Глава 1. Доквантовомеханические модели химической связи

Доквантовомеханические электронные теории ковалентной химической связи

Первые представления о химическом соединении как о целостном образовании, состоящем из противоположно заряженных частиц, находящихся в статическом равновесии, появились в начале прошлого века (Берцелиус, Дэви, Эрстед и др.). Однако в дальнейшем они не получили широкого признания. Экспериментальное открытие электрона Томсоном и Вихертом (1897 г.) создало предпосылки для появления первых электронных моделей атомов и молекул, т. е. началось выявление физического содержания понятий "химическая связь", "валентность", "структура" и т. п.

На развитие представлений о природе химической связи существенно повлияли физические открытия и теории, прежде всего теория атома Резерфорда — Бора. Следует отметить, что представления о природе химической связи, выдвинутые тем или иным исследователем в первой четверти XX в., существенно зависели от того, какую модель атома он принимал (или создавал). Поэтому все теории химической связи можно классифицировать по тому, какая модель [или какой тип модели: статический или динамический, резерфордовский (ядерный) или томсоновский] была положена в ее основу.

Можно выделить два типа моделей химической связи.

I тип. К нему можно отнести модели, созданные до появления теории Бора (1913 г.), и модели, созданные после 1913 г., но основанные на иных, не воровских, принципах описания структуры атома (например, статическая модель атома и молекулы Льюиса).

II тип. Модели, авторы которых пытались обобщить теорию Бора на молекулярных системах, можно разделить на две группы а) модели качественного характера (Фаулер, Сиджвик и др.); б) модели, включающие количественное описание структуры молекулярных систем, как правило, простейших (Н+2, Н2), на основе уравнений Гамильтона-Якоби с учетом условий квантования Вора-Зоммерфельда (Ниссен, Паули, Борн и др.). Эти работы фактически показали неспособность полуклассической теории типа теории Бора объяснить природу химического взаимодействия.

Большинство работ качественного характера (I и II типов) связаны между собой некоторыми общими идеями, подобными тем, которые высказал Льюис в 1916 г.- обобществление электронов, идентификация валентного штриха с двумя электронами, признание фундаментальной роли правила октета.

История создания различных электронных моделей строения молекул детально описана в работах [5, 6, 13, 25], поэтому авторы данной книги затрагивают лишь наиболее важные идеи и обращают внимание на работы, не рассмотренные ранее в историко-научной литературе.

Теория ковалентной связи Льюиса

Впервые свои идеи о строении молекул американский физико-химик Джидьберт Ньютон Льюис опубликовал в 1916 г., хотя первые предположения он делал гораздо раньше, еще в 1902 г. Основное внимание ученый уделил вопросу природы химической связи в неполярных молекулах.* Сопоставив полярные и неполярные соединения, чтобы выяснить, является ли разница между ними "разницей по существу или только в степени", Льюис пришел к выводу: "...углубляясь в обозрение всей области химических явлений, мы вынуждены... сделать заключение, что разница между наиболее полярными и неполярными молекулами есть разница только в степени и что отдельная молекула и даже часть молекул могут переходить от одного крайнего типа к другому не путем внезапного и резкого изменения, а путем неуловимых градаций" [59, с. 767]. Созданная Льюисом модель химической связи позволила ему объяснить природу указанных различий. Перейдем теперь к ее рассмотрению.

Остановимся сначала на первых двух постулатах Льюиса.

1. "В каждом атоме есть некоторое ядро, остающееся неизменным при всех химических превращениях и обладающее некоторым избытком положительных зарядов, их число отвечает номеру той группы периодической таблицы, к которой относится элемент".

2. "Атом состоит из ядра и внешней части или оболочки, содержащей отрицательные электроны, число которых в случае нейтрального атома равно избытку положительных зарядов ядра; число электронов в оболочке может изменяться при изменении химической природы атома от 0 до 8" [59, с. 768].

