Наука ловить айсберги и солить облака

Проекты межбассейновых перебросок речного стока разрабатываются сейчас во многих странах. По одному из них избыток чистой воды из Канады будет направлен в ряд засушливых районов США и Мексики. Часть ее вольется в Великие озера для улучшения качества и увеличения количества воды, потребляемой в самом промышленно развитом районе США. В перспективе к этой магистрали можно будет подключить реки Аляски.

В Индии разработан проект, который предусматривает соединение нескольких стекающих с Гималаев притоков Ганга с перебросом их в обход его в засушливые южные районы. Другой проект предлагает связать Ганг с рекой Каувери на крайнем юге плато Декан. Наконец, самый смелый проектирует переброс в Ганг вод Брахмапутры по каналу через штат Ассам.

Не менее решительны австралийцы. Они уже приступили к изменению течения реки Сноу-Ривер и проектируют ее переброс по новому руслу через Австралийские Альпы.

Трудно сказать, когда начнется осуществление всех этих проектов. В феврале 1971 года лондонская «Таймс» предсказывала, что «к 1978 году русские повернут Печору в Волгу» (работы якобы уже начаты) и от этого климат Англии станет теплее, а Средиземноморья — засушливее. За сенсационной «уткой» последовал целый поток запросов в английский парламент.

Сможет ли когда-нибудь человек учесть все возможные последствия своих действий в отношении природы? Ведь для этого нужно знать о ней все, а, как писал К. Циолковский, «не может быть никем прочитана книга природы от начала до конца!». Природа бесконечна, как и процесс ее познания. Так же бесконечны и следствия наших прикосновений к ней. Разве мы можем утверждать, что сегодня имеем дело с «чистой природой», а не с «переработанной» руками наших предков? И разве следы этих рук сотрутся завтра или послезавтра? Тем более не сотрутся в веках наши собственные следы, потому что наши руки вооружены неизмеримо более сильным оружием.

Природа динамична. Динамичен и процесс ее преобразования человеком. Он начинается благодаря действию огромного количества факторов, часть из которых зависит от нас, а часть — нет. Количество же финишей, где заканчиваются эти частные воздействия, вовсе бесконечно. Можно построить миллионы моделей такого взаимодействия, рассчитать их входные и выходные параметры, и все равно не исчерпаешь того предмета, который взялся изучать. Следовательно, нужно решаться.

Если бы первобытный изобретатель, создавший колесо, знал о всех последствиях его применения и мог, в частности, представить себе часы «пик» на центральных автострадах европейских столиц, быть может, он не решился подарить миру свое изобретение. Быть может, он, этот человек, отличался особой привязанностью к тишине и чистому воздуху и полагал, что природа должна оставаться в своем первозданном виде.

Римский историк Тацит писал, что в 15 году н. э. в сенате был поднят вопрос о том, какими мерами способствовать уменьшению разливов Тибра. Тогдашние проектанты предлагали попросту отсечь от него реки и озера, чьей водой он питался. Представители разных провинций высказались при обсуждении проекта далеко не однотипно. Флорентийцы, например, протестовали против переброса реки Кланис, впадавшей в Тибр, в реку Арн, так как это угрожало им наводнением. Интерманы, в свою очередь, полагали, что расчленение реки Нар на ручьи приведет к затоплению лучших полей Италии. Реатинцы оспаривали необходимость строительства плотины при впадении той же реки в Велинское озеро. После многодневных дебатов великий римский сенат решил… ничего не строить.

Переброс части стока северных рек на юг — совсем не то, что «успокоение Тибра». Тем более есть основания для самых серьезных раздумий. Главное же — должны быть обсуждены альтернативы. А они существуют.

С позиций негативных последствий для природы вариант переброски, безусловно, не оптимален. Многие специалисты полагают, что есть другие, экономически более выгодные и к тому же почти безвредные способы обеспечения водой. Ее, кстати, считают они, совсем не нужно подавать в тот или иной бассейн, ее следует добывать точно так же, как добывают руду и уголь. И даже обогащать, как те же полезные ископаемые.

Наиболее «экологически чистым» вариантом обеспечения водой районов, задыхающихся от жажды, считается самый испытанный и старый. Это… перевозка. Помните знаменитого водовоза и его бочку? В доводопроводную эпоху без них не мог обойтись ни один город. И совсем уж нельзя было представить себе старый среднеазиатский базар без криков продавцов воды.

В Средней Азии почти не осталось мест, где бы воду продавали «на распив» пиалами и перевозили на ишаках, но в мире есть еще немало районов, где она плещется в бурдюках на горбах верблюдов и спинах мулов. Это самая дорогая вода. Перевозка автомашинами в некоторые населенные пункты Туркмении повышает ее цену до 100–320 рублей за кубометр. Широко используется транспортировка пресной воды и по морю. Пластиковые суда типа «дракон» водоизмещением 500–1000 тонн перевозят ее на Пелопонесские острова Эгейского моря по цене от 0,7 до 2 долларов за кубометр, танкеры в Карибском море — за 3,4–8,5, мавританскому Порт-Этьену она обходится по 4,4 доллара за кубометр. В нашем Каспийском море танкеры регулярно доставляют пресную воду из Баку в Красноводск и ряд других городов туркменского побережья. Здесь кубометр ее стоит от 1,4 до 3,6, а кое-где и до 7 рублей.

Если сопоставить эти цены с ценами московского горводопровода (3 копейки за кубометр) и даже ашхабадского (5 копеек), то станет ясно: возить можно лишь в крайнем случае только питьевую воду и главным образом для людей. Для животных эти цены слишком высоки, а для растений вовсе не доступны.

Ну а если воду возить не тысячетонными танкерами, а… пластиковыми мешками объемом по нескольку тысяч тонн, если образовать из этих мешков что-то вроде сосисочной гирлянды и буксировать ее через море?

