Три столетия прошло с тех пор, как голландский коммерсант Антони ван Левенгук первым из людей увидел микробы в им же самим сконструированный микроскоп. Сейчас даже ребенок знает, что мир вокруг нас кишит бактериями. И вот оказалось, что почти каждый известный в настоящее время вид бактерий может заражаться одним или несколькими вирусами. Такие вирусы называются бактериофагами (то есть "пожирателями бактерий") или просто фагами.
Представим, что в прозрачный мясной бульон попали бактерии. Почувствовав себя как дома, они начинают размножаться. Их численность быстро увеличивается, и бульон мутнеет. Если к этой растущей культуре бактерий добавить бактериофаг, то часть бактериальных клеток окажется зараженной. Впрочем, вначале может показаться, что ничего не произошло: никаких видимых изменений ни в бульоне, ни в зараженных клетках не наблюдается. Так может продолжаться несколько минут, или час, или еще дольше. Затем внезапно происходит разрушение зараженных клеток, они лопаются, будто взрываются изнутри. При этом из разрушенной бактерии высвобождается большое количество новых фаговых частиц – потомков того фага, что проник в бактериальную клетку и заразил ее. Они похожи одна на другую и на исходную фаговую частицу, как две капли воды. Эти частицы в свою очередь заражают другие бактерии, процесс повторяется, и через несколько часов все бактерии оказываются уничтожены, а бульон вновь становится прозрачным.
Прозрачные пятна, образованные фагом на бактериальном газоне
Бактерии могут жить и размножаться не только в жидкости, но и на твердой питательной среде, например, на поверхности студня или желе. В этом случае они усеивают поверхность отдельными колониями или покрывают ее равномерной пленкой ("газоном", как принято выражаться на лабораторном жаргоне). Отдельную бактерию нельзя рассмотреть без микроскопа, а вот их скопления – колонии или газон – хорошо видны невооруженным глазом. Когда среди бактериальных клеток, образующих газон, оказываются зараженные, фаг последовательно разрушает вначале их, а затем окружающие клетки. В результате в газоне образуются округлые прозрачные зоны, прогалины; мутноватая бактериальная пленка выглядит в некоторых местах как бы продырявленной.
С тех пор как Роберт Кох впервые разработал желеобразную среду для выращивания бактерий, прошло более ста лет, и образование таких зон, равно как и внезапное просветление бульона наблюдали, должно быть, многие микробиологи. Наблюдать–то наблюдали, но только двум из них – Фредерику Туорту и Феликсу Д’Эррелю – пришло в голову, что причиной таких изменений может быть гибель бактерий в результате вирусной инфекции.
В 1910 году в Мексике Д’Эррель изучал, смешно сказать, понос у саранчи. Высевая испражнения больных насекомых на поверхность твердой среды – питательного агара – Д’Эррель обнаружил рост каких–то бактерий. Выросшую культуру микроба он наносил на растения, саранча пожирала такие растения и заболевала. На первый взгляд этот результат казался неизмеримо важнее того наблюдения, что некоторые газоны, случалось, бывали усеяны мелкими прозрачными пятнами, совершенно круглыми, диаметром два–три миллиметра. Ну пятна, ну круглые – наверное, была допущена какая–то ошибка, и надо попробовать более аккуратно посеять газон. Даже опытный ученый порой не сразу схватывает смысл неожиданного явления.
В JL915 году Д’Эррель работал уже в Пастеровском институте в Париже. Шла Первая мировая война, а эпидемия дизентерии, разразившаяся в одной из кавалерийских частей, подрывала боеспособность французской армии. Изучая причины эпидемии, Д’Эррель снова обнаружил прозрачные пятна на газоне шигелл (микробов, вызывающих дизентерию). Содержимое этих пятен нельзя было разглядеть в микроскоп, но мутные бульонные культуры, куда его добавляли, становились совершенно прозрачными. Бактерии, по словам Д’Эрреля, растворялись, как сахар в воде! "В одну секунду я понял, – пишет Д’Эррель, – что образование прозрачных пятен вызывалось невидимым вирусом, который паразитирует на микробах".
Д’Эррель не знал, что в этом же 1915 году появилась статья англичанина Фредерика Туорта, который обнаружил похожее явление при изучении других микроорганизмов – микрококков. Он предположил, что возбудителем может быть вирус, заражающий микрококки, развивающийся на них и разрушающий их. Работа Туорта тогда вообще осталась незамеченной и лишь через несколько лет внезапно привлекла к себе внимание в результате бума, возникшего после аналогичного открытия Д’Эрреля. Д’Эррель был и автором названия вирусов бактерий – "бактериофаги". С тех пор открыто огромное количество бактериофагов, паразитирующих на самых разных микроорганизмах, но название, присвоенное им Д’Эррелем, сохранилось до сих пор. Правда, сейчас их чаще называют просто фагами.