Таким образом, мы видим, что Льюис признает наличие в атоме положительно заряженного ядра. Но заряд ядра у него численно равен номеру группы Периодической системы элементов Д. И. Менделеева, где находится рассматриваемый элемент, а не порядковому номеру последнего. Поэтому и число электронов в каждом периоде изменяется, согласно Льюису, от нуля до восьми. Кроме того, в пояснениях к приведенным постулатам он указывает, что первый из них "имеет дело с двумя частями атома, которые в общих чертах соответствуют внутренним и внешним кольцам атома Томсона" [59, с. 768]. Все это говорит о том, что четкого выбора между двумя моделями атома (резерфордовской и томсоновской) Льюисом сделано не было. Смысл, вкладываемый им в термин "ядро" (kernel), не тождествен тому смыслу, который придавали ему Резерфорд, Бор и их единомышленники, но очень близок к понятию "внутренняя часть атома", которое использовал Томсон при обсуждении своей модели. Это хорошо видно из заключительных фраз статьи Льюиса: "Основная трудность в изучении этих элементов[1] с помощью настоящей теории связана, как я полагаю, с тем фактом, что понятие ядра атома не является однозначно и твердо определенным. Вполне вероятно, что в этих элементах может происходить перенос электронов из одной части ядра в другую или между ядром и внешней оболочкой, или, возможно, между двумя отдельными внешними оболочками одного и того же атома..." [59, с. 785].

Рассмотрим теперь третий постулат. Он включает два предположения: 1) "Атом имеет тенденцию содержать четное число электронов в оболочке" и 2) восемь электронов "располагаются симметрично в восьми углах куба" [59, с. 768].

Льюис поясняет первую мысль следующими примерами: литий имеет один электрон (на поверхности атома), фтор — семь, следовательно, электронейтральная молекула фтористого лития может быть представлена в виде LiFEs, где Е — символ электрона. Аналогично для сульфата лития можно написать Li24E32, для аммиака NHeEs, Для нитрата натрия NaNО3E24 и т. п. Отсюда Льюис приходит к выводу, что "...если атом имеет высшую (или низшую) степень окисления (polar number), то Е будет кратно восьми. В соединениях, в которых атомы имеют промежуточные степени окисления, число электронов не обязательно кратно восьми, но почти всегда четное" [59, с. 770]. Например: SО2 = SО2E18, NaOCl = NaOClE14 и т. п.

Те соединения, у которых Е — нечетное, "обладают высокой активностью и имеют тенденцию переходить в соединения с четным числом электронов" [59, с. 770]. Например: NО = NOE11, NО2 = NО2E17 и т. п.

Теперь остановимся на второй части третьего постулата — идее расположения атомных электронов в углах куба. Льюис писал: "Главным соображением для принятия кубической структуры было то, что она является наиболее симметричным расположением восьми электронов, и в ней электроны наиболее удалены" [59, с. 779-780]. Иными словами, Льюис указывает на две разнородные причины принятия им кубической модели атома: соображения симметрии, которые выступают в данном случае как своеобразный эстетический принцип, и требование минимального отталкивания электронов. Однако попытки распространения кубической модели на ненасыщенные углеводороды показали, что, опираясь на эту модель, "невозможно не только представить тройную связь, но также объяснить явление свободного вращения относительно простой связи" [59, с. 780]. Это обстоятельство заставило Льюиса изменить свои первоначальные идеи, сохранив, однако, их "рациональное зерно". В поиске новых концепций ученый обращается к началу периодической системы: "...для элементов с меньшим атомным весом, чем литий, устойчивую группу образует пара электронов — появляется вопрос, нельзя ли вообще рассматривать за основную единицу (связи.- И. Д.) пару электронов, а не октет" [59, с. 779]. В дальнейшем, как известно, концепция электронной пары получила значительное развитие.

В литературе, посвященной истории структурной химии, можно встретить мнение о том, что доквантовые электронные теории "представляли собой попытку интерпретировать простую межатомную связь как жесткий элемент структуры, обусловленный целочисленностью валентных электронов и, по существу, исключивший вариации в энергиях связей" [16, с. 94].

Однако анализ работы Льюиса показывает, что это не совсем так. Обратимся, например, к пятому постулату: "Электроны могут с легкостью переходить из одного положения в наружной оболочке к другому, они удерживаются в своем положении более или менее напряженными (constraints) связями, и эти положения, а также прочность связей определяются природой данного атома и тех атомов, которые соединены с ним" [59, с. 768]. Эта мысль конкретизируется в другом месте статьи Льюиса, где он рассматривает гомоатомные молекулы галогенов: "электроны, которые осуществляют связь между двумя атомами йода, удерживаются более слабыми силами, чем в случае брома и т. д., во всей группе [59, с. 784]. Кроме того, для гетероатомных полярных молекул взаимное влияние атомов обусловлено по Льюису различным по величине притяжением электронной пары, осуществляющей химическую связь, к разным атомам, что выражается в различной полярности соединений. Рассматривая молекулу Н2СlС-СООН, Льюис говорит о постепенном ослаблении "разделения электронов между атомами при удалении от атома хлора" [59, с. 782]. С помощью идей Льюиса многие американские и английские химики разработали в 20-х годах электронные модели взаимного влияния атомов. Так, например, в 1923 г. ученики Льюиса Латимер и Родебуш исследовали способность электроотрицательного атома изменять свойства соседних функциональных групп.

