не режут, да это и невозможно. Вместо ножей используют тонкую струну с двумя ручками на концах.

Автомобиль не исключение. Если форма автомобиля напоминает нож, то только нож, повернутый острием назад. Если двигать в атмосфере тело, острое спереди и тупое сзади, то позади этого тела образуется разрежение, так как струи воздуха не успевают заполнять его. Этот вакуум препятствует движению в гораздо большей степени, чем то, что называют лобовым сопротивлением. Поэтому так называемые обтекаемые тела имеют форму капли, падающей в атмосфере,— толстую спереди и заостренную на конце.

Капля дождя способна деформироваться и принимать форму, наиболее удобную для преодоления сопротивления воздуха. Но почему капля остается каплей, а не разбивается, особенно при преодолении атмосферного сопротивления, на более мелкие капельки или даже отдельные молекулы? Капля остается каплей благодаря поверхностному натяжению. Но разве поверхность воды обладает какими-то особыми свойствами, отличными от свойств той же воды в капле? Нет, здесь дело в другом. Просто молекулы в капле обладают меньшей энергией, чем те же молекулы на свободе. Капля воды окружена потенциальным барьером, как атом или атомное ядро.

Вам теперь понятно, зачем мы сделали экскурс в область автомобилей? Капля воды в равной степени может служить прообразом и автомобиля и атомного ядра. Интересная подробность. При окончании университета Нильсу Бору в качестве выпускной (мы бы сказали, дипломной) работы предложили исследование поверхностного натяжения жидкости. Наверное, поэтому много лет спустя Бор первым придумал капельную модель ядра. Модель, которая верно служит физикам и посейчас.

Похоже, что мы наконец разобрались, как происходит распад ядра урана. Когда вблизи ядра урана-235 оказывается нейтрон, обладающий подходящей энергией, он захватывается ядром. Этот захват сам по себе чрезвычайно интересен. Происходит он как угодно, но не потому, что нейтрон двигался в направлении ядра или, иначе, нейтроном выстрелили в ядро. Здесь совершенно не годится образ кирпича, в который попадает пуля. Захват нейтрона происходит в результате некоего внутреннего сродства нейтронной волны и «частоты», на которую настроено ядро. Явление это чисто квантовомеханическое. Так или иначе, но нейтрон захватывается, и количество нуклонов в ядре увеличивается на единицу.

«Все понятно! — скажете вы.— Только что захваченный нейтрон и представляет собой как бы последнюю каплю, переполняющую чашу». Скажете, и будете неправы. После захвата нейтрона структура ядра меняется. Ядро оказывается менее стабильным. Менее стабильное (возбужденное) ядро затем распадается самопроизвольно, причем распад происходит через некоторое время после захвата нейтрона. Этот промежуток времени достаточно мал по нашим масштабам и в то же время достаточно велик по масштабам атомов. Как говорил Нильс Бор, за этот промежуток времени ядро успевает забыть о захваченном нейтроне. Оно распадается точно так, как распадалось бы обычное ядро изотопа урана, уран-236. Снова можно сказать, что здесь действуют те же законы, что и законы, по которым возбужденный электрон в атоме возвращается в основное состояние, излучая квант электромагнитной энергии.

Разные ядра

Энергия связи, приходящаяся на один нуклон, различна у различных элементов. Самая маленькая энергия связи у нуклонов ядра дейтерия — тяжелого изотопа водорода, состоящего из одного протона и одного нейтрона. Энергия связи здесь равна всего 1,09 МэВ. Энергия связи у ядра трития 2,78 МэВ. Следующим идет гелий, у которого энергия связи, приходящаяся на один нуклон, равна 7,03 МэВ. Для всех ядер со средними атомными весами энергия связи на один нуклон имеет приблизительно одно и то же значение, равное 8,9 МэВ. При дальнейшем увеличении атомных весов энергия связи уменьшается, достигая у урана величины 7,5 МэВ.

