Автоматика

ногое в технике открывалось и изобреталось по нескольку раз, многие научные открытия делались не единожды, но часто случалось, что о них на время забывали и вспоминали вновь лишь тогда, когда возникала острая необходимость. Часто бывало и так, что некоторые изобретения и открытия делались независимо и одновременно двумя или даже несколькими учеными и изобретателями.

Так, например, случилось с открытием Эдисона, известным под названием «эффект Эдисона». Это открытие было почти забыто, и только, когда понадобилось разработать надежный вид детектора для радиоприемников, о нем вспомнили.

Дважды открывали способы усиления и генерации электрических колебаний на полупроводниковых кристаллах. О возможности генерации и усиления электрических колебаний с их помощью стало известно еще в 1922 году, когда сотрудник Нижегородской лаборатории имени В. И. Ленина О. В. Лосев изобрел свой «кристадин» — регенеративный приемник. Но потом «забыли» о такой возможности, потому что как раз в те годы, когда О. В. Лосев применил свой кристадин, наука и техника освоили гораздо более надежные и лучшие приборы для усиления и генерирования электрических колебаний — электронные лампы. Метод усиления и генерации с помощью полупроводниковых кристаллов не мог в те годы успешно соперничать с электронно-ламповыми методами. Наука еще не могла теоретически объяснить явления, происходящие в полупроводнике, а техника, даже если бы наука и знала, не сумела бы изготавливать кристаллы необходимого качества. О полупроводниковых усилителях, или транзисторах, как их часто называют теперь, вновь заговорили совсем недавно — во второй половине сороковых годов. А их практическое применение в промышленности начинается только с 1953 года. Правда, надо сказать, что темпы научных исследований, разработки и внедрения транзисторов в жизнь необыкновенные — редкое научное открытие входило в жизнь так быстро, как и полупроводниковые приборы.

Что касается открытий, сделанных одновременно, то известно, например, что изобретатель телефона Г. Белл подал заявку на патент всего двумя часами раньше Э. Грея, так же изобретавшего телефон. Еще чаще бывает так, что стоит только кому-нибудь сделать хотя бы первое, даже не самое главное открытие или изобретение в новой области, как тотчас же вслед за ним, словно из рога изобилия, посыплются десятки и сотни открытий и изобретений из этой же области. Часто говорят: «Идеи носятся в воздухе». Это действительно так. В науке и технике изобретения и открытия назревают, подготавливаемые всем ходом развития жизни, техники и науки. И не мудрено, что одновременно несколько человек могут прийти к одинаковой мысли. Нужно лишь не отрываться от жизни, от людских чаяний и надежд.

Бывает, что некоторые вещи переживают как бы по нескольку жизней. Они появляются на свет, и люди ими широко пользуются. Потом по каким-то причинам они вытесняются другими, и, кажется, навсегда. Но вдруг вещи эти возрождаются в новом, более совершенном облике и вытесняют своих былых победителей. Так было с ракетой, которая «умирала» и возрождалась вновь несколько раз. Или вспомните о водяном колесе и первых гидротурбинах, которые, казалось, полностью были вытеснены паровой машиной и доживали свой век в обомшелых, покосившихся водяных мельницах на забытых речонках. А теперь гидротурбина — это очень важный вид двигателя в электроэнергетике. Точно так же обстоит дело и с передачей электроэнергии. Первые линии электропередач действовали на постоянном токе.

В свое время переменному току пришлось завоевывать дорогу с боем. Но вскоре он полностью вытеснил постоянный ток, и многие-многие годы ничто не могло поколебать его позиции. Теперь же ученые и инженеры снова заинтересовались постоянным током, и сейчас ведутся большие работы по использованию постоянного тока для передачи электроэнергии: передавать электроэнергию на постоянном токе при нынешнем уровне развития техники становится более выгодно, чем на переменном.

Сейчас особенно быстро и заметно идет процесс смены устаревшей техники новой, а новой — новейшей. Многое из того, что нам сегодня кажется привычным и обязательным, завтра уйдет, как устаревшее и отсталое. Но что именно и когда, об этом сказать не всегда возможно. Можно сказать лишь, что ни одно явление в технике или науке не уходит сразу и безвозвратно. Такое происходит только после упорного и иногда очень длительного соревнования с новым и лишь в том случае, если это новое действительно лучше, полезнее и удобнее.

Вот паровоз… Сколько книг и картин, сколько стихов, сколько музыки написано о нём! Во всех них чувствуется и слышится его мощное дыхание, ритм поршней его машины. Композиторы научились подражать его гудку и перестуку колес; малыши, играя в поезд, непременно гудят: «У-уу!», подражая гудку паровоза. Для нас с вами замирающий гудок паровоза слился с представлением о наших далях, о встречах и расставаниях. И вот, паровоз уходит…

Уходит, наверное, совсем, и гудок его, слышимый сегодня громко и рядом, замрет завтра на дальних путях истории человечества и прогресса. И нам с вами немножечко жаль… Так же, как, может быть, было жаль тем людям, которые не могли забыть дробный топот копыт, стук колес и веселый и плачущий звук рожка почтового дилижанса. И в том, что нам немножечко жаль расставаться с паровозом, нет ничего странного и смешного. Он прочно вошел в нашу жизнь, верно служил нам более ста лет и вовсе не виноват, что на смену ему пришли новые, более совершенные, более экономичные тепловозы и электровозы.

Недавно поэт Леонид Мартынов опубликовал такое стихотворение:

Да,

Многое исчезло без следов,

Всего не в силах даже перечесть я:

Освобождаем тело городов

От пыльной паутины проводов,

В которых только путались известья;

И свищут нам ракеты в небесах,

Что дед-пропеллер может и на отдых,

И, словно о фрегатах в парусах,

Мы думаем теперь о пароходах.

Пар! Отпыхтел свое он и уплыл,

И хорошо, и тосковать не станем

О том, что топок антрацитный пыл

Мы заменили внутренним сгораньем.

Уйдет и паровой локомотив

В мир памятников древности печальной,

И мы его, слегка позолотив,

На пьедестал у площади вокзальной

Поставим и решеткой оградим,

И быстро человечество забудет,

Каким на вкус был паровозный дым,

Им лишь романтик упиваться будет.

Но, смутно помня о его судьбе,

Ведь мы-то сами жить не перестанем,

Ведь мы-то не покажемся себе

Таким же точно вот воспоминаньем.

Ведь мы, природу недопокорив,

От дела не откажемся устало

И, волосы себе посеребрив,

Не ринемся, кряхтя, на пьедесталы,

Туда, откуда дворник помелом

Клочки афиш сгоняет со ступенек,

Ведь мы-то не окажемся в былом!

Что ты на это скажешь,

Современник?

Мне нравится это стихотворение. Потому, что поэт почувствовал и сказал в нем об очень важном — о непрерывном развитии, обновлении жизни. О том, что настоящие люди, кем бы они ни были, людьми техники или людьми искусства, никогда не могут успокоиться на достигнутом, никогда не перестанут искать новое и биться за него. И о паре и паровозе очень красиво, очень хорошо сказано.

Но только поэт чуть ошибся. Пар еще не «отпыхтел» свое. Хоть мы и живем после окончания века пара, пар работает как никогда раньше. Ведь именно пар вырабатывает около трех четвертей всей электроэнергии — основной энергии нашего времени. Но паровоз, действительно, «отпыхтел свое». Уйдет когда-нибудь и пар, но не так уж скоро. Скорее всего, только тогда, когда осуществят прямое преобразование атомной энергии в электрическую. Пока же на строящихся атомных электростанциях пар остается непременным работником. Совсем же от услуг пара люди, наверное, никогда не откажутся: слишком много полезных и важных вещей они научились делать с его помощью.

Поработает и дед-пропеллер. Реактивные самолеты, бесспорно, — новейшее достижение техники. Но ведь геликоптеры — их ровесники, а конвертопланы, самолеты, взлетающие подобно геликоптеру и продолжающие полет, как обычный винтомоторный самолет, только начинают создаваться. И в геликоптере и конвертоплане и обычном самолете, который еще долго будет служить человеку, — везде применяются пропеллеры. Пропеллеру так же, как и пару, рано еще на покой.