Как сказано в работе [16], рациональный химический динамизм связан не с механическим взглядом на атомы и молекулы, а с появлением представлений о неравноценности сил и энергий химической связи и вообще химического взаимодействия, в том числе взаимного влияния атомов [16, с. 93]. Поэтому нужно отметить, что теория Льюиса вовсе не исключает указанные идеи, и когда мы говорили о ней как о статической теории, это не следует понимать буквально — она статична по сравнению с теорией Н. Бора, но не в смысле "рационального химического динамизма".

С квантовохимической точки зрения понятно, почему гипотеза о статическом атоме (при отсутствии в нем орбитального движения электронов) в совокупности с предположением о взаимной проницаемости атомных оболочек (четвертый постулат) дала возможность качественно рассмотреть ковалентную связь. Действительно, согласно теореме Гельмана-Фейнмана, распределение электронной плотности в молекуле, определяемое одночастичной матрицей плотности ρ, таково, что силы, действующие на ядра, могут быть рассчитаны по законам классической электростатики суммированием вкладов от каждого элемента статического объемного заряда, "размазанного" в пространстве с плотностью ρ. Это обусловило впоследствии успех многих квантовохимических методов, особенно тех из них, в которых развивается квазиклассический подход к определению типа ядерного полиэдра молекулы, например модель Сиджвика и Пауэлла, развитая затем Гиллеспи и Найхолмом (подробнее см. [9]).

В 20-х годах была дана качественная трактовка реакций присоединения к насыщенным молекулам, структуры ряда комплексных соединений, а также в первом приближении объяснена природа водородной связи. Это удалось сделать с помощью выдвинутой Льюисом и развитой впоследствии Сиджвиком [78, 79] концепции неподеленной (свободной) электронной пары, способной образовывать химические связи.

Значение появления этой концепции трудно переоценить. Если в конце XIX — начале XX вв. для объяснения существования многих комплексных соединений и протекания реакций присоединения к насыщенным молекулам приходилось прибегать к искусственным представлениям о "дополнительных" (скрытых, побочных) валентностях, то с появлением модели Льюиса и концепции неподеленных электронных пар необходимость в подобных построениях отпала. По словам Сиджвика: "обе ветви химии — органическая и неорганическая — получили благодаря введению электронных представлений единый теоретический фундамент" [79, с. 468].

Развитие теории ковалентной связи Ленгмюром

Большая заслуга в разработке и пропаганде идей Льюиса принадлежит американскому физикохимику Ирвингу Ленгмюру. По образному замечанию американского историка химии М. Зальцмана: "если бы не Ленгмюр, то ключ к химической связи оказался бы надолго зарытым в химической литературе" [77].

Основные идеи своей работы [57] Ленгмюр выразил в одиннадцати постулатах, большая часть которых относится к строению электронной оболочки. Модель Ленгмюра, так же как и модель Льюиса, — электростатическая. Оба автора пытаются связать ее с ранней моделью Томсона. Но у теории Ленгмюра имеются некоторые преимущества, главное из которых — принцип заполнения электронных оболочек, которые Ленгмюр разбивает на "ячейки" (cells). В каждой ячейке может находиться не более двух электронов[2]. Следует заметить, что этот принцип заполнения электронных оболочек был распространен Ленгмюром на все известные тогда химические элементы. Но главное, что интересно в данной книге,- это его взгляд на природу химической связи. Ленгмюр выделяет два типа стабильных электронных конфигураций: электронную пару и октет. При образовании химической связи все валентные электроны участвуют в образовании октетов, либо переходя от одного атома к другому, либо путем образования общих электронных пар. Общее число электронов е, число октетов п и число электронных пар р, "удерживаемых сообща (hold... in common) октетами", Ленгмюр связал формулой 2р = 8т — е.