Фаги встречаются повсюду, где есть бактерии – в почве, в океане, в организме человека, в пищевых продуктах и в сточных водах. Фаг кишечной палочки fd ("эфдэ") обнаружили впервые в канализации Манхеттена. Другой паразит кишечной палочки фаг Qb ("кью–бэта") был выловлен в канализации города Киото – древней столицы Японии. Несколько фагов бацилл были впервые выделены из садовой земли и из перепревшего сена.
Хотя среди бактериофагов встречаются формы, напоминающие вирусы животных или растений, чаще всего они отличаются по внешнему виду от тех и от других. Вирион подавляющего большинства фагов состоит, грубо говоря, из двух частей: головки и хвостового отростка, или попросту хвоста. Головка может быть округлой или более или менее вытянутой; внутри головки упакована нуклеиновая кислота – генетический материал фага. Чаще всего это двунитевая линейная молекула ДНК. Отростки различаются сильнее. Во–первых, они могут быть разной длины, характерной для данного вида фага. Встречаются фаги с очень длинными и гибкими отростками. Встречаются фаги с таким коротким хвостом, что он едва заметен даже при разглядывании фага в электронный микроскоп. Одним концом отросток прикреплен к фаговой головке, а другой, свободный конец обычно выглядит утолщенным, как бы расплющеным, отчего несколько похож на шляпку гвоздя: эта структура называется базальной пластинкой. У некоторых фагов к базальной пластинке крепятся длинные нити – фибриллы. Фибриллами фаг ощупывает поверхность бактерии, чтобы узнать, подходит ли она для заражения, и, если подходит, фаг швартуется к бактериальной стенке. Фибриллы, как канаты, притягивают фатовую частицу к поверхности бактерии и удерживают ее там.
Распространенные формы бактериофагов: 1 – фаг с икосаэдрической головкой и длинным отростком, на конце которого расположена базальная пластинка: 2 – фаг с коротким отростком и шестью фибриллами; 3 – сферический фаг с выступами на поверхности вириона; 4 – сферический фаг с коротким отростком; 5 – нитевидный фаг
На поверхности многих бактерий есть нитевидные выросты – жгутики, с помощью которых бактерии передвигаются. И некоторые фаги наловчились набрасывать фибриллы на эти жгутики, как набрасывают лассо, соскальзывать по ним к поверхности бактерии и заякориваться там. Фаги, лишенные фибрилл, прикрепляются к поверхности бактерии непосредственно базальной пластинкой.
Отросток внутри полый; вдоль него проходит канал, по которому нуклеиновая кислота из головки фага проникает в клетку бактерии. До поры до времени внешний конец отростка запечатан базальной пластинкой.
У некоторых фагов отросток зачехлен, и этот чехол может сжиматься, как пружина. Когда фаг сталкивается с бактериальной клеткой и фиксируется на ней, чехол резко укорачивается, и находящийся внутри чехла отросток пронизывает стенку бактериальной клетки.
Так выглядит большинство вирусов бактерий, но не все. Генетический материал некоторых фагов представлен однонитевой молекулой ДНК, замкнутой в кольцо. Например, таким образом устроен генетический материал фага fd. Нитевидные частицы этого фага – одни из самых тонких из встречающихся в природе. Их толщина едва превышает 5 нанометров, зато длина составляет почти 900 нанометров. Встречаются фаги, лишенные отростка, и фаги со сферической формой вирусной частицы. Одни из самых мелких вирусов – это фаги, генетический материал которых представлен однонитевой молекулой РНК. Их икосаэдрические частицы имеют диаметр около 25 нанометров. А в Северном море обнаружили фаг совершенно богатырских размеров: диаметр головки составлял 340–400 нанометров, а длина хвоста достигала почти 3000 нанометров. По сравнению с другими фагами это просто слон среди овец.
Этой бактерии ужасно не повезло – ее атакуют сразу три вида фагов. 1 – бактерия;2 – половой пиль; 3 – фаг с сократившимся отростком;4 – сферический фаг; 5 – нитевидный фаг
Начинается все с того, что вирусная частица случайно сталкивается с клеткой бактерии. Фаг способен заразить вовсе не любую бактерию. Например, фаг, заражающий кишечную палочку, не замечает – сколько бы он с ними ни сталкивался – клетки стафилококка, и наоборот. Больше того, у той же кишечной палочки известно много разновидностей (их называют штаммами), и фаги, как правило, способны очень хорошо их различать. Они охотно заражают одни штаммы и совершенно игнорируют другие. Почему так происходит? Дело в том, что на поверхности бактериальной клетки есть структуры, к которым базальная пластинка фага по форме подходит, как ключ к замку. Такие структуры называются рецепторами. Есть рецептор для данного фага – фаг способен заражать эту бактерию, а эта бактерия способна стать его хозяином. Не подходит ключик? – Ну, стало быть, эта бактерия не для него.