Такой проект существует. В соответствии с ним один буксир будет перевозить несколько миллионов кубометров пресной воды. Водяные сосиски можно, к примеру, изготавливать в устье Волги и употреблять в Красноводске. Расчетная цена будет, конечно, выше московского горводопровода, но вполне сносной. Полагают, что такой водой можно будет даже орошать поля. Главное же — почти никаких побочных осложнений!

Почти… Остается узнать, как повлияет крупный отбор пресной воды на обстановку в устье реки и что будет, если сосиски порвутся на полпути. Пресное озеро посреди моря может доставить неприятности кое-кому из тех, кто привык к соленой среде.

Проект «водяные сосиски» всем хорош, только у нас применять его почти что негде. На Каспии, конечно, можно бы организовать транзит Волга — Закавказье и Волга — Туркмения. Но у Волги избытков воды, как мы убедились, не так уж много, да и Каспий худеет. Так что гирлянды могут пойти в ход уже после переброса северного стока. На Черном море с ними тоже не разгуляешься: реки стали вовсе немноговодными; на Арал и соваться нечего.

Упаковка у «водяных сосисок» не лучшая, легко рвущаяся. Хорошо бы твердую, но она дорога. Вот если бы использовать упаковку естественную…

В 1750 году к побережью Бретани, к острову Бель-Иль, тому самому, который воспет А. Дюма в эпопее о трех мушкетерах, прибило… айсберг. Таял он в течение целого года: об этом сообщают не вызывающие сомнений в правдивости французские исторические хроники.

Случай этот не единственный. Правда, столь далеко от Гренландии айсбергов больше не видели, а вот в средних широтах, на трансатлантическом пути между Европой и Америкой, они появляются частенько. Достаточно вспомнить трагическую историю «Титаника», столкнувшегося с ледяной горой…

Айсберг средних размеров — это сотни миллионов тонн воды — столько же, сколько составляет годовой сток вполне приличной реки. Неудивительно, что сейчас, когда пишутся эти строки (лето 1981 года), «Компания по транспортировке айсбергов с ограниченной ответственностью», президентом которой является саудовский принц Мохамед Эль-Фейсал эль Сауд, приступает к первому эксперименту отлова и буксировки айсбергов. Для начала решено тащить его из Антарктиды не к далеким берегам заинтересованной Саудовской Аравии, а поближе — в Австралию.

Изобретения, касающиеся способов отлова айсбергов, их обвязывания пластиковым покрытием, предохраняющим от разрушающего воздействия волн, ветра и солнца, буксировки, заякоривания, методов переработки льда в воду занимают уже немало места в картотеках патентных агентств всего мира. И неудивительно: ежегодно только один антарктический материк сбрасывает в океан около 2400 кубических километров воды в виде айсбергов, что равняется мировому расходу воды на орошение в 1980 году. И вся эта масса влаги на первый взгляд без всякой пользы растворяется в океане!

На тот же первый взгляд транспортировка айсбергов едва ли опаснее для окружающей среды, чем перевозка «водяных сосисок». На самом же деле проблем здесь значительно больше!

Один-два айсберга в год — это еще куда ни шло. Вряд ли их перевозка сможет нанести какой-либо ущерб океану или климату. Но если откроют постоянный трансокеанический канал, по которому будет происходить массовый сплав айсбергов (здесь частично можно использовать течения) наподобие сплава леса, то обстановка моментально изменится.

Как скажется на атлантическом балансе тепла и холода изъятие из этого района больших объемов льда? Не будет ли нарушена устойчивость южнополярного оледенения? Как изменятся условия жизни обитателей южного ледовитого океана? Как повлияет на океанических жителей теплых широт холодный след айсбергов по пути их буксировки? Как воздействует на окружающую среду заякоренная где-нибудь у берегов Аравии ледяная гора? Не изменится ли вообще климат земного шара, если мы начнем всерьез растаскивать лед из антарктического холодильника?

Список этих вопросов можно было бы продолжить, но достаточно и этого, чтобы убедиться в необходимости и здесь все тщательно взвесить, прежде чем принимать решения даже «с ограниченной ответственностью». Неудивительно, что некоторые специалисты, хорошо подумав, задались вопросом: а нужно ли вообще возить лед? Не лучше ли его делать на месте?

Морской лед, как известно, не содержит избытка солей. Поэтому если заморозить достаточное количество морской воды, то можно получить пресный искусственный айсберг и делать с ним все, что угодно. Установки для послойного намораживания соленой воды работают в ряде районов Северного Казахстана и Целинного края, у соленых озер, сильно минерализованных источников. Намороженные зимой айсберги весной постепенно тают. Вначале при температуре минус два градуса стекает замерзший между кристаллами пресного льда рассол, потом искусственная ледяная гора начинает давать воду.

К сожалению, в нашей стране не так уже много мест, где было бы выгодно зимой производить естественное намораживание минерализованной воды, а летом использовать тающие айсберги. Если же для вымораживания использовать холодильные установки, то вода обойдется в копеечку. Правда, кое-где такие установки применяются, и не без успеха. Так, в Израиле на берегу залива Акаба действует вымораживающая установка производительностью 910 кубометров в сутки.

Вымораживание — один из многочисленных способов опреснения морской воды. Первым его открыл Аристотель. Еще в IV веке до н. э. он заметил, что пары кипящей морской воды не содержат солей. Неизвестно, пытался ли кто-нибудь до середины XIX века опреснять морскую воду методом Аристотеля. По-видимому, нет, так как еще совсем недавно пресную воду на суда брали впрок.

В настоящее время практически все морские суда, совершающие длительные рейсы, имеют опреснители, производящие воду стоимостью 5–9 копеек за кубометр.