На рис. 1 показаны некоторые схемы электронного строения молекул, взятые из работы [57].

Рис. 1. Электронные модели молекул по Ленгмюрум. а — молекулы СО2 и F2, б — молекула N2

Особого внимания заслуживает десятый постулат Ленгмюра, точнее, его вторая часть: "В исключительных случаях октет может образовываться около сложного ядра, т. е. около структуры, содержащей ядра двух атомов, удерживаемых вместе парой электронов" [57, с. 888].

Примером такого "исключительного случая" является молекула азота. Необычайная стабильность и химическая инертность этой молекулы была объяснена Ленгмюром тем, что она имеет следующее электронное строение: каждое ядро атома удерживает пару электронов первой оболочки (т. е., говоря современным языком, 1s-электроны не принимают участия в химической связи); восемь из оставшихся десяти электронов образуют октет (см. рис. 1,б), внутри которого, между ядрами азота, находятся два электрона.

В этой же работе Ленгмюр впервые сформулировал принцип изоэлектронности (по его терминологии "изостерности"). В качестве одного из примеров изоэлектронных серий был рассмотрен ряд молекул: N2, СО и CN-. Способ описания молекулы СО и аниона CN- такой же, как и молекулы N2. В указанном отрывке из 10-го постулата и приведенных примеров можно видеть начало принципиально нового способа описания молекул, которому в квантовой химии соответствует метод молекулярных орбиталей. Разумеется, речь идет не о детальном сходстве, а об аналогии в самой постановке задачи изучения электронной структуры молекулы. Суть этой аналогии заключается в том, что и в методе молекулярных орбиталей (МО), и в отдельных построениях Ленгмюра молекула рассматривается как "многоядерный атом", т. е. допускается, что при решении молекулярной задачи можно применить принципы, подобные тем, которые используются в теории атома при анализе заполнения электронных оболочек атомов элементов.

Чтобы пояснить эту мысль, обратимся снова к работе Ленгмюра. Наиболее стабильная восьмиэлектронная оболочка атомов инертных газов представлялась ему, как и Льюису, кубом, в вершинах которого находятся электроны. С другой стороны, Ленгмюр в отличие от Льюиса рассматривает и такие модели молекул (они указаны выше), в которых последние "устроены" наподобие атомов инертных газов, т. е. оба ядра и внутренние электроны окружены октетом электронов, аналогичным октету электронов второй (L) оболочки атома.

В методе МО предполагается, что электроны находятся на орбиталях, охватывающих все ядра в молекуле. Электроны молекулы распределяются при этом по молекулярным орбиталям с учетом принципа минимума энергии и ограничений, налагаемых запретом Паули, что аналогично принципу построения электронных оболочек в теории атома.

При использовании изоэлектронного принципа Ленгмюра в тех случаях, когда речь шла о молекулах с общим октетом электронов, возникали некоторые трудности. Так, молекулы CN, СО и N2, NO должны иметь соответственно один, два и три валентных электрона, не ггри надлежащих к первой (К) оболочке, но заключенных внутри октета. Как заметил Малликен: "...с этой точки зрения, эти молекулы должны быть подобны атомам Na, Mg и Al. Однако никакой аналогии в их химическом поведении не видно. По химическим свойствам молекула CN похожа скорее на Сl, чем на Na, (...), a N2 — на аргон, чем на Mg" [65, с. 188].

Однако в 1925 г. Малликен обратил внимание на сходство электронного спектра молекулы CN и ряда других изоэлек-ронных ей систем с одним валентным электроном в октете (СО+, N2+, ВО и др.) со спектром Na "в отношении природы и расположения электронных уровней".

В 1926 г. Бердж показал, что электронные уровни молекул СО и N2 аналогичны уровням Mg. Подмеченные аналогии получили затем толчком к созданию метода МО (см. гл. 3).

Таким образом, при сопоставлении идей Льюиса (1916 г.) с идеями Ленгмюра (1919 г.) можно прийти к следующему выводу: еще до возникновения квантовой химии в недрах электронных теорий наметились два подхода к изучению электронного строения молекулы. В рамках одного из них связь между атомами осуществляется общей электронной парой (Льюис), что нашло затем свое квантовомеханическое отражение в приближении идеального спаривания метода валентных связей (ВС). Другой подход (Ленгмюр) допускает обобществление большего числа электронов, при этом на молекулы переносится принцип, аналогичный принципу заполнения электронных оболочек атома, что, будучи переведенным на современный язык, соответствует основной идее метода МО[3].

