1. Загадки нашего организма

Зачем мы икаем?

Этот вопрос занимает людей почти тысячелетие. Но только сейчас ученые предложили на него ответ.

Длительные приступы икоты — особенность, которая передается по наследству и чаще встречается у мужчин, чем у женщин. По словам специалистов, единственный научно обоснованный способ лечения таких приступов — дышать в бумажный пакет, что повышает уровень двуокиси углерода в крови. Рекорд в длительности икания принадлежит американцу Чарлзу Осборну, который непрерывно икал в течение 69 лет, до самой смерти.

Икота — это неожиданное сокращение мышц, служащих нам для вдыхания воздуха. При этом, как только мышцы приходят в движение, гортань, содержащая голосовые связки, перекрывает дыхательное горло, вызывая характерный звук «ик».

Как ни странно, но сканирование зародышей в материнской матке показало, что они тоже способны икать. Они обнаруживают эту способность уже в возрасте двух месяцев, то есть еще до появления первых дыхательных движений. Это наводит на мысль, что икота у взрослых людей есть не что иное, как остаток какого-то первичного рефлекса, который «включается» при внезапном возбуждении определенной цепи нейронов в мозгу. Впрочем, роль икоты у зародыша пока что не выяснена до конца. Одна из теорий предполагает, что «икательные движения» готовят его дыхательные мышцы для дыхания после рождения, другая утверждает, что икота предотвращает проникновение околоплодной жидкости в легкие.

Ни одна из теорий, однако, не объясняет все особенности икоты. И лишь у одной группы животных специфическое сочетание сокращения выдыхательных мышц с перекрыванием гортани служит явно выраженной цели. Это примитивные двоякодышащие пресноводные рыбы, которые уже дышат воздухом, но сохранили также жабры. А также многие амфибии. Такие животные проталкивают воду сквозь жабры, одновременно сжимая ротовую полость и этим предотвращая поступление воды в легкие.

Согласно недавно высказанному учеными предположению, те же нейронные сети в мозгу, которые контролируют продувание воздуха в жабрах этих ранних эволюционных предков, сохранились у современных млекопитающих. На эту мысль наводит большое сходство между икотой и вентиляцией в жабрах таких животных, как головастики. Оба процесса подавляются, когда, например, раздуваются легкие или же при высоком уровне двуокиси углерода в воздухе или воде. Но почему мы продолжаем икать и через 370 миллионов лет после того, как наши далекие предки начали выползать на сушу? Это, согласитесь, уже намного больше рекорда Осборна.

Если, однако, прав Христиан Штраус, руководитель исследовательской группы при одной из больниц Парижа, то икание зародыша до рождения представляет собой всего лишь раннюю стадию в развитии будущего сосательного рефлекса, что слегка напоминает ползание, предваряющее хождение. По Штраусу, нейронные сети, контролирующие движение жабр и гортани, сохранились в процессе эволюции потому, что они образовали основу для более сложных двигательных процессов, таких, как сосание у млекопитающих. «Икание может быть ценой, которую надо платить за сохранение этого генератора полезного механизма», — говорит Штраус. Он указывает, что последовательность движений при сосании, когда гортань перекрывается, чтобы предотвратить попадание молока в легкие, — очень похожа на икание.

«Идея выглядит правдоподобной, — говорит Алан Пек, специалист по респираторной (дыхательной) нейробиологии американского университета в Пенсильвании, — но ее еще нужно доказать».

Штраус полагает, что для проверки его теории надо проследить, какие специфические нейроны контролируют икание и сосание. Если его гипотеза состоятельна, то большинство нервных клеток, активизированных при сосании, должны активизироваться и при икании. На проверку этого и направлены будущие эксперименты группы.

А пока — нам есть на кого возложить вину. Когда следующий раз вас будет мучить икота, вы можете ругать своих земноводных предков.


Как мы чихаем?

Этот необычный рекорд потряс всю Америку. Впрочем, двенадцатилетней рекордсменке не дано было купаться в лучах славы. Она была слишком занята. Она была занята тем, что непрерывно чихала. Она чихала с такой частотой, что кто-то из домашних назвал ее чиханье «пулеметным». Это началось в октябре, после жестокой простуды, и продолжалось уже несколько недель. В разгар ее непонятной болезни семейный врач подсчитал, что она чихала каждые три с половиной секунды. Иными словами, 12 тысяч раз в день. Слух об удивительном «скорострельном» чихании маленькой Лорин Джонсон дошел до журналистов, перекочевал на страницы газет, обошел весь мир, и в начале ноября девочку пригласили на телевидение. Ее показали всей Америке, а потом ее тут же в студии осмотрел приглашенный на передачу врач. Он высказал предположение, что непрерывное чихание Лорин — просто разновидность известного в медицине «синдрома Туррета» — нейрологического заболевания, основным признаком которого является непроизвольный тик. Но тиков у девочки не было, и, когда ее по возвращении домой показали другому врачу, тот взял у нее из горла пробу, обнаружил стрептококки и поставил другой диагноз — «Пандас».