Автоматика развивалась не менее сложным и долгим путем, чем другие разделы науки и техники. Люди пробовали делать автоматы еще в далекой древности. Сперва пытались изобрести такие автоматы, которые как можно более точно воспроизводили бы человеческие движения. О подобных автоматах, называвшихся андроидами, писал еще в I веке нашей эры выдающийся греческий инженер и ученый Герои, живший в Александрии. Важнейшим завоеванием XVII века в области автоматики было создание часов с маятником. Что касается более поздних автоматических устройств, появившихся в эпоху промышленной революции, то о некоторых, об устройствах, примененных Уаттом и Ползуновым, мы говорили. В прошлом веке уже имелось довольно большое количество разнообразных автоматических устройств, к ним даже можно отнести некоторые виды заводных игрушек, музыкальные шкатулки и… шарманку. Однако, как я уже говорил, техника в основном обходилась без автоматических устройств. Люди в подавляющем большинстве случаев могли обходиться еще без них.

Что же все-таки обозначает слово «автомат»? Оно имеет греческое происхождение и обозначает буквально — самодвижущийся. В наше время автоматами называются различного рода устройства, позволяющие заменить физический и умственный труд человека при контроле и управлении различными процессами. Трудно даже назвать такую область человеческой деятельности, где бы не начинали в настоящее время применять автоматы. Правда, в большинстве случаев наряду с автоматикой еще используется и человек, но есть уже и такие области, где участие человека становится попросту невозможным.

Автоматы работают самым различным образом. Есть, например, множество чисто механических устройств автоматики. Хотя эра механики давно уже кончилась, механических автоматов от этого стало не меньше. Наоборот, их больше, чем когда-либо. Механическими автоматами являются многие станки — автоматы и машины, пневматические и гидравлические устройства автоматического управления и регулирования, автоматическое оружие различных видов. Но электромеханических устройств автоматики значительно больше. Почему это так, я расскажу несколько позже, а пока скажу только, что к ним относятся такие известные всем устройства, как автоматы по продаже билетов в метро, автоматические телефонные станции и многое другое. Автоматических устройств, которые вовсе не используют механики, также очень много. В основном к ним относятся устройства, которыми занимается новая отрасль техники, выделившаяся из электротехники и радиотехники совсем недавно. Это, как вы уже догадались, — электроника.

Электроника — очень молодая отрасль науки и инженерной техники. Еще, пожалуй, не существует точного определения ни самого понятия, ни круга задач и предмета электроники. Но это не мешает ей бурно развиваться.

Для решения своих задач электроника использует многие физические, электротехнические и электромеханические устройства. Именно благодаря этому электроника становится одним из главнейших орудий в деле автоматизации разнообразнейших процессов. Только в связи электроники с электромеханикой и механикой можно видеть причину ее универсального применения. Потому что механика всегда была и будет основой основ подавляющего большинства технических устройств.

Я люблю читать фантастические повести и рассказы. Только люблю хорошие, умные читать. А иногда попадаются наивные, технически и художественно безграмотные книги. Читаешь — и не знаешь, удивляться им или возмущаться. Помню, прочитал я одну из них, переводную, про изобретателя. У этого изобретателя в доме все было автоматизировано, прямо-таки не дом, а помещение для спиритических сеансов: двери сами открывались, из шкафов выдвигались ящики, автомобиль без шофера ездил, автоматически включался и выключался свет.

Как только я начал читать про автоматические дверцы шкафов и прочую чепуху, меня такая злость взяла, что я и читать эту книжонку бросил. А вместо этого принялся мысленно сочинять свой научно-фантастический роман, в котором автор недочитанной мной книжки попал в описанную им автоматизированную квартиру. Дверцы шкафа и обычные двери автоматически открывались и били его.

И прочие приключения пришлось испытать этому писателю. Только после этого я успокоился.

Гораздо хуже бывает, когда в жизни встречается такой обуреваемый страстью к стопроцентному охвату автоматизацией человек. Дай ему только свободу и возможность, и он миллионы рублей истратит для автоматизации никому не нужных вещей.

Ведь автоматика и электроника очень дороги. Необыкновенно дороги. И их выгодно применять только там, где без них нельзя обойтись и где их применение полностью себя оправдывает и окупает. Автоматизировать же дверцы буфета, за которыми спрятано двести граммов любительской колбасы да банка «Бычков в томате», — абсурд. Помимо того, что эта автоматизация встанет гораздо дороже всего содержимого буфета и самого буфета в придачу, она еще займет порядочно места и будет потреблять порядочное количество электроэнергии. И, главное, бессмысленно ее применять! Что, у людей будущего рук не будет, что ли?!

Незадачливый изобретатель.


Вот стоит токарный револьверный станок. На нем не револьверы, конечно, делают. Это станок-полуавтомат, то есть такой, в котором для производства смены операций и холостых ходов необходимо участие человека. Назван он револьверным потому, что у него вместо задней бабки стоит поворотная, револьверная, головка, в которой закреплен набор инструмента, необходимый для производства нужных операций по обработке металла. При нажатии на специальный рычаг головка поворачивается в нужной последовательности и подходит к заготовке, начиная обработку.

За станком работает молодая женщина. Каждое движение точное, рассчитанное. Все движения следуют одно за другим со строгим и сложным ритмом. Работница уже выработала в себе автоматизм движений и словно слилась со станком; даже может петь или мечтать о чем-нибудь. Она может часть своего внимания переключить на это, потому что станок делает сам почти все.

Но, к сожалению, еще не все. И приходится станок обслуживать человеку, станочнику. Станочник это уже не токарь-универсал и не имеет высокой квалификации. Он станочник. Его можно обучить за очень малое время. Скажем, за месяц или даже меньше. Работа почти автоматическая и, конечно, очень напряженная.

Стоит в таком случае применить автоматизацию? Несомненно! И это будет благородная и важная задача — автоматизировать станок, освободить человека от выполнения роли автомата при станке.

Давайте посмотрим на другой станок. Ну хотя бы на одношпиндельный токарный автомат.

Одношпиндельный револьверный станок.


По существу, он очень близок к токарному револьверному станку.

Но теперь вместо человека им управляет специальный программный механизм. Этот программный механизм приводится в движение самим станком и, в свою очередь, управляет рабочими органами станка. На долю человека остается только настраивать и регулировать станок, включать и выключать его, подавать прутки металла и разгружать бункер, в который сбрасываются готовые детали. Можно автоматизировать и питание станка и сбор готовых деталей. Тогда человек полностью освободится от тяжелой и однообразной работы. Он должен будет выполнять работу по управлению станками-автоматами, по их наладке. Такой труд совсем другого рода — умный, высококвалифицированный. И, что не менее важно, применение станка-автомата позволяет значительно увеличить производительность труда.

Автоматика полным ходом вводится и у нас и в капиталистических странах. Но цели введения автоматики в странах капитала и в социалистических странах разные. Мы, в нашей стране, действительно стремимся облегчить труд людей, освободить их от выполнения тяжелой физической работы. И это — наша главнейшая задача. Для этого и коммунизм строится. А вот в капиталистических странах, в частности в США, многие люди, от которых зависит развитие промышленности, спокойно смотрят на существование тяжелого физического труда. Их беспокоит главным образом повышение прибыльности работы. И они вводят автоматизацию там, где это необходимо для повышения прибылей. Если при этом тяжелый физический труд остается, их такое не тревожит.

Но есть в США честные ученые и инженеры, которые хотят облегчить жизнь и труд своим соотечественникам. Надо думать, их большинство, таких, умеющих много и великолепно работать, изобретательных и настойчивых людей. Никто не собирается умалять их достоинств. Но дело-то в основном не в них, а в тех, на кого приходится работать этим ученым и инженерам. Дело в капиталистах, им же нужно только одно — прибыль. И если удается инженерам и ученым не только в США, но и в других капиталистических странах создать машину, облегчающую труд рабочего и в то же время дающую прибыль, значит, удача, повезло рабочим? Да только необязательно! Каждая новая машина, повышающая производительность труда, при капитализме грозит рабочему более страшным, чем самый тяжелый физический труд, — безработицей.

И часто получается в капиталистических странах так, что честный инженер или ученый, создававший машину с самыми лучшими намерениями, оказывается виновником того, что многие-многие люди не радуются ее появлению, но, наоборот, оказываются без работы или под угрозой ее потери. Конечно, фактически виноваты в этом не изобретатели, а сама капиталистическая система.

