Глава 4. Современные методы исследования структуры химической связи

Матрица плотности и некоторые замечания о квантовомеханическом описании одкозяектронных и многоэлектронных состояний

В квантовой механике состояние частицы с энергией е описывается волновой функцией ψ(r), которая удовлетворяет уравнению Шредингера

(4.1)

При этом любому физическому состоянию частицы можно сопоставить множество волновых функций, отличающихся друг от друга множителем exp(iα) с вещественным параметром а, не зависящим от координат частицы. Иными словами, волновая функция ψ'(r) = exp (iα)ψ(r), и в частности ψ'(r) = — ψ(r) (α = π), так же как и ψ(r), будет собственной функцией гамильтониана с тем жезначением энергии ε. Если волновая функция ψ(r) нормирована на единицу:

(4.2)

то такому же условию нормировки будет удовлетворять волновая функция ψ'(r). Математические ожидания всех физических величин, представленных операторами и вычисляемых как интегралы

(4.3)

также не меняются при рассматриваемом преобразовании. Именно это обстоятельство и доказывает, что волновые функции ψ и ψ' описывают одно и то же состояние частицы.

Действие оператора на ψ(r) определяется по формуле

(4.4)


Функция μ в (4.4) называется ядром оператора в его интегральном представлении. При таком представлении операторов легко видеть, что математическое ожидание

(4.5)

определяется фактически не функцией ψ(r), а произведением двух ψ-функций

(4.6)

которое называется матрицей плотности для частицы, нахо дящейся в определенном состоянии. Строго говоря, матрица плотности ρ(r|r') не может быть матрицей в обычном смысле этого слова, если координаты r, нумерующие ее строки, и координаты r', нумерующие ее столбцы, не дискретны. Тем не менее термин "матрица плотности" для ρ(r|r') является общепринятым.

Матрица плотности становится истинной матрицей, если она представлена в некотором базисе функций Xk(r), т. е. определяется совокупностью матричных элементов Pkl, по которым можно воспроизвести ρ(r|r') согласно равенству

(4.7)

В качестве функций Xk(r) в квантовой химии чаще всего используются атомные орбитали, центрированные на ядрах атомов, образующих молекулу. Например, для молекулы Н2+ матрица плотности в двухцентровом базисе 1s-орбиталей атомов водорода имеет вид

где S — интеграл перекрывания базисных АО.

Матричные элементы Рkl получаются из коэффициентов разложения МО в базисе АО:

по формуле

Зависимость матрицы плотности ρ(r|r') от r и r' не следует понимать в том смысле, что она зависит от координат двух частиц.


В действительности r и r' представляют собой две различные (но возможно и совпадающие) точки пространства, в которых может быть локализована одна рассматриваемая частица. При этом плотность вероятности локализации ее в некоторой точке r равна диагональному элементу . Именно эту функцию характеризуют часто используемые в квантовой химии карты распределения электронной плотности. Функция ρ(r) содержит информацию, достаточную для вычисления математических ожиданий тех весьма многочисленных физических величин, операторы которых не включают интегрирования или дифференцирования. Например, дипольный момент d электронной системы относительно центра координат представлен одноэлектронным оператором с ядром[33]:

(4.8)

и определяется по формуле

(4.9)

Использование матрицы плотности вместо волновой функции устраняет указанную выше неоднозначность в квантовомехани-ческом описании состояния частицы. В то же время такое описание является более общим и позволяет характеризовать одночастичные состояния для систем, содержащих несколько различных или тождественных частиц, хотя точное описание этих состояний с помощью волновых функций невозможно.

Пусть некоторое состояние W-электронной системы задано антисимметричной нормированной функцией Ψ(x1,..., xN), где хi обозначает совокупность пространственных координат (ri) и спиновой переменной (σi) i-гo электрона. Тогда N-электронная матрица плотности ρN определяется аналогично одноэлектронной (4.6):

(4.10)

Диагональные элементы матрицы плотности ρN характеризуют вероятность того, что первый электрон локализован в точке x1, в то время как второй — в точке х2, третий — в точке х3 и т д. Конечно, в силу неразличимости электронов их нумерация является произвольной.

Рассматриваемые N электронов могут входить в состав системы включающей также и другие частицы. Например, молекулы состоят из электронов и атомных ядер, образующих единую систему. Пусть состояние последней определяется нормированной функцией Φ(x1,..., xN,ξ), причем ξ обозначает совокупность переменных всех частиц, не являющихся электронами (т. е. ядер). Состояние N-электронной системы в общем случае не может описываться Ψ-функцией и в этом смысле не является чистым[34]. Но оно может характеризоваться N-частичной редуцированной матрицей плотности:

(4.11)

Термин "редуцированная" в применении к матрице плотности означает, что некоторые переменные в левом и правом наборах ее аргументов отождествляются и затем по ним проводится интегрирование.

Подобным образом определяются редуцированные матрицы плотности для k-электронных подсистем N-электронной системы:

(4.12)

Целесообразность введения множителя обусловлена тождественностью электронов. В частности, редуцированная одноэлектронная матрица плотности определяется через N-электронную равенством

(4.13)

и нормирована на число электронов N:

(4.14)

Часто используют бесспиновую матрицу плотности

(4.15)

где проведено интегрирование (или суммирование) по спиновой переменной σ.

Отметим теперь некоторые используемые в дальнейшем математические свойства редуцированных матриц плотности.

Вследствие антисимметричности N-электронной функции Ψ (или Φ) относительно перестановок электронных переменных

(4.16)

k-частичные матрицы плотности при антисимметричны в левой и правой группах аргументов, разделенных вертикальной чертой:

(4.17a)

(4.17б)

Из определения ρk следует также, что

(4.18)

Учитывая сказанное на с.102 об интегральном представлении операторов , мы можем утверждать, что матрица плотности является ядром некоторого эрмитового оператора k-частичной плотности вероятности ρk:





He следует думать, однако, что этот оператор соответствует некоторой наблюдаемой физической величине. Его роль в квантовой теории состоит в том, что он характеризует состояние N-электронной системы в той мере, в какой это необходимо для определения ожидаемого значения любой физической величины, представленной суммой k-электронных операторов. При этом последние не зависят от состояния рассматриваемой многоэлектронной системы. Среднее значение оператора для некоторого k-электронного состояния определяет заселенность этого состояния. Собственные функции оператора называются функциями "естественных" k-частичных состояний, а собственные значения — естественными заселенностями n(k)ν. Функции определяющие одночастичные состояния с заселенностями называются естественными спин-орбиталями и удовлетворяют уравнению

(4.20)

Бесспиновые ψν(r), удовлетворяющие аналогичному уравнению на собственные значения матрицы плотности ρ(r|r') называются "естественными" орбиталями.

В качестве примера рассмотрим молекулу водорода Н2. Естественные молекулярные орбитали для этой молекулы определяются исключительно из соображений симметрии (если их ищут в виде линейной комбинации двух атомных 1s-орбиталей) и классифицируются на симметричную (g) и антисимметричную (u) МО:

В то же время естественные заселенности связывающего (ψg) и разрыхляющего (ψu) одноэлектронных состояний зависят от способа построения полной двухэлектронной функции молекулы Н2 из одноэлектронных (табл. 3).

Таблица 3. Естественные заселенности в молекуле H2 [35]

Матрицу плотности ρ(r|r'), как и матрицы плотности более высокого порядка, можно представить через "естественные" заселенности и соответствующие естественные функции в виде естественного разложения:

(4.21)

Такое представление матрицы плотности обобщает приведенное выше выражение (4.6) для одноэлектронной матрицы плотности "чистого" состояния одного электрона с определенной ψ-функцией. В случае многоэлектронной системы отдельному электрону уже нельзя сопоставить какую-либо функцию ψ(r). Состояние электрона в многоэлектронной системе является "смешанным" и описывается одноэлектронной матрицей плотности ρ(r|r') или набором функций ψν(r) и соответствующих им "чистых" состояний. При этом вероятность пребывания электрона в состоянии, определяемом функцией ψν, характеризуется естественной заселенностью nν.