К счастью, еще через несколько недель странный чих прошел, то ли сам по себе, то ли благодаря антибиотикам, и 4 декабря 2009 года американская печать торжественно известила нацию, что Лорин Джонсон выздоровела и снова пошла в школу; тем не менее загадка ее болезни осталась неразрешенной. Хотя у нее не оказалось синдрома Туррета, но и термин «Пандас» мало что объяснял. Термин этот, кстати, не имеет никакого отношения к очаровательным черно-белым медвежатам по имени панда. Английское Pandas — это аббревиатура слов Pediatric Autoimmune Neuropsychiatric Disorder Assosiated with Streptococcus, или, по-русски, «аутоиммунное нейро-психиатрическое расстройство, связанное со стрептококками». Этой аббревиатурой некоторые врачи на Западе стали в последнее время называть любой случай внезапного появления у детей какого-либо вида невроза навязчивых состояний и действий или уже упоминавшегося выше синдрома Туррета, если эти признаки появляются при наличии в горле некого особого вида стрептококков. Поскольку принятая ныне медицинская доктрина предписывает врачам применять антибиотики при любом обнаружении стрептококков, то Лорин Джонсон лечили антибиотиками, а поскольку ее навязчивое чихание прекратилось, то мнение о том, что навязчивое чихание подпадает под определение «Пандас», тоже как бы подтвердилось.

Однако правильно говорили древние, что не всегда «после этого» доказывает, что «вследствие этого». После антибиотиков еще не значит — вследствие Пандас. Дело в том, что само изобретение некоторыми врачами «синдрома Пандас» на поверку оказывается весьма и весьма сомнительным, поскольку никакие исследования не обнаруживают той связи между аутоиммунностью, навязчивыми состояниями и стрептококками, которая объявляется главным признаком этого синдрома. Поэтому большинство врачей считает такое выделение каких-то особых, «стрептококковых», тиков или неврозов в особый синдром неоправданным и в нынешнюю Международную классификацию болезней термин «Пандас» в качестве отдельной болезни не включен. Так что приступ затяжного чихания Лорин Джонсон нельзя списать на стрептококки. Тем более что Лорин не одинока — в истории зафиксированы и более эффектные «чихательные рекорды», не имевшие, однако, никакой связи со стрептококками. Лорин, как мы видели, чихала «всего» два месяца подряд, а вот ее сверстница, двенадцатилетняя Триша Рей из-под Бирмингэма (Великобритания), чихала целых 153 дня кряду, через каждые пятнадцать секунд, и за это время успела чихнуть в общей сложности около 900 тысяч раз; семнадцатилетняя Джун Кларк из Майами (США) чихала 167 дней подряд; а абсолютный рекорд чихания принадлежит англичанке Донне Гриффитс, которая судорожно чихала целых 978 дней — с 13 января 1981 года по 16 сентября 1983 года (правда, лишь раз в минуту, а под конец даже раз в 5 минут) и за один лишь первый год своих мучений чихнула около миллиона раз (потом считать перестали). Известны также многочисленные случаи менее длительных приступов чихания, и в большинстве из них удалось установить, что они вызваны аллергией на пыльцу растений или другие раздражители. Впрочем, некоторые приступы были вызваны психогенными причинами — у одного ребенка навязчивое чихание возникло, когда его несправедливо перевели в группу отстающих, и прошло, когда его вернули в успевающие, а упомянутая выше Джун Кларк начала безудержно чихать после операции на почках, опасаясь осложнений, и была вылечена серией слабых электрических импульсов.

Все эти интересные и загадочные в своем разнообразии данные явно заставляют нас пристальней присмотреться к самому чиханию: что это за штука? Какая такая причина вдруг заставляет нас — вроде бы ни с того ни с сего — непроизвольно и со страшной силой напрягаться, застывать на месте, закатывать в ожидании глаза и потом, наконец, — о блаженная минута! — разражаться жутким, чудовищным, оглушительным «Апчхи!», сотрясающим все наше тело и выдавливающим из глаз невольные слезы, а из носа и рта — такие же невольные брызги? Что? В Древней Греции полагали, что чихать заставляют нас боги, когда хотят подтвердить истинность наших или чужих слов. Так, Телемах чиханием подтвердил справедливость слов своей матери Пенелопы, сказавшей женихам, что ее муж уже вернулся. В Китае считали, что человек чихает, потому что кто-то говорит о нем за его спиной, причем чихает единожды, если о нем говорят хорошо, и много раз подряд, если говорят плохо. В Индии чих перед началом какого-нибудь дела рассматривался как дурное предзнаменованье, а в средневековой Европе вообще видели в чихании угрозу жизни и потому немедленно говорили чихнувшему: «Боже тебя сохрани!» Напротив, зулусы верили, что чих производят вселившиеся в них духи предков, тем самым защищая их от сглаза. Впрочем, великий Аристотель утверждал, что «к добру» лишь чих в дневное время, тогда как ночью он всегда «к дурному».