Возникает вопрос, почему бактериальная клетка вынуждена жить под постоянной угрозой фаговой интервенции, не проще ли незаметно потерять где–то эти рецепторы и стать неприступной для фага? Но фаг тоже не прост, он использует в качестве причала структуры, предназначенные не для него, а совсем для других целей и жизненно важные для клетки, у которой, стало быть, есть веские причины не лишаться их.
Если фаг и бактерия узнали друг друга, фаг прочно связывается с ее поверхностью. Дальнейшая задача вируса состоит в том, чтобы ввести свой генетический материал внутрь бактериальной клетки, не нанеся ей – до поры до времени – вреда. Вот как это делает, например, фаг Т4, заражающий кишечную палочку – обычного обитателя нашего кишечника.
Бактериофаг Т4 является одним из наиболее сложно устроенных вирусов. Несколько вытянутая головка служит контейнером для хранения нуклеиновой кислоты. Сокращение чехла обеспечивает прободение бактериальной стенки. По внутреннему каналу стержневого отростка фаговая ДНК перемещается внутрь бактериальной клетки. К шестиугольной базальной пластинке крепятся длинные нити – фибриллы, которые обеспечивают начальный контакт фага с поверхностью бактерии. Чехол с одной стороны жестко закреплен на фаговой головке, а с другой прикреплен к базальной пластинке, находящейся на конце отростка. Чехол заметно короче отростка, поэтому, подобно пружине, пребывает в растянутом состоянии. После стыковки фага с бактерией форма базальной пластинки меняется, она больше не может удерживать чехол в растянутом состоянии, тот сжимается, и жесткий стержень как бы выстреливает из чехла, проминая клеточную стенку бактерии.
Бактериофаг Т4: 1 – головка; 2 – отросток, покрытый чехлом;3 – базальная пластинка; 4 – длинные фибриллы
Одного механического усилия недостаточно. Прогибаясь, клеточная стенка успешно сопротивляется попытке фагового отростка проткнуть ее, но оказывается бессильной противостоять секретному оружию фага – ферменту лизоциму, который находится вблизи острия отростка и, войдя в плотный контакт с клеточной стенкой, моментально прогрызает в ней дыру. Наконец–то стержень отростка пронзает клеточную стенку насквозь. Тут же по внутреннему каналу отростка, как сквозь игольное ушко, в бактерию впрыскивается нуклеиновая кислота, до того момента покоившаяся в фаговой головке.
На первый взгляд, задача может показаться не слишком сложной, но надо учесть, что молекула ДНК – очень длинная и чрезвычайно плотно упакована. Если уж сравнивать внутренний диаметр канала с игольным ушком, то в этом масштабе длина нити ДНК будет около метра, а скорость ее разматывания напоминает разматывание лески с катушки спиннинга при забрасывании блесны. И протащить нить надо так, чтобы не порвать ее. Порванная даже в одном месте, она уже неинфекционна и, стало быть, совершенно безвредна для бактерии и абсолютно бесполезна для фага.
Большинство фагов не имеют сократимого чехла, не говоря уже о том, что у многих и отростка–то никакого нет, ни большого, ни маленького. А преграда на пути серьезная – клеточная стенка бактерии. Она состоит из нескольких слоев и, подобно неповрежденной коже человека или кутикуле на поверхности листа, совершенно непроницаема для вируса. Как–то ее надо продырявить, и, так или иначе, все фаги умеют это делать.
Например, многие фаги связываются только с половыми пилями – нитевидными выростами на мужских клетках кишечной палочки. Да, как ни удивительно, у бактерий есть пол, мужской и женский, а у мужских клеток есть вырост, с помощью которого они конъюгируют с женской клеткой. Облепив вырост, фаги внедряют свою нуклеиновую кислоту в клетку бактерии. В общем, тем или иным способом, но фаги вводят свой генетический материал внутрь бактериальной клетки, оставляя на поверхности пустую, никому уже не нужную белковую оболочку.
Фаговая ДНК проникла внутрь бактерии. 1 – фаговая ДНК; 2 – стенка бактериальной клетки; 3 – сократившийся чехол; 4 – длинные фибриллы
С этого момента все меняется для бактериальной клетки. Вирус на время как бы исчезает. В клетке, куда проникла фаговая нуклеиновая кислота, не удается обнаружить никаких вирусных частиц. Более того, зараженная клетка выглядит совершенно нормальной. Но на самом деле жить ей осталось всего несколько минут. Под покровом клеточной стенки фаг начинает свое черное дело. Он заставляет все клеточные структуры работать на себя. Все ресурсы клетки отныне тратятся только на размножение фаговой ДНК, самой клетке уже ничего не достается. Белки образуются только фаговые, синтез клеточных компонентов совершенно подавлен или осуществляется лишь в той мере, в которой это нужно фагу. Многочисленные копии вновь образованной фаговой ДНК упаковываются в форме многогранника. Сверху они покрываются фаговым белком, и возникает зрелая фаговая головка с упакованной внутри нее ДНК. В другом месте клетки, в другом ее помещении налажено производство и сборка других фаговых белков, из которых образуется хвостовой отросток. Наконец, отростки и головки соединяются в полноценную фаговую частицу. Проникла в бактерию нуклеиновая кислота одной–единственной фаговой частицы, а теперь, через полчаса, их уже больше сотни. Им тесно, им пора покидать эту бактерию, с которой уже нечего взять. Вот только как это сделать? Бактерия мертва, но ее клеточная стенка все еще надежно удерживает взаперти многочисленное фаговое потомство.