Вследствие антисимметричности многоэлектронной функции Ψ(x1,...,xN) относительно перестановок естественные заселенности орбиталей лежат в пределах 0≤nν≤2, т. е. каждое бесспиновое состояние может быть занято не более чем двумя электронами, причем этим двум электронам сопоставляются спин-орбитали с разными спиновыми множителями, а именно ψν(r)α(σ) и ψν(r)β(σ). Нормировка одноэлектронной матрицы плотности на число электронов в системе (N) означает, что сумма всех естественных заселенностей равна N.

Многоэлектронные функции Ψ(x1,...,xN) содержат очень большую информацию, значительная часть которой, как правило, не представляет физического интереса. Дело в том, что операторы, соответствующие наблюдаемым физическим величинам, являются суммами одно- и двухчастичных операторов

(4.22)


Каждый из операторов i действует только на одну переменную (xj), и каждый из операторов ij действует только на две переменные (хi и хj. Поэтому при вычислении ожидаемых значений одноэлектронные физические величины определяются исключительно одноэлектронной, а дьухэлектронныефизические величины — двухэлектронной матрицей плотности. Последняя заключает в себе фактически всю необходимую информацию о состоянии многоэлектронной системы.

Из всего сказанного выше можно сделать вывод, что использование формализма матрицы плотности в. квантовохимических расчетах должно существенно упрощать их физическую и химическую интерпретацию.

Наиболее полное и строгое изложение метода матрицы плотности в теории молекул дано в монографии М. М. Местечки на [17].

Канонические и локализованные молекулярные орбитали

Молекулярные орбитали fiопределяются обычно как собственные функции некоторого одноэлектронного гамильтониана :

(4.23)


В качестве должен использоваться в принципе оператор Хартри-Фока (фокиан), оптимальным образом учитывающий согласованное взаимодействие электронов в молекуле (см. гл. 3). Этот оператор часто аппроксимируется полуэмпирическими модельными одноэлектронными гамильтонианами. В любом случае предполагается, что симметрия гамильтониана соответствует симметрии молекулы. При этом собственные функции гамильтониана, инвариантного относительно преобразований некоторой точечной группы симметрии, должны преобразовываться по неприводимым представлениям этой группы. Молекулярные орбитали, обладающие такими свойствами симметрии и определяемые как собственные функции одноэлектронного гамильтониана, называются каноническими молекулярными орбиталями. Уже из свойств симметрии канонических МО ясно, что их нельзя сопоставить отдельным химическим связям в молекуле. Канонические МО существенно делокализованы и не отражают экспериментально подтверждаемые аддитивность и транс-ферабельность (т. е. переносимость из одной, в другую родственную молекулу) многих молекулярных свойств.

В то же время каждой канонической МО соответствует одно-электронная энергия εi, которая, согласно теореме Купманса, определяет потенциал ионизации молекулы, то есть энергию удаления электрона из i-гo одноэлектронного состояния в молекуле. Эти орбитали могут успешно использоваться и при оценках энергий электронных возбуждений.

В однодетерминантном приближении канонические МО являются одновременно естественными молекулярными орбиталямц в том смысле, что одноэлектронная плотность представима в виде естественного разложения:

(4.24)

Весьма существенным обстоятельством является (N/2)-кратное вырождение естественных заселенностей n1 = ...nN/2 = 2. Это вырождение обусловлено однодетерминантным приближением и может быть названо случайным в отличие от вырождения, наблюдаемого при достаточно высокой симметрии молекулы. Иными словами, в одноэлектронном (точнее однодетерминантном) приближении все МО, определяемые уравнением (4.23), классифицируются на "занятые" МО, заселенные парами электронов, и "свободные" или виртуальные МО, не включаемые в детерминант Слэтера и характеризуемые нулевыми электронными заселенностями.

Очевидно, что в силу указанного вырождения естественное разложение и распределение электронной плотности не изменяются при унитарном преобразовании орбиталей fi. В частности, унитарным преобразованием канонических МО можно попытаться построить МО, локализованные на отдельных атомах и связях. Такие локализованные молекулярные орбитали могут преобразовываться по приводимым представлениям точечной группы симметрии молекулы и в этом отношении существенно отличаются от канонических МО. Если некоторое преобразование симметрии меняет местами эквивалентные атомы или связи, то локализованные на этих атомах и связях МО также должны поменяться местами.

В качестве примера рассмотрим молекулу метана СН4. Канонические МО, представленные линейными комбинациями валентных АО для молекулы метана, могут иметь вид:

Орбиталь f0 является полносимметричной (неприводимое представление a1 тетраэдр и ческой группы симметрии Td). Орбитали f1, f2, f3 преобразуются по трехмерному неприводимому представлению t2 и соответствуют одному и тому же трехкратно вырожденному одноэлектронному уровню εt2, определяющему первый потенциал ионизации молекулы метана.

Указанные канонические МО можно преобразовать в четыре эквивалентные относительно преобразований группы Тd, локализованные МО:

где i = 1, 2, 3, 4 и hiC — гибридные АО атома углерода, определяемые равенствами:




Как гибридные АО hiC, так и локализованные преобразуются по приводимому четырехмерному представлению группы Тd: при операциях симметрии, образующих эту группу, либо не изменяется, либо переводится в другую локализованную МО. Именно в этом смысле гибридные АО hiC и локализованные называются эквивалентными. Легко видеть, что могут быть отнесены к отдельным связям С-Hi, и их локализация на отдельных связях будет тем более строгой, чем меньше разность |b-d|. Локализацию можно считать абсолютной, если а = с и b = d, но в действительности эти равенства не выполняются строго.

Каждой из эквивалентных локализованных МО соответствует одно общее значение одноэлектронной энергии:

(4.25)

(4.26)

которому, однако, нельзя сопоставить потенциал ионизации или иную наблюдаемую характеристику молекулы.

Следует отметить также тесную связь понятий локализации МО и гибридизации АО, которую иллюстрирует рассмотренный выше пример. Гибридизация АО должна обеспечивать представление локализованных молекулярных орбиталей минимальным числом базисных гибридных атомных орбиталей. В свою очередь каждая гибридная АО должна участвовать в минимальном числе локализованных МО.

Как правило, построение локализованных МО из одних лишь соображений симметрии не является возможным и необходимо привлечение дополнительных критериев и определенной методики локализации. К настоящему времени разработано несколько методов преобразования канонических МО, найденных тем или иным путем, в МО, локализованные на отдельных атомах и связях. Некоторые из этих методов мы рассмотрим ниже.

Методы Эдмистона-Рюденберга и Бойса. В методе, предложенном Эдмистоном и Рюденбергом [38], определяются ор-битали самосогласованного поля, которые отделены друг от друга насколько это возможно, хотя на них заранее не накладывается условие определенной локализации в пространстве или на отдельных атомах и связях.

Среднее межорбитальное разделение характеризуется суммой кулоновских двухэлектронных интегралов:

(4.27)

причем унитарное преобразование локализации

(4.28)

должно обеспечивать минимальность величины J(2). В силу равенства

(4.29)

и инвариантности первой суммы в правой части этого равенства относительно преобразования (4.28) минимум величины J(2) соответствует максимуму

(4.30)

J(1) характеризует в среднем плотность орбиталей fi в смысле интеграла

(4.31)

определяющего энергию отталкивания двух электронов, находящихся в одном и том же i-м одноэлектронном состоянии, заданном орбиталью fi. Из равенства

(4.32)

и инвариантности следует далее, что минимум J(2) и максимум J(1) обеспечивают минимальное значение суммы обменных двухэлектронных интегралов:

(4.33)

На возможность использования энергии обменного взаимодействия К в качестве критерия локализации МО указывали Леннард-Джонс и Попл. Минимизация К позволяет максимально приблизить выражение для энергии электронного взаимодействия к виду, соответствующему аппроксимации многоэлектронной функции простым произведением спин-орбиталей. В этом случае каждому электрону, точнее каждой паре электронов, можно приписать определенную локализованную орбиталь. Такое соответствие между электронами и орбиталями нарушается при антисимметризации N-электронной функции-произведения, т. е при учете неразличимости электронов и связанной с ней антисимметричностью точной многоэлектронной функции относительно перестановок электронов.