В общем, так или иначе, но чихание повсюду и всегда связывалось с потусторонними силами и имело, стало быть, некий возвышенный характер, пока не пришла наука и все не испортила. Грубо заглянув человеку в носоглотку и повозившись там какое-то время, наука безжалостно низвела Великий Чих с его былого престола и дала ему весьма прозаичное объяснение. Когда в носовую полость, сказала наука, попадают посторонние частицы (пыль, частицы грязи, пыльца или споры растений и т. п.), они раздражают чувствительные волосики внутри этой полости. Это вызывает возбуждение так называемых «тучных клеток» (мастоцитов) в носу, и они начинают выделять химическое вещество гистамин. Появление гистамина порождает цепь биохимических реакций, благодаря которым наш мозг в конце концов замечает, что в носу происходит что-то нехорошее, и тотчас — через определенные нервы — приказывает легким глубоко вдохнуть, языку — чуть приподняться к нёбу, рту — чуть приоткрыться, а дыхательным мускулам — сильно сжаться. Все это вместе приводит к сильнейшему выбросу воздуха из легких, причем воздух идет в основном через нос, потому что рот прикрыт приподнятым языком.

Выброс этот настолько силен, что воздух вылетает с почти автомобильной скоростью — 75 километров в час, и это по самым скромным оценкам, а по максимальным (они приводятся на стенде «Чихание» во Всемирном музее здравоохранения в Барлингтоне, штат Иллинойс) — около 150 и больше километров в час. Так что попытки удержать чихание, пожалуй, заранее обречены. (Хотя антигистаминовыми препаратами его остановить все-таки можно.) Не удивительно, что этот напор вызывает тот громогласный «трубный звук», который мы пытаемся передать отдаленно на него похожим словом «Апчхи!» (началом этого слова имитируя звук судорожно втягиваемого в легкие воздуха, а окончанием — звук его оглушительного выброса). Между прочим, сказанное позволяет понять, почему все рекордсмены затяжного чихания могли все-таки отдыхать от чиха, когда спали: во время сна все мышцы нашего тела словно парализованы и никакой нервный сигнал не может привести их в действие; зато когда мы бодрствуем, мозг всесилен — чих берет свое, воздух извергается наружу, а при прохождении такого бешеного воздушного потока через носовую полость вместе с ним, понятно, выбрасываются вон и все частицы-раздражители — что, собственно, и было задачей чиха (которому наплевать, в чей ни в чем не повинный нос эти частицы теперь попадут).

Теперь понятно, почему затяжное чихание во многих случаях связано с аллергически повышенной чувствительностью к различным частицам-раздражителям. Можно даже попытаться объяснить и такой феномен, как «утреннее чихание», когда человек, восставши, так сказать, ото сна праведного, вдруг принимается первым делом энергично и много раз кряду чихать, заставляя родных впадать в панику — уж не простудился ли болезный? Как говорят опытные врачи, причина на самом деле иная — видимо, ночью волосики в носовой полости тоже отдыхают, работают медленней, чем днем, так что за время сна в носу накапливается много частиц-раздражителей — для иных людей слишком много, вот они и начинают трудовой день с прочистки заспавшегося носа. Но как объяснить «психогенное чихание» Джун Кларк или того тщеславного мальчика? Да, впрочем, и самое обычное, так сказать — «нормальное», чихание тоже имеет свои странности. Например, на одной из научных конференций несколько участников, сидя в кафе, разговорились о своих чихательных привычках, и неожиданно оказалось, что четверо из них всегда чихают, попав из сумрака на яркий свет. Находившаяся тут же специалистка по чиханию профессор Роберта Поган тотчас возбудилась: «Но это же страшно интересно! Я никогда об этом не слышала!» — и результатом этого интереса и дальнейших исследований стала (в 1979 году) статья Поган и трех ее соавторов, в которой описывалась новая разновидность чихания и вводилась очередная «чихательная аббревиатура» — на сей раз АСНОО, или Autosomal dominant Compelling Helio-Ophthalmic Outburst syndrome («аутосомный доминантный синдром гелио-офтальмического приступа чиханья»), что иногда произносят по ошибке как «акхуизм» и что, в сущности, означает просто чихательный рефлекс на свет.

Впрочем, по-настоящему новым оказалась в данном случае только аббревиатура, потому что, как выяснилось позднее, этот рефлекс впервые описал еще в 1969 году Эверетт (а первым упомянул вообще Аристотель!); тем не менее Поган и ее коллеги углубили понимание этого феномена, показав, что он проявляется у 18–35 процентов людей, причем чаще у белых, чем у цветных, и вдобавок имеет генетическую природу. Слова «аутосомный доминантный» как раз и означают, что данное свойство вызвано «сбоем» в каком-то гене одной из неполовых (аутосомных) хромосом и передается по наследству. Причем наследуется (в данном случае) не только склонность к «неконтролируемым приступам чихания под воздействием света», как описывают АСНОО Поган и ее коллеги, но даже число чиханий в каждом приступе: в одной семье все чихают, попав на свет, три раза, в другой — восемь, а нашлась семья, где, выйдя на свет, все чихают ровно 46 раз подряд. Почему? Непонятно.