Продольный разрез фага с пустой головкой: 1 – фибриллы, прикрепленные к головке;2 – "воротничок"; 3 – отросток;4 – канал, проходящий внутри отростка
И вновь приходит на помощь фаговый лизоцим. Он подгрызает клеточную стенку обреченной бактерии изнутри до тех пор, пока она достаточно не истончится и в конце концов не разорвется. Фаговое потомство выходит наружу и немедленно набрасывается на соседние бактерии, которые ожидает та же участь.
Такая инфекция называется продуктивной, а фаги, вызывающие продуктивную инфекцию – вирулентными.
Потому что не всегда фаговая инфекция заканчивается столь печально для бактерии, возможны и иные исходы.
Во–первых, всегда найдется какая–нибудь паршивая, с точки зрения фага, овца, которая все стадо портит. Эта бактерия – в силу разных причин – не заразится и быстро даст потомство, невосприимчивое к данному фагу.
Во–вторых, некоторые нитевидные фаги не убивают клетку даже при успешной продуктивной инфекции. Фаговые белки располагаются на клеточной мембране. Созревание фага и его высвобождение происходит в результате того, что фаговая ДНК выталкивается из клетки и во время проползания через клеточную мембрану одевается фаговым белком оболочки. Клетка–хозяин, покинутая фагом, остается жизнеспособной и продолжает расти.
Случается прерывание инфекции, которая называется поэтому абортивной. При абортивной инфекции фаговые частицы не успевают созревать, "недонашиваются" в результате преждевременной гибели клетки.
Бактериальная клетка, зараженная фагом, погибает, но погибает она не из–за опустошительного вторжения вирулентного фага, а в результате самоубийства. Она или продырявливает себя изнутри, или прекращает делать белок – и свой, а заодно и фаговый. Ее гибель препятствует появлению сотни новых фаговых частиц, которые заразили и истребили бы соседние бактериальные клетки того же вида. Преждевременная гибель бактерий в ответ на фаговое заражение выглядит как акт самопожертвования, ценой которого спасается целая группа бактерий того же вида, находящихся поблизости.
Однако самая важная причина, почему не все бактерии уничтожены бактериофагами, заключается в том, что фаги вовсе не стремятся достичь этой цели. Дело в том, что, помимо вирулентных, встречаются и так называемые умеренные фаги, которые не убивают бактерии. Причем умеренные фаги распространены гораздо шире вирулентных.
Умеренный фаг попадает в бактериальную клетку точно так же, как и вирулентный. Но, проникнув внутрь, ведет себя иначе – не как громила, а скорей как квартирант. По одному из сценариев, нуклеиновая кислота умеренного фага встраивается в бактериальную хромосому и становится ее частью. В хромосоме даже зарезервировано одно или несколько мест, куда может встроиться фаговая ДНК. По другому сценарию, фаговая нуклеиновая кислота не встраивается в хромосому, а свернувшись в кольцо, живет в цитоплазме бактериальной клетки совершенно автономно, удваиваясь синхронно с делением клетки. Так или иначе, пристроив свои гены среди бактериальных, фаг, конечно, ограничивает себя, даже, можно сказать, теряет лицо, но взамен получает неоспоримое преимущество: он находится под защитой бактериальной клетки и размножается вместе с бактерией, не затрачивая на это никаких усилий. Культура бактерий, зараженная умеренным фагом, называется лизогенной, а само явление носит название "лизогении". Бактерии размножаются быстро, и так же быстро вместе с ними размножается и фаг. Такой способ размножения особенно полезен, когда бактерий, доступных для заражения, мало. Таким образом, лизогения – это способ выживания вируса при низкой численности клеток хозяина. Лизогения помогает фагу пережить тяжелые времена.
По разным оценкам, от 20 до 60 процентов известных бактерий лизогенны, то есть несут в своем, так сказать, теле хотя бы один умеренный фаг.
Впрочем, иногда фагу надоедает вести такую растительную жизнь. Тогда он снова выщепляет свои гены из бактериальной хромосомы, превращается в полноценный вирулентный фаг, делает много своих копий, убивая бактериальную клетку, и заражает другие клетки, где, в зависимости от обстоятельств, ведет себя как вирулентный либо как умеренный бактериофаг.