Об уменьшении при локализации МО обменной энергии электронного взаимодействия, а также об увеличении J(1) и уменьшении J(2) по сравнению со значениями, соответствующими каноническим МО, можно судить по данным табл. 4, полученным в работе [82] для гидридов бора.

Таблица 4. J(1), J(2) и K для исходных канонических и локализованных МО

В табл. 5 приведены результаты Эдмистона и Рюденберга по локализации МО в молекулах N2, СО и BF. Первая из этих молекул характеризуется симметрией D∞h, гетеронуклеарные СО и BF — симметрией C∞ν. Их канонические МО должны поэтому классифицироваться на σ- и π-орбитали. Каждая из рассматриваемых изоэлектронных молекул содержит десять электронов в σ-системе и четыре — в π-системе. Четыре из десяти σ-электронов принадлежат атомным остовам в том смысле, что описываются МО (iA), локализованными на внутренних (остовных) σ-оболочках. Эти орбитали практически идентичны атомным 1s-орбиталям. Следующие четыре σ-электрона описываются локализованными МО (lА), представляющими неподеленные электронные пары атомов. Оставшиеся два электрона должны относиться, очевидно, к связывающей σ-орбитали. Однако локализация МО по методу Эдмистона и Рюденберга приводит к связывающим МО иной симметрии. Эти локализованные МО (bi) не могут быть отнесены ни к σ-, ни к π-типу. Они образуют систему трех эквивалентных, так называемых банановых МО, переводящихся друг в друга преобразованиями группы С и определяемых с точностью до произвольного поворота относительно молекулярной оси. В ряду молекул N2, CO, BF характер трех эквивалентных связывающих МО bi монотонно меняется от строго ковалентного для N2 до существенно поляризованного в направлении атома фтора для молекулы BF. В последнем случае они подобны неподеленным парам атома фтора.

Таблица 5. Орбитали Эдмистона-Рюденберга в молекулах N2, CO и BF

Практическая реализация метода Эдмистона-Рюденберга предполагает использование формализма самосогласованного поля и вычисление большого числа двухэлектронных интегралов, что представляет довольно сложную математическую задачу. Количество таких интегралов, как и время, необходимое для максимизации J(1) (или минимизации J(2) и К), очень быстро растет с увеличением числа электронов в системе и числа базисных АО, используемых для представления МО.

Следует отметить также, что метод Эдмистона и Рюденберга, строго говоря, не гарантирует соответствия между локализованными МО и отдельными атомами или связями. Впрочем, это обстоятельство может рассматриваться не только как недостаток, но и как достоинство метода, поскольку он допускает в принципе представление МО в базисе, существенно отличающемся от многоцентрового базиса АО.

В вычислительном отношении более удобным, чем метод Эдмистона-Рюденберга, является метод Бойса [31]. В качестве критерия, определяющего степень локализации МО, в этом методе используется сумма квадратов расстояний (Ri) между центрами тяжести орбиталей:

(4.34)

где

(4.35)

Локализованные по Бойсу МО характеризуются максимальным разделением в пространстве по критерию В и одновременно минимальными среднеквадратическими радиусами, точнее минимальным значением суммы их квадратов:

(4.36)

Недостатком метода Бойса является то, что он не обеспечивает эффективного разделения валентных и остовных АО. Например, 1s- и 2s-орбитали сферически-симметричны и никаким преобразованием нельзя изменить расстояния между их центрами тяжести (которое всегда равно нулю). С другой стороны, смешение остовной 1s-орбитали с валентными np-орбиталями должно приводить к увеличению расстояния от нулевого до некоторого конечного (для гибридных АО) значения. Максимуму значения В при этом должна соответствовать тетраэдрическая гибридизация 1s- и nр-АО. В действительности наряду с остовной 1s-орбиталью следует принимать во внимание и валентную ns-AO. Именно она должна смешиваться с другими валентными АО. Но с учетом сказанного выше ясно, что метод Бойса может приводить к завышенному вкладу остовных АО в связывающие МО.

Метод проецирования. Метод проецирования, предложенный в работах Полака [73] и позднее развитый Роби [74], основан на том, что одноэлектронная матрица плотности ρ1(x|x') в однодетерминантном приближении является ядром оператора проектирования на подпространство занятых молекулярных спин-орбиталей. Поэтому для любой нормированной спин-орбитали ψ проекционная норма

(4.37)

удовлетворяет неравенству

(4.38)


причем если спин-орбиталь ψ целиком принадлежит подпространству занятых молекулярных спин-орбиталей, и если спин-орбиталь ψ ортогональна к этому подпространству.

Следуя Полаку, локализованную на атоме А МО, описывающую неподеленную электронную пару или орбиталь внутренней оболочки атома, можно определять как линейную комбинацию орбиталей атома А (т. е. как гибридную АО этого атома):

(4.39)

максимизирующую проекционную норму . Если бесспиновая одноэлектронная матрица плотности ρ(r|r') представлена в базисе АО g матрицей

(4.40)

и базис g характеризуется матрицей перекрывания S, причем S'a = 0 для а, а' ∈ А, то столбец Ua, представляющий искомую гибридную АО ha, является собственным вектором матрицы Q(A) образуемой матричными элементами (SPS)aa' ∈ А, и этот собственный вектор отвечает максимальному собственному значению nа. Когда последнее равно двум, гибридная АО ha будет в точности совпадать с естественной МО, описывающей неподеленную электронную пару; когда na ≈ 2, гибридная АО ha будет аппроксимировать такую орбиталь.

Двух-, трех- ... и K-центровые МО, локализованные на атомных группах (связях) G = (A1,..., AK) и представленные линейными комбинациями вида

(4.41)

определяются в методе проецирования аналогичным образом, т. е. посредством диагонализации матриц Q(G) при условии ортонормированности

(4.42)

Согласно работам [73, 74], процедура локализации МО осуществляется в следующей последовательности:

1) сначала определяются одноцентровые , локализованные на остовных и валентных оболочках отдельных атомов;

2) одноцентровые исключаются из исходного базиса преобразованием

(4.43)

и канонической ортонормировкой линейно-зависимого набора орбиталей g';

3) в полученном ортонормированием базисе, включающем меньшее число орбиталей, чем исходный базис АО g, определяются двухцентровые МО ;



4) если число найденных и в сумме отлично от числа всех занятых канонических МО, аналогичным образом определяются многоцентровые последовательно для К = 3, 4,..., пока число локализованных МО не сравняется с числом занятых канонических МО.

Таблица 6. Одноэлектронная матрица плотности для молекулы метана, представленная в ортогонализованном (по Лёвдину) базису АО

Следует отметить, однако, что такую последовательность построения локализованных МО не всегда можно считать оправданной. Например, нет оснований для поиска локализованных трехцентровых МО диборана в подпространстве занятых МО, более узком, чем рассматриваемое при построении двухцентровых МО этой молекулы.






Существенным недостатком метода проектирования является то, что он приводит к неортогональным наборам локализованных МО. В частности, орбиталь hа, принадлежащая атому А и перекрывающаяся с орбиталью hb, атома В, принадлежит отчасти и последнему атому, а перекрывание МО l, локализованной на связи АВ, и МО l локализованной на связи АС, означает, что l и делокализованы на связи АС и АВ соответственно. В работах [73, 74] предлагалось ортогонализовывать наборы по методу Лёвдина [62]. Однако локализация получаемых таким образом МО не будет оптимальной в смысле максимума проекционной нормы . Поэтому метод проектирования удобно применять в тех случаях, когда требуется выделить лишь одну локализованную МО, например МО, реализующую донорно-акцепторную связь в аддукте Н3В. NH3.

