TIME TRAVEL

Without realising it, we are all travelling back in time by the most miniscule amount. The consequence of light travelling fast, but not infinitely fast, is that you see everything as it was in the past. In everyday life the consequences of this strange fact are intriguing but irrelevant. It may be strictly true that you are seeing your reflection in the mirror in the past, but since it takes light only one thousand millionths of a second to travel thirty centimetres (twelve inches), the delay is all but invisible. However, the further away we get from an object, the greater the delay becomes. Although over tiny distances the effect is always utterly negligible, it should be obvious that once we lift our eyes upwards to the skies and become astronomers, profound consequences await us.

A rare sight; in this picture Earth’s crescent moon is visible above Venus (bottom) and Jupiter (right) in the night sky. As light takes longer to reach Earth from other planets and moons, depending on how far away they are, we see further into their respective pasts.


© JASON REED/Reuters/CORBIS

Look up at the Moon and you are looking at our closest neighbour a second in the past, because it is on average around 380,000 kilometres (236,120 miles) away; perceptible certainly, but not important. However, take a look at the Sun and you really are beginning to bathe in the past.

The Sun is 150 million kilometres away (93 million miles) – this is very close by cosmic standards, but at these distances the speed of light starts to feel rather pedestrian. We are seeing the Sun as it was eight minutes in the past. This has the strange consequence that if we were to magically remove the Sun, we would still feel its heat on our faces and still see its image shining brightly in the sky for eight minutes. And because the speed of light is actually the maximum speed at which any influence in the Universe can travel, this delay applies to gravity as well. So if the Sun magically disappeared, we would not only continue to see it for eight minutes, we would continue to orbit around it too. We are genuinely looking back in time every time we look at the Sun.

However, this is just the beginning of our time travelling. As we look up at the planets and moons in our solar system, we move further and further into the past. The light from Mars takes between four and twenty minutes to reach Earth, depending on the relative positions of Earth and Mars in their orbits around the Sun. This has a significant impact on the way we design and operate vehicles intended for driving on the surface of Mars. When Mars is at its furthest point from Earth it would take at least forty minutes to be told that a Mars Rover was driving over a cliff and then be able to tell it to stop, so Mars Rovers need to be able to make up their own minds in such situations or must do things very slowly. Jupiter, at its closest point to Earth, is around thirty-two minutes away, and by the time we journey to the outer reaches of our solar system, the light from the most distant planet, Neptune, takes around four hours to make the journey. At the very edge of the Solar System, the round-trip travel time for radio signals sent and received by Voyager 1 on its journey into interstellar space is currently thirty-one hours, fifty-two minutes and twenty-two seconds, as of September 2010.

But look beyond our solar system and the time it takes for light to travel from our nearest neighbouring stars is no longer measured in hours or days, but years. We see Alpha Centauri, the nearest star visible with the naked eye, as it was four years in the past, and as the cosmic distances mount, so the journey into the past becomes ever deeper

Загрузка...