Вот что недавно писал в журнале «В защиту мира» М. Инкер:

«Сами конструкторы „мыслящих“ машин, по-видимому, не вполне отдают себе отчет в том, какие возможности сулит все то, что они изобретают. С точки зрения технической, автоматизация приводит к огромной экономии времени, к сокращению всяких простоев или задержек, вызываемых административными и прочими неполадками. Что касается чисто экономической области, то автоматизация снижает себестоимость продукции, однако объем производства должен поддерживаться на высоком уровне, а сбыт происходить бесперебойно, всякие колебания рынка грозили бы дорогостоящей остановкой автоматических заводов. Плановое производство становится настоятельной необходимостью во всех странах, избирающих путь автоматизации, но известно, что планирование хозяйства не при всех экономических системах возможно в одинаковой степени.

О масштабах возможных социальных последствий до сих пор еще идут споры, и люди по-разному реагируют на это, в зависимости от того, кто перед нами, хозяин предприятия или рабочий, заставляет его автоматизация менять свой род занятий или нет».

И далее:

«Но вот дирекция решает автоматизировать изготовление блока цилиндров и поршней, все операции по хромированию и покраске. Сразу несколько тысяч квалифицированных и подсобных рабочих оказывается за воротами завода.

Именно в таком плачевном положении оказались недавно рабочие английской автомобильной промышленности. Причина не в замедлении темпов или полном прекращении производства. Наоборот, к автоматизации прибегают, чтобы производить больше, лучше, быстрее и дешевле. Именно эту цель и ставили перед собой, несомненно, английские предприниматели, но цель английских рабочих заключалась в том, чтобы иметь „работу и хлеб“ и даже, пожалуй, „несколько меньше работы и больше хлеба“. При существующей в Англии системе выявилось такое резкое расхождение между целями предпринимателей и рабочих, что в результате вспыхнул острый социальный конфликт».

Вот, например, что заявил производственный директор английских автомобильных заводов «Стандард моторс» Аллен Дик при увольнении 2900 рабочих: «Мы затратили четыре миллиона фунтов стерлингов не для того, чтобы держать на заводе прежнее количество людей».

В ответ на увольнение своих товарищей рабочие объявили стачку, которая в Англии получила название «первой стачки эры роботов». При поддержке рабочих многих предприятий эта стачка была выиграна. Но так бывает далеко не всегда, и многие рабочие в капиталистических странах понимают это. Вот что написал французский рабочий-металлист с завода «Орн»:

«Мы знаем опасность роста производительности: снижение заработной платы по сравнению с количеством выжатого труда и безработица. В 1952 году на нашем заводе работали 900 рабочих, производивших 700 тонн в месяц. В 1956 году было 590 рабочих, и производили они 1200 тонн. Продукции стало на 500 тонн больше, а рабочих на 360 человек меньше. Новая реконструкция предполагает дальнейшее увеличение продукции и сокращение персонала… Вот почему, товарищи, надо поставить машину на службу человеку. Сегодня же она служит лишь тому, чтобы обогащать тресты, вроде нашего, уменьшает покупательную способность населения, приводит к навязыванию невыносимых темпов и преждевременному изнашиванию рабочих».

У нас машина служит всему народу. Мы не боимся автоматизации производства. Мы приветствуем ее и огорчаемся, что она внедряется не так быстро, как хотелось бы. Но с каждым годом она начинает играть все более важную роль в самых различных областях промышленности. Множество ученых, инженеров, рабочих, крупнейшие научно-исследовательские институты, заводы — все занимаются исследованиями и созданием разнообразнейших автоматических устройств.

Автоматизация только начинается, ведь мы еще многого не знаем и не умеем. Мы не знаем, как заменить человека во множестве случаев. А в тех случаях, когда мы уже знаем, мы часто не можем это сделать достаточно хорошо, надежно и дешево.

А о стоимости и выгодности введения автоматизации надо очень много думать в каждом случае, прежде чем ее применить. Не то, вместо того чтобы помочь народу стать богаче, можно лишь растратить лишние средства. А мы не имеем на это права. Мы должны по-настоящему, по-хозяйски беречь наши деньги, деньги, созданные нашим трудом, трудом всего нашего великого народа.

Сейчас автоматизация распространяется все шире и шире. В производстве, в частности в металлообрабатывающей промышленности, ее особенно выгодно применять, когда приходится вести обработку очень больших количеств однородной продукции, то есть при массовом производстве.

Автоматическая станочная линия для обработки блока цилиндров.


Именно массовое производство подготовило базу для широкого внедрения автоматизации в промышленность. Помимо экономических предпосылок, массовое производство способствовало возникновению и развитию автоматизации и тем, что оно подготовило должную организацию промышленности: поточный метод, расчленение производственных операций на простейшие, которые легко выполнять специализированными станками и уже легко автоматизировать.

Многие предприятия, выпускающие массовую продукцию, используют большое количество автоматических станков. Таких станков было уже порядочно и перед второй мировой войной. Но развитие промышленности требовало все большей и большей автоматизации. От отдельных станков-автоматов стали переходить к целым линиям автоматических станков, объединенных между собой единым транспортным устройством и общим для всей линии темпом работы. Такие линии получили название автоматических.

Первая автоматическая линия была пущена перед самой войной, в 1939 году. Она была построена на Сталинградском тракторном заводе. Ее создал рабочий этого завода И. П. Иночкин.

Вот что пишет об Иночкине журналист И. Пешкин:

«Иван Иночкин поступил на Сталинградский тракторострой сразу после военной службы. Служил он не в строевой части, а в оружейной мастерской в Сестрорецке. Там он приобрел квалификацию слесаря. Ему приходилось ремонтировать пулеметы, знаменитые „Максимы“, и это было первым его знакомством с автоматикой.

На тракторный Иночкин попал незадолго перед пуском. Он участвовал в монтаже американского оборудования, а затем остался работать на участке гидравлических станков фирмы „Ингерсол“. Эти станки были трудны в наладке, но работа на них не требовала никакой квалификации — только ставь и снимай детали.

Иночкин довольно быстро овладел этими машинами. „Ингерсолы“ работали хорошо, они слушались Иночкина, но он был ими недоволен. Часами Иночкин простаивал возле подопечных станков и наблюдал, как рабочие их „кормят“. Однообразная, отупляющая работа! Весь цикл обработки детали совершается без всякого участия рабочего, но рабочий, словно каторжник к тачке, прикован к станку.

Так не поручить ли „кормление“ станков какому-то механизму? Аналогия с пулеметом, на котором лента „кормит“ ствол, только дала толчок мысли — что надо бы сделать.

Иночкин решил создать „механическую руку“. Попытка механически воспроизвести цикл движений человеческой руки была вполне естественной. Иночкин шел тем же путем, каким шли многие создатели новых машин. Вспомним, что предшественник стефенсоновского локомотива имел ноги, которые он попеременно поднимал, как лошадь. Сделать „механическую руку“ оказалось непростым делом. Изобретатель познал много горьких поражений, но не сдался.

Первая „механическая рука“ оказалась слишком сложной. Вторая была немногим проще. Снова думы, наблюдения, догадки… И наконец явилась новая, удивительно простая идея: использовать в качестве средства транспортировки деталей обыкновенную цепную передачу. Иночкин обратил внимание на конфигурацию деталей — это были пальцы гусеницы, — они имели форму тел вращения. Раз так, то они могут сами переходить, точнее — перекатываться со станка на станок.

На этом принципе и была построена первая в нашей стране к, как утверждают, — во всем мире — автоматическая линия».

Автоматические линии сейчас начинают очень широко применяться во многих отраслях промышленности: при изготовлении деталей двигателей внутреннего сгорания, подшипников, для резки листового металла; применяют их очень широко при изготовлении электронных и осветительных ламп, на хлебопекарных заводах, на заводах радиотехнической промышленности, в полиграфии, в кондитерской промышленности, словом, — везде, где только происходит выпуск массовой продукции.

Особенно выгодно строить автоматические линии и даже целые заводы для выпуска не просто массовой продукции, но и стабильной, такой, которая выпускается почти неизменной или вовсе неизменной в течение длительных промежутков времени. Таковы, например, подшипники. Они выпускаются уже долгие годы и, вероятно, не скоро будут заменены какими-либо другими, более эффективными устройствами. Во всяком случае пока такие устройства не изобретены и в них даже не ощущается особой необходимости. Значит, для производства подшипников можно изготовлять даже очень дорогое, сугубо специализированное оборудование: оно окупит себя.