Английский врач Джеральд Легг высказал предположение, что неожиданное попадание света на зрачки вызывает слезы, которые проникают в верхнюю часть носовой полости и раздражают там слизистую. Но какая в этом генетика? И что, число чиханий зависит от количества слез? По другой, более правдоподобной, гипотезе все дело во взаимосвязи и взаимодействии нервных центров мозга, принимающих сигналы органов чувств и отдающих сигналы мышцам тела. В данном случае, говорит гипотеза, имеет место взаимодействие между зрительным центром, куда внезапно поступает сигнал о резком усилении интенсивности света, и центром, отдающим сигнал лицевому нерву, который управляет движениями лица и носа. Эта гипотеза представляется более правдоподобной потому, что такие же приступы чихания часто вызываются и другими неожиданностями — например, внезапным вдыханием холодного воздуха или внезапным появлением сильного запаха, так что всем этим внезапностям можно дать единое объяснение: всякое неожиданное и сильное раздражение какого-нибудь нерва, несущего информацию в свой (зрительный, обонятельный и т. п.) центр в мозгу, передается посредством такого взаимодействия в центр, который управляет лицевым нервом. Впрочем, и тогда остается необъяснимой загадка: почему в случае света каждая семья чихает строго определенное число раз?

В общем, даже в простом «Апчхи!» есть много странностей и загадок. В нем есть своя глубина и свои тайны. Перефразируя известное выражение, чихание имеет много гитик. Расскажем под конец о самой забавной. Ее обнаружили (и описали в «Журнале медицинской генетики») в 1989 году два кувейтских врача Ахмед Тиби и Касем аль-Салех. Напоминая в начале своей статьи историю открытия АСНОО, они затем пишут: «Мы хотим сообщить здесь семейную историю другого чихательного расстройства, точно так же передающегося по наследству аутосомно-доминантным путем, но провоцируемого не светом, а переполненным желудком. У обнаруженного нами пациента всякое переполнение желудка немедленно вызывало три-четыре неконтролируемых чихания. Та же особенность, по его словам, свойственна трем его братьям, одной из двух сестер, отцу, дяде, сыну и дедушке. Наш пациент заинтересовался этой семейной особенностью после того, как его дочь в возрасте одного года тоже обнаружила ее и тоже лишь после того, как ее желудок был набит до отказа. Как правило, все в семье чихали при этом три-четыре раза, но в отдельных случаях это число достигало пятнадцати». Авторы заключали: «Хотя в научной литературе мы не встречали упоминаний о таком феномене, но в беседах с коллегами сумели выявить еще три аналогичных семейных случая и потому полагаем, что это не такой уж редкий феномен. Мы надеемся, что дальнейшие исследования помогут понять, сколько из нас страдает таким неконтролируемым чиханием после сытной еды и почему».

Как вы, наверно, уже догадались, этот вид чихания тоже немедленно обзавелся своей аббревиатурой. Его придумала канадская специалистка по генетическим заболеваниям Джудит Холл, и звучит оно (по-английски) «snatiation» («чихобжорство»), потому что составлено из слов sneeze (чихать) и satiation (пресыщение), но сама Джудит Холл в своей веселой статье расшифровывает его с насмешливой псевдонаучной серьезностью как Sneezing Noncontrollably At a Tune of Indulgence of the Appetite-a Trait Inherited and Ordained to be Named (что-то вроде «Неконтролируемое чихание, являющееся мелодией потворства аппетиту и наследственной особенностью, предопределенной получить свое название»). Она призывает всех нас расспрашивать друзей и знакомых в поисках других, еще неизвестных видов наследственного чихания, и я могу только присоединиться к этому призыву, подчеркнув, что в случае удачи вы можете увековечить свое имя, придумав своей находке звучную аббревиатуру.

А кстати, не является ли еще одной странностью чихания, что его все время сопровождают аббревиатуры?

Для чего мы зеваем?

Может показаться, что правильнее было бы спросить: «Почему мы зеваем?» Но нет — вопрос в заголовке задан правильно. Ибо ученые мужи до сих пор спорят как раз о назначении того действа, которое великий Даль описывает в своем словаре незабываемыми словами: «Открывать судорожно рот, с потяготой, от скуки или истомы». Заметим, кстати, что, по Далю, у зевка нет никакого назначения, одна лишь причина, каковой является скука или истома. Но люди давно уже обратили внимание на странную особенность этой «потяготы» — ее заразительность. Вот и тот же Даль приводит поговорку: «Не зевай в людях, на всех позевоту нагонишь». У зевоты, стало быть, есть некий, высокопарно выражаясь, «социальный аспект» — проще говоря, она способна объединить людей в общем действии. Может быть, именно в этом и есть ее тайное назначение? Но с другой стороны — ведь мы зеваем и наедине с собой? Тогда, быть может, за этим приятным занятием стоит какая-то физиологическая потребность?

Надо разобраться.