Динамические модели ковалентной связи

Характерная черта динамических моделей химической связи состоит в том, что их авторы старались найти такие траектории движения электронов в молекулах (причем рассматривались, как правило, простейшие системы: Н+2, Н2), при которых между ядрами существовал бы некоторый эффективный отрицательный заряд. При этом модели молекул строились исходя из принятой модели атома, изоэлектронного данной молекуле. Например, орбиты электронов в молекуле Н2 определялись авторами путем мысленного расщепления ядра гелия на два ядра водорода и адиабатического разведения последних на расстояние, соответствующее длине химической связи в молекуле водорода.

При определении энергетической последовательности молекулярных термов Хунд и Малликен использовали аналогичный прием (правда, они рассматривали два крайних случая: "объединенного" и "разделенных" атомов). Получаемые в доквантовомеханических теориях электронные траектории отличались (иногда существенно!) друг от друга. Так, Н. Бор предложил в 1913 г. модель молекулы водорода, согласно которой ядра находятся в полюсах эллипсоида, а два электрона вращаются по его малому экватору (т. е. плоскость вращения перпендикулярна линии, проходящей через ядра). При вращении электроны находятся всегда в диаметрально противоположных положениях. Кинетическая энергия Екин = /2 (где ω — частота вращения) квантуется, так как квантуется момент импульса системы, а следовательно, и частота ω.

Другая динамическая модель молекулы Н2 была предложена Ленгмюром в 1920 г., согласно которой электроны совершают колебательные движения по незамкнутым траекториям (рис. 2, а).

Рис. 2. Динамические модели молекулы водорода; а — по Ленгмюру; б — по Бору-Кэмблу-Паули (модель 'перекрещивающихся орбит'); в — по Зоммерфельду-Гейзенбергу

Довольно распространенной в начале 20-х годов была модель "перекрещенных" орбит (crossed-orbit model), рассмотренная в работах Кэмбла, Бора, Паули, Борна, Ниссена, Ван Флека и Крамерса. Траектории электронов в атоме Не и в молекуле Н2, постулированные в такой модели, показаны на рис. 2, б. Расчеты Ван Флека и Крамерса показали, что орбиты должны перекрещиваться под углом 57,7°-58,2°, кроме того, существует прецессия орбит вокруг оси z. В ионе Н+2 электрон может двигаться по обеим орбитам попеременно. Квантовые условия Бора-Зоммерфельда требуют при этом, бы результирующий момент импульса системы равнялся h/ и ее средняя кинетическая энергия была h(ωn+1/2 ωk), где ωn — круговая частота обращения электрона по n-й орбите, а ωк — частота прецессии k-й орбиты вокруг оси z.

Кроме указанных, были предложены и другие модели, напимер, Зоммерфельда и Гейзенберга ("модель проникающих эллипсов") (рис. 2, в). Однако детальный расчет движения электронов в этом случае показал, что должна иметь место прецессия орбит, в результате которой, согласно замечанию Паули, электроны должны падать на ядро Не (или водорода, если речь идет о молекуле Н2).

Все приведенные выше динамические модели имели один существенный недостаток — при детальном анализе оказывалось, что они не могут объяснить устойчивости молекулы, хотя были использованы правила квантования Бора-Зоммерфельда или их модификации. Это наводило на мысль, что существующая квантовая теория не может объяснить электронное строение молекул. По образной характеристике Джаммера, "старая квантовая теория представляла собой жалкую смесь гипотез, принципов, теорем и вычислительных рецептов, а не логически последовательную теорию. Каждая квантовотеоретическая проблема сначала решалась в терминах классической физики, а затем это классическое решение проходило сквозь таинственное решето квантовых условий или, как это происходило в большинстве случаев, классическое решение переводилось согласно принципу соответствия на квантовый язык. Обычно процесс осуществления "корректного перевода" был предметом искусного гадания и интуиции, а не дедуктивного и систематического вывода. Фактически квантовая теория была областью особого мастерства и даже артистической техники, которая была развита до наивысшей возможной степени совершенства в Геттингене и в Копенгагене. Короче говоря, квантовая теория не обладала двумя существенными особенностями зрелой научной теории: концептуальной автономией и логической согласованностью" [56, с. 196].