Представляется разумным формулировать метод проектирования в ортогонализованном по Лёвдину многоцентровом базисе АО, орбитали которого могут рассматриваться как "модифицированные АО", представляющие атомы в химическом соединении. К такому базису относятся фактически результаты полуэмпирических расчетов МО в приближении полного пренебрежения дифференциальным перекрыванием. Следует отметить, что ортогонализация многоцентрового базиса АО g обеспечивает ортогональность гибридных АО неподеленных электронных пар, но двухцентровые или многоцентровые локализованные МО, определяемые методом проектирования, остаются при этом неортогональными, если связиi на которых они локализованы, имеют общие атомы.

Рассмотрим теперь в качестве примера, иллюстрирующего метод проектирования, данные по локализации МО и гибридизации АО в молекуле метана, полученные нами на основе расчетов в приближении полного пренебрежения дифференциальным перекрыванием. В табл. 6 приведена одноэлектронная матрица плотности Р для молекулы метана, равновесная геометрия и ориентация в пространстве которой определяются данными табл. 7. Вычислим двухцентровую МО, локализованную на связи С-H1. Для этого выделим из матрицы Р блок, соответствующий орбиталям атома углерода и атома водорода H1:

и приведем его унитарным преобразованием к диагональному виду

(4.44)

Таблица 7. Декартовы координаты атомов в молекуле метана,Ао

Собственные значения nl равны 2,000; 1,150; 1,009; 1,009; 0,000. Таким образом, одна из одноцентровых орбиталей, представленная в базисе АО

столбцом

оказывается естественной МО, строго локализованной на связи С-Н1 и заселенной двумя электронами. Эту локализованную МО можно записать в виде следующей линейной комбинации базисных атомных орбиталей:

или

где

гибридная АО углерода, ориентированная вдоль связи С-Н1, Существенно, что s-характер этой гибридной орбитали равен 33%, что соответствует sр2-гибридизации атома углерода и явно противоречит распространенному в химической литературе мнению о sp3-гибридизации углерода в метане и других насыщенных соединениях. Такое противоречие является следствием того что метод проектирования приводит к неортогональным наборам локализованных МО и гибридных АО, в то время как в теоретической химии обычно используется понятие об ортогональных орбиталях. Ортогонализация неортогонального набора четыоех эквивалентных гибридных АО hiC по методу Лёвдина приводит в рассматриваемом случае (СН4) к четырем ортогональным эквивалентным гибридным АО, которые идентичны гибридным АО углерода в метане, полученным из соображений симметрии. Вместе с тем следует отметить, что завышенный s-характер неортогональных гибридных АО углерода не является случайным. Как повышенная заселенность 2s-орбитали углерода в метане (1,2 против 1,0 для каждой из 2р-орбиталеЙ) он отражает "энергетическую предпочтительность" 2s-орбитали углерода по сравнению с его 2р-орбиталыо. В связи с этим уместно привести потенциалы ионизации свободного, т. е. химически не связанного, атома углерода, соответствующие его валентным орбиталям. Для 2s22p2-конфигурации I2s = 16,6 эВ и I2p = 12 4 эВ; для 2s2p3-конфигурации I2s = 24,7 эВ и I2p = 12,4 эВ.

Существенно для понимания особенностей метода проектирования то, что в отличие от обсуждавшихся ранее методов этот метод не приводит к смешиванию МО σ- и π-типа локализованных на кратных связях, например, в молекулах N2, CO, BF, C2H2 и C4H4. Однако вычисленные методом проецирования локализованные МО σ- и π-типа могут быть переведены дополнительным унитарным преобразованием в эквивалентные банановые МО аналогичные тем, которые были получены Эдмистоном и Рюденбергом (см. табл. 4.3).

Метод эталонной матрицы плотности. Метод эталонной матрицы плотности был предложен в 1968 г. Мак-Вини и Дель Ре [63] и получил дальнейшее развитие в работе [22].

Следуя Мак-Вини и Дель Ре, допустим, что МО могут быть локализованы в орбитали неподеленных и связывающих электронных пари, возможно, в вакантные орбитали некоторых атомов. Это означает, что каждую локализованную МО можно представить либо гибридной атомной орбиталью (ГАО), либо линейной комбинацией двух ГАО, относящихся к непосредственно связанной паре атомов. Будем предполагать пока, что заселенности этих гибридных АО равны, т. е. связи строго ковалентны. При учете поляризации двухцентровых локализованных связей орбитали неподеленных электронных пар и вакантные АО следовало бы рассматривать как случай предельной поляризации и выделять его особо не имело бы смысла. В силу сделанных допущений одноэлектронная матрица плотности в ортонормированном по методу Лёвдина многоцентровом базисе ГАО состоит из целых чисел 0, 1,2, причем каждой связывающей электронной пара соответствует блок , неподеленной электронной паре — диагональный элемент 2 и остальные элементы матрицы плотности равны нулю. Такая идеализированная матрица плотности называется эталонной.

Коэффициенты гибридизации, образующие матрицу

(4.45)

где А, В, С, ...- атомы в молекуле и одновременно соответствующие им наборы АО, определялись Мак-Вини и Дель Ре из условия минимума суммы орбитальных энергий

(4.46)

b предположении, что матрица Фока F(P) фиксирована и не меняется при преобразовании U. Однако Eoрб составляет лишь часть полной электронной энергии Eэл, и то обстоятельство, что изменение δEэл совпадает с δEорб в линейном по δР приближении, не может служить обоснованием критерия Мак-Вини и Дель Ре, так как величина Еэл должна быть стационарной относительно варьирования матрицы плотности, и определяюдими для ее изменения следует считать приближения более высокого порядка. В то же время вследствие зависимости F от матрицы плотности и, следовательно, от U точная минимизация Еэл относительно U является довольно сложной задачей.

Более простым в вычислительном отношении является метод, основанный на минимизации (посредством гибридизации АО) :реднеквадратического отклонения заданной в гибридном базисе матрицы плотности Ph от эталонной [22]. Для его реализации не требуется решения задачи самосогласованного поля при определении локализованных МО и соответствующих им ГАО, если эта задача уже решена в целях определения канонических МО или матрицы плотности. Основанием для такого выбора критерия оптимальности гибридных АО может служить то, что полная электронная энергия молекулы стационарна относительно малых вариаций одноэлектронной матрицы плотности

(4.47)

т.е.

(4.48)

при условии, что исходная матрица плотности Р вычислена в приближении самосогласованного поля и δР — достаточно малая (в смысле евклидовой нормы ||δP||) эрмитова матрица, определяемая формулой (4.47).

В качестве примера, иллюстрирующего формализм метода эталонной матрицы плотности, рассмотрим локализацию МО σ-типа в молекуле HCN. Предполагая, что в этой молекуле имеется одна неподеленная электронная пара, две остовные орбитали и две двухцентровые орбитали σ-типа, реализующие ковал ентные связи НС и CN, эталонную матрицу плотности записывают в виде

Исходная матрица плотности, вычисленная по методу МО, в ортонормированном базисе сферических АО

существенно отличается от :

Однако преобразованием гибридизации АО базиса g:

(4.49)

и его ортогонализацией:

(4.50)

можно добиться того, что по отношению к новому базису

(4.51)

матрица плотности примет вид


В отличие от исходной матрицы Р матрица Ph может аппроксимироваться эталонной матрицей . Последняя отвечает строгой локализации МО, которые в ортонормированном (по Лёвдину) базисе представлены столбцами матрицы

Виртуальные МО также могут быть локализованы, причем каждой занятой связывающей МО

(4.51)

соответствует виртуальная разрыхляющая

(4.52)

Остальные локализованные виртуальные МО являются просто вакантными гибридными АО.