Советские инженеры добились выдающихся успехов в деле создания автоматических линий для производства подшипников.

В начале первой пятилетки в нашей стране не было подшипниковых заводов. Подшипники, как и многое другое, в те годы мы вынуждены были завозить из-за границы. Когда встал вопрос о строительстве советского подшипникового завода, многие специалисты не верили, что завод этот будет работать. Они боялись, что такое тонкое, сложное и необыкновенно точное производство не может быть налажено у нас. Они думали, что в нашей стране не найдется для этого достаточно квалифицированных людей.

Действительно, таких людей в те годы очень не хватало. И поэтому строительство и оборудование первого подшипникового завода, так же, как и Сталинградского тракторного и Горьковского автомобильного и Днепрогэса и многих других строек первой пятилетки, пришлось вести с помощью иностранных специалистов и фирм. Шведы и американцы не стали оказывать нам техническую помощь в производстве подшипников. Тогда пригласили группу итальянских инженеров.

19 января 1932 года был выпущен первый советский подшипник. В этот день состоялся пуск Первого Государственного подшипникового завода.

Завод был оборудован итальянскими станками, их наладкой руководили итальянские специалисты. И станки и консультанты принадлежали капиталистической фирме. И, несмотря на то что станки были установлены на советском заводе, они не изменили своей сущности. Они были запроектированы таким образом, что рабочий, обслуживающий их, становился придатком машины, по существу сам становился машиной. Итальянские консультанты считали такое положение дела правильным. Но наши рабочие и специалисты не могли мириться с ним.

На ГПЗ нашлись люди, которые, подобно Иночкину с СТЗ, начали задумываться над путями облегчения труда советских рабочих. И здесь начали с того же, что делал Иночкин: при передаче деталей от станка к станку стали заменять человека механизмами. Так и на ГПЗ появились первые полностью автоматизированные станочные линии.

В 1955 году на Первом ГПЗ был введен в эксплуатацию цех-автомат, выпускающий подшипники массового применения. Его проектирование было начато пятью годами раньше. В проектировании цеха, создании нового технологического процесса, нового оборудования участвовали сотни инженеров, четырнадцать заводов изготовляли станки, контрольно-измерительные устройства, инструменты.

К сожалению, я не бывал на ГПЗ в послевоенные годы. Поэтому я обращусь к очень интересной статье И. Пешкина. Вот что он пишет о новом цехе-автомате:

«Цех-автомат расположен в отдельном здании. Мы входим в него. Ряды одетых в серые кожухи станков. Возле них нет людей.

Подходим к одному из станков. За прозрачным из плексигласа щитком можно увидеть, как металлические пальцы зажимают кольцо. Вьется, дробится и падает вниз стружка. Работа окончена. Механизм поворачивается, освобождает кольцо, оно покатилось по транспортеру.

Станки работают сами. Все, что необходимо для работы, само приходит к станку; обработанные изделия и стружка сами уходят.

Оборудование и запроектированные технологические процессы несомненно отражают последние достижения технической мысли. На токарных автоматах — высокая концентрация инструмента. Хорошо решена проблема удаления стружки. Агрегаты термической обработки колец (теплом и глубоким холодом) встроены в линии. Высокопроизводительные шлифовальные станки обеспечивают доводку колец до необходимых размеров. „Магазины“, установленные при переходе с токарных станков на термообработку и с последней на шлифование, удачно разрешают труднейшую из проблем — обеспечение бесперебойного действия всего цеха в случае неисправностей в каком-либо звене.

И уж, конечно, наибольший интерес вызывают измерительные станции. На этих участках использованы последние достижения электроники и мерительной техники.

Вот транспортер внес кольцо в остекленный шкаф— контрольно-измерительную станцию, оно проходит первую проверку, затем вторую, третью, четвертую.

Сделаны четыре остановки. Все хорошо? Нет, этот вывод преждевременен. Результат измерений, произведенных каждым из автоматов, остается еще неизвестным, он пока „запоминается“ специальным устройством.

В конце путешествия кольцо подходит к висящему между двумя лотками электромагниту. Результаты измерения „запоминающие“ устройства автоматов передают электромагниту, он взвешивает эти данные и решает, можно ли пустить кольцо на сборку.

Повисев на магните, кольцо ложится на транспортер, который везет его к сборочному автомату. Все ясно: размеры выдержаны. Магнит пропускает и второе кольцо, и третье, и четвертое… Но приходит еще одно кольцо, и магнит бросает его на лоток, оттуда оно попадет уже на „штрафной“ транспортер, который отвезет его в изолятор.

На каком из четырех автоматов обнаружена неточность? Мы этого не знаем. Импульсонакопитель „запомнил“ это кольцо, и магнит беспощадно выбросил его из потока.

А вот еще одно „чудо“ — автомат для сборки шариковых подшипников. При старых методах сборки к шарикам определенной группы подбирали кольца. На автоматической сборке применен обратный принцип: по зазору колец подбираются шарики необходимого размера. Автомат измеряет внутренний диаметр наружного кольца и наружный диаметр внутреннего. Счетно-решающее устройство делает необходимый расчет и дает ответ, какой шарик годится для данной пары колец. Задача решается моментально.

Собранные подшипники сами следуют дальше по предписанному маршруту. Они попадают в антикоррозийные агрегаты. Дальше — упаковочные автоматы. Подшипник заворачивается в промасленную бумагу и укладывается в изящную фирменную коробочку».

От автоматической линии недалеко и до полностью автоматизированного завода. Такие заводы, конечно, появились. Одним из первых был советский завод-автомат, выпускающий поршни для автомобильных моторов. В сутки этот завод выпускает от 3000 до 3500 изделий. Все производство обслуживают пять операторов в смену. На заводе-автомате автоматизированы не только производственные операции, но и все операции технического контроля и все подсобные операции.

Этот завод состоит из четырех основных производственных участков: плавильного, термического, участка механической обработки и участка сортировки и упаковки. Все участки связаны между собой транспортерами, которые работают точно в соответствии с ритмом производственных операций.

Давайте подробнее рассмотрим схему завода. Она изображена на рисунке.

Схема автоматического завода по производству поршней.


На завод поставляются алюминиевые чушки. Они хранятся на складе. Со склада чушки подаются по транспортеру в электропечь. Подаются они через строго определенные промежутки времени. В электропечи поддерживается неизменная температура. И, конечно, температура в печи поддерживается с помощью автомата — автоматического регулятора температуры. Из печи расплавленный металл прямо по желобу поступает в разливочную машину. Разливочная машина строго определенными порциями разливает металл в металлические формы — кокили. После заливки металлом кокили переносятся в охладительную камеру, где выдерживается нужный температурный режим. После охлаждения кокиль подается на автомат для отрезания литников — «хвостиков», получающихся из металла, застывающего не в самой форме, а в воронке, через которую заливают металл в кокиль. Отрезанные литники падают на транспортер, переносящий их обратно в печь для переплавки. После обрезки литников заготовки поршней поступают на второй — термический — участок.

Термический участок состоит из конвейерной печи, в которой поршни проходят термическую обработку, и автоматизированного пресса для определения твердости. Печь и пресс соединены транспортером. Пресс производит разбраковку поршней по твердости. Забракованные поршни сбрасываются в ящик, а годные попадают в бункер.

На третьем участке, участке механической обработки, куда поршни попадают под воздействием собственного веса по склизу, имеется первый оператор. Оператор устанавливает приходящие к нему поршни в загрузочные позиции автоматической станочной линии. В линии установлены токарные, сверлильные, фрезерные и шлифовальные станки. Эти станки автоматически выполняют все операции по механической обработке поршней. После обработки поршни транспортером подаются в агрегат, измеряющий их вес и сортирующий их по весу. Далее поршни поступают в автомат, где они лудятся. Отсюда поршни подаются на многопозиционный расточной станок, в котором окончательно растачиваются отверстия под палец поршня. Точность расточки очень высокая — до 0,01 миллиметра. Она автоматически контролируется. Здесь поршни попадают в руки ко второму оператору, перемещающему поршни на конвейер моечной машины.

После расточки отверстий поршня под палец поршни поступают в автоматическую сортировку по классу (по диаметрам отверстий для пальца, по диаметрам юбки поршня). На поршни ставятся соответствующие клейма. Разделенные по классам поршни отдельными потоками отправляются в упаковочный автомат и оттуда на склад готовой продукции.