Присмотримся к зевку. Не будем заглядывать зевающему прямо в «зев», каковым словом Даль обозначает «все пространство полости рта между языком, нёбом и задней стенкой глотки», — в зев человеку заглядывать неприлично, если ты не отоларинголог, — поэтому просто посмотрим издали, что с этим зевающим происходит. Прежде всего, мы видим, что он зевает непроизвольно, как будто не сам зевает, а кто-то «изнутри» ему приказал раскрыть рот и сладко зевнуть. Мозг, что ли? Зачем? Странно. Но пойдем дальше. Наш зевающий не просто опускает нижнюю челюсть — он опускает ее до предела, и он не просто открывает рот, а открывает его на всю возможную ширину, в три-четыре раза шире нормального. Затем он втягивает воздух на всю возможную глубину; причем грудь его расширяется и легкие до отказа наполняются живительным кислородом. При этом все мышцы его тела, вплоть до тех, что окружают глаза, так сильно напрягаются (это отметил еще Дарвин), что из глаз порой брызжут слезы, а изо рта вырывается слюна. Иногда он к тому же делает резкие, непроизвольные движения руками (далевская «потягота»). Наконец, на последнем этапе он медленно выдыхает втянутый воздух и при этом непроизвольно производит (хотя не всегда) некий звук, порой способный даже напугать окружающих. Все это продолжается четыре — семь секунд. Если бы мы измерили в это время его пульс, то заметили бы, и с немалым удивлением, что зевок, этот признак «истомы», в действительности сопровождается довольно сильным, до 30 процентов, учащением сердцебиения. Иными словами, это, скорее, признак физиологического возбуждения (а у кроликов и крыс — даже сексуального возбуждения). Но не мог же ошибиться народ, заявляя уверенно, на основании своего многотысячелетнего опыта, что зевота идет от скуки и безделья, сильно клонящих человека ко сну. Как же совместить сонливость с возбуждением?

Впрочем, это противоречие — не единственная загадка зевка. Обратите внимание, господа, — ведь зеваем не только мы, цари природы, которых и впрямь слишком часто клонит в сон от безделья и скуки. Зевают также обезьяны (кстати, Дарвин писал, что бабуин зевает, «чтобы, обнажив клыки, устрашить соперника»). Зевают мыши и крысы, коты и собаки, тигры и ягуары, лошади и совы, морские свинки и императорские пингвины, даже амфибии, змеи и рыбы. Короче — почти все позвоночные. Как-то не верится, что все это множество живых существ всегда зевает от безделья. Тем более — от скуки. И потом, скажу вам по секрету — мы сами начинаем зевать уже в материнской утробе, когда мы еще зародыш. Что же, нам уже в таком нежном возрасте, в уютном мамином животе, слышится гоголевское «Скучно жить на этом свете, господа»?

Выходит, не только в скуке дело. Вот, к примеру, спортсмен — он зачастую зевает перед ответственным соревнованием; разве ему скучно? Нет, что-то куда более сложное и серьезное явно чудится за этим почти универсальным зевком, за этой галереей зевающих позвоночных, что-то воистину широко социальное или глубоко физиологическое. А может быть — даже эволюционное. Но что именно?

Обратимся к ученым мужам. Как мы заметили выше, они все еще спорят по этому поводу. Спорят — значит, имеют разные взгляды. Какие же именно?

Какое-то время назад считалось (и даже говорилось в медицинских учебниках), что зевоту порождает недостаток кислорода в легких. И действительно, как показали исследования, в обычных условиях мы используем легкие лишь частично, дышим неглубоко, организм получает лишь жизненно необходимый минимум кислорода. В результате мозг, ощутив недостачу, в какой-то момент посылает сигнал глубоко вдохнуть или даже зевнуть. При зевке, как уже говорилось, мы опускаем нижнюю челюсть и максимально расширяем «зев», а потому можем вобрать много воздуха.

Хорошая, простая теория: мы зеваем для того, чтобы максимально насыщать наш драгоценный организм кислородом. Это объяснение позволяет понять, почему спортсмены, как сказано выше, порой зевают на ответственных соревнованиях. Можно думать, что они инстинктивно обогащают себя кислородом, чтобы добиться лучших результатов. Можно понять также, почему мы сами так часто зеваем в душном зале, на уроке или на заседаниях. Не потому, что нам скучно, упаси боже, а потому, что большая группа людей, находящаяся в одном помещении, выдыхает много углекислого газа и нам становится попросту необходимо побыстрее заполучить кислород. Все объясняет теория, всем хороша, одна беда — неверна. Увы. Потому что, когда известный исследователь зевания, нейролог Роберт Провин из Мэрилендского университета (США), произвел ее прямую проверку: стал давать людям больше кислорода и смотреть, перестают ли они зевать, — оказалось, что дополнительный кислород на зевание нисколько не влияет. Не влияет, и все. И точно так же снижение уровня углекислого газа в помещении тоже на него не влияет. Прощай, теория.