Выгоды лизогении для фага понятны. А в чем выгода для бактерии? Почему она дает приют вирусу, который, конечно, долгое время может вести себя скромно и незаметно, но, с другой стороны, в любой момент готов разбушеваться и убить бактерию, пригревшую его в недобрый час?
Оказывается, для бактерии выгоды еще более очевидны, и, видимо, они вполне компенсируют риск вирулентного преображения умеренного фага.
Фаговые гены, пристроенные среди бактериальных, не являются бесполезным балластом, а работают на благо бактерии, обеспечивая зараженному хозяину важные преимущества перед другими, незараженными клетками. Умеренный фаг может, например, сделать бактериальную клетку устойчивой к заражению другим родственным вирусом. Клетки кишечной палочки, лизогенные по некоторым фагам, быстрее и активнее растут при недостатке питательных веществ, чем нелизогенные культуры. Фаг может придавать зараженной бактерии новые свойства, такие, как устойчивость к антибиотикам, изменения антигенности (что помогает бактерии избежать иммунного ответа хозяина), способность производить токсины и многие другие.
Такое мирное сосуществование двух организмов с обоюдной выгодой, которое идет на пользу им обоим, называется, как известно, симбиозом.
Но откуда у фага могут оказаться гены, полезные для бактерии? Генетического материала у вирусов, даже крупных, не так уж много, им бы о себе позаботиться. Выяснилось, что гены эти, в сущности, не фаговые, а бактериальные, которые фаг когда–то просто–напросто присвоил.
Выщепляя свои гены из бактериальной хромосомы, фаг может (конечно, совершенно случайно!) прихватить и расположенный по соседству бактериальный ген, который ему вовсе не принадлежал. Заразив другую бактерию, фаг передаст ей "украденные" гены. Эти гены начнут работать, придавая бактерии новые свойства, которые могут оказаться очень полезными для нее. Но ведь эти гены могут кодировать и какой–нибудь микробный токсин? Такое действительно случается сплошь и рядом, и вот несколько тому примеров.
Холерные вибрионы распространены довольно широко, но попадая – обычно с питьевой водой – в организм человека, не причиняют ему вреда. Заболевание вызывают только такие вибрионы, у которых, во–первых, есть нитевидный вырост, так называемый "пиль" – с его помощью бактерия прикрепляется к стенке кишечника – и которые, во–вторых, вырабатывают холерный токсин. Выяснилось, что ген холерного токсина привносит в холерный вибрион один из нитевидных фагов, а гены, определяющие образование пиля, когда–то проникли в него с другим фагом и закрепились в бактериальной хромосоме. В результате суперинфекции двумя фагами безобидная до той поры бактерия приобретает способность заселять кишечник, вырабатывать холерный токсин и становится смертельно опасной, вызывая обширные пандемии холеры.
Во всех регионах мира встречается сальмонеллез. Заболеваемость сальмонеллезом растет, особенно это касается крупных городов с централизованной системой продовольственного снабжения. Считается, что эпидемия сальмонеллеза, охватившая в последнее десятилетие весь мир, не в последнюю очередь обусловлена усилением патогенности сальмонелл под влиянием умеренного фага DT104, в результате заражения которым бактерия приобрела устойчивость к широкому спектру антибиотиков. Другой умеренный фаг ЭорЕФ усиливает способность сальмонелл к колонизации кишечника. Ген энтеротоксина А – одного из самых мощных факторов патогенности золотистого стафилококка – также переносится умеренным фагом. Коринебактерия – возбудитель дифтерии вызывает заболевания только в том случае, если она сама заражена умеренным фагом (3 ("бэта"), который несет ген дифтерийного токсина. Бактериофаги могут распространять факторы патогенности возбудителей чумы и дизентерии. Возможно, таким же способом приобрели болезнетворность бактерии – возбудители скарлатины, коклюша и менингита.
Таким образом, умеренные бактериофаги способны переносить отдельные гены и целые блоки генов от одного микроорганизма к другому, подчас радикально изменяя свойства бактерии, в которую этот фаг проник. Обеспечивая зараженной бактерии серьезные преимущества в борьбе за существование, умеренные бактериофаги являются важным фактором эволюции микроорганизмов.
Иногда бактерия настолько входит во вкус, что буквально порабощает проникший в нее фаг, лишая его возможности вернуться в вирулентное состояние. Фаговые гены, оказавшиеся полезными для бактерии, навсегда становятся частью бактериальной хромосомы. Фаг иногда предпринимает попытки вырваться из плена, и ему даже удается порой соорудить отдельные фрагменты вириона, чаще всего хвосты, но им уже не суждено собраться в полноценную фаговую частицу. Между тем, эти хвосты по–прежнему способны связываться с поверхностью других бактерий и наносить им точечные уколы. Бактерия, производящая такие хвосты, сама нечувствительна к их булавочным уколам, но охотно пользуется ими для устранения конкурентов, доводя их до гибели.