На заводе имеется диспетчерский пункт. Он оборудован различными средствами сигнализации, учета, управления и контроля, позволяющими диспетчеру следить за всем производством.

Производительность труда при автоматизации, как мы можем видеть, возрастает во много раз, качество же ее, несмотря на то что продукция дешевеет, становится более высоким.

Пока еще подавляющее большинство станков-автоматов для металлообработки — автоматы особого типа. Это автоматы, не умеющие «думать». Если к станку перестанут подаваться заготовки, он не почувствует этого и будет производить те же самые операции, только вхолостую, в лучшем случае остановится. Но если, скажем, заготовки подаются, но какие-то их качества изменились и по ходу дела нужно, например, изменить режим резания, такие станки не сумеют этого сделать. Это происходит потому, что программа работы задана станку раз и навсегда при его проектировании и наладке. Перестроиться применительно к новым условиям и обстоятельствам такой станок не может.

К такого рода автоматам относятся, например, станки и устройства, которые вырабатывают подшипники массового применения, и станки и устройства автоматического завода, выпускающего поршни. И те и другие очень хороши для решения названных задач, но никаких других они решать не умеют. Да никто от них этого и не требует.

Но возьмем другой случай. Случай автоматизации такого производства, в котором выпускаемая продукция не является неизменной. Ведь создавать для такого производства высокоспециализированные автоматы может оказаться невыгодным или даже невозможным: труд инженеров и рабочих, затраченный на создание таких станков и их внедрение, превысит труд, необходимый для выпуска самой продукции с помощью обычных универсальных станков. Такое положение может часто возникать, например, на станкостроительных заводах, где продукция часто является не только нестабильной, но даже и немассовой. Как поступать в этом случае? Может, и вовсе отказаться от автоматизации?

До последнего времени на эти вопросы не было сколько-нибудь удовлетворительного ответа. И лишь совсем недавно в этом направлении были сделаны первые успешные шаги. Причем идея, на первый взгляд, противоречила всему тому, на чем прежде базировалась автоматизация. Потому что она заключается в отказе от применения высокоспециализированных станков-автоматов и в возврате к станкам универсальным. Самая же главная мысль этой идеи состоит в том, что управление универсальным станком будет поручено не человеку, а автомату — так называемому автомату с программным управлением.

Этот автомат без всяких переделок и изменений можно будет легко и просто переводить на выполнение различных работ. Так как такой автомат управляет универсальным станком, то можно будет осуществлять автоматическое управление весьма разнообразными операциями. И при этом не потребуется строить специальные станки для каждого вида операций. Достаточно лишь управляющему автомату задать новую программу — и сразу можно будет приступать к выполнению работы. Программа же в таком автомате представляет собой либо магнитную, как в магнитофоне, либо бумажную, либо похожую на кинопленку ленту. На такой ленте либо с помощью магнитных полей, либо в виде отверстий или каким-нибудь другим способом наносятся команды — программа управления автоматом и станком.

Противоречит ли такой путь автоматизации старому пути? Нет. Просто каждый из них хорош в своей области.

Очень интересным свойством некоторых автоматических станков с программным управлением является умение «думать». Они по ходу выполняемой работы могут изменять режимы работы и даже изменять последовательность операций. Более того, программы некоторых видов работ не могут быть заранее созданы расчетным путем. В таких случаях станок-автомат отдают в «обучение» к опытному рабочему. Чувствительные элементы автомата подключают к соответствующим частям станка, на котором работает рабочий. Эти чувствительные элементы преобразуют измеряемые данные и приемы работы «учителя» в электрические сигналы и передают их в автомат, запоминающий все операции и их последовательность. После такого «обучения» автомат сам может управлять работой станка.

Не зря эти станки называют «думающими». Они, как человек, могут обучаться у другого автомата или человека. Появились они в последние годы и своим рождением обязаны новейшим достижениям науки и техники. На их основе зародились новые отрасли математики и электроники, занимающиеся созданием математических и логических быстродействующих электронных машин. Одними из важнейших в таких машинах являются запоминающие, или накопительные, устройства. Их емкость в новейших машинах очень велика и позволяет запоминать огромное количество данных. Эти данные могут быть самыми разнообразными, например данными о последовательности операций, совершаемых станком. При работе они выдаются из устройств памяти в виде электрических сигналов в блоки машины, производящие с сигналами логические или математические операции. Полученные результаты могут быть выданы в виде команд управления станком.

Автоматизация применяется не только в машиностроительной промышленности. Не менее широко она применяется в металлургической промышленности, в химической, в энергетике, в связи, на транспорте, в легкой промышленности и в военной технике. Автоматизация стала все больше проникать и в области, непосредственно не связанные с производством; очень много автоматических средств применяется в науке: автоматы производят сложнейшие математические вычисления, сортируют корреспонденцию на почтамтах, сортируют и классифицируют разнообразные архивные материалы, составляют библиографии, ведут бухгалтерские расчеты и учет и еще очень многое. И в этой области машины-автоматы позволяют сократить большое количество труда, переместить работников из сферы управления и обслуживания в сферу производства.

Математическая машина.


Это очень полезно для нас, для нашего государства. Ведь бухгалтерская, финансовая, плановая и статистическая работа требует огромного количества расчетов, заполнения массы всяческих документов. Для этого содержится целая армия счетных работников. Занимающиеся таким трудом не создают материальных ценностей, они лишь помогают в этом другим. Нет слов, такой труд полезен и необходим, но всё-таки это труд непроизводительный. Кроме того, хоть работа такого рода и не является физической, умственной ее тоже не всегда назовешь: она однообразна и утомительна. Поэтому гораздо лучше поручить ее машинам, а людям дать возможность заниматься творческим, созидательным трудом.

Итак, существуют типы автоматов, которые в зависимости от внешних условий сами перестраивают программу своих действий и продолжают работать в соответствии с измененной программой. За такой метод работы эти автоматы называют «думающими» машинами.

Для того же чтобы думать, надо, прежде всего, узнавать, или, как говорят в технике, получать информацию о происходящих процессах и изменениях в условиях их протекания. В свою очередь, для того чтобы информацию такого рода получать, надо иметь некоторые чувствительные органы, умеющие различать те или иные изменения в условиях работы. Органы такого рода и называют чувствительными элементами или чувствительными органами, а часто — датчиками.

Те же органы автомата, которые, получив от датчиков информацию, преобразуют ее в сигналы, управляющие ходом процесса, и подают команды исполнительным органам, можно условно назвать «думающими» органами.

«Думающие» автоматы сейчас начинают получать все большее распространение, так как они, хоть и значительно сложней, дают много новых возможностей и преимуществ.

Вспомним снова о центробежном регуляторе Уатта. Он как раз может быть отнесен к автоматическим устройствам такого типа, правда, к самым примитивным. Вращающийся вал регулятора, связанный с маховиком машины, передает информацию, в данном случае — информацию о скорости вращения, к чувствительному элементу — грузикам на шарнирах. Эти грузики «чувствуют» изменения в скорости вращения и в зависимости от этого изменения расходятся или приближаются друг к другу. Такое движение преобразуется в управляющие сигналы и передается рычагом к заслонке, помещенной в паропроводе.

Как мы видим, в регуляторе Уатта некому думать, а между тем такой регулятор заменяет думающего человека и управляет процессом (поддерживает обороты машины неизменными) лучше человека. В этом ничего удивительного нет. Ведь когда изобретали регулятор, человек, в данном случае Уатт, сам заранее подумал за регулятор и продумал действия регулятора во всех возможных обстоятельствах и придал регулятору такие свойства, что регулятор всегда и при всех условиях воздействует на процесс в таком же направлении, в каком это сделал бы на его месте думающий человек. Таким же образом работают и многие другие автоматы и те же математические и логические машины. Правда, в последнем случае действия машины действительно очень напоминают отдельные процессы человеческого мышления, но все-таки это вовсе не означает, что машина сама умеет мыслить. Однако вопросы, которые может решать математическая машина, очень сложные, трудные вопросы. Такая машина может иметь очень большое количество «органов чувств», собирающих большое количество необходимой информации, а необыкновенное быстродействие «думающих» или регулирующих органов позволяет рассчитать или продумать за очень малые промежутки времени очень большое количество вариантов решений и выбрать самое наилучшее. Выбранное решение передается в виде команд на исполнительные органы.