Первая в России стационарная установка для опреснения была построена вблизи Красноводска в 1881 году. Она делала 67 кубометров воды в сутки. В настоящее время самый крупный опреснитель воды в СССР снабжает питьевой и технической водой многотысячное население и промышленность города Шевченко на полуострове Мангышлак. Он производит более 150 тысяч кубометров воды в сутки; ее хватает не только для людей и машин, но и для полива улиц и парков. Дешевизна шевченковской воды объясняется тем, что она является побочным продуктом атомной электростанции. Ядерный источник энергии для опреснения сегодня оказывается наиболее дешевым, если, конечно, не считать Солнце.

Первый гелиоопреснитель начал работать на побережье Чили в 1872 году. Он давал 20 кубометров воды в сутки. Сегодня в мире построено огромное количество опреснителей, работающих на солнечной энергии, — от миниатюрных, рассчитанных на одного человека (ими снабжают пилотов и моряков на случай аварии в море), до гигантских, обеспечивающих население целых городов.

Устройство гелиоопреснителей достаточно стереотипно: это мелкий бассейн с черным поддоном, прикрытый прозрачным плоским колпаком или снабженный зеркалом — концентратором. Вода испаряется и затем конденсируется на поверхности прозрачного покрытия, откуда и стекает в приемник. Производительность установки зависит исключительно от величины ее поверхности и интенсивности солнечного излучения. Например, на широте Калининграда с одного квадратного метра можно получать около 7,5 литра воды летом и… почти ничего зимой. Южнее, где солнце светит ярче, производительность, конечно, повышается. Например, в северной части Каспия суточная производительность гелиоопреснителя может равняться 10 литрам с одного квадратного метра в сутки (в летнее время). Отсюда нетрудно подсчитать, что для снабжения города Шевченко понадобится построить опреснитель площадью 15 квадратных километров. Если же учесть, что пресная вода нужна городу не только летом, но и зимой, то площадь надо будет утроить.

Гелиоопреснители потребляют даровую энергию, но требуют слишком большой поверхности. Не случайно поэтому на страдающих от жажды в летнюю пору Малых Антильских островах они оказались неэффективны. Здесь решили, что более выгодно просто-напросто забетонировать склоны гор, чтобы собирать с них осенне-зимние дожди.

Если гелиоопреснители с плоскими зеркалами занимают слишком большие поверхности, то со сферическими — чрезвычайно большой объем. Они оказываются сложными, дорогими, а главное, зависящими от все того же наличия туч в небе. Сегодня они дороги даже для пустыни: в Каракумах вода, опресненная на них, оказывается более дорогой, чем привезенная за 70 километров.

И тем не менее солнечные опреснители со временем пробьют себе дорогу — их будут применять в пустынных районах, где постоянно есть солнце и нет земли, которую было бы жалко закрыть зеркалами.

Способов опреснения морской воды насчитывается достаточно много. Кроме перечисленных выше, можно назвать обратный осмос, электродиализ, применение ионообменных смол, экстракцию разнообразными растворителями солей. Все они пока еще слишком дороги, чтобы производимая вода могла широко использоваться для орошения полей. И тем не менее будущее должно опровергнуть старую арабскую пословицу: «Река соленой воды дешевле кувшина пресной». Хотим мы этого или нет, но мы научимся пить морскую воду. Это необходимо не только потому, что она составляет 94 процента всего объема гидросферы, но и потому, что, возвращая ее на землю, мы платим долги природе, восстанавливаем нарушаемое нами же равновесие. Вспомним, что усиленное и все растущее потребление пресной воды осушает сушу и увлажняет океан. Значит, реки и на самом деле должны вытекать из морей, только не из искусственных, а из естественных! Трудно сказать, когда практика признает подобное течение рек экономически эффективным. Надо, во всяком случае, надеяться. Это случится раньше, чем будут исчерпаны моря подземные…

Напомним, что подземные воды составляют 4 процента от объема гидросферы — второе место после океана! Земля — своего рода губка, пропитанная водой. Выжать из нее влагу, однако, вовсе не так уж просто. Более того: занятие это совсем небезопасное, хотя занимаются им уже несколько тысячелетий.

О подземных водохранилищах знали еще со времен Платона. Это он, сетуя на неразумность человека, уничтожившего леса Древней Эллады, говорил: «Воды, каждый год изливаемые от Зевса, не погибали, как теперь, стекая с оголенной земли в море, но в изобилии впитывались в почву, просачиваясь сверху в пустоты Земли, и сберегались…»

По мнению Платона, под Землей существует бездна — Тартар, пропасть, «больше всех остальных и проходящая сквозь всю землю». Вода, заполняющая ее, не имеет ни дна, ни русла…

По всей вероятности, в этих столь гиперболизованных представлениях о подземных водяных складах отразилось удивление наших предков по поводу изобилия источников и родников, дающих питание большим рекам. А поскольку древние цивилизации были основаны в местах, не слишком избалованных дождями, мнение было единым: большим рекам неоткуда вытекать, кроме как из необъятной бездны.

Ближе к нашему времени Тартар заменили более реальными подземными реками. Леонардо да Винчи полагал, что «вода — это жизненный сок земли», которая, в свою очередь, очень похожа на человека. «Ибо раз тело человека состоит из земли, воды, воздуха и огня, он напоминает землю; как кости служат опорой и остовом для плоти человека, так и землю поддерживают скалы; как внутри человека — озеро крови, в котором при дыхании вздымаются и опадают легкие, так и тело земли имеет свой океан, каждые шесть часов отливающий и приливающий вместе с ее дыханием; как из этого озера крови выходят жилы, разветвляющиеся по всему телу человека, так и моря наполняют тело земли бесчисленными источниками воды… Та же самая сила, которая заставляет кровь внутри человеческого тела двигаться вопреки естественному закону тяжести, гонит воду по жилам земли, в которые она заключена… Как кровь брызжет через разорванные жилы, как влага из корней виноградной лозы подымается к надрезу на ее стволе, так и вода подымается из глубин, выливается из вскрытых жил и возвращается в море».