Если исходный набор МО

(4.53)

включающий и виртуальные МО, преобразуется в набор строго локализованных МО (также включающий виртуальные МО) преобразованием

(4.54)

то матрица Т, осуществляющая строгую локализацию исходных МО f, определяется как

(4.55)

где

В рассматриваемом примере (HCN) гибридные АО выражаются через исходные сферические АО согласно следующим равенствам:

Из этих выражений видно, что в приближении строгой локализации МО гибридные АО h1C и h1N являются орбиталями электронных пар остова, h3N-ГAO представляет неподеленную электронную пару азота, остальные ГАО образуют МО σ-типа, локализованные на связях НС и CN. Степень локализации МО характеризуется среднеквадратическим отклонением матрицы плотности Рh от эталонной :

(4.56)

и удвоенной суммой квадратов интегралов перекрывания строго локализованных с исходными f:

(4.57)

ω не может превосходить числа электронов N (в рассматриваемой системе ω< 10), и локализация будет тем точнее, чем ближе значения ω и N.

Метод эталонной матрицы плотности обобщается для случаев, когда необходимо учитывать полярность локализованных двухцентровых МО. Такое обобщение можно осуществить при замене в эталонной матрице плотности блоков







и при определении параметров поляризации t вариационным методом [63]. Строго ковалентным связывающим МО при этом будет соответствовать значение t = π/2, а неподеленным электронным парам и вакантным ГАО — t = 0 или π. Строго говоря, такое обобщение рассматриваемого метода уже не позволяет называть его методом эталонной матрицы плотности. Легко убедиться, однако, что учет полярности связей, как правило, возможен и с фиксированной эталонной матрицей , т. е. результаты ее вариационного определения могут быть предсказаны заранее. При этом для ГАО неподеленных электронных пар (hl) ll = 2, Для вакантных ГАО (hi) ii = 0, а для валентных ГАО ha и hb, образующих локализованную ab, эталонные заселенности aa, bb и порядки связей ab определяются равенствами

и условием инвариантности атомных зарядов относительно гибридизации АО.

Коэффициенты разложения строго локализованных МО по ортогонализованным ГАО выражаются через их заселенности по формулам

Для молекулы HCN заселенность 1s-орбитали водорода равна 0,855 и, следовательно, заселенность гибридной АО углерода h2C равна 1,145. Так как сумма заселенностей всех σ-орбиталей углерода составляет 4,099, заселенность его h3С-ГАО равна 0,954. Определяя теперь порядки связей (недиагональные элементы матрицы Р) как среднегеометрические значения соответствующих заселенностей (диагональных элементов матрицы ), получаем

Вычисления свидетельствуют, что при учете полярности локализованных МО матрица Рh остается практически неизменной. Коэффициенты гибридизации также почти не меняются. В то же время максимум ω повышается до 9,98 (w ≈ 10), а минимум θ понижается до 0,25. Таким образом, учет полярности локализованных МО заметно улучшает аппроксимацию "точной" матрицы плотности Рh эталонной матрицей , хотя и является несущественным для определения характера гибридизации АО.

Метод эталонной матрицы плотности допускает обобщение на системы с многоцентровыми связями [22]. Типичным примером химического соединения ОМ, которого нельзя локализовать исключительно в одноцентровые и двухцентровые МО, является молекула диборана В2Н6 (рис. 19). Два из шести атомов водорода в этой молекуле имеют по два равноотстоящих соседних атома (B1 и В2). Каждый из атомов бора, в свою очередь, связан с четырьмя атомами водорода. Следует учитывать также возможность непосредственного химического взаимодействия атомов бора друг с другом.

Рис. 19. Молекула диборана


"Внешние" связи ВН в диборане, очевидно, реализуются двухцентровыми МО, образуемыми 1s-орбиталями водорода и гибридными АО бора. Еще не зная конкретного вида этих ГАО (h), можно определить их заселенности по известным заселенностям =n1sH. Предположим далее, что две другие валентные МО локализуются на трехцентровых связях B1H1'B2 и B1H2'B2 и что каждая из них образована 1sH'i орбиталью водорода и гибридными АО бора hi1' и hi2' причем


Таким образом определяются диагональные элементы эталонной матрицы плотности (). Недиагональные элементы ab, как было показано в работе [22], могут быть вычислены как геометрические средние значения диагональных элементов независимо от того, каким связям (двухцентровым или трехцентровым) они соответствуют.

Росле того как построена матрица , максимизацией ω(4.57) вычисляются оптимальные ГАО бора В1:

и ГАО атома В2, отличающиеся от указанных лишь знаком коэффициента при 2pz-орбитали.

Гибридные АО бора h1 и h2, ориентированные к периферийным атомам водорода H1 и Н2, образуют угол 120°; угол h'j-орбиталями, ориентированными к мостиковым атомам водорода H'j, существенно меньше и составляет 102° (ср. с углами на рис.19).

Интересный елучай представляет молекула циклопропана, особенностью которой, отличающей ее от молекул большинства других органических соединений, является аномально-малый угол между связями С-С. Три атома углерода в циклопропане образуют правильный треугольник с углами в 60°, что существенно меньше обычных значений 109,5° для насыщенных и 120° для сопряженных ненасыщенных соединений (рис. 20).

Рис. 20. Молекула циклопропана

Для описания структуры химической связи в циклопропане были предложены две модели. Согласно модели Коулсона и Моффита [36], в циклопропане реализуются три локализованные двухцентровые двухэлектронные связи углерод-углерод. Образующие эти связи гибридные АО ориентированы навстречу друг другу, но не строго по линии С-С, а под некоторым углом к ней (рис. 21). Из условия ортогональности вещественных гибридных АО следует, что этот угол не может быть меньше 15°. Особые химические свойства циклопропана, близкие к свойствам алкенов (хотя он относится к насыщенным углеводородам), объясняются в рамках модели Коулсона и Моффита тем, что "банановые" МО циклопропана подобны эквивалентным банановым МО, которые получают — π-типа в алкенах.

Рис. 21. Модель Коулсона и Моффита для молекулы циклопропана

Согласно модели Уолша [84], в циклопропане реализуются две трехцентровые межуглеродные связи, одна — двухэлектронная, а другая — четырехэлектронная (рис. 22). Двухэлектронной связи соответствует полносимметричная трехцентровая МО, четырехэлектронной — две вырожденные МО, образованные "чистыми" 2р-орбиталями углерода и преобразующиеся по двумерному неприводимому представлению группы симметрии молекулы D3h).

Рис. 22. Модель Уолша для молекулы циклопропана

Метод эталонной матрицы плотности позволяет сравнить качество альтернативных моделей и вычислить отвечающие им коэффициенты гибридизации АО углерода. Вычисленный s-xaрактер ГАО, реализующих двухцентровые углерод-углеродные связи в модели Коулсона и Моффита, χs = 18%, и вычисленное значение угла между этими ГАО (принадлежащими общему атому углерода) равно 102°, что означает их отклонение на 21° от линии, связывающей атомные ядра. Гибридные АО, реализующие трехцентровые двухэлектронные связи в модели Уолша, определяются значением χs = 35% и ориентацией к центру молекулы циклопропана. Наконец, гибридные АО, реализующие углерод-водородные связи, как свидетельствуют вычисления, почти не зависят от выбора модели и ориентированы вдоль линии С-Н.

Погрешности, вносимые в одноэлектронную матрицу плотности молекулы циклопропана локализацией МО, характеризуются величинами:

Таким образом, модель Коулсона-Моффита, предполагающая более высокую степень локализации МО, не уступает по точности модели Уолша и даже несколько превосходит ее. Однако различие в точности рассматриваемых моделей достаточно мало, и ни одну из них нельзя считать ошибочной.

Анализ заселенности атомных орбиталей

[23]

В квантовой химии функции Ψ, описывающие состояния многоэлектронных систем, обычно выражаются через АО или подобные им более элементарные функции, центрированные на различных ядрах молекулы. Такой выбор одноэлектронного базиса {φ} основан на предположении, что атом, представленный определенным набором орбиталей в таком базисе, сохраняет в молекуле свою индивидуальность. В связи с этим встает задача построения формализма, позволяющего характеризовать состояния химически связанных атомов и установить корреляции между этими состояниями и состояниями невзаимодействующих атомов.

