ГЛАВА XVII Ядовитые дымы

Введение ди-фенил-хлор-арсина в качестве ядовитого газа поставило на очередь вопрос о ядовитых дымах. Это вещество, как уже было указано, является твердым телом, плавящимся при температуре около 30°. Чтобы сделать его рассеяние более сильным, ди-фенил-хлор-арсин смешивали обыкновенно со значительным количеством сильно взрывчатых веществ. При разрыве снаряда ди-фенил-хлор-арсип распылялся на мельчайшие частицы, образуя ядовитое облако. Так как частицы этого дыма почти не задерживаются обыкновенными масками, то указанное вещество проявило себя весьма действительным средством химической войны.

Аналогичные результаты были достигнуты смешением ядовитых газов, вроде хлор-пикрина, с облаками дымов, образованных хлорным оловом или четырех-хлористым кремнием. Здесь, однако, ядовитое вещество является настоящим газом, и реальный результат состоит в том, чтобы заставить солдат надевать свои маски при всяком появлении облака дыма. Но против ядовитого дыма обыкновенные маски являются плохой защитой, что и понудило воюющие державы разработать особый род дымовых фильтров.

Дымовые облака состоят из мельчайших частиц, которые можно рассматривать как дисперсную фазу, рассеянную в воздухе, являющимся дисцерсионной. средой. Дисперсная фаза может быть получена механическим, термическим или химическим путем.

Механическая дисперсия состоит в дроблении материала на мельчайшие частицы, Это как бы работа молота и наковальни. Чем больше механическая сила, тем мельче получаемые частицы. Механическая дисперсия может быть выполнена при помощи сильно взрывчатых веществ; таким образом немцы рассеивали ди-фенил-хлор-арсин.

Путем термической дисперсии дым получается, главным образом, тогда, когда испаряющееся вещество имеет сравнительно низкое давление пара, в силу чего, поступая и более холодную среду, пары его начинают конденсироваться, оседая вокруг частиц воздуха в форме дыма. Если испарение происходит из открытого сосуда и пары имеют возможность переходить в воздух и не будут быстро уноситься с испаряющей поверхности, то образующийся дым будет состоять из более крупных частиц, так как каждая частица, пребывая в пространстве, насыщенном парами вещества, весьма быстро увеличивается в размере.

Наиболее легкий способ получать мельчайшие частицы дыма состоит в том, что ядовитое вещество смешивают с каким-либо горючим материалом; который при горении способен выделить большое количество тепла и газа. Если такая смесь будет заключена в резервуар с узким отверстием, то при горении ядовитые пары и газы будут выходить через отверстие с большой скоростью; лорд Рэлей показал, что величина частиц зависит от скорости, с которой пары выталкиваются через данное отверстие.

Химический процесс заключается в получении пересыщенного пара, который на воздухе сгущается в мельчайшие частицы.

Дисперсия при взрыве представляет собой комбинацию механической дисперсии, сопровождаемой термической дисперсией.

Сила проникновения

Основной идеей всякой работы над ядовитыми дымами должно быть получение дыма с большой силой проникновения. Заграждение от взоров не играет при этом большой роли. Кроме силы проникновения дым должен обладать в высшей степени, сильными ядовитыми качествами и осаждаться из атмосферы возможно медленнее.

Сила проникновения может быть испытана с помощью пробного фильтра; фильтр, употребляемый для этой цели, не должен приводить дым в движение, чтобы не затруднять определения его концентрации, и не должен легко засариваться дымом. Он состоит из двух войлочных подушек, помещаемых рядом друг с другом так, чтобы дым сначала приходил в соприкосновение с более тонкой и менее плотной подушкой. Этот способ признан вполне удовлетворительным.



Рис. 100.

Аппарат для определения проникания ядовитых дымов.

При испытании силы проникания, дым получается дисперсией одного грамма ядовитого вещества в железном ящике, вместимостью в 1000 литров. Спустя приблизительно 5 минут, когда газ смешается с воздухом и установится некоторое устойчивое его равновесие, дым, смешанный с воздухом, пропускают через измеритель Тиндаля, при помощи которого определяется начальная концентрация. Затем дым проходит через пробный фильтр и второй измеритель, в котором измеряется конечная концентрация. Разность этих двух измерений показывает количество дыма, задержанного фильтром. Сила проникания, обыкновенно, изображается рядом цифр, изменяющихся от максимума — в начале опыта и до минимума — в конце его, когда фильтр начинает пропускать столь малое количество дыма, что оно не может быть измерено. Это уменьшение происходит от понижения силы проникания и концентрации дыма, а также от увеличения задерживающей силы фильтра вследствие его засорения. Обыкновенно степень проникания дыма отмечается так: отлично, хорошо, удовлетворительно, слабо, очень слабо.