Попробуем сделать вывод о том, как должны протекать реакции деления ядер. Пусть, например, ядро урана расщепляется на два осколка примерно одинаковой массы. У этих осколков энергия-связи выше, а следовательно, полная энергия каждого нуклона ниже, чем полная энергия тех же нуклонов в ядре урана. Значит, расщепление ядра урана должно сопровождаться выделением энергии. Так происходит на самом деле. Это мы знали и раньше, но только теперь получили возможность до конца разобраться в сути происходящего.

Наоборот, у легких элементов энергия связи увеличивается с увеличением атомного номера. Поэтому при расщеплении, например, ядра гелия на два ядра дейтерия никакая энергия не выделяется. Получаются два ядра с меньшей энергией связи и, следовательно, большей полной энергией нуклонов. Реакция расщепления ядер гелия — реакция эндотермическая. При расщеплении ядер элементов с атомными номерами примерно от 30*$о до 75-го энергия не выделяется и не поглощается. Это, конечно, в среднем. А вообще возможны исключения из такого правила, поскольку у каждого элемента есть изотопы и ядра этих изотопов могут быть более или менее возбужденными, т. е. располагать большими или меньшими дополнительными запасами энергии.

Чтобы завершить наше знакомство с миром атомных ядер, вернемся к природе сильных взаимодействий. Итак, существует поле сильных взаимодействий. В свое время мы определили поле как пространство, в каждой точке которого действует сила. Правда, мы высказывали сомнения в правомочности самого понятия силы. Эти сомнения должны еще более укрепиться после знакомства с тем, что происходит в ядре. Если на каждый нуклон действует сила притяжения к другим нуклонам, то почему эта сила не удерживает нуклоны в ядрах радиоактивных элементов? Не говоря уже о том, что по самому своему определению каждая сила должна иметь точку приложения, а применительно к нуклонам понятие точки не имеет смысла.

Ранее в этой книге мы рассматривали электромагнитное и гравитационное поля как потоки частиц — квантов или фотонов. Подобная точка зрения позволила нам ответить на много вопросов и, в частности, понять, как отдельные объекты могут действовать друг на друга на расстоянии. Представление о фотонах позволило ответить на вопрос о том, почему энергия передается от одного объекта к другому только целыми порциями.

Попробуем сейчас развить те же идеи применительно к ядрам и нуклонам. При этом надо иметь в виду следующее. Энергия сильного взаимодействия в миллионы раз превышает энергию электромагнитного взаимодействия, не говоря уже о гравитационном. Но если так, гипотетические частицы — переносчики сильного взаимодействия — должны обладать относительно большой энергией. Откуда она может взяться, ведь энергия нуклонов вроде бы не меняется? Нет ли здесь нарушения закона сохранения энергии?

Такого нарушения не усматривается, если вспомнить, что энергия подчиняется соотношению неопределенностей. В одной из формулировок соотношения неопределенностей утверждается, что произведение неопределенности величины энергии и неопределенности в величине времени не может быть меньше постоянной Планка. Ор& сюда следует, что если частицы — кванты сильного ваап> имодействия — живут очень недолго, иначе говоря, если произведение времени их жизни и их энергии примерно равно постоянной Планка, то они могут рождаться и исчезать, не нарушая закона сохранения энергии.

Из сказанного можно сделать еще один вывод. Если кванты сильного взаимодействия живут очень недолго, то, даже двигаясь со скоростями, близкими к скорости света, они могут перемещаться только на небольшие расстояния. Это значит, что сильное взаимодействие проявляется лишь на малых расстояниях. Подобный вывод блестяще подтверждается тем, что мы знаем о поведении нуклонов.