Морская живность – это не только киты и акулы, треска и кораллы, водоросли и планктон. Выяснилось, что море буквально кишит бактериями! Ну, а где бактерии, там и их непременные спутники – бактериофаги. Вирусные частицы обнаружены в прибрежной зоне и в открытом океане, в тропических и полярных морях, на поверхности и в толще воды, вплоть до самого дна.
Какое–то время вирусы просто не замечали: ведь рассмотреть их можно было только в электронном микроскопе, к тому же пробу воды нужно сначала хорошо сконцентрировать. Но когда увидели и подсчитали количество вирусных частиц, стало ясно, что вирусы должны играть важную роль в жизни обитателей морей и океанов. Количество вирусных частиц может достигать 10 миллиардов в одном литре воды, то есть их оказалось в несколько раз больше, чем бактерий. Появился даже термин – виропланктон. Больше всего вирусов находится в поверхностных слоях прибрежных вод и меньше всего в океанических глубинах. В прибрежных водах численность вирусов мало зависит от глубины.
Вирусов всегда больше там, где больше бактерий. Обилие бактерий на дне и в его по сравнению с вышележащими слоями привлекает не только мелких придонных беспозвоночных, которые ими кормятся, но и вирусы. Морские льды обычно обогащены микроорганизмами по сравнению с омывающей их водой, и та же закономерность обнаружена и для вирусов. Тесная связь численности бактерий и вирусов показывает, что значительная часть морских вирусов является, скорее всего, бактериофагами. Убивая и разрушая бактерии, вирусы ограничивают их безудержное размножение. Считается, что смертность среди микроорганизмов, обитающих на поверхности, может быть наполовину вызвана вирусной инфекцией, и именно вирусы ответственны прежде всего за гибель микроорганизмов в глубоководных слоях.
Вирусы поражают не только бактерии, но и фитопланктон – сообщество фотосинтезирующих цианобактерий и микроскопических водорослей. Впрочем, цианобактерии (раньше их называли сине–зелеными водорослями) не слишком страдают от вирусов. Возможно, это происходит потому, что многие цианофаги находятся в лизогенном состоянии.
Помимо бактериофагов, в морской воде обнаружены вирусы, способные заражать диатомовые водоросли, которые являются основой фитопланктона, и многих представителей одноклеточных жгутиковых водорослей, таких как золотистые водоросли хризофиты, кокколитофориды, празинофиты и криптомонады. У мельчайшей жгутиковой водоросли микромонаса (в клетке этой водоросли, наряду с ядром, помещается всего один маленький хлоропласт и одна митохондрия) удалось обнаружить целых 5 неродственных вирусов. А у еще одной водоросли – раф ид офита нашли 14 близкородственных вирусов!
В большинстве случаев в водорослях находят крупные полиэдрические частицы с четкими очертаниями диаметром 150–250 нанометров, которые больше всего напоминают иридовирусы насекомых. Частицы подобных вирусов найдены в зеленых и в бурых водорослях; в зеленых и красных водорослях обнаружены также вирусоподобные частицы других типов. Вирусные частицы из харовых водорослей выглядели как жесткие палочки и по внешнему виду напоминали вирус табачной мозаики, но были почти вдвое длинней. Их белок оболочки тоже очень похож на белок оболочки вируса табачной мозаики.
Жизнь в море только внешне может выглядеть хаотичной. На самом деле все морские организмы связаны, так сказать, пищевыми цепями, и фитопланктон находится в основании этих цепей. Это означает, что, поражая водоросли, вирусы регулируют количество корма для организмов, питающихся планктоном, прежде всего рыб и мелких ракообразных. Кроме того, фитопланктон вырабатывает кислород, и получается, что вирусы могут влиять на содержание кислорода в морской воде и в атмосфере. Обнаружено, что при разрушении вирусами некоторых одноклеточных водорослей выделяется газ диметилсульфид, который, попадая в атмосферу, способствует конденсации водяного пара и образованию облаков. Таким образом вирусы могут влиять на погоду, как ни фантастично это звучит. Вирусная инфекция имеет непосредственное отношение к прекращению цветения воды, наступающей при бурном размножении водорослей.
Вирусы можно найти и в пресных водоемах. Например, в планктоне Ладожского озера их оказалось несколько миллиардов в одном литре воды, то есть содержание вирусных частиц в относительно чистом пресноводном озере может быть не меньше, чем в морской воде. Встречались главным образом хвостатые бактериофаги с головкой различной формы и отростком разной длины, а также нитевидные вирусные частицы, которые могли быть или фагами, или вирусами растений. Кроме того, обнаружены крупные сферические вирусы, покрытые оболочкой.