Анализ заселенностей орбиталей, представляющих атом в молекуле, в значительной степени определяет его валентное состояние и является Эффективным средством исследования природы химической связи, ее анатомии, аддитивности и трансферабельности связанных с атомами молекулярных свойств или их зависимости от окружения рассматриваемого атома в различных соединениях. Анализ заселенностей АО позволяет осуществить выбор базисных функций, соответствующих валентным состояниям атомов, и необходим при расчете электронной структуры молекул и кристаллов полуэмпирическими методами с самосогласованием по формальным зарядам и валентным конфигурациям

атомов. Однако анализ заселенностей осложняется перекрыванием атомных орбиталей в молекуле.

Если последние ортогональны, т. е. не перекрываются, то их заселенности определяются однозначно. При этом заселенность па имеет смысл вероятности нахождения электрона в состоянии, заданном атомной орбиталью φа, и может быть выражена как математическое ожидание:

(4.58)

Если атомные орбитали неортогональны, то положение осложняется. Понятие заселенности отдельной АО становится неоднозначным и распадается на дополняющие друг друга понятия полной, неподеленной и аддитивной заселенности и заселенности перекрывания, которые связаны с различными способами ортонормировки атомно-орбитального базиса {φ}.

Полные заселенности (n+а) орбиталей φа неортогонального базиса {φ} определяются аналогично заселенностям ортогонального базиса:

(4.59)

Предполагая, что оператор электронной плотности ρ представлен в базисе {φ} матрицей , определение (4.59) можно переписать также в виде

(4.60)

Детальное исследование заселенностей n+a было проведено Дэвидсоном [37] и Роби [74], которые показали, в частности, что

где n1 — наибольшая из естественных заселенностей. Это неравенство, как и аналогичные неравенства для определяемых ниже заселенностей n-a и n0а, следует из условия антисимметрии многоэлектронной функции Ψ(х1,..., хN) относительно перестановок электронных координат.

Неподеленную заселенность (n-а) орбитали φа можно определить как заселенность ее компоненты, которая ортогональна ко всем прочим орбиталям φ:

(4.62)

где

(4.63)

aS в формуле (4.63) обозначает матрицу перекрывания, полученную из полной матрицы S вычеркиванием интегралов перекрывания Sab, включающих рассматриваемую орбиталь φа.Такая ортогонализация (аналогичная ортогонализации по методу Шмидта) исключает из полной заселенности n+а ту ее часть, которая принадлежит не только φа, но и остальным орбиталям неортогонального базиса (рис. 23).

Рис. 23. Геометрическая иллюстрация к определению неподеленной электронной заселенности

Учитывая отмеченное Галлупом и Норбеком [40] равенство

(4.64)

выражение(4.62) можно привести к чрезвычайно простому виду

(4.65)

В частном случае одноэлектронной системы, состояние которой описывается орбиталью

(4.66)

диагональные элементы матрицы плотности равны

(4.67)

(4.68)

Эта формула, то чиее ее правая часть, приводилась в работе [40], но лишь в качестве промежуточного результата. Окончательное выражение для заселенностей (по Галлупу и Норбеку) получалось путем нормирования n-а на единицу:

(4.69)

Обобщение формулы (4.69) на многоэлектронные системы, очевидно, должно осуществляться заменой |Са|2 на Раа:

(4.70)

Однако такой подход к проблеме является ошибочным. Расчеты свидетельствуют, в частности, о чрезмерно больших значениях n(GN) для АО внутренних оболочек и неподеленных электронных пар. Например, в молекуле LiH:

Заселенность перекрывания орбитали φа с остальными орбиталями неортогонального базиса φ определяется как разность между полной и неподеленной заселенностями:

(4.71)


Заселенность перекрывания представляет ту долю полной электронной заселенности, которая принадлежит одновременно к рассматриваемой и всем прочим базисным АО. Нетрудно убедиться в том, что величина равна нулю, если АО φа не перекрывается ни с одной из орбиталей базиса φ, т. е. если

(4.72)

для всех b≠a.

Аддитивная заселенность.

Сумма засел енностей n+a или n-а по всем базисным орбиталям совпадает с числом электронов (N) в рассматриваемой системе только в том случае, если эти орбитали ортогональны. Иными словами, заселенности орбиталей неортогонального базиса неаддитивны.

Чтобы определить аддитивные заселенности АО, необходимые, например, для вычисления формальных зарядов атомов, следует сопоставить каждой АО φа неортогонального базиса орбиталь φλa некоторого ортонормированного базиса. Требование минимальной деформации исходных орбиталей в процессе ортогонализации однозначно отбирает из всех возможных методов ортогонализации "симметричный" метод Лёвдина (рис. 24)

(4.73)

Рис. 24. Геометрическая иллюстрация лёвдинской ортогонализации двух неортогональных векторов φ1 и φ2

Как показали Слэтер и Костер, ортонормировка по Лёвдину сохраняет трансформационные свойства неортогонального базиса в том смысле, что при унитарном преобразовании базиса {φ} соответствующий лёвдинский базис {φλ} преобразуется той же унитарной матрицей. Отсюда следует, в частности, что орбитали φλа исходного многоцентрового базиса АО и соответствующие им орбитали φλa преобразуются по одним и тем же представлениям подгруппы GA точечной группы симметрии молекулы (G). При этом подгруппа GA включает только те преобразования группы G, которые не затрагивают центр А (т, е, ядро атома A). Таким образом, орбитали φa и фλa обладают одинаковыми свойствами симметрии относительно указанных преобразований.

Согласно теореме Карлсона и Келлера, лёвдинский базис отличается от всех прочих базисов, полученных ортогонализацией исходного базиса {φ}, максимальной близостью к {φ} в смысле минимума среднеквадратического отклонения

(4.74)



Представление об изменении формы и размеров атомных орбиталей при их ортогонализации можно получить, сравнивая средние значения и или среднеквадратические радиусы Для сферических АО с соответствующими значениями для ортогонализованных орбиталей. Такие вычисления (в табл. 8 приведены результаты для молекулы N2) свидетельствуют, что орбитали лёвдинского базиса, соответствующие валентным АО, могут быть локализованными в окрестности атомных ядер в большей степени, чем исходные. Сжатие орбиталей наблюдается как в "поперечном", так и в "продольном" направлениях. 1s-Орбитали внутренних оболочек при ортогонализации несколько расширяются, оставаясь тем не менее существенно локализованными у своих ядер. Среднеквадратический радиус этих орбиталей в несколько раз меньше, чем валентных.


Таблица 8. Средние значения и среднеквадратические радиусы характеризующие АО азота и соответствующие лёвдинские орбитали в молекуле N2

С учетом сказанного выше, аддитивные (лёвдинские) заселенности (n0) орбиталей неортогонального базиса φ следует отождествлять с заселенностями соответствующего лёвдинского базиса:

(4.75)

Формальный заряд qA атома А определяется зарядом его ядра ZA и аддитивными заселенностями представляющих этот атом орбиталей:

(4.76)div> формальные заряды атомов отражают перераспределение электронной плотности при образовании молекулы и являются полезной характеристикой валентного состояния атома. В частности,они позволяют производить интерполяцию атомных свойств по известным свойствам свободных атомов. Так, потенциалы ионизации химически связанных атомов могут оцениваться по формуле

(4.77)

Следует отметить сильную зависимость потенциала ионизации Вот заряда атома. Несколько примеров, характеризующих эту зависимость, приведено в табл. 9.

Таблица 9. Зависимость орбитальных потенциалов ионизации от атомного заряда q (экспериментальные данные) [27]

Формальные заряды атомов используются часто для оценки энергии электростатического взаимодействия

(4.78)

и для определения дипольных моментов больших молекул в точечном приближении

(4.79)

Рассмотрим теперь несколько примеров, иллюстрирующих вложенный формализм анализа заселенностей многоцентрового азиса перекрывающихся АО.