Примерно так рассуждал японский ученый Хидеки Юкава. В 1935 году он закончил расчеты, из которых следовало, что гипотетические частицы — кванты сильных взаимодействий — должны обладать массой (напомним, масса эквивалентна энергии), примерно в 200 рае большей массы электрона. Юкава назвал эти частицы мезонами, т. е. средними, имея в виду, что масса мезона находится где-то посередине между массой электрона и массой нуклона. Очень долго гипотеза Юкавы не получала экспериментального подтверждения и, следовательно, оставалась гипотезой. В 1947 году английский физик С. Ф. Пауэлл и его сотрудники обнаружили в космических лучах частицы массой, примерно в 270 раз большей массы электрона. Эти частицы назвали пи-мезонами, или, короче, пионами. Скоро выяснилось, что пионы представляют собой частицы, предсказанные Юкавой.

Согласно современным представлениям, атомное ядро состоит из нуклонов и пионов. Каждый раз, когда нуклон приближается к границе ядра, он испускает пион и меняет направление своего движения. Испущенный пион поглощается каким-либо другим нуклоном. Существует каждый пион в течение столь краткого промежутка времени, что рождение и исчезновение пионов не выводит баланс энергии за рамки, устанавливаемые соотношением неопределенностей.

Все сказанное служит прекрасным примером того, в какой степени понятия «движение» и «направление движения» не соответствуют реально происходящему с нуклоном. Каждый раз, когда мы произносим подобную фразу, мы делаем очередную попытку описать в привычных терминах то, что в этих терминах описано быть не может. Гораздо правильнее было бы сказать, что рождение и поглощение пиона, или обмен пионами, препятствует тому, чтобы нуклоны покидали некоторую облаеть пространства.

Атомная электростанция

Мы достаточно узнали о ядре и приступаем теперь к решению основной задачи этой главы — описанию атомной электростанции. Скажем сразу: изотоп уран-235 не годится в качестве топлива для такой электростанции. Не годится из-за сложности его выделения из смеси, а значит, высокой стоимости.

Если бы удалось построить атомную электростанцию с топливом в виде чистого урана-235, то энергия такой станции стоила бы фантастически дорого. Поступают иначе. В качестве топлива используют природный уран со всеми содержащимися в нем изотопами. А чтобы заставить участвовать в реакции все имеющиеся в топливе атомы урана-235, излучаемые при делении ядер нейтроны искусственно замедляют, пропуская их через какое-либо вещество, например через графит. Попадая в графит, нейтроны не захватываются ядрами углерода и после многократных взаимодействий снижают свою энергию. В результате резко увеличивается вероятность захвата нейтронов ядром урана-235.

Выглядит все это следующим образом. Между урановыми блоками размещают стержни замедлителя нейтронов — графита. Стержни можно поднимать и опускать. Настраиваются они так, чтобы получить требуемую скорость реакции. Если скорость реакции почему-либо увеличивается — стержни автоматически опускаются, скорость реакции уменьшается — стержни поднимаются. Автомат управления стержнями — неотъемлемая составная часть всякого атомного реактора.

Реакция деления ядер урана-235 происходит в основном по такой схеме. Ядро захватывает нейтрон и распадается на два осколка: ядро изотопа ксенона со 139 нуклонами и ядро изотопа стронция с 95 нуклонами. Кроме того, в результате деления образуются два нейтрона, которые после замедления используются для поддержания цепной реакции. Ядро стабильного изотопа ксенона содержит 136 нуклонов, ядро стабильного изотопа стронция — 88 нуклонов. Получающиеся в результате деления осколки обладают большим избытком нейтронов и, следовательно, неустойчивы. Они испытывают несколько последовательных бета-распадов, в результате которых ксенон превращается в стабильный изотоп лантана.