Теперь мне хочется задать вам такой вопрос: какова роль электричества в автоматике и почему именно электротехника и особенно электроника играют в автоматике столь большую роль? Ответ на этот вопрос кроется в тех замечательных свойствах электрической энергии, о которых мы уже говорили. Именно эти свойства позволили применять автоматику в таких областях, где одна механика бессильна что-либо сделать.

Я уже говорил, что, для того чтобы автомат мог работать, он должен чувствовать различные изменения в процессе, которым он управляет. И, для того чтобы процесс происходил в точно заданных пределах, автомат должен чувствовать самые малейшие изменения. Если этого не будет, то невозможно осуществить и точное регулирование процесса. Как известно, регулируемые процессы могут быть самого различного рода: регулирование оборотов двигателя, регулирование температуры печи или холодильной камеры, поддержание постоянства давления в котле, регулирование громкости звука в приемнике и тысячи других самых разнообразных процессов. И в каждом случае регулируется одна или несколько физических величин.

Эти величины могут быть самыми разными, но регулятору надо их уметь чувствовать, то есть иметь соответствующие чувствительные органы. Именно благодаря свойству электроэнергии превращаться прямым путем из любых других видов энергии сконструированы в настоящее время чувствительные элементы, датчики, основанные на методе преобразования физических величин в электрические, позволяют чувствовать разнообразнейшие физические величины, измерять их и переводить в электрические сигналы — на язык, понятный электрической и электронной автоматике. Другое важнейшее обстоятельство, особенно заметное в электронной автоматике, выражается в том, что электрические датчики физических величин очень чувствительны. Что же касается электроники, то она вполне свободно оперирует даже с самыми ничтожными электрическими сигналами, мощность которых невозможно себе представить, так она мала.

Предположим, что нам потребовалось поддерживать строго постоянной яркость света обычной электрической лампы накаливания. Для этого нам придется создать автоматический регулятор, который будет так менять ток в цепи накала лампы, что ее яркость будет оставаться неизменной.

Для того чтобы создать такой автомат, нужно прежде всего научиться измерять величину яркости и величину отклонений яркости от заданной. Каким образом ее можно измерить? Электроника, например, дает нам для этих целей готовый электровакуумный прибор — фотоэлемент. Ток через фотоэлемент будет тем больше, чем больше сила падающего на фотоэлемент света. А можем ли мы средствами механики создать устройство, замеряющее яркость и ее отклонения? Какие физические явления можем мы использовать для этого?

Выдающийся физик П. Н. Лебедев в свое время доказал, что свет давит на стоящие на его пути преграды. Давление это столь ничтожно, что измерить его необыкновенно трудно. Лебедев сумел доказать, что это давление имеется, и даже измерил его величину с помощью механических устройств. До сих пор физики мира поражаются необыкновенной тонкости и остроумию лебедевских экспериментов. Однако устройства, примененные Лебедевым в своих опытах, несмотря на то что они чувствуют световое излучение, в качестве механических датчиков яркости для автомата использоваться не могут. Те усилия, которые развиваются в таких механических устройствах, столь ничтожны, что не могут быть использованы не только непосредственно, но и при применении каких-либо механических усилителей.

Другое дело фотоэлемент. Во-первых, он гораздо чувствительнее к энергии светового излучения, чем любое механическое устройство. Кроме того, ток, протекающий через фотоэлемент, может быть усилен в десятки и сотни тысяч раз с помощью электронных ламп, а теперь и с помощью транзисторов. Мощности же усиленного тока вполне хватит на то, чтобы привести в движение любой исполнительный элемент, скажем — моторчик, перемещающий ползунок реостата, включенного в цепь накала лампы.

Если яркость мала, ток через фотоэлемент будет ниже нормального и автомат выработает такие управляющие сигналы или команды, которые заставят моторчик вращаться так, чтобы ползун, реостата увеличивал бы ток через лампу. Если яркость, наоборот, возросла, то управляющие сигналы заставят моторчик поменять направление вращения на обратное и уменьшать ток через лампу. Когда яркость лампы равна требуемой, на моторчик либо вовсе не подаются никакие сигналы, либо подаются специальные сигналы, запрещающие моторчику вращаться. Впрочем, для моторчика отсутствие сигналов тоже является сигналом. Если на моторчик не подано напряжение, он как раз и не может вращаться.

Как мы с вами говорили, механическую энергию нельзя передавать на большие расстояния, электрическую энергию и особенно радиоволны можно передавать практически на любые расстояния. Это позволяет осуществлять регулирование процессов на таких объектах, которые могут находиться на очень больших расстояниях от места, где установлен автомат, управляющий этими процессами.

Например, можно автоматически управлять полетом самолета или ракеты с земли. Управляющие органы автоматов будут установлены на каком-либо посту управления, а датчики и исполнительные органы — на самолете. Регулированием и управлением на больших расстояниях занимается так называемая телемеханика. Фактически механика в чистом виде в этой области техники почти не применяется, она только в названии осталась.

И еще об одном, важнейшем, свойстве электроники следует сказать — о быстродействии. В этом с электроникой в настоящее время ничто не может сравниться. Электронные чувствительные элементы и элементы управления могут легко реагировать на изменения, происходящие с огромной скоростью, практически в тот же миг, как случилось само изменение. Электронные элементы часто поэтому называют безынерционными.

Именно быстродействие электронных устройств позволило создать математические машины, способные рассчитать траекторию снаряда быстрее, чем снаряд пролетит по ней. Именно это свойство позволило производить за очень малое время расчетные работы такого объема, с которыми не могут справиться сотни квалифицированных расчетчиков.

Теперь, пожалуй, мне осталось рассказать вам, где и как работают современные автоматы. Обо всех областях их применения я, конечно, рассказать не имею возможности, да и не знаю всего. Я приведу только примеры.

Мы уже знаем с вами, что автоматику очень выгодно применять при массовом производстве, где она значительно повышает производительность труда, улучшает качество продукции и снижает ее себестоимость. Но не менее важно применение автоматики в тех областях, где человек не может по каким-то причинам выполнять работу сам. Таких причин много. Основных же, пожалуй, две: безопасность человеческой жизни и здоровья и очень быстрое протекание некоторых процессов, такое быстрое, что человек не в силах уследить за ними.

Так, например, в настоящее время человек не может быть помещен в ракету. Первые космические ракеты покинут Землю наверняка без людей, слишком еще будет велик риск, слишком много впереди будет неизвестного. Поэтому полетом ракет будет управлять автоматика. В целях сохранения человеческой жизни и здоровья автоматизируют многие процессы в атомной промышленности, так как они часто оказывают вредное влияние на человека.

Возьмем другой случай. В настоящее время ученые очень интересуются метеоритами. Мы знаем, что метеоритов падает на Землю очень много. Но часто ли мы их видим? Очень редко. В иную августовскую безлунную ночь можно подолгу любоваться звездным небом, а увидишь за час-два, может быть, две — три «упавшие звезды». Бывает и так, что кто-нибудь заметит метеоритный след, вскрикнет даже: «Смотрите, звезда упала!», но, пока другие успеют повернуться, все уже исчезнет. Недаром же есть такое поверье, что, если успеешь загадать какое-нибудь желание при виде падающей звезды, это желание обязательно исполнится. Что же, попробуйте проверьте, правильно ли такое поверье. Я думаю, вам не удастся это сделать, не успеете еще ни о чем подумать, а метеорит уже сгорит и померкнет его след.

Естественно, что ученых такое положение не может устраивать, так они никогда не смогли бы изучить явления, связанные с попаданием метеоритов в атмосферу Земли. И вот, для того чтобы наверняка «ловить» метеориты, измерять скорость их движения, возмущения, которые они вызывают в верхних слоях атмосферы, ученые применили автоматы. Автоматы эти должны мгновенно обнаружить появление метеорита в атмосфере и следить за ним во все время его полета. Такие автоматы есть, и они легко и просто успевают следить за метеоритами.

Есть и много других случаев, когда человек просто-напросто не может даже сравниться по быстродействию с автоматами. Автоматическим же устройствам, особенно электронным, ничего не стоит управлять такими быстро протекающими процессами, длительность которых исчисляется очень малыми долями секунды, в некоторых случаях доходящими до сотых и даже тысячных долей. Некоторые электронные автоматы могут действовать и гораздо быстрее.