Любопытнейшую находку сделали американские вирусологи. Они нашли фаги, заражающие бактерию сульфолобус. Казалось бы, что особенного? Выделяя тот или иной вид бактерий, исследователи обычно обнаруживают и соответствующие фаги. Но дело в том, что сульфолобус живет в горячих серных источниках при температуре около 80 градусов. В этих источниках газ сероводород, выделяющийся из толщи горных пород, превращается в элементарную серу. Ей–то и питается сульфолобус, попутно выделяя серную кислоту. Но даже жизнь в горячей серной кислоте не спасает от настырных бактериофагов. Сульфолобус обнаружен в кислых горячих источниках в Исландии, Новой Зеландии, на Камчатке, в Иеллостоунском национальном парке США, Италии, Сальвадоре, Доминиканской республике и в Японии, и всюду в этих же источниках обнаружены фаги, заражающие этот микроорганизм.
Фаги сульфолобуса очень разнообразны. Среди них обнаружены формы, совершенно невиданные не только у бактериофагов, но и у вирусов вообще. Например, встречаются вирусы, похожие на веретено, при этом они любят собираться в розетки. Другие тоже выглядят как веретено, но их частицы намного крупнее и сильно утолщены посередине, так что их центр смахивает скорее на лимон. Обнаружены вирусы в форме капли. И все они, подобно своему хозяину сульфолобусу, тоже вынуждены жить в почти кипящей серной кислоте. Как им это удается, пока непонятно.
Кажется, что фаги просто созданы для лечения бактериальных инфекций: они уничтожают только болезнетворного микроба, а не всех скопом, как антибиотики; они безвредны для организма, их количество по мере уничтожения микроба не только не падает, а, наоборот, возрастает – и тем не менее, широкого распространения как средство борьбы с болезнетворными микробами бактериофаги не получили.
А ведь было время, когда казалось, что найдена чуть ли не панацея. Инициатором был все тот же Д’Эррель. Изучая причины эпидемии дизентерии, он обнаружил, что количество фага, небольшое в начале заболевания, очень сильно возрастает по мере его развития и достигает максимальных значений, когда больной пошел на поправку. Напрашивался вывод: развитие фага, заражающего данную патогенную бактерию, является причиной выздоровления больного от инфекционного заболевания.
Не в традициях Пастеровского института (а Д’Эррель в 1917 году работал именно в нем) было медлить с внедрением новшеств в медицинскую практику. Поначалу все же решили попробовать на цыплятах. Куры болели сальмонеллезом, их надо было как–то лечить, а антибиотики еще не были открыты. Выяснилось, что бактериофаг, введенный через клюв или путем инъекции, снижал смертность, укорачивал время эпидемии и предотвращал ее повторное развитие. Вскоре эти результаты подтвердили другие исследователи в Голландии. Фаготерапия оказалась очень эффективна при лечении заражения крови у буйволов в Индокитае, тогда еще французской колонии. После этого Д’Эррель решил попробовать эффективность фаготерапии на себе. Вначале он проверил безопасность сальмонеллезного фага как такового, глотая все возрастающие его количества, и не обнаружил ни малейшего вреда от этой процедуры. Не избежали участи подопытных кроликов и члены его семьи, проделавшие то же самое. После этого Д’Эррель выяснил, опять–таки экспериментируя на себе, на членах своей семьи и на своих сотрудниках, что подкожные инъекции бактериофага тоже не вызывают побочных реакций. Было решено, что фаготерапию можно внедрять в клиническую практику.
О фаготерапии заговорили, когда Д’Эррель вылечил – ни много, ни мало – четырех больных бубонной формой чумы. Когда он работал в Александрии (этот непоседливый ученый объездил практически весь мир), случилось так, что Суэцким каналом проходило судно с больными чумой на борту. Д’Эррель сделал инъекцию противочумного фага прямо в бубон, и больные выздоровели.
Это открытие привлекло всеобщее внимание. Появилась великая надежда на создание универсального способа лечения! Да и первые результаты оказались весьма обнадеживающими. За короткое время были обнаружены бактериофаги, эффективные против возбудителей сибирской язвы, скарлатины, тифа, холеры, дифтерии, гонореи, паратифа, бубонной чумы. Этот непредвиденный способ избавления человечества от ряда самых опасных заболеваний воспламенил общественное воображение. Работы по фаговой терапии наводнили медицинскую литературу. Откликнулись и писатели. Герой романа Синклера Льюиса "Эроусмит", написанного в 1924 году, решает заняться практическим применением фаготерапии. Когда на островах Карибского архипелага вспыхивает эпидемия бубонной чумы, он немедленно отправляется туда, чтобы испытать свой бактериофаг. Однако, возбудитель чумы не спешил погибать от чумного бактериофага, а вот жена Эроусмита и его ближайший сотрудник погибли во время испытаний. Эроусмит возвращается в Нью–Йорк и решает посвятить свою жизнь уже не практическому применению бактериофага, а изучению его природы.