Только с возникновением квантовой механики создались предпосылки для реального решения проблем химической связи и валентности. Но чтобы лучше представить себе тот сложный исторический путь, который вел от классической теории химического строения через электронные концепции к созданию квантовохимических методов, мы остановимся на попытках некоторых ученых построить формально-математическую модель, способную передать основные положения классической структурной химии.

Математические модели молекул

С тех пор как химия встала, по выражению Ф. Энгельса, "с головы на ноги", т. е. на научную основу, она так или иначе стала обращаться к математике как к наиболее универсальному языку для выражения своих законов, понятий и представлений. Особенно широкое применение математических методов в химии стало возможным после создания статистической термодинамики, феноменологической кинетики и т. п. Однако со второй половины прошлого века некоторые математики обращаются к химии, пытаясь найти корреляции между математическими структурами и теориями химии, в частности теорией химического строения. К сожалению, эта линия в истории химии, а точнее, в истории связей между химией и математикой, до сих пор оказывалась вне поля зрения историков науки. Поэтому необходимо остановиться на ней отдельно, тем более, что исследования, проводимые на стыке математики и химии в прошлом столетии, повлияли на развитие теории спин-валентности.

В XIX в. в естествознании стали складываться такие ситуации, когда сначала разрабатывался математический аппарат, а уже потом начинались поиски или "случайно" находились его внематематические интерпретации. Клейн писал в "Эрлангенской программе": "... не следует умалять значение того преимущества, которое дает хорошо выработанный формальный аппарат для дальнейших исследований тем, что он до известной степени опережает мысль..." [15, с. 428].

Хронологически первой математической работой в области структурной химии была работа английского математика Артура Кэли [32], который пытался решить задачу о подсчете числа изомеров парафинов с заданным числом атомов углерода. При этом валентность атома выступала как степень вершины графа (точнее, дерева), который математически представлял химическое соединение, а именно: единица — для атома водорода и четыре — для атома углерода. Заметим, что значение валентности отнюдь не выводилось из каких-либо математических соображений, а постулировалось (вводилось в теорию) на основании химических данных. Спустя четыре года появились работы английских математиков Сильвестра [81] и Клиффорда [34], посвященные подмеченной ими формальной аналогии между соотношениями и понятиями теории химического строения и начавшей тогда развиваться алгебраической теории инвариантов. Мы не будем останавливаться подробно на этих исследованиях, а ограничимся только теми аспектами, которые оказались "математическими предвестниками" теории спин-валентности.

Каждому атому X, Y, ... в рамках указанной формальной аналогии сопоставлялся некоторый двумерный вектор, например:

Тогда можно образовать некоторую алгебраическую форму F(X, Y,...), в которую векторы X, Y,... входят в соответствующих целых неотрицательных степенях VX, VY ,..., причем VI сопоставляется с валентностью 1-го атома. Эта форма остается инвариантной относительно унитарного преобразования компонент (х+, х-), (у+, у-) и т. п.[4]

Для двух векторов (двух атомов) X и Y простейшим инвариантом будет следующее выражение: которому формально сопоставлялась единичная химическая связь и которое первоначально называли одночленным инвариантом. Одночленным инвариантам давалась следующая графическая интерпретация: если X и Y обозначить точками на плоскости, то [XY] представляет собой отрезок, соединяющий эти точки.

Далее, математически можно ввести также некоторый "свободный" вектор L. Не вдаваясь в подробности, касающиеся математических свойств L, можно указать, что графически одночленному инварианту, составленному из L и одного из "обычных" векторов," например X, соответствует направленный отрезок, начало которого лежит в точке X, а конец остается свободным X → L. Выражение [XL] можно интерпретировать как свободную валентность атома X.

Если между атомами X и Y существует несколько химических связей, например k, то математически этому случаю соответствует выражение [XY]k. Аналогично целое неотрицательное число f в выражении [XL]f указывает на число свободных валентностей атома X.

Произведению инвариантов, не содержащих свободного вектора, можно сопоставить некоторую классическую структурную формулу. Однако не все произведения одночленных инвариантов, составленные для совокупности атомов с заданными валентностями, будут независимы. Поясним сказанное примером молекулы бензола, в которой каждый из атомов углерода образует по одной связи с двумя соседними атомами углерода и ближайшим атомом водорода. Так как, согласно классической теории, углерод четырехвалентен, то необходимо рассмотреть возможные сочетания оставшихся нереализованными шести единиц валентности по одной от каждого углеродного атома.