Что происходит с ядрами изотопа уран-238, из которых на 99 % состоит ядерное горючее? Ядро урана-238 не делится, но оно может захватить нейтрон и превратиться в изотоп уран-239. Этот изотоп бета-радиоактивен с периодом полураспада 23 мин. После испускания электронов уран-239 превращается в трансурановый элемент нептуний с атомным номером 93. Нептуний не существует в природе, и впервые его получили в лаборатории в процессе опытов по облучению урана нейтронами. Нептуний бета-радиоактивен с периодом полураспада 2,4 дня. В результате испускания электронов ядро нептуния превращается в ядро еще одного трансуранового элемента — плутония с атомным номером 94. Плутоний также отсутствует в природе.

Ядра плутония делятся под воздействием нейтронов. Это чрезвычайно важное обстоятельство. При работе атомного реактора, кроме энергии, образуется плутоний. Плутоний химически отличается от урана и выделить его относительно просто, поэтому атомный реактор, кроме основного назначения быть источником энергии, может использоваться для получения атомного топлива. Наконец, плутоний альфа-радиоактивен с периодом полураспада 24 000 лет. После испускания альфа-частицы ядро плутония превращается в ядро урана-235. Круг, как говорят, замыкается.

В реакции, происходящей в атомном реакторе, участвует меньше 1% от общего количества топлива, но мощность атомного реактора огромна. Огромна потому, что при делении каждого ядра урана-235 выделяется около 150 МэВ энергии. Эта энергия частично выделяется в виде электромагнитных квантов, частично передается осколкам, т. е. веществу топлива, и наконец, частично ее уносят нейтроны. Замедляясь в графите, нейтроны отдают ему свою энергию. В результате и урановые блоки, и графитовые стержни при работе реактора нагреваются, поэтому реактор должен работать в условиях непрерывного охлаждения. В качестве охладителя обычно используют воду. Она выносит тепло из реактора и передает его потребителям — чаще всего турбинам электростанции.

В предыдущих главах мы ввели понятие о качестве энергии и договорились, что качество энергии считается тем выше, чем более упорядоченными представляются нам ее источники. Наметился такой ряд: тепловая энергия (качество самое низкое), механическая энергия (качество несколько выше), электрическая и химическая энергия (качество выше, чем механической).

Зная, сколь велика мощность ядерных реакторов, сразу хочется поставить атомную энергию еще выше по этой шкале. Но дело обстоит далеко не так. Реакции деления происходят хаотически, не говоря уж о том, что делится меньше 1% атомов топлива. Если бы к атомному реактору было применимо понятие коэффициента полезного действия, то мы вынуждены были бы констатировать, что коэффициент этот весьма низок. В чем же секрет больших мощностей? Он заложен, если можно так выразиться, в высокой теплотворной способности ядерного горючего.

Важно и то, что, кроме энергии, атомные реакторы производят чрезвычайно ценные и отсутствующие в природе, но нужные промышленности изотопы различных веществ. Мы описали одну из реакций. На самом деле в атомном реакторе параллельно их протекает несколько.


Тепло из тепла

Есть еще один способ получения ядерной энергии. Помните, у легких ядер энергия связи увеличивается с увеличением атомного номера? Если у дейтерия энергия связи равна 1,9 МэВ на нуклон, то у гелия она оказывается равной 7,03 МэВ на нуклон. Казалось бы, до чего просто! Ведь каждое ядро дейтерия состоит из одного протона и одного нейтрона. Соединяем их вместе и получаем ядро, содержащее два протона (заряд 2) и два нейтрона, т. е. всего 4 нуклона. Каждый нуклон уменьшит свою энергию (энергия связи увеличится) примерно на 6 МэВ, т. е. всего выделится 24 МэВ.

Не правда ли, здорово? Пусть даже выделятся не все 24 МэВ, а несколько меньше, мы согласны и на меньшее. Главное — все так просто. Не надо никаких нейтронов да еще со строго определенной энергией, не надо образовывать никакую критическую массу — объединяем ядра, и готово. Правда, откуда брать дейтерий? В природной воде дейтерия содержится меньше, 'Чем урана-235 в природном уране. Но зато воды на Земле гораздо больше, и вода, конечно, дешевле урана.