Не буду задерживать ваше внимание, пересказывая другие опровергнутые теории — например, о том, что мы зеваем для того, чтобы уравнять давление во внутреннем ухе с наружным давлением (Ласкевич), или для того, чтобы увеличить давление в полостях носа и тем самым «выдуть» оттуда собравшиеся там бактерии (Маккензи). Но вот на гипотезе Рональда Беррингера из университета Темпл в Филадельфии обязательно нужно остановиться. Она замечательным образом переворачивает наши обычные представления. Мы говорим, что зеваем «от скуки», а Беррингер говорит, что мы зеваем «против скуки». Не «от сонливости», а — «против сонливости». Это интересное объяснение. К тому же оно имеет ряд серьезных подкреплений. Многочисленные исследования, говорит Беррингер, показывают, что у зеваний есть определенный суточный ритм. Это очень простой ритм: зевания чаще происходят утром, после вставания, а также вечером с приближением сна, но не совсем близко ко сну, а примерно за час до него. Ближе ко сну и ложась люди обычно уже не зевают. И напротив, они могут раззеваться посреди бела дня, если оказываются в состоянии напряжения, возбуждения, опасности, стресса. И еще: дети, впервые пошедшие в школу, зевают на уроках куда чаще, чем зевали до школы. Почему?

Во всех этих случаях, по Беррингер, человеку грозит сонливость. Она грозит утром, сразу после сна, когда нужно взбодриться для дневной работы, а тело еще спит. Она грозит вечером, когда ко сну клонит от дневной усталости, от тишины, от темноты (наши биологические часы настроены на сон с наступлением темноты). Она грозит первокласснику на уроке — от непривычной обязанности сидеть за партой, когда он привык бегать и прыгать. Во всех этих случаях человеку грозит сонливость, а он еще не хочет (или не может, или не должен) спать. Его мозг по какой-то причине хочет взбодриться, активизировать свою работу — и, оказывается, у него есть для этого замечательный, выработанный эволюцией, простой способ — зевнуть. Глубокий вдох при зевке напрягает бронхиальные мышцы, они сжимают так называемый вагус-нерв, идущий из мозга через глотку в желудок, а это вызывает расширение артерий, подающих кровь в мозг. А опускание нижней челюсти таким же сложным образом напрягает другие мышцы, что облегчает отток венозной крови. Все это вместе усиливает кровообращение в мозгу.

Кроме того, есть еще один скрытый, но обнаруженный при экспериментах механизм влияния зевка на активизацию работы мозга: оказывается, учащенное зевание каким-то образом связано с циркуляцией в мозгу некоторых гормонов вроде окситоцина и нейротрансмиттеров (так называется широкий класс веществ, помогающих переходу нервных сигналов из одного нейрона в следующий) вроде допамина. Таким образом, у предположения, что зевок — это способ активизации мозга, есть определенные подтверждения. А поскольку вслед за активизацией мозга наступает активизация тела, приведение в готовность мышц и органов чувств, то можно, утверждает Беррингер, прийти к общему выводу, что зевание — это биологический механизм, призванный быстро повысить уровень мозговой и (следом) телесной активности в тех ситуациях, когда эта активность притупилась из-за отсутствия внешних раздражителей. Этот способ активизации особенно важен в тех случаях, когда притупление активности, внимания или телесной готовности к действию может дорого обойтись человеку или даже угрожать его жизни.

Но не только человеку! — восклицает Беррингер. Как мы видели, зевание присуще всем позвоночным. А ведь общий предок всех позвоночных жил «вона когда». Значит, первый зевок появился уже сотни миллионов лет назад. И если он сохранился по сию пору, значит — имел важное эволюционное значение, то есть давал «Животному Зевающему» какие-то выживательные преимущества. И теперь мы можем понять какие. Благодетельный зевок помогал потерявшему бдительность животному быстро перейти из состояния расслабленности в состояние боевой готовности, или, как говорит Беррингер, «поменять тип поведения». Это было важно для выживания и потому закрепилось в мозгу. Так что теперь, когда спортсмен зевает перед ответственным соревнованием, он делает то же, что бабуин, который неожиданно встретил соперника: он зевает для того, чтобы максимально активизировать работу мозга, а через него — готовность мышц. Обоим им нужно как можно быстрее перейти от спокойного ритма к максимально активному, и тогда в дело идет зевание, резко активизирующее работу мозга, а через него — готовность мышц. (Любопытно, что вожаки обезьяньей стаи, так называемые альфа-самцы, которым нужно постоянно держать себя в состоянии воинственного возбуждения, зевают, как показали наблюдения, много чаще подвластных им самок и самцов.)

Интересная теория, даже привлекательная своей широтой, но, как я уже сказал, другие специалисты-зевоведы с ней не согласны. По их мнению, Беррингер приписывает зевку слишком большое значение. В конце концов, это просто зевок. И назначение у него может быть совсем простое. Например, профессор Гэллап из Нью-Йоркского университета считает, что зевок имеет совершенно будничное назначение — охлаждать мозг. Впрочем, хотя это и будничное, но вместе с тем крайне важное назначение, потому что мозг у млекопитающих чрезвычайно чувствителен к температуре и отклонения в три-четыре градуса от нормальной для него уже патология, они вызывают серьезные нарушения всей мозговой деятельности. Поскольку наружные температуры меняются намного резче, эволюция выработала какие-то механизмы охлаждения мозга. Но эти механизмы пока еще плохо изучены. И вот Гэллап утверждает, что зевание является одним из таких механизмов. Понятно, что это неожиданное утверждение вызывает большой интерес специалистов.