Переносный аппарат для определения силы проникания изображен на рис 100. При употреблении его материал, производящий дым, помещается на некотором расстоянии от аппарата (20 фут. по ветру), так что образцы для испытания содержат дым в значительно разреженном виде. Около каждого прибора Тиндаля поставлено по человеку, который записывает отсчеты и тотчас же делает вычисление, так что плотность дыма до и после прохождения через фильтр может' быть изучена очень точно.

Физиологическое действие

Помимо большой силы проникновения, дым должен обладать значительной ядовитостью, раздражающей силой, способностью вызывать чихание или слезотечение. Эти качества испытывают, помещая мышей в камеры, наполненные дымом. Их вносят в камеру до начала опыта и оставляют на 10 минут под действием дыма, произведенного 1 граммом ядовитого вещества. Хотя такого рода опыты имеют чисто качественный характер, они тем не менее дают очень ясное представление об относительной ценности различных ядовитых дымов.

Количественное соотношение

Если отложить по оси ординат оптические отсчеты, полученные с помощь аппарата Тиндаля, а на оси абсцисс время (t) протекшее после вспышки, то при рассмотрении кривой, заключающейся между t = 0 и t = 30, будет видно начальное, весьма резкое, падение от высшей точки t = 0, изображающей плотность дыма в момент его образовании, до точки близкой к t = 8 после чего, кривая становится более отлогой и спускается значительно медленнее, без заметных изменений. Площадь, ограниченная частью кривой от t0 до t30 вертикальной осью от начальной точки, горизонтальной осью до точки t30 и перпендикуляром к ней из точки t30, является мерой для сравнения относительной силы различных дымов. Эта площадь вычисляется, как сумма двух прямоугольников, от t0 до t8 и от t8 до t30.



Рис. 101.

Кривая падения концентрации дымового облака в зависимости от времени.

I. Взрывы фенил-ди-хлор-арсина.

Кривая № 1–2 грамма фенил-ди-хлор-арсина.

Кривая № 2–5 грамма фенил-ди-хлор-арсина

Кривая № 3–1 грамма фенил-ди-хлор-арсина

Кривая № 4–0,5 грамма фенил-ди-хлор-арсина

Кривая № 5–3 грамма фенил-ди-хлор-арсина

II. Отчет по иллюминометру.

III. Время в минутах.

Вот результаты измерений:

Площадь t0 — t30
Фенил-ди-хлор-арсин 181
Три-фенил-ди-хлор-арсин 178
Ди-фенил-циан-арсин 137
Ди-фенил-хлор-арсин 101
Бромистый циан 94
Метил-ди-хлор-арсин 70
Фенил-имидо-фосген 69
Горчичный газ 38

Кривые на рисунке 101 показывают падение концентраций дыма в связи со временем. Каждое вещество имеет свою характерную кривую.

Ядовитые материалы

Выбор материалов для производства ядовитых дымов может быть сделан только экспериментальным путем. Большое число сильно ядовитых веществ оказалось непригодным для получения ядовитых дымов в виду малой силы проникновения, способности разлагаться во время процесса образования дыма или других причин.

Мышьяковые органические производные дают безусловно наилучшие ядовитые дымы. Неорганические соединения, имеющие высокие точки плавления и кипения, в состоянии производить только весьма слабые дымы. Единственным исключением является мышьяковисто-кислый магний, который претерпевает разложение. Соединения в роде хлорной ртути (сулемы) или трехбромистого мышьяка, имеющие сравнительно низкую температуру кипения или возгонки, дают хорошие облака дыма. Большинство материалов с температурой кипения ниже 130 °C не образуют дыма, так как испаряются при рассеивании. Очень трудно установить предельную границу для точки кипения, выше которой вещества не могут образовать хороших дымов, но, по всей вероятности, температура в 500 °C лежит недалеко от максимума. Как жидкие, так и твердые тела равно пригодны для образования дыма. Физическое состояние вещества не имеет большого влияния на количество дыма, которое оно дает. Повидимому, оно зависит только от физических и химических свойств материала.