Надо сказать, что предки наши неплохо умели, когда нужно, вскрывать водоносные жилы, столь поэтично описанные Леонардо. В конце VIII века до н. э. ассирийский царь Саргон II завоевал Урарту. Как и положено завоевателю, он начал с того, что уничтожил все, что мог, прежде всего сложнейшую ирригационную систему города Улху. Потом уже, как справедливый и объективный человек, он очень положительно высказался об этом сооружении: «Повинуясь вдохновению, Урса, их царь и господин, открыл воде выходы. Он прорыл главный водовод, по которому потекла вода в таком изобилии, как в Евфрате. Он вывел из глубины земли бесчисленные потоки на поверхность… И он дал воду полям».

Система, описанная «благородным» завоевателем, в дальнейшем получила название ассиро-вавилонской. Она широко использовалась, да и сейчас еще используется в Средней Азии и на Кавказе, где ее называют «кяриз», в Иране — «канат», в Африке — «фоггара». Устройство всех этих систем достаточно стереотипно. В основе его — колодцы, рыть которые научились задолго до появления на земле «царей и господинов».

Строят кяризы — подземные акведуки — обычно на предгорных равнинах, по склонам возвышенностей или ущелий. Первый колодец — самый верхний, он же и самый глубокий. Дойдя до водоносного слоя, от него начинают вести под небольшим уклоном горизонтальную галерею. Для этого на равных расстояниях от первого колодца роют вспомогательные для удаления грунта. Масштабность кяризов впечатляет и в наши дни. Средняя их длина 5–10 километров, но бывают и очень большие. Так, построенный близ иранского города Язда канат имеет длину 43 километра; канат близ Гонабада заложен на глубине 300 метров; самый большой в Иране канат Шахруд подавал почти один кубометр воды в секунду.

Подземные акведуки и до сих пор играют большую роль в жизни Иранского нагорья. Общее их число достигает 100 тысяч. В пределах Ирана суммарная их длина равняется 270 тысячам километров, они покрывают около трети потребности страны в воде. До 1930 года Тегеран получал воду исключительно из канатов, дававших каждому жителю столицы по 350 литров воды в сутки.

Знаменитая «Пальмовая дорога» в Сахаре, протянувшаяся на 1200 километров, не что иное, как ожерелье жемчужин-оазисов, нанизанных на нить подземных акведуков — фоггара. Общая их длина только в Алжирской Сахаре превышает три тысячи километров.

По расчетам французского гидролога Р. Фюрона, для создания одного подземного акведука длиной пять километров 40 рабочих должны работать 4–5 лет. Механизации этот способ добычи воды поддается плохо. Поэтому в настоящее время он не пользуется большой популярностью. Проще найти источники «самоподающие» — артезианские.

О поисках воды можно написать не одну книгу, да не одна уже и написана.

Первой была Библия. Она повествует о том, как небезызвестный пророк Моисей ударил жезлом в скалу Хореб и оттуда потекла вода. По-видимому, с этого самого времени водоискатели придавали большое значение «проблеме жезла». В 1630 году в Париже вышла книга Жана де Шастлэ барона де Босолей и его жены Мартины де Бертро под названием «Достоверное заявление о французских рудных богатствах». В нем супруги поведали свету о различных методах обнаружения полезных ископаемых, в том числе и воды, и в том числе «способом волшебного прута». Правда, не они первые были открывателями этого способа, до них о нем писал знаменитый Георг Агрикола и многие другие. Чета Босолей зато оказалась первой, кто пострадал от усиленного применения этого научного инструмента. Их обвинили в колдовстве, и кардинал Ришелье заключил мужа — в Бастилию, а жену — в Венсенн, где они и скончались.

Пример злополучных супругов отбил у многих охоту доискиваться истинных причин появления артезианских вод. Обычно предполагали, что вода самостоятельно выливается на поверхность Земли из-за того, что «где-то выше» находится какой-нибудь водоем (о правиле сообщающихся сосудов в то время уже знали). На вопрос «где?» профессор медицинской школы в Модене Бернардо Ромадзини (1633–1714) отвечал так: «Точно я не могу сказать, куда Божественный Зодчий поместил водоем, — у подножия гор или внутри их».

Все эти объяснения, впрочем, никак не мешали пользоваться артезианскими источниками. И ими пользовались по мере развития техники бурения — все интенсивнее.

Артезианские воды представляют собой воды, находящиеся под напором между двумя водонепроницаемыми слоями. Когда скважина доходит до них, они начинают бить фонтаном. Глобальное количество воды, лежащей между поверхностью земли и водонепроницаемым слоем («безнапорные», или попросту колодезные воды), составляет величину около четырех миллионов кубических километров.

Эта активная часть подземных вод (напомним, что общий объем подземных водохранилищ равен 60 миллионам кубокилометров), состоящая в обмене с водами поверхностными, в 10–12 раз больше рек и озер (без ледников).

Обеспеченность подземными водами впечатляет: в Центральном и Центрально-Черноземном районах РСФСР, например, на каждый квадратный километр поверхности приходится 47–56 тысяч кубических метров подземной воды (в среднем 1 кубометр с площадки 4,5 на 4,5 метра). В некоторых районах Украины и Закавказья этот показатель достигает 95 тысяч кубометров, в Узбекистане — 65, Киргизии — 32, «идеально сухой» Туркмении — 16 тысяч кубометров. Даже самая бедная подземными водами Молдавия и та имеет по 7 тысяч кубометров воды из подземных рек на каждый квадратный километр!

Казалось бы, эти цифры должны успокаивать: если под нами течет в десять раз больше пресной воды, чем рядом с нами, то водный голод настанет еще не скоро. Достаточно набурить большое количество скважин (благо техника сверления земли позволяет делать отверстия глубиной более 5 километров) и подставить ведро…

В настоящее время подземный сток обеспечивает немного меньше, чем 1/5 водопотребления СССР. Можно ли увеличить эту долю?