Сам Гэллап пришел к нему, исследуя влияние зевка на температуру мозга у крыс. Он вводил крысам в мозг крохотные датчики, которые сообщали, какая там температура, и терпеливо изучал, как часто эти крысы зевают. Он увидел, что при серьезном повышении температуры мозга крыса начинает часто зевать и тогда температура быстро возвращается к норме. Гэллап объяснил это наблюдение следующим образом: глубокий вдох при зевке вводит в организм много наружного воздуха, который охлаждает кровь, а резкое опускание нижней челюсти каким-то образом усиливает кровоток и тогда холодная кровь энергичнее проходит в мозг и быстрее охлаждает его. Коли так, рассудил Гэллап, то люди должны чаще зевать, когда температура наружного воздуха ниже температуры их мозга, то есть зимой. А летом им зевать не стоит — теплый воздух мозгу не подмога. Этот вывод уже можно было проверить на опыте, и Гэллап вместе со своим аспирантом Эльдакаром такую проверку произвел. Он выбрал для нее город Тусон в штате Аризона, где зимой средняя температура воздуха — около 22 градусов, а летом — около 36. Для проверки были отобраны (прямо на улице, из случайных прохожих) 80 человек в каждый из сезонов. Чтобы заставить их зевать, экспериментаторы снабжали их изображениями зевающих людей и просили посмотреть в сторонке, а потом сообщить, зевали ли они, глядя на эти картинки, и сколько раз (а также выспались ли они в предыдущую ночь и много ли были на воздухе). Результат оказался убедительным: летом о зевании сообщили 24 процента подопытных, зимой — 45 процентов. Кроме того, летом подопытные зевали тем меньше, чем больше были на улице, а зимой наоборот, что тоже, если вдуматься, соответствует «терморегуляторной теории» Гэллапа.

Лично я полагаю, что эти эффектные цифры были одной из немаловажных причин, почему сообщения о результатах Гэллапа были опубликованы чуть ли не во всех газетах мира под заголовками «Доказано, что зевание призвано охлаждать мозг». Но в действительности это не совсем «доказано». Прежде всего, все эти цифры неточны. Экспериментаторы полагались на показания самих подопытных, зевали они или нет, а такие показания не очень надежны. Кстати, это показал сам эксперимент. Как пишут авторы в своей статье, четверо из «зимних» подопытных заявили, что фотография не вызвала у них зевка. Но при этом, сами того не замечая, они зевнули, когда возвращали фотографию. К сожалению, авторы не сообщают, засчитали они эти зевки или не засчитали. Но в любом случае, даже если принять на веру показания подопытных, — что эти показания доказывают? Только то, что между зевком и температурой мозга действительно есть какая-то связь. Но они не доказывают, что это причинная связь, то есть что зевок вызывается потребностью охладить мозг. Они не исключают и такой возможности, что зевок имеет совсем иное назначение, а терморегуляция мозга — всего лишь его побочный эффект.

Какой должна была бы быть доказательная проверка? Пришлось бы следить за сотней людей круглый год, зимой и летом, непрерывно подсчитывая количество их самопроизвольных зевков при разной температуре. А у Гэллапа и сами-то зевки подсчитывались не самопроизвольные, а искусственно наведенные. Иначе говоря, он изучал не то, как человек зевает сам, по своей внутренней потребности, а как его «заражают» зеванием другие. А между тем многие специалисты считают, что хотя механика зевка в обоих случаях одинакова, но заразительное зевание — совсем не то, что самопроизвольное. Ну хотя бы потому, что заразительное зевание, в отличие от самопроизвольного, вовсе не присуще всем позвоночным — оно обнаружено только у людей и у человекообразных обезьян (кое-кто утверждает, что у собак тоже). Причем интересно: даже у людей оно случается не всегда. Как уже говорилось выше, дети (то ли до двух лет, то ли до четырех) на чужое зевание своим зеванием не реагируют. И что еще интересней: дети-аутисты реагируют на него куда меньше, чем здоровые дети, и притом тем реже, чем серьезней их аутизм. А поскольку аутизм — это, в частности, нарушение способности к социальным связям, то возникает мысль, что заразительное зевание — явление социальное (каковая мысль уже была высказана в самом начале этих рассуждений). Кстати, очень маленькие дети — тоже еще не вполне социальные существа.