1. Для молекулы Н2 для π-электронных оболочек молекул азота (N2), этилена, ацетилена и для ряда других аналогичных двухорбитальных систем, содержащих по два электрона, матрица плотности и заселенности АО определяются симметрией и перекрыванием базисных АО:

где интеграл перекрывания АО S>0. Уменьшая расстояние между атомами, в пределе мы получим

Напротив, при бесконечном разведении атомов

2. π-Электронные системы в молекулах F2, ClF и в других аналогичных молекулах независимо от их симметрии (D∞h или C∞h) характеризуются заселенностями АО π-типа

которые не зависят от интегралов перекрывания. Эти АО представляют неподеленные электронные пары соответствующих атомов.

3. Валентное состояние атома Li в молекуле LiH (табл. 10) характеризуется положительным формальным зарядом и существенным перераспределением электронной плотности между 2s-орбиталью и виртуальной (для основной конфигурации свободного атома Li) 2pσ-орбиталью. Две эти АО незначительно различаются по заселенности перекрывания в молекуле LiH, в то время как 1s-AO лития практически не участвует в образовании химической связи и представляет неподеленную электронную пару атомного остова.

Таблица 10. Анализ заселенностей АО в молекулах LiH, HCN, НСO2Н, (НСO2Н)2

4. Анализ заселенностей АО в молекуле HCN (см. табл. 10) свидетельствует о том, что АО π-типа характеризуется существенно меньшими по сравнению с АО σ-типа значениями заселенностей перекрывания. Малые значения формальных атомных зарядов в HCN указывают на ковалентный характер химической связи в этой молекуле.

5. Анализ заселенностей атомов водорода, ответственных за образование водородной связи, в молекулах муравьиной кислоты и ее димера (см. табл. 10), осуществленный на основе расчета матрицы плотности расширенным методом Хюккеля с самосогласованием по формальным зарядам атомов, показывает, что водородная связь обусловливает заметное изменение электронных заселенностей мостикового атома водорода (Н*). При этом заселенность перекрывания существенно возрастает вследствие увеличения полной и уменьшения неподеленной заселенностей. В то же время аддитивная заселенность и соответствующий ей формальный заряд атома водорода почти не изменяются.

Анализ заселенностей по Малликену. Наряду с изложенным выше подходом к анализу заселенностей существуют альтернативные подходы к этой проблеме. Наиболее популярными до настоящего времени являются предложенные Малликеном [67] определения нетто-заселенности Раа, заселенности перекрывания

(4.80)

и полной зеселенности

(4.81)

В основе этих определений фактически лежит равенство

(4.82)

представляющее условие нормировки матрицы плотности на число электронов (N) в молекуле. Левую часть этого равенства можно записать в виде суммы членов, относящихся к отдельным АО и их парам:

(4.83)

Таким образом, сумма нетто-заселен ноет ей всех АО и всех заселенностей перекрывания оказывается равной числу электронов в системе.

Однако это нельзя рассматривать как обоснование анализа заселенностей по Малликену ввиду неоднозначности разложения вида

(4.84)

где слагаемые выражены через элементы матрицы плотности Раb и интегралы перекрывания Sab.

Серьезным аргументом против предложенного Малликеном анализа заселенностей является то, что нетто- и полные заселенности могут принимать значения Рaa>2 и nMa>2. Не меньшую трудность представляет интерпретация отрицательных значений QMab, имеющих смысл отрицательного числа электронов, приходящихся на связь АО φa и φb.

Анализ заселенностей по Христоферзену и Бэкеру [33] формулируется в терминах коэффициентов разложения МО ψi по базисным АО φa:

(4.85)

При этом предполагается, что вес (или заселенность) АО φa, входящей в состав МО ψi, пропорционален квадрату модуля соответствующего коэффициента φa:

(4.86)

Из условия нормировки

(4.87)

для получается выражение

(4.88)

Суммированием величин nai по всем МО ψi с учетом их заселенностей далее определяются величины

(4.89)

Заселенности АО по Христоферзену и Бэкеру, как и заселенности по Малликену, могут принимать значения nCBa>2 (табл 11). В связи с этим интересно отметить, что Христоферзен и Бэкер обращали внимание на недопустимость таких значений, когда речь шла о малликеновском анализе заселенностей. Не менее серьезным обстоятельством, компрометирующим определение Христоферзена и Бэкера, является его неинвариантность относительно унитарного преобразования занятых МО, в то время как одноэлектронная матрица плотности и математические ожидания всех физических величин инвариантны относительно такого преобразования.

Таблица 11. Заселенности АО n0, nM и nCB в двухатомных молекулах LiH, BH, NH, FH, LiF, BF, CO [46]

Индексы химических связей и валентность

В химии принято различать одинарные, двойные, тройные, а также связи дробной кратности между атомами, образующими молекулу. Если МО могут быть локализованы на отдельных атомах и двухцентровых связях, то под кратностью связи двух атомов (А и В) естественно понимать число МО, локализованных на связи АВ. В случае молекул, обладающих неспаренными электронами, т. е. находящихся в основных или возбужденных состояниях с отличной от нуля мультиплетностью по спину, следует говорить о локализации спин-орбиталей и отождествлять с кратностью связи половину числа локализованных на ней молекулярных спин-орбиталей (МСО). В качестве примера можно привести ряд двухатомных гомонуклеарных молекул, для котоых локализованные МО (или МСО) являются либо орбиталями неподеленных электронных пар, либо связывающими двух-центровыми орбиталями (табл. 12).

Таблица 12. Кратности связей в некоторых гомонуклеарных молекулах

Однако такой подход к проблеме молекулярно-орбитальной интерпретации понятия кратности химической связи весьма ограничен двумя существенными причинами. Во-первых, локализация МО в орбитали неподеленных электронных пар и двухцентровые связывающие МО, как правило, не является строгой. Во-вторых, локализованные двухцентровые МО могут быть поляризованы, т. е. принадлежать одному из связанных атомов в большей степени, чем другому. При этом исчезает грань между полярной двухцентровой МО и орбиталью неподеленной электронной пары.

Эти причины обусловливают нецелочисленность кратности химических связей в многоатомных молекулах независимо от (того, какой спиновой мультиплетностью характеризуются их состояния. Как частичная делокализация МО, относящихся к некоторой связи, так и их поляризация в направлении любого из связанных атомов должны означать уменьшение кратности этой связи. В то же время делокализация МО, относящихся к другим связям, может вносить определенный вклад в кратность рассматриваемой связи.

Для учета указанных эффектов необходимо квантовохимическое определение кратности химической связи. К настоящему времени в квантовой химии используют довольно много различных индексов, характеризующих химическую связь двух атомов в молекуле, но не все из них соответствуют классическому понятию кратности химической связи. Хотя кратность химической связи не должна быть целочисленной, она должна быть все же величиной неотрицательной (нулевая кратность связи АВ означает отсутствие химической связи между атомами А и В) и инвариантной относительно унитарных преобразований (в частности, поворотов и гибридизации) атомных орбиталей отдельных атомов. Для гомонуклеарных двухатомных молекул квантово-химическое определение кратности должно обеспечивать целые или полуцелые ее значения (см. табл. 12).

Сформулированным условиям удовлетворяет определение кратности химической связи (КАВ) согласно равенству [3]:

(4.90)

где S — матрица перекрывания всех АСО атомов, образующих молекулу; R — матрица, представляющая в базисе этих АСО электронную плотность, точнее ее компоненту, соответствующую максимальному значению проекции полного спинового момента электронов молекулы на ось квантования; а и b — индексы спин-орбиталей атомов А и В.

При отсутствии одноэлектронного спин-орбитального взаимодействия матрица , определяемая формулой

(4.91)

имеет квазидиагональный вид

(4.92)

где Рα и Рβ — одноэлектронные матрицы плотности, соответствующие проекциям спинового момента +1/2 и -1/2. С учетом последнего равенства КАВ можно представить в виде

(4.93)

а также выразить через матричные элементы электронной (Р) и спиновой (Q) плотности [4]. При этом

(4.94)

(4.95)

и

(4.96)

Первый член в правой части этой суммы называется индексом Виберга [88] и используется для характеристики химических связей в молекулах с замкнутыми электронными оболочками, если расчет их структуры проводится в рамках приближения нулевого дифференциального перекрывания (S = I) (табл. 13).