Большинство специалистов полагает, что можно. Некоторые считают, что отбор «воды из Тартара» может быть увеличен в десять раз. Другие…

Другие полагают, что мы еще очень мало знаем для того, чтобы сделать столь смелые прогнозы.

Глубоко залегающие воды, активно не участвующие в водообмене с поверхностью, часто называют погребенными. По существу, это «невозобновимый капитал», и как таковой его следует расходовать с осторожностью. Об этом свидетельствуют десятки тысяч бездействующих артезианских скважин, разбросанных по всему миру.

Доступность — вот что отличает современный этап отношений человека и природы. «Эта вакханалия доступности, — пишет В. Солоухин, — пронизывает весь регистр нашего общения с внешним миром — от тайны цветка до тайны Луны, от женской любви до молний с громом».

Наша научно-техническая сверхвооруженность (порою мнимая) вызывает у нас убежденность во вседозволенности, в допустимости любых действий в отношении внешнего мира, за что мы и несем нередко наказание. Автор этих строк знавал одного лихого председателя колхоза из приазовских степей, который, ничтоже сумняшеся, истыкал колхозную землю артезианскими скважинами и провел от них каналы и арыки. Зажурчала в них вода, зазеленела выжженная степь… Пробовали ли вы когда-нибудь приазовскую воду? Уверяю, что, попробовав, вам не из всякого колодца захочется напиться вновь. Значительная часть подземных вод относится к типу пресных чисто условно — в них велико содержание солей. Поэтому-то уже через пять-шесть лет поля вышеупомянутого председателя покрылись коркой соли и перестали плодоносить. Очень кстати вспомнить здесь еще и И. Тургенева, который уверял, что «природа не справляется с логикой; у нее есть своя, которую мы не понимаем и не признаем до тех пор, пока она нас, как колесом, не переедет».

Увеличение отбора подземных вод, особенно в масштабах, необходимых для орошения, затрудняется нашим слабым знанием взаимосвязей поверхностных и подземных вод. Сегодня никто не может сказать с достаточной уверенностью, не повредит ли десятикратный рост подземного водозабора нашим рекам. Не станут ли они мельче, и не уподобимся ли мы тому самому литературному персонажу, который латал дырки на кафтане, отрезая лоскуты от него же?

Что это опасность не мнимая, доказывает тот факт, что в некоторых приморских районах наблюдается вторжение океана в подземные водохранилища, слишком неосторожно опустошенные человеком. «Природа пустоты не терпит!»

Конечно, можно забраться еще поглубже, в так называемую область неактивных вод, не связанных с реками и озерами. Но, во-первых, кто поручится за их абсолютную неактивность? И, во-вторых, не забудем, что чем глубже, тем теснее вода соединяется с минералами. А это соли…

За примерами ходить недалеко. Сейчас горнодобывающая промышленность Среднего Приднепровья (от Кременчуга до Никополя) ежесуточно вместе с полезными ископаемыми «добывает» из постоянно затапливаемых шахт 300 тысяч кубометров минерализованной воды. Сброс ее на поверхность (это уже не орошение, а сброс ненужного, водоотлив) оказывает влияние на площадь в 14 тысяч квадратных километров! На ней и усиленная эрозия, и засоление почв, и просадка грунтов, и масса других неприятностей. Длительное раздумье над вопросом «куда девать подземные воды из шахт?» привело к решению — «закачивать их обратно, да поглубже».

Как говорил когда-то великий римлянин Марк Аврелий: «Человек… обращается ко вседающей и всеотбирающей назад природе со словами: „Дай, что пожелаешь, и возьми обратно, что пожелаешь“». Правило «где взял, туда и положи» касается не только соленых, но и пресных вод. Откачивая их из недр земли, следует периодически закачивать их… обратно. И не только потому, что на земле известны случаи «проваливания» в опустошенные подземелья целых селений и городов, но и просто из-за того, что подземные водохранилища во всех отношениях удобнее наземных. Вода из них понапрасну не испаряется, земель она не затапливает, плотин для сохранения не требует.

Крупный отбор подземных вод — процесс сродни процессу образования водохранилищ. И тот и другой сопоставимы по масштабам с длительными геологическими процессами, а по времени — со скорыми катастрофами. В числе последствий откачки все те же «техногенные землетрясения», исчезновение родников, потеря стока рек, иссушение болот (что тоже не всегда благо), пересыхание колодцев, ухудшение качества воды в них и т. д. и т. п.

Таким образом, пополнять или, как говорят, «магазинировать» подземные озера нужно. Только опять-таки не вдруг, а осторожно: японские ученые в районе города Минаками попробовали быстро закачать в глубокую скважину хорошую порцию воды. И получили… землетрясение.

Следуя Спинозе, который уверял, что «человек — все равно, руководствуется ли он разумом или одним только желанием, действует исключительно лишь по законам природы», давайте не суетиться. Ведь природа несуетлива.

Сохранение «водяных консервов» под землей — это, согласитесь, совсем не то, что усиленная добыча «водяных ископаемых». Такой метод существенно ограничивает возможности утоления жажды за счет Тартара. И, кроме всего прочего, он небезопасен для последнего.

В 1854 году в Мюнхене открылась промышленная выставка. Одновременно здесь же началась эпидемия холеры. Причиной были… городские колодцы, ставшие, по словам известного немецкого химика Юстуса Либиха, «резервуарами для профильтрованных городских помоев, которые жители пьют частично в неразбавленном виде, отчасти же разбавляя их водой родников».