Аппараты для ядовитых газов

Выше было упомянуто, что немцы применяли снаряд, содержащий твердый ди-фенил-хлор-арсин и сильно взрывчатое вещество. 10,5-cm. снаряд (синий крест) был на две трети наполнен тринитротолуолом и содержал стеклянную бутылку с 300–400 граммами ядовитого материала. Ди-фенил-хлор-арсин употреблялся также в растворе; смесь фосгена и ди-фосена (суперпалита) служила наиболее употребительным растворителем (зеленый крест). Также применялись смеси ди-фенил-хлор-арсина и фенил-ди-хлор-арсина.

При пользовании бризантной гранатой является желательным употребление отдельных вместилищ, так как смешение ядовитого материала со взрывчатым веществом значительно понижает чувствительность и разрушительную силу последнего. Здесь, следовательно, возникает вопрос об устойчивости смеси. Тем не менее, 75-mm граната, содержавшая 30 % ди-фенил-хлор-арсина, смешенного с тринитротолуолом, давала хорошие облака ядовитого дыма.

Дымовая свеча

Два типа дымовых свечей было выработано "Военно-Химической Службой": первая — известная под названием ядовито-дымовой свечи В. М. была усовершенствована Пиротехнической Секцией Отдела Исследований, вторая — "Дисперсная дымовая свеча" разработана Секцией Рассеяния (дисперсии).

Ядовитая дымовая свеча В. M. состоит из бутылкообразного сосуда с ядовитым веществом, сделанного из листовой стали и помещенного в стакан, содержащий дымовую смесь. Тепло, выделяющееся при горении смеси, вызывает возгонку ядовитого материала. Ядовитые пары выходят через ниппель, ввинченный в шейку сосуда и находящийся выше дымового стакана. В сосуд с ядовитым веществом кладется стальная стружка для того, чтобы уменьшить слишком сильное кипение и разбрызгивание материала. Для той же цели служит небольшой пучек стальной стружки, помещенный в ниппель и поддерживаемый железной сеткой. Резервуар для ядовитого вещества закрыт кружком из легкоплавкого металла (с температурой плавления в 90 °C), припаянного к держателю у основания ниппеля. Эта заслонка расплавляется при первом выделении тепла и открывает таким образом выход ядовитым парам в дымовое облако. Аппарат поджигается посредством обыкновенного терочного приспособления.

Первое выделение дыма происходит приблизительно через 10 секунд после появления пламени. Через 1 минуту после воспламенения ядовитое вещество начинает возгоняться и смешиваться с облаком дыма, что продолжается в течение минут. Полный процесс горения свечи в общем занимает около 6 минут.

Дисперсная ядовито-дымовая свеча отличается от свечи В. М. тем, что не имеет отдельного вместилища для ядовитого вещества. Смесь, спресованная под давлением в 2500 фунтов и состоящая из бездымного пороха и ядовитого вещества (ди-фенил-хлор-арсин или D. М. — мышьяковое производное, получаемое из зреххлористого мышьяка и ди-фенил-амина), заполняет цилиндрический стакан, имеющий 3,5 дюйма в диаметре и 9 дюймов высоты, сделанный из 27-калибрового листового металла. Свеча имеет сверху металлическую крышку, в которую вставлен терочный прибор, отделенный от спичечной головки манильской бумагой. Головка и терка устроены такие же, как и в свече В. М. Свеча весит в общем около 4,25 фунтов, из которых 3,6 фунта приходятся на долю дымовой смеси, содержащей 1,3 фунта ядовитого вещества.



Рис. 102.

Ядовитое дымовое облако от 500 свечей D. M.

Свечи были расставлены 5 параллельными рядами с промежутками в 2 ярда; в каждом ряду 100 свечей на протяжении 100 ярдов. Общая продолжительность активного выпуска дыма 23 минуты.



Рис. 103.

Сравнение дисперсной и британской (типа D. M.) свечей.

1. Дисперсная.

2. Британская.

При употреблении свечи, крышку снимают и головку зажигают при помощи терки. Картон прожигается, и порох воспламеняется. Тепло и газ, получаемые при горении пороха, обращают в пар частицы ядовитого вещества и выталкивают пары с большой скоростью через отверстие. Пары (в соприкосновении с воздухом) реконденсируются в виде дыма. Быстрое выделение паров через отверстие исключает всякую возможность их воспламенения.

От момента загорания головки до начала появления дыма проходит 30 секунд. Средняя продолжительность интенсивного выделения дыма равна 4–5 минутам. Результаты полевого испытания дисперсной свечи изображены на рис. 102. Сравнение британской и дисперсной свечи видно из рисунка 103. Надо сказать, что этот опыт был поставлен не вполне удачно, т. к. для сравнительного испытания имелась только одна британская свеча.

Загрузка...