Очень интересное исследование природы «заразительного зевания» было проведено приматологами де Ваалем и Кемпбеллом в начале 2011 года в приматологическом центре университета Эмори (США). Они изучили зевание у двух групп шимпанзе, которые содержались в разных загонах. Каждой обезьяне показывали девятисекундный видеоклип, изображавший зевающую обезьяну. Подопытные зевали в ответ, но как! Они зевали на 50 процентов чаще, когда видели зевающую обезьяну из своей группы, и, что то же самое, на 50 процентов реже, когда видели «чужую» обезьяну. Между прочим, у людей тоже наблюдается такая предвзятость: если человек испытывает боль или видит, как другой человек испытывает боль, у него активируются нейроны в определенном участке мозга (ученые называют это «эмпатией», проще говоря — сочувствием), но этот участок активируется сильнее, если страдает «свой», из той же социальной группы. Вот почему де Вааль и Кемпбелл в своей статье назвали зевание «индикатором эмпатии». Сегодня считается, что эмпатия порождается благодаря тому, что в мозгу многих позвоночных животных есть особые, так называемые «зеркальные» нейроны, которые в ответ на стимулы от существ своего вида (а иногда и другого) порождают такие же стимулы в своем мозгу, и это позволяет этим существам до некоторой степени «ощущать», что ощущает другой, или «имитировать» его действия (возможно, что дети именно так учатся говорить). Не исключено, что заразительное зевание — тоже разновидность такой «имитации», основанной на зеркальных нейронах.

В любом случае ясно, что заразительное зевание может играть серьезную выживательную роль. Зевнув при виде врага, животное может «заразить» зевками других членов своей стаи, то есть, в сущности, передать им сигнал опасности. А если прав Беррингер, то даже взбодрить этим всю стаю. И животные действительно зевают при виде врага. Как мы уже знаем, бабуины — да и другие обезьяны тоже — часто зевают, чтобы устрашить соперника из своей же стаи. Но оказывается, они зевают и при виде «чужака», вторгшегося на их территорию (у обезьян очень силен «территориальный инстинкт»). Зевают ли они ему в морду для устрашения или для того, чтобы продемонстрировать свое бесстрашие, — но они явно что-то сообщают ему своим зевком, что-то не менее важное, чем та информация, которую они при этом одновременно передают членам своей стаи. Поэтому можно считать доказанным, что зевок, каковы бы ни были все его другие возможные назначения, — это еще и важный (в эволюционном смысле) способ социальной коммуникации.

Напоследок поделюсь еще одной информацией. Знаете ли, почему нужно прикрывать зевок ладошкой? Вовсе не из вежливости. Просто древние люди считали, что зевок возникает, когда душа хочет покинуть тело, — вот ее и не нужно выпускать. Не знаю, как насчет души, но слишком частое зевание (например, знаменитая пациентка доктора Шарко зевала восемь раз в минуту, 480 раз в час) действительно может быть признаком болезни — расстройства сна, хронического несварения желудка, сердечной болезни, приближения мигрени, эпилептического припадка и т. д. Но болезней, вызывающих нарушение зевания, так много и они так серьезны, что интересующихся я лучше отошлю к подробному и высоко профессиональному обзору французского врача Валюсинского (Olivier Walusinski. «Yawning in Deseases»).


Отчего мы не пьем ночью?

Ответ на этот вопрос не совсем тот, что первым приходит в голову. Нет, мы не потому не пьем ночью, что спим. Мы не пьем, потому что нам не хочется. А днем хочется. А почему нам вообще хочется пить? Потому что мы непрерывно теряем воду, а вода нужна нам, как жизнь. Более того, вода и составляет основу нашей жизни. Взрослое человеческое тело на 57 процентов (в среднем) состоит из воды (новорожденное — почти на 75 процентов, но за первые десять лет жизни воды в теле становится меньше). Это означает, что в человеке весом 70 килограммов содержится около 40 литров воды. Две трети этой воды содержатся в клетках (включая наши нейроны — да-да, включая наши драгоценные нейроны, в них тоже не всё — мысли). Оставшуюся треть составляет внеклеточная жидкость, в том числе плазма крови (в которой плавают красные кровяные тельца и прочая живность). Понятно, что песенка права: без воды ни туды и ни сюды… Но вот беда — мы эту драгоценную воду все время теряем. За сутки взрослое человеческое тело теряет примерно 2,5 литра столь необходимой ему жидкости. Считается, что около 1,4 литра воды оно теряет с мочой, около 0,6 литра — с потом, около 0,3 литра — за счет воды в выдыхаемом воздухе и еще 0,2 литра — представьте, с калом. Итого 2,5 литра.

На первый взгляд 2,5 литра не так уж много. Но это взгляд именно первый — и неверный. Наш организм (как, впрочем, и любой другой живой организм) очень тонко запрограммирован природой и не терпит серьезных отклонений от гомеостаза, то бишь от условий, обеспечивающих динамическое равновесие всех идущих в нем биохимических процессов, именуемых «жизнью». В особенности не терпит он дегидратации, что и понятно, в свете вышесказанного. Потеря воды немедленно нарушает такие важнейшие параметры гомеостаза, как солевой обмен и осмотическое давление[1] в клетках и крови. Поэтому теряемую за день воду нужно возмещать. Хочешь не хочешь, а нужно пить. И если мы сами этого не понимаем, природа (в лице нашего организма) нам об этом напоминает. Она придумала для этого замечательный механизм, который, кстати, всем нам хорошо знаком с раннего детства. Этот механизм называется «жажда».

С жаждой дело обстоит так. В мозгу есть очень важный, выполняющий великое множество разных функций участок — гипоталамус. В