Почти через сто лет после мюнхенской выставки эта история повторилась с баварским городом Нёйёттингом. Здесь десятилетиями длилась эпидемия тифа, ежегодно уносившая десятки жизней. Причина проста: большинство выгребных ям города были заложены в толще водопроницаемого галечника, а вблизи мест забора воды располагались городские свалки и кучи мусора. Питьевой водопровод местами проходил рядом с городским коллектором сточных вод и, сверх того, был поврежден…

За несколько десятилетий, прошедших после случая с Нёйёттингом, качество водопроводов, очистных сооружений, санитарная техника выросли очень сильно. Еще больше вырос санитарно-эпидемиологический аппарат, охраняющий нас от эпидемий. Но одновременно — в превосходной степени — выросли сбросы как по количеству, так и по качеству. К чему это приводит в наши дни, мы уже рассказывали во второй главе.

Итак, подземные моря нуждаются в охране (следует отметить, что в СССР существует закон о строгой регламентации отбора подземных вод, который позволяет добывать из-под земли только ту часть влаги, что накапливается там ежегодно вновь). Как, впрочем, и все, что находится под и на Земле. Например, ледники. Нельзя сказать, чтобы человек уже покусился на их сохранность. Но, во всяком случае, мысль об этом он вынашивает. И это неудивительно, так как наземные льды стоят на третьей ступени в пирамиде, изображающей водные ресурсы планеты. «Лед и снег, — писал В. Вернадский, — скопляясь в биосфере, являются одним из самых могущественных факторов ее структуры».

Как можно использовать этот фактор?

Читателю это может показаться надоевшим преувеличением, но даже в способах «употребления ледников» наши современники не придумали пока ничего более эффективного, чем современники Александра Македонского. Воины прославленного полководца, совершившие «экскурсию» из Эллады к горам Памира, были поражены поведением местных жителей: весной они посыпали снега и наледи на горах золой или землей.

В так называемых «областях питания» ледников, высоко в горах, запасы льда накапливаются в течение всего года. Расходуются же они летом, стекая с «языков», опускающихся в долины. Получаемый баланс чаще всего равен нулю: сколько льда намерзает вверху; столько же внизу превращается в воду. Ведут себя ледники вполне самостоятельно: тают равномерно, не считаясь со степенью засушливости года. Ранней весной вода крестьянину особенно дорога, вот и сыплет он золу на лед — быстрее растает, быстрее зазеленеет поле.

Итак, ледники можно заставить таять быстрее: для этого необходимо уменьшить отражение от них солнечных лучей, покрыв поверхность тонким слоем чего-нибудь темного. Нельзя сказать, чтобы проблема окраски ледников была слишком трудной. Но не следует также думать, что ее можно выполнить простыми техническими приемами.

Во-первых, слой черного вещества на леднике должен быть равномерным и не очень толстым, иначе лед не только не согреется, но даже укроется от солнца термоизолирующим одеялом.

Во-вторых, высоко в горах нужно разбросать 5–10 тонн чернящего материала (например, угля) на один квадратный километр поверхности.

В-третьих, следует подумать, как избавиться от внезапных снегопадов в горах, сводящих на нет усилия по загрязнению ледников…

Список технических трудностей можно было бы продолжить (экспериментально их уже вполне сносно преодолевают, в частности и в нашей стране), но есть еще одна, более серьезная и не имеющая отношения к технике.

Речь идет о том, что ледниковые «консервы», как и подземные, невозобновимы. Употреблять их следует умеренно и не постоянно. Например, «в аварийном случае» наступления катастрофически засушливого года. Действуя все по тому же принципу «взял — отдай», необходимо, кроме того, позаботиться о воспроизводстве ледников. Ведь если об этом не думать, то — ничто не вечно — ледники в конце концов растают. И тогда климат Земли может серьезно измениться.

Пополнять ледники означает вызывать искусственные снегопады в горах. Для этого нужно уметь управлять тучами.

Начинать рассказ о методах «тучеуправления» приходится опять-таки с древних. Все тот же Геродот, описывая несостоявшееся сожжение на костре известного богатством Креза, заодно описал и «антропогенный дождь». Крез был чрезвычайно красноречив: «И так как он со слезами на глазах взывал к богу, вдруг в спокойном воздухе на чистое небо набежало много туч, грянул гром, полил сильный дождь и потушил огонь».

Описанное происшествие датируется 548 годом до н. э. Несколько позже греческий историк Фукидид описал осаду Платеи лакемодемонянами (429 г. до н. э.). Последние, набрав побольше хвороста, серы и смолы, подожгли вышеназванный город. И тогда «поднялось такое высокое пламя, какого еще никто никогда не видел, если говорить об огне, зажженном человеческой рукой. Пламя было огромное, и лакемодемонянам потребовалось бы немного усилия, чтобы жители Платеи погибли от огня. И если бы поднялся ветер, как они надеялись, город был бы уничтожен. Но началась сильная гроза, проливной дождь погасил огонь, и опасность миновала».

В 1498 году А. Дюрер изобразил, как это могло быть, в серии своих гравюр, посвященных «судному дню». Его «Апокалипсис» — это разрушенный и горящий Вавилон. Дым, поднимающийся над «проклятым господом богом» городом, отклоняется ветром, скорость которого увеличивается с высотой; пласты дыма увенчаны белыми шапками кучевых облаков. Они возникают из дыма!

То, что из дыма может быть рожден дождь, издавна знали племена африканских негров и южноамериканских индейцев, живших в засушливых зонах континентов. Некоторые из них даже ввели в штат постоянных «дождевызывателей». Эти «чиновники» считались весьма уважаемыми людьми, что не мешало соплеменникам убивать их в случае плохого исполнения обязанностей.

В наше время примитивные пожары, устраиваемые колдунами и шаманами, заменены спецустройствами, прозванными «метеотронами». Это попросту большие горелки, создающие столбы поднимающегося горячего воздуха. С их помощью на подобающую высоту транспортируются мелкораспыленные частицы йодистого серебра или другие подходящие реагенты. Попадая в облако, они становятся ядрами конденсации влаги, после чего и начинается дождь. Дождь иногда получается, если слегка смочить облако водой из пролетающего самолета или… посолить поваренной солью.