Может, в наших рассуждениях что-нибудь не так? Чтобы проверить себя, посмотрим с другой стороны. Есть все основания полагать, что на Солнце происходят следующие реакции. Два протона объединяются друг с другом и образуют ядро изотопа гелия с атомным весом 2. Это ядро неустойчиво, оно тут же испытывает так называемый бета-плюс-радиоактивный распад, т. е. испускает позитрон и нейтрино впридачу и превращается в ядро дейтерия с зарядом 1 и атомным весом 2. Это ядро снова объединяется с протоном, в результате образуется ядро изотопа гелия с зарядом 2 и атомным весом 3. При этом испускается квант электромагнитной энергии. Наконец, два ядра изотопа гелия с атомным весом 3 реагируют между собой, в результате образуется одно ядро обычного гелия с атомным весом 4 и два ядра водорода, т. е. все начинается сначала.

В ходе каждой реакции выделяется энергия. Это и есть энергия Солнца, часть которой достается нам с вами. Но если так происходит на Солнце, почему то же самое не происходит на Земле? Почему находящийся на Земле водород давно не вспыхнул, а Земля не превратилась в небесное светило? Потому что, для того чтобы два протона могли объединиться, они должны подойти друг к другу на достаточно близкое расстояние. А этому мешает электромагнитное отталкивание одноименных электрических зарядов. Что показывают расчеты? Чтобы сблизить два протона и дать им возможность объединиться, нужно затратить 0,7 МэВ энергии, по 0,35 МэВ на каждый протон. Энергии 0,35 МэВ соответствуют 2-Ю9 К.

Как видите, все довольно просто. Нужно взять водород, нагреть его до каких-нибудь 2 млрд. градусов, и готово — началась термоядерная реакция. Термоядерная потому, что реакция объединения ядер протекает при исключительно высокой температуре. Заметьте, необходим только начальный нагрев. Когда реакция началась, выделяющейся при объединении ядер энергии более чем достаточно для поддержания ее. Еще образуется и избыток энергии. Поэтому описанная реакция происходит как взрыв, термоядерный взрыв колоссальной силы.

Итак, не следует без нужды нагревать водород до температуры 2 млрд. градусов. Более подробный анализ показывает, что не надо и 2 млрд. Во-первых, температура определяет среднюю энергию частиц, в данном случае протонов. Если средняя энергия равна некоторой величине, наверняка встретятся частицы с энергией, в несколько раз превышающей среднюю. А нам только и надо, чтобы реакция началась, дальше все пойдет само собой.

Другая причина — туннельный эффект. Один протон может объединиться с другим, «прорыв» себе туннель под потенциальным барьером. Правда, на этот раз туннель будет создаваться не изнутри, а, наоборот, снаружи. Теоретические расчеты говорят, что реакция термоядерного синтеза в водороде начнется уже при температуре 10 млн. градусов Кельвина.

Водородная бомба — самое страшное оружие из всего, что когда-либо было придумано человеком,— устроена очень просто. Некоторое количество смеси дейтерия и трития поджигается взрывом урановой атомной бомбы. Температура поднимается до 10 млн. градусов, а дальше самопроизвольно идет реакция объединения одного ядра дейтерия и одного ядра трития в одно ядро гелия с атомным весом 4. При этом излучается один нейтрон. При такой реакции выделяется 17,7 МэВ энергии, т. е. около 3,5 МэВ на нуклон. Для сравнения скажем, что при делении ядра урана выделяется 0,85 МэВ на нуклон. При этом количество реагирующего вещества ничем не ограничено. Не ограничена и мощность водородной (термоядерной) бомбы.