Все вы видели высоковольтные линии электропередач. Опоры линий — высокие ажурные мачты — шагают через леса, реки, соединяя мощные электростанции с крупными промышленными и экономическими центрами. К опорам подвешены гирлянды изоляторов, несущих провода, по которым течет ток высокого напряжения. Черепетская ГРЭС (Государственная районная электростанция) имеет, например, мощность 600 тысяч киловатт. Такой мощности достаточно для того, чтобы могли гореть шесть миллионов стоваттных лампочек, то есть, в среднем, осветить полтора — два миллиона квартир. Такая мощность может быть передана по одной трехфазной линии передач на напряжении 400 киловольт.

Представьте себе, что во время грозы молния ударила в линию или электрическую подстанцию, установленную на этой линии. Надо сказать, что такие случаи, когда удар молнии вызывает повреждения, очень редки, потому что применяется много средств защиты от грозы и на линиях и на подстанциях. Но все-таки полной гарантии от такого случая нет. Удар же молнии может привести к короткому замыканию между проводами — фазами или даже между фазами и землей.

Ясно, что при коротком замыкании на линии, если его не устранить как можно быстрее, может произойти порча оборудования на электроподстанциях и на самой электрической станции, а также и нарушение снабжения электроэнергией. Чем крупнее электростанция, чем крупнее потребитель электроэнергии, тем опаснее такое явление. Перерыв в подаче электроэнергии, даже если он будет длиться доли часа, может привести к колоссальным материальным потерям и даже к человеческим жертвам. Нет тока, значит, — не работают насосы и вентиляция в шахтах, нет тока — застывает металл в электропечах, останавливаются электропоезда, нарушается производственный цикл целого ряда непрерывных процессов, особенно химических и металлургических. Нет тока — и в руках хирурга перестают действовать новейшие хирургические инструменты и аппаратура.

Недаром же во всех особо важных случаях всегда предусматривается питание от резервных электростанций или даже аккумуляторных батарей.

Но все-таки много ли случаев бывало в вашей жизни, когда вы становились свидетелями длительных перерывов в подаче электроэнергии на предприятия или даже в жилые дома? Очень мало, а то и совсем не было. Как же? Ведь повреждения на линиях все-таки бывают? Бывают. Правда, чаще всего они не связаны с грозами, а происходят по самым разным причинам. И за год случаев, когда на линии происходит короткое замыкание, может быть даже не один, а несколько.

Что происходит, когда по неосторожности вы или ваши близкие вызываете короткое замыкание, включив неисправную настольную лампу, электрический утюг, пылесос или что-либо подобное? Свет в квартире моментально гаснет, проводка в квартире отключается от общей электрической сети. Отключение происходит оттого, что при коротком замыкании значительно увеличивается ток и перегорают пробки, или, как их называют электрики, плавкие вставки. Устранив причину замыкания и заменив пробки, мы снова восстановим цепь и снова, если, конечно, желание останется, можем проделывать столь же рискованные эксперименты. Хорошего в этом, правда, ничего нет, но все-таки, если пробки подобрать правильно, повреждений в остальной части сети не будет.

Если же плавкие вставки подобраны неправильно, а это всегда бывает, когда доморощенные электрики вместо пробок вставляют «жучки», то они при коротком замыкании могут не расплавиться. Тогда часть проводки, в которой произошло замыкание, не отключится от сети и по ней потечет ток короткого замыкания, в десятки, а то и в сотни раз превышающий нормальный ток. При этом начнут нагреваться провода не только в поврежденном участке, но и в остальной части сети, и могут случиться разные неприятности. От перегрева провода могут замкнуться еще где-нибудь, что приведет к новому возрастанию тока и еще большему нагреву остальной части проводки, обмоток понизительного трансформатора и так далее. Может возникнуть и пожар.

Поэтому плавкие вставки ставятся не только в квартирах. Ставятся они и дальше, на каждом разветвлении электрической сети низкого напряжения. Чем более мощный потребитель, тем более мощные плавкие вставки. Некоторые виды электрического оборудования защищаются плавкими вставками, которые перегорают от тока в 30 тысяч ампер! Такой ток потребляют почти 30 тысяч стоваттных лампочек на напряжении 127 вольт.

Что же, и линии электропередач тоже защищают от повреждений плавкими вставками? Нет, так делать невыгодно. Хоть плавкая вставка, перегорев, и защитит линию от развития повреждения или аварии, однако сделает это она не так хорошо, как другие автоматические устройства, называемые релейной защитой. Устройства релейной защиты — это автоматы, отключающие поврежденное оборудование от остальной части сети. По существу, они играют роль пробок, но только их задачи и условия работы значительно сложнее. Релейная защита применяется и для защиты линий и для защиты оборудования — трансформаторов, генераторов, синхронных компенсаторов. В наши дни, когда по линиям передач передаются очень высокие мощности, когда и генераторы и трансформаторы также работают на очень высоких мощностях и напряжениях, от релейной защиты требуется очень большое быстродействие.

Так, в случае повреждения на линии релейная защита линии срабатывает за десятые доли секунды, а в новейших системах время ее срабатывания доведено до 0,03—0,04 секунды. За это время поврежденный участок линии или поврежденное устройство должны отключиться. Обычно при этом повреждение не успевает развиться и вывести из строя линию или, например, трансформатор.

Когда в линии происходит повреждение, между проводами линии или между проводами и землей может возникнуть электрическая дуга. Она-то и создает короткое замыкание. Если эту дугу погасить, короткое замыкание может исчезнуть, и линия вновь станет работоспособной. Погасить же дугу можно только, прервав ток по линии, хотя бы на очень малое время. Релейная защита как раз и является такой автоматикой, которая отключает линию, когда на ней возникает короткое замыкание. Но релейная защита не просто отключает линию, она может делать гораздо более умные вещи. Реле защиты, обнаружив на линии короткое замыкание, дают команду на специальный аппарат — высоковольтный выключатель. Высоковольтный выключатель отключает линию, рвет ток. Но не надолго. Выждав немного, он вновь включает линию. Если короткое замыкание было за счет дуги, то она к этому времени погаснет, и линия снова сможет передавать электроэнергию. Но если короткое замыкание не исчезло, то вновь выключатель получит команду на отключение. Такое повторное включение и отключение может производиться несколько раз. Чаще всего за два — три таких повторных включения повреждение устраняется. Если же оно все-таки не устранится, тогда линия будет отключена до тех пор, пока ремонтники не устранят причины короткого замыкания.

В наше время релейная защита обеспечивает очень высокую надежность работы линий электропередач и прочего оборудования. Поэтому-то случаи, когда передача энергии от электростанции прекращается, почти полностью исключены.

Если же за работой линии вместо автоматов релейной защиты наблюдали бы люди, то дело обстояло бы неизмеримо хуже.

Люди не могут столь же быстро и точно реагировать на различные отклонения от нормального режима, как автоматы релейной защиты. Им нужны в лучшем случае секунды. А это слишком долго в данном случае и может привести к крупным авариям.

Но не только в быстроте автоматика превосходит человеческие способности, она превосходит их и в том случае, когда требуется регулировать процесс с очень высокой точностью.

4 октября и 3 ноября 1957 года навсегда останутся великими датами в истории завоевания космоса. В эти дни были осуществлены пуски ракет, с помощью которых на орбиты были доставлены первые в истории человечества искусственные спутники Земли. Запустили эти спутники в нашей стране, стране, где жили и творили Кибальчич и Циолковский.

Первый спутник совершил уже более тысячи оборотов вокруг Земли. Более двух месяцев среди неподвижных, тысячелетиями знакомых человечеству звезд мерцает маленькая красноватая звездочка, созданная руками человека; более месяца вращается и второй спутник. Поглядите на небо, разыщите, если вам посчастливится, эти красные звездочки! И подумайте: небо стало новым! Новым! Такого никогда не было!

Запуск спутников — это величайшее научное и техническое достижение. Задачи, с которыми пришлось столкнуться советским специалистам, были исключительно сложными. И решить их можно было, только обладая самыми квалифицированными кадрами рабочих, инженеров и ученых, обладая передовой промышленностью.

Как известно, для того чтобы какое-либо тело стало спутником Земли, ему необходимо придать определенную скорость, примерно 7,7 километра в секунду, или 27 720 километров в час. Такой скорости можно достичь только с помощью ракет. Оказывается, что сообщить ее искусственному спутнику даже небольшого веса очень сложно. Двигатели ракеты, которая, поднявшись на высоту 300–400 километров за 3–4 минуты, наберет такую скорость, должны иметь удельную мощность, близкую к миллиону лошадиных сил на каждую тонну веса двигателя.