Если бы атмосфера Земли была стерильно чистой и в ней, как в стакане воды частицы глины, не плавали бы разные мелкие кусочки, оторвавшиеся от поверхности планеты, дождь, вероятно, никогда не пролился бы. Не случайно над современными городами с их копотью и смрадом тучи опорожняются на 25 процентов чаще, чем над лесами и полями.

Заметьте, чтобы вызвать дождь, надо уже… иметь его. Хотя бы потенциально, в виде вполне приличных туч. Мы не в состоянии получить влаги больше, чем ее содержится в атмосфере, но зато можем ускорить процесс «созревания облаков», начать дождь чуть раньше, сделать его чуть большим и чуть-чуть не в том месте, где он должен был пролиться естественным образом. Для этого искусственно нарушают хрупкое облачное равновесие путем «засева» или «подогрева» туч.

Облако, не дающее осадков, обычно совершенно однородно и состоит из массы мелких капель переохлажденной воды. Появившиеся внутри его частицы, например, йодистых соединений серебра, свинца или твердой углекислоты лишают облако однородности, в отдельных его местах вокруг искусственных ядер конденсации начинается быстрый рост и утяжеление капель воды. Они не могут уже плавать в воздухе, как ил в воде, и «оседают на дно». Облако напоминает акробата, балансирующего на проволоке. Один толчок и…

Описанный процесс, конечно, крайне упрощен. На деле он более сложен и еще не во всем понятен. Например, в «естественном» облаке навстречу падающему дождю поднимаются водяные пары, происходит регенерация влаги. Часть капель не долетает до земли, испаряется и вновь попадает в облако. Благодаря этому дождь проливается не «из ведра», как о нем иногда говорят, а постепенно. Вызывая его досрочное проливание, мы поступаем как всегда — ускоряем события. Все сразу — вот наш лозунг! И если тучи вознамерились пройти над обширной территорией и пролиться мелким дождиком, мы предпочитаем опростать их точно над своим пересохшим полем. «Дерни за веревочку — дверь и откроется»…

Надо признаться, что и в этом случае человек не слишком далеко ушел от своих предков. Заклинатели дождя в саванне ведь не жгли костров наугад, а ждали подходящего момента. Они точно знали приметы, когда облака чреваты дождем. Точно так же устраивались и «молебны о дожде» в старой России — по барометру попа.

Так что мы пока не умеем делать дожди так, как их делает природа, хотя, с другой стороны, все-таки уже далеки от «времен попа Ивана», который вначале стучал пальцем по барометру, а потом уже осенял поля крестным знамением. Мы научились «дергать за веревочку», и статистика свидетельствует, что иногда эта операция проходит успешно.

В 50-х и 60-х годах производство искусственного дождя стало настоящим бизнесом в США. Каждый уважающий себя американский штат имел собственного «тучегонителя». Даже Нью-Йорк обзавелся гарантированным и солидным агентом по производству дождя. Однажды на город обрушился целый потоп, и возмущенные горожане подали на него в суд за излишнее усердие. Суд оправдал ответчика, не установив точно, кто был автором ливня — он или господь бог.

Статистика и эксперименты, проведенные во многих странах мира, так же, как и нью-йоркский суд, не всегда уверены в своих приговорах. К настоящему времени дождевой бизнес в Штатах захирел: по настоянию Американского метеорологического общества в стране был принят закон, запрещающий частную практику дождевызывания, и бум прекратился. Надо сказать, этому способствовали не только сомнения в реальности успехов агентов по производству дождя, но и многочисленные судебные процессы по поводу вопроса, «кому принадлежат облака». К таковым, например, относятся следующие:

1. Семплес против «Ирвинг Крик корпорейшн» (Оклахома, 1954 г.). Истец обвинял компанию в том, что она вызвала слишком сильный ливень, испортивший его поля.

2. Тауншип (административная единица в США) Эйр против Фулка (1964 г.). Последний, будучи оператором метеотрона, обвинялся в преднамеренном ухудшении погоды в Эйре, на что отвечал, что собирался улучшить ее в штате Мериленд.

3. «Пенсильвания нейчурал уэзер ассошиэйшн» против «Блу-Ридж уэзер модификейшн ассошиэйшн» (графство Фултон, 1965 г.). В этом случае одна корпорация обвиняла другую в искусственном воздействии на погоду, так как, по ее мнению, химические вещества, вносимые в облака, вредны для здоровья, нарушаются права собственников земли на получение естественного дождя, происходит нарушение дождем границ землевладельцев, и вообще «засев облаков производится опрометчиво».

Два последних дела не окончены. Суд все еще идет!

Впрочем, Америка остается Америкой, и если официальный суд медлит, то суд Линча спешит. Американские газеты сообщали о десятках случаев, когда фермеры открывали пальбу по самолетам «дождевателей».

Когда в 1977 году на Америку обрушилась засуха, прокатилась еще одна волна судебных процессов из-за «украденных дождей». Штаты Монтана и Айдахо, в частности, угрожали предъявить иск штату Вашингтон, если он вызовет дождь из облаков, идущих с Тихого океана, и тем самым «перехватит» желанную влагу.

Конечно, для нас это немного смешно. Но не свидетельствует ли практика дождепроизводства о том, что, как говорил Джованни Баттиста Порта в своей «Натуральной магии» (1558 г.), «одни знают, но не творят, другие творят, но не знают»?

Безусловно, воздействие на погоду в условиях классового, непланового общества обречено на провал уже по социальным причинам. Однако даже в условиях планового общества можем ли мы сегодня зайти столь далеко?

Во-первых, осуществить в достаточных масштабах воздействие на облака пока еще технически трудно, оценить же достоверность воздействия еще труднее (пока что можно говорить с большей или меньшей уверенностью о нашей способности усилить на 10–15 процентов уже готовый пролиться дождь).

Во-вторых, если мы даже сможем изготовлять и перегонять тучи, то знаем ли мы до конца, к чему это приведет в конце концов?