Таблица 13. Индексы Виберга для некоторых соединений элементов первых трех периодов периодической системы [30]

Альтернативное квантовохимическое определение кратности химической связи было предложено в работе [42]. Согласно этому определению

(4.97)

В классической теории химической связи каждому атому молекулы сопоставляется определенная валентность, понимаемая как число, характеризующее состояние атома в этой молекуле. Распределение валентности VA атома A по связям его с остальными атомами молекулы описывается кратностями связей KAB, причем

(4.98)

Подставляя в это равенство выражение (4.90)$ можно определить VA через матричные элементы R и S [3]:

(4.99)

В однодетерминантном приближении для молекул, обладающих лишь замкнутыми электронными оболочками, выражение для валентности приводится к виду

(4.100)

где — электронная лёвдинская заселенность а-й орбитали, принадлежащей атому А. Последняя сумма может быть исключена из выражения для VA унитарным преобразованием (гибридизацией) атомных орбиталей [21].

Другое определение валентности

(4.101)

где nMa — заселенность АО по Малликену — можно получить, подставляя в равенство (4.98) формулу (4.97).

Уже отмечалось, что nMa может принимать значения > 2, которые противоречат принципу Паули. Такие неразумные заселенности вносят отрицательный вклад в величину VA. Очевидно, определение валентности атома через лёвдинские заселенности гибридных АО является более предпочтительным. В то же время не следует отказываться и от определения (4.101). Оно может быть полезным в тех случаях, когда в качестве результата расчета электронной структуры химического соединения приводятся заселенности АО по Малликену, а не по Лёвдину, причем опубликованной информации недостаточно, чтобы вычислить последние. Если перекрывание атомных орбиталей мало, то оба определения должны давать близкие результаты.

Систематическое исследование валентностей атомов от водорода до хлора было проведено Армстронгом, Стюартом и Перкинсом [29, 30]. Они показали, в частности, что валентности лития, бериллия и бора превышают номер группы периодической системы, в которой расположены эти Элементы (табл. 14). Интересные результаты были получены для фторидов фосфора, серы и хлора. Валентность указанных элементов оказывается близкой к числу присоединенных ими атомов фтора. В то же время индексы Виберга свидетельствуют о делокализованном характере связей в этих электронно-избыточных соединениях.

Таблица 14. Валентности атомов от лития до хлора в различных химических соединениях [30]

Значительный интерес представляет исследование валентности элементов, атомы которых обладают незаполненными d-оболочками. Армстронг, Фортуне и Перкинс [28] вычислили атомные заряды, индексы связей и валентности атомов в экзотической с точки зрения классической теории химической связи соли Цейзе К[C2H2PtCl3], а также в комплексных ионах платины транс-[РtXCl3]- и транс-[PtX(NH3)Cl2]. Результаты вычислений приведены в табл. 15 и 16. Спектр валентности лежит в пределах от 2,3 до 2,9, причем ее связи с лигандами характеризуются существенно дробными индексами К ≈ 0,7. Пониженные по отношению к ординарной связи (К = 1) значения этих индексов обусловлены отчасти полярностью связей, отчасти их делокализацией. При сопоставлении валентных структур молекулы этилена в свободном состоянии и в составе соли Цейзе можно видеть, что валентность углерода и водорода при комплексообразовании практически не меняется. То же самое можно сказать и о формальных зарядах этих атомов. Заметно понижается кратность связи углерод-углерод, но вместе с тем в комплексном анионе [C2H2PtCl3]- реализуются СВЯЗИ платины с атомами углерода, характеризуемые значениями КPtС = 0,33. Это обстоятельство влечет повышение валентности платины в соли Цейзе до 2,90 и обеспечивает неизменность валентности углерода.

Более детальное исследование валентной структуры комплексных соединений платины было проведено О. В. Сизовой и В. И. Барановским [24]. В частности, обобщая понятие валентности атома на многоатомные лиганды (L) и характеризуя σ- и π-донорную и акцепторную способность последних с помощью σ- и π-составляющих валентности VL, они классифицировали одиннадцать важнейших лигандов по их донорной и акцепторной активности. Была рассмотрена также зависимость свойств лигандов от состава комплекса и взаимное влияние лигандов, передаваемое через орбитали центрального атома.

Почему образуется химическая связь?

Традиционно образование химической связи объясняют понижением потенциальной энергии при сближении атомов, которое превосходит повышение кинетической энергии, так что алгебраическая сумма этих двух величин оказывается отрицательной. Однако, как было показано Рюденбергом [21], в действительности дело обстоит сложнее. По мнению Рюденберга, образование химической связи обусловлено преимущественно понижением кинетической энергии электронов вследствие их большей делокализации в молекуле, чем в невзаимодействующих атомах. Более детальный анализ проблемы был проведен Годдардом и Уильсоном [44] на примере молекулы водорода с использованием обобщенного метода ВС. Согласно этому методу, двухэлектронная функция молекулы Н2 может быть записана с точностью до нормировочного множителя в виде

(4.102)

где а(r) и b(r) — неортогональные молекулярные орбитали, оптимизированные для каждого межъядерного расстояния R.

При этом энергия обменного взаимодействия атомов водорода (Ех) может быть представлена как сумма кинетической (х) и потенциальных ядерной (Vnx) и электронной (Vех) составляющих:

(4.103)

где

(4.104)

(4.105)

(4.106)

— оператор кинетической энергии электронов; Vn — оператор потенциальной энергии ядер; Каb, Тab — обменный и кулоновский интегралы.

Рис. 26. Отдельные компоненты полной энергии молекулы Н2 как функци межъядерного расстояния (по Годдарду)

Оказывается, что из Ех можно выделить члены, отвечающие за образование связи. Из рис. 25, на котором изображены полученные Годдардом кривые зависимости величин Tx, Vnx, а также разности w = E — Tx от R, видно, что единственной отрицательной составляющей обменной энергии является Тх, причем ее понижение относительно ТR=∞x превосходит соответствующее изменение прочих составляющих энергии (Δw.) Чтобы объяснить этот факт, перепишем выражения для Tx и Vnx в следующем виде:

(4.107)

(4.108)

где "обменная матрица плотности"

(4.109)

vn — потенциал ядер и локальная кинетическая энергия

(4.110)

— оператор градиента.

Существенным является то, что в то время как в выражение для "обменной" матрицы плотности входят произведения орбиталей а(r) и b(r), величина tx включает градиенты этих орбиталей. Если обе орбитали в области связи имеют одинаковые знаки, то можно ожидать, что величина ρx будет мала в этой области вследствие частичной компенсации членов в квадратных скобках. Для величины tx, напротив, следует ожидать большого по абсолютной величине и отрицательного значения. Действительно, в области связи одна из орбиталей убывает, в то время как другая — возрастает, и градиенты этих орбиталей имеют различные знаки. Поэтому каждый член в квадратных скобках формулы (4.110) будет положительным.

До сих пор речь шла о низшем синглетном состоянии молекулы водорода. Для этого состояния ρх в области связи положительна (хотя и мала). Для триплетного состояния, соответствующего отталкиванию ядер атомов водорода без образования ими стабильной молекулы, можно показать, что величина ρх отрицательна. Это создает иллюзию, будто причиной образования молекулы является увеличение электронной плотности между ядрами. Такая точка зрения ие соответствует, однако, действительности. Следуя Годдарду, мы показали выше, что причиной образования химической связи правильнее считать благоприятную конградиентность орбиталей, реализующих связь. Однако следствием благоприятной конградиентности являются также положительные значения ρx. Иначе, концентрация электронной плотности в области связи, уменьшение локальной кинетической энергии в этой же области и образование стабильной молекулы являются следствиями одной и той же причины — благоприятной конградиентности орбиталей.

Загрузка...