При разработке подобных ракет идут по пути создания составных, или ступенчатых, ракет. Ступенчатыми они называются потому, что состоят из нескольких ракет — ступеней. Сперва работает двигатель первой ступени. Когда топливо в первой ступени выгорает, она отбрасывается, а составная ракета, сбросившая ставшую ненужной первую ступень, движется дальше с помощью двигателя второй ступени. Потом сбрасывается вторая ступень, и т. д. При ступенчатой конструкции начальный вес всей ракеты при том же полезном грузе значительно снижается.

Однако, чем больше ступеней в ракете, тем неудобнее она для размещения бортовой аппаратуры, тем менее она надежна и тем труднее ее изготовить. Поэтому количество ступеней выбирают каким-то средним, так, чтобы она была надежной и удобной и в то же время не слишком тяжелой и громоздкой.

Один из зарубежных проектов трехступенчатой ракеты.


Правда, для вывода искусственного спутника на траекторию не требуются столь же большие соотношения общего начального веса ракеты и полезного веса, то есть веса спутника. Но зато вес спутника желательно иметь большим.

До самого недавнего времени зарубежные ученые не считали возможным для современной техники создание спутников с большим весом.

В США еще в 1955 году сообщалось, что в 1957 году будут совершены запуски искусственных спутников. Однако американцы очень отстали от Советского Союза.

Кому теперь не известна неудачная попытка американцев запустить искусственный спутник, названный весьма громко и претенциозно — «Авангард». А между тем вопросы, связанные с запуском спутника типа «Авангард», неизмеримо проще, чем те, которые пришлось решать нашим ученым и инженерам. Прежде всего это определяется тем, что вес и размеры этого спутника во много раз меньше размеров нашего первого спутника, не говоря уже о втором.

Не менее серьезны неудачи американцев и в деле создания боевых ракет дальнего действия. И здесь их постигло большое количество очень серьезных неудач. Они не имеют ракет, которые могли бы сравниться с советской баллистической ракетой.

Причины этих неудач ясны всем людям, понимающим преимущества социализма. И чем дальше будет развиваться наука и техника, чем сложнее будут задачи, которые придется им разрешать, тем большие неудачи и трудности возникнут перед капиталистическими государствами. Уже сейчас многие ученые капиталистических стран начинают задумываться над будущим науки в своих странах, и выводы, к которым они приходят, не утешительны для тех, кто всеми силами старается сохранить капитализм.

Спутники могут вращаться на различных расстояниях от Земли. Очень интересной является орбита на высоте 36 тысяч километров. На этой высоте спутник, имея скорость 3,06 километра в секунду, обегал бы свою орбиту точно за 24 часа, то есть оставался бы неподвижным относительно земной поверхности, «висел» бы над ней.

Установив передатчик цветного телевидения на таком спутнике, можно было бы рассматривать поверхность Земли и, возможно, очень точно предсказывать погоду. С помощью такого «неподвижного» спутника можно было бы осуществлять очень простые и очень точные системы навигации и определения координат самолетов и судов. Можно было бы создать карту Земли с недостижимой в настоящее время точностью.

Прочитав про «график» полета ракеты, вы, без сомнения, поняли, сколь точным должно быть управление ракетой. И согласитесь со мной, что такую работу лучше всего могут выполнить не люди, а автоматы. Системы автоматического управления полетом ракеты могут быть различными. Ракеты могут управляться с Земли с помощью автоматических радиолокационных установок и вычислительных машин. Можно сделать систему управления и смешанной, когда часть автоматической аппаратуры будет установлена в ракете, а часть на Земле; связь же между Землей и ракетой будет осуществляться по радио. Можно создать автоматику и полностью автономной, установив всю необходимую аппаратуру в ракете. Но в любом случае это будет очень сложная, очень точная автоматика и обязательно «думающая», способная учитывать неожиданные обстоятельства и изменения условий полета. Такую автоматику начали делать совсем недавно, и она находится на одной из самых первых ступеней своего развития.

К сожалению, пока еще не опубликованы достаточно подробные сведения о ракетах, о траекториях их полета и о самых спутниках. Но некоторые данные уже известны всем. Они превзошли самые смелые ожидания. И прежде всего вес спутников: первый спутник при диаметре в 58 сантиметров весит 83,6 килограмма! Это значительно превышает то, что можно было ожидать по самым оптимистическим подсчетам. Что же касается второго спутника, то вес и размеры его не названы, указывается лишь, что полезный груз, который он несет, составляет 508 килограммов. Это и вовсе фантастическая цифра, тем более, что высота подъема второго спутника почти вдвое превышает высоту подъема первого. Недаром же один американский ученый сказал: «Я не удивлюсь, если Советский Союз скоро пошлет ракету на Луну!»

В первом спутнике установлены два радиопередатчика большой мощности, источники электропитания и чувствительные элементы — датчики, позволяющие измерять некоторые физические величины, такие, например, как температура. Результаты измерений передаются на Землю с помощью радиопередатчиков. Сам спутник имеет форму шара, от которого отходят четыре штыря — антенны радиопередатчиков. Скорость полета спутника 8000 метров в секунду, или 28 800 километров в час. Один оборот вокруг Земли он делает за 96 минут. Кругосветное путешествие за полтора часа!

Ракета, доставившая первый спутник на орбиту, стартовала вертикально. Через некоторое время после старта, с помощью автомата программного управления, ось ракеты постепенно стала отклоняться от вертикали. В конце участка выведения, или вспомогательной траектории, высота подъема достигла нескольких сотен километров и ракета двигалась уже параллельно земной поверхности. Когда двигатель закончил работу, спутник с помощью специальных автоматов был отделен от ракеты и начал двигаться самостоятельно.

Что касается управления полетом ракеты, то в газетах было сказано коротко и лаконично: «Для обеспечения заданного движения ракеты, необходимого для выведения спутника на орбиту, разработана весьма точная и эффективная система автоматического управления ракетой». Что стоит за этими словами, можно лишь догадываться, но оценить всю действительную точность, качество и сложность автоматической системы управления под силу только специалистам. Мы же можем ее оценить хотя бы по тому, что первая в мире ракета, несшая спутник, безотказно и с очень высокой точностью была выведена на орбиту. Не менее совершенна и сама ракета. Вспомним, например, что запуски межконтинентальных ракет в США пока были неудачными вследствие несовершенства ракет.

Очень интересным и важным оказался тот факт, что при запуске первого спутника Земли на орбиту вышел не только сам спутник, но и ракета-носитель (вероятно, последняя ступень составной ракеты). Эта ракета-носитель, без сомнения, имеет значительно большие вес и размеры, чем спутник. Тот факт, что ракета-носитель оказалась спутником, позволял надеяться, что последующие спутники уже не будут отделяться от ракеты-носителя, а все необходимые приборы и устройства и источники электропитания будут устанавливаться непосредственно в ракете-носителе.

Так и получилось в действительности. Второй спутник осуществлен именно таким образом. Количество научной аппаратуры во втором спутнике очень велико. Здесь и аппаратура для измерения солнечной радиации в различных областях спектра, и аппаратура для исследования космических лучей. Но самое интересное — это то, что в спутнике находится живой пассажир — собака-лайка. За ее самочувствием следят много различных приборов. Все результаты измерений передаются на Землю с помощью радиотелеметрической системы. Кормят, снабжают воздухом и обогревают собаку автоматические устройства.

Буквально до последних дней все мы, кроме тех, кто непосредственно участвовал в разработке ракет и спутников, не представляли себе, что успехи в деле запуска спутников будут столь значительны, а главное, столь близки. Ведь выпущено всего лишь два спутника, а во втором уже размещено 508 килограммов груза и в том числе живой пассажир. Конечно, есть очень большая разница между созданием искусственного спутника и созданием ракеты, которая с экипажем могла бы облететь Луну и вернуться на Землю. Но столь быстрый прогресс в создании искусственных спутников заставляет теперь пересмотреть вопрос о посылке ракеты на Луну. Если еще совсем недавно это казалось делом десятилетий, то теперь можно думать, полет свершится гораздо быстрей.

Мы живем в такое время, когда скорость научного и технического прогресса очень велика и, что самое главное, растет с каждым днем. Даже самые смелые писатели-фантасты не только не опережают, но порой отстают от техники наших дней.

Загрузка...