Следует сознавать, что, помимо непрерывного возрастания надежности нашей техники, должна возрастать и надежность ее применения. Это раньше для того, чтобы узнать, не разрушится ли дом, следовало его построить. Старые правила в отношении надежности содеянного человеком были чрезвычайно суровы. Например, в Древнем Вавилоне существовал закон, позволявший казнить архитектора, чей дом развалился и похоронил под собой домовладельца. Весьма колоритный приказ издал также Петр I, неудовлетворенный надежностью партии пищалей и фузей:

«Повелеваю: § 1. Хозяина Тульской оружейной фабрики Корнилу Белоглаза бить кнутом и сослать на работу в монастыри, понеже он, подлец, осмелился войску государеву продавать негодные пищали и фузеи. Старшину олдермана Фрола Фукса бить кнутом и сослать в Азов, дабы не ставил своего клейма на плохие ружья. § 2. Буде заминка в войсках приключится, особливо при сражении, по недогляду дьяков и подьячих, бить оных нещадно по оголенному месту: хозяину — 25 кнутов и пени по червонцу за ружье; старшего олдермана — бить до бесчувствия; старшего дьяка — отдать в унтер-офицеры, дьяка — в писаря, а подьячего — лишить воскресной чарки водки сроком на один год».

Очевидно, из-за этих суровых законов почти все, что делали наши предки, делалось с немыслимым запасом прочности и надежности. Мы не можем позволить себе такой роскоши — ведь нам известно, что большинство ресурсов исчерпаемо. Нужно экономить. Кроме того, мы в отличие от предков умеем считать. Но все ли? Надежны ли наши расчеты, и не захотят ли потомки наши, вспомнив о нас, вспомнить и повеление Петра? Благо, бить будет уже некого! Так не лучше ли встать в положение римского сената и, выслушав все «pro» и «contra», ничего не делать? Ведь теперь вопрос «можем ли мы изменить климат?» должен быть заменен на «можем ли мы изменять климат?».

Технология воздействия на облака не имеет четких границ. Об этом свидетельствуют вышеназванные судебные процессы. Между тем надежность требует точных границ, следовательно, и точных знаний. Когда появятся последние, вполне вероятно, что мы в действительности сможем повелевать тучами. Но, быть может, к тому времени это будет уже не нужно, так как человек сможет делать климат в масштабах всей планеты на свой взгляд и вкус.

Крупномасштабные изменения погоды (в частности, вызывание дождя), если они будут длительными и повторяющимися, неизбежно вызовут изменения климата. Но их можно вызвать и другими способами, которые неоднократно предлагались и предлагаются. И вполне вероятно, что, если бы человечество могло затрачивать на целенаправленные изменения климата столько средств, сколько сегодня идет на вооружение, эта задача была бы уже решена, хотя полная целесообразность таких решений остается сомнительной. Вот, например, неполный перечень проектов изменения климата:

1. Искусственное таяние арктических льдов с последующим использованием потеплевшей Арктики для развития сельского хозяйства и промышленности. Один из наиболее известных вариантов (проект П. Борисова) — строительство плотины через Берингов пролив. Разница в уровнях Северного Ледовитого и Тихого океанов позволила бы Арктике втянуть в себя Гольфстрим, и океан из Ледовитого стал бы Теплым. По другому варианту предлагалось, напротив, через ту же плотину перекачать на север тихоокеанское течение Куро-Сиво. Можно, впрочем, обойтись и без плотины: арктические льды можно растопить, как и ледники, посыпав их чем-нибудь черным, слоем специально выведенных водорослей или покрыв пленкой. Некоторые специалисты предлагают ахнуть по льдам атомной бомбой, другие, более осторожные, — оросить их неким химическим веществом…

2. Управление циклонами. Несмотря на то, что энергия одного «циклончика» равняется энергии, заключенной в тысячах атомных бомб средней мощности, оказывается, ими можно в некоторых случаях управлять без супергигантских энергетических затрат. Достаточно, например, удачно расставить по пути циклона батареи спецорудий, создающих вертикальные потоки воздуха, и он свернет, куда надо.

3. Можно опять-таки заняться Гольфстримом. Например, построить плотину между Флоридой и Кубой или на Ньюфаундлендской банке. Изменится течение — изменится и климат.

4. Французский ученый Тор Бержерон предлагает с помощью ядерно-топливных реакторов попытаться побольше испарить воды на юго-западном побережье Африки: тогда обогащенное водяными парами муссонное воздушное течение донесет влагу до Сахары.

5. Специалисты фирмы «Тайно когио» (Япония) предложили для перехвата влажного ветра, дующего с моря, поставить на его пути гигантский парус длиной 10, шириной 1,2 и высотой 0,6 километра. Отраженный таким способом воздух, насыщенный водяными парами, поднимется в зону образования облаков, и пойдет дождь.

Существует множество подобных проектов. Пока лишь рассчитывать земледелию на них не приходится. Не приходится рассчитывать и на другие экзотические источники. На росу, например (хотя в Феодосии существовал сборник росы, питавший целый город), ни тем более на синтетическую воду. Большинство считает, что в будущем хотя бы вода должна остаться естественной.

Когда-то М. Ломоносов писал: «Если бы я захотел читать, еще не зная букв, это было бы бессмыслицей. Точно так же, если бы я захотел судить о явлениях природы, не имея никакого представления о началах вещей, это было бы такой же бессмыслицей».

Заниматься сегодня проблемой преднамеренного изменения климата — всего лишь игра. Природа же не площадка для игр, хотя и человек уже не игрушка для природы. Надо больше думать о том, как мы (уже сегодня) непреднамеренно изменяем климат, природу вообще. М. Пришвин говорил: «Поезд нашей человеческой жизни движется много быстрее, чем природа». Так не окажемся ли мы раньше ее на конечной остановке?

Загрузка...