Но крестовый поход за уничтожение бактериальных заболеваний с помощью фага продолжался. Британское правительство пригласило Д’Эрреля в Индию для борьбы с холерой. Лучших условий для проверки эффективности фаголечения нельзя было и представить! Возбудитель находится в желудочно–кишечном тракте, способ передачи и эпидемиологические характеристики холеры хорошо изучены, убитые бактерии перестают выделять токсин, и нет никакой вакцины против этого страшного заболевания. Проведенные в Индии в 20–30–х годах XX века работы показали: применение холерного фага облегчает течение заболевания, снижает его продолжительность и смертность от холеры.
Фаги пробовали использовать для предупреждения нагноения огнестрельных ран в Красной Армии во время Финской войны и в армии фельдмаршала Роммеля, воевавшей в Северной Африке во время Второй мировой войны.
Кто знает, как сложилась бы дальнейшая история фаготерапии, но Д’Эррель просидел всю войну в Виши под домашним арестом, работа Туорта была прервана в 1944 году, когда его лаборатория была разрушена немецкой бомбой. Кроме того, энтузиазм Д’Эрреля разделяли немногие, и важнейшей причиной была та, что о природе бактериофагов практически ничего не было известно. Даже то, что бактериофаг – это вирус, признавали далеко не все. Но самая главная беда для фаготерапии пришла, откуда не ждали – появились антибиотики. Легкость их получения, известный химический состав, широкий спектр действия и масса других достоинств обеспечили антибиотикам быструю победу в состязании с фагами.
Оттесненные на далекую периферию, исследования по фаготерапии все же продолжались. Под контролем Всемирной организации здравоохранения в 70–х годах XX века в Пакистане было проведено изучение эффективности холерных фагов, аналогичное довоенным исследованиям в Индии. Было установлено, что использование очень высоких доз фага (100 – 200 фаговых частиц на один холерный вибрион) позволяет добиться таких же результатов, как и применение тетрациклина, а если фага брать меньше – скажем, одну частицу фага на один вибрион – то никакого эффекта обнаружить не удается. В 80–х годах открыли, что бактериофаги уничтожают патогенные варианты кишечной палочки в кишечнике телят, причем делают это не хуже, чем тетрациклин, ампициллин или левомицетин. С помощью бактериофагов пробовали бороться с бактериальной порчей мясных продуктов, однако результаты оказались не слишком впечатляющими. Более успешным оказался опыт применения бактериофагов для лечения бактериальных заболеваний рыб, моллюсков (мидий и устриц) и ракообразных (крабов, креветок, омаров и тому подобных обитателей) – нет, не морских глубин, а тех, что искусственно разводят в бассейнах. В ограниченном водном пространстве фаг действует очень эффективно.
В медицине фаготерапия применяется сейчас главным образом при острых кишечных инфекциях. В этих случаях бактериофаг вводят* через рот, как микстуру, предварительно нейтрализовав кислотность желудочного сока, иначе фаг теряет в желудке активность. В последние годы фаги, используемые для лечения, изготавливают со специальным покрытием, которое препятствует разрушительному действию желудочного сока. Например, для лечения дизентерии может назначаться дизентерийный бактериофаг, эффективный против различных видов шигелл. Препарат выпускается в жидком виде и в таблетках с кислотоустойчивым покрытием. Фаги используют для ликвидации хронических очагов внутрибольничной инфекций в стационарах.
И все же антибиотики представляют собой гораздо более эффективное средство лечения бактериальных инфекций. Однако, появилось огромное количество болезнетворных бактерий, устойчивых к антибиотикам. Общеизвестны побочные эффекты применения антибиотиков. С другой стороны, уже давным–давно выяснена природа бактериофагов. Поэтому в последнее время наблюдается новый всплеск интереса к фаготерапии и, вполне возможно, у этой главы когда–нибудь появится продолжение.
Тем не менее, на возможный вопрос, а есть ли от вирусов какая–нибудь польза, кроме вреда? – можно дать безусловно положительный ответ. Бактериофаги уже сослужили неоценимую службу человечеству, только польза состояла не в их медицинском применении, а совсем в другом. Изучение бактериофагов сыграло первостепенную роль в понимании молекулярных основ жизненных процессов и оказалось абсолютно решающим для рождения молекулярной биологии и генетической инженерии. В наши дни биотехнологическая индустрия, основанная на фантастических достижениях этих наук, приносит прибыли, исчисляемые десятками миллиардов долларов. А началось–то все с бесконечно далекого от насущных нужд исследования природы бактериофагов, предпринятого впервые в 30–х годах XX века австралийским ученым Ф. Бернетом и венгерским ученым М. Шлезингером и блестяще продолженного в США работами фаговой группы под руководством физика Макса Дельбрюка.