«Токомак»

Термоядерную бомбу мы описали для того, чтобы выявить особенности протекания термоядерных реакций. Но нас интересуют не бомбы, а различные способы получения энергии, приносящей пользу человеку. Из того, что было сказано, ясно одно: осуществление управляемой термоядерной реакции связано с большими трудностями. Прежде всего в больших количествах водорода или другого термоядерного горючего термоядерная реакция всегда протекает в виде взрыва. Поэтому единовременно в реакции должно участвовать относительно небольшое количество горючего. Но тогда нельзя рассчитывать на самоподдержание реакции, и горючее надо все время подогревать.

Это бы еще полбеды. Энергия, затраченная на подогревание, вернется к нам с лихвой. Хуже другое. Водород, нагретый до температуры в десятки миллионов градусов, не удержишь ни в каком сосуде. Из чего бы ни были сделаны стенки такого сосуда, они мгновенно испарятся. А водород при соприкосновении со стенками охладится, и реакция прекратится.

Посмотрите на экран телевизора. Наверное, все знают, что изображение на экране телевизора «рисует» тончайший пучок электронов. Электроны вылетают из одного раскаленного катода или из трех катодов (у цветной телевизионной трубки). В пучок диаметром несколько долей миллиметра их собирает магнитное поле, образующееся в фокусирующей системе. Эта же идея используется в созданной в нашей стране установке «Токомак» для управляемого термоядерного синтеза. При температуре 100 млн. градусов все атомы теряют свои электроны и водород превращается в плазму, содержащую только заряженные частицы. С помощью магнитного поля эти частицы собирают в пучок или тонкий шнур, который не соприкасается со стенками сосуда. Но электронный пучок в телевизоре в конце концов упирается в экран. Чтобы такого не случилось с электронным шнуром, сосуд, в котором он образуется, имеет форму тора — баранки без начала и без конца. До нужной температуры плазменный шнур нагревается электрическим током. В последнее время начали использовать для разогрева плазмы лазеры, о которых речь пойдет в следующей главе.

На установках «Токомак» в нашей стране и в США выполнено много успешных наглядных экспериментов. Но к сожалению, до промышленного освоения управляемого термоядерного синтеза еще очень далеко. Плазменный шнур неустойчив, да и нагреть его до температуры 100 млн. градусов (все-таки 100 млн.!) не так-то просто. Ученые, однако, не теряют надежды. А как заманчиво! Освоив термоядерный синтез, мы получим в полном смысле этого слова неисчерпаемые запасы энергии. Важно и то, что продуктом реакции термоядерного синтеза является обычный, не радиоактивный гелий.

Подводя итоги, скажем, что атомная энергия очень напоминает химическую. И та и другая выделяются в результате реакций. И в том и в другом случае количество выделяемой энергии равно разности между энергетическими уровнями исходных веществ и продуктов реакций. Наконец, и в том и в другом случае выделение энергии происходит в достаточной мере беспорядочно.


ГЛАВА 6

Энергия высшего качества


Солнечный зайчик

Приятно проснуться тихим солнечным утром от того, что по щеке скользнул солнечный зайчик. Тот самый солнечный зайчик, который, как говорится в одной песенке, не линяет даже весной, когда линяют всякие звери. Крохотным осколком зеркала можно запустить солнечный зайчик, например, в окно к приятелю. Солнечные зайчики — один из самых древних способов передачи информации. Но вот беда! Солнечный зайчик, а в общем случае строго параллельный пучок световых лучей любого происхождения, получить легко лишь в том случае, если расстояние невелико. На больших расстояниях пучок обязательно расходится и световой луч имеет форму конуса.

Чтобы получить малорасходящийся световой пучок, пользуются зеркалами различной формы. Зеркальная поверхность, представляющая собой параболоид вращения, собирает световые лучи, исходящие от точечного источника, помещенного в фокус параболоида, в строго параллельный пучок. На этом принципе строятся отражатели мощных прожекторов и карманных фонариков. И снова беда в том, что, во-первых, не существует точечных источников света, а во-вторых, не существует зеркал с идеальной поверхностью. Поэтому даже луч прожектора всегда расходится.

Загрузка...