Можно составить довольно много всевозможных произведений одночленных инвариантов:

но только пять из них являются линейно независимыми (например, I, V, VI, VII и VIII). Оставшиеся инварианты можно представить в виде линейной комбинации этих пяти, в частности:

Выбранным линейно независимым инвариантам соответствуют структуры, изображенные на рис. 3. Первые две из них называются структурами Кекуле, остальные три — структурами Дьюара.

Исследования "химико-алгебраической аналогии", начатые Сильвестром и Клиффордом, были затем продолжены в работах по теории инвариантов В. Г. Алексеева [1, 45]. Различаясь по способу математической интерпретации постулатов теории химического строения, эти работы оказались сходными в трактовках понятий валентности и химической связи, которые обладали следующими особенностями: а) валентность того или иного элемента определялась из химических, а не из математических соображений; б) валентность явно или неявно выступала как сумма кратностей связей, образуемых данным атомом с другими, причем единичной химической связи между атомами X и Y соответствовал одночленный инвариант [XY].

Указанная аналогия была скептически встречена некоторыми математиками (Нетер, Штуди). Штуди, например, писал, что "было бы слишком фантастическим ожидать, будто химия когда-либо извлечет пользу из этой ветви алгебры". Однако появлением квантовой механики положение изменилось. Если в XIX — начале XX вв. речь шла, по словам Вейля, "о исто формальной, хотя и очень впечатляющей математической аналогии", то в конце 20-х годов говорится уже о "существеннейшем звене в квантовомеханической теории химической связи, которой указанная аналогия имеет ... удивительно конкретное воплощение" (Вейль).

Выше мы рассмотрели основные направления теоретических исследований, которые подготовили почву для перехода от классической теории химического строения к квантовомеханической. Итак, можно выделить два подготовительных этапа создания квантовой теории химической связи. Первый, формально-математический, включает работы 1870 г.- 1900-х гг. (Кэли, Сильвестр, Клиффорд, Гордан, В. Г. Алексеев), в которых были предприняты попытки построения математических моделей молекул, основанные на теории инвариантов бинарных форм и теории химического строения. Второй подготовительный этап, электронный (1900-1926 гг.), включает работы, посвященные созданию электронных (как статических, так и динамических) моделей атомов и молекул.

При этом на обоих подготовительных этапах каждой ковалентной связи (валентному штриху) сопоставлялись некоторые дискретные объекты: либо это были компоненты двумерных векторов в формально-математических моделях, либо — отдельные электроны, занимающие определенные положения в атомах и молекулах (статические модели) или же двигающиеся по определенным траекториям (динамические модели). Как в математических, так и в физико-химических работах содержались рациональные идеи, вошедшие после соответствующей кванто-вомеханической интерпретации в квантовую химию: идея двухцентровой двухэлектронной связи (Льюис), возможность обобществления нескольких электронов вокруг двух и большего числа ядер (Ленгмюр), идея неподеленной электронной пары (Льюис, Сиджвик), разделение электронных и ядерных движений (Вор, Ван Флек, Зоммерфельд и др.), идея одноэлектронного приближения (Бор), сопоставление ковалентной связи некоторого математического выражения [XY], антисимметричного относительно перестановки своих компонент (Сильвестр, Алексеев и др.) и т. п.

Рис. 3. Линейно-независимые инварианты и соответствующие им структуры бензола

Создание в 1925-1926 гг. квантовой механики позволило глубоко проникнуть в сущность явлений и процессов, протекающих в атомах и молекулах, выявить физический смысл понятия химической связи и других понятий классической химии.

В конце 20-х годов были установлены общие квантовомеханические принципы и приближения, необходимые для описания многоэлектронных систем. Как и в период разработки электронных моделей (1900-1926 гг.) строения вещества, каждая квантовомеханическая модель химической связи существенно опиралась на квантовомеханическую (шредингеровскую) модель атома. На протяжении всей последующей эволюции теории многоэлектронных систем указанная взаимосвязь между теорией атома и теорией молекул сохранялась. Поэтому прежде чем приступить к рассмотрению основных этапов развития молекулярной квантовой химии и некоторых ее современных проблем, в следующей главе мы остановимся на основных понятиях и представлениях квантовой теории строения атома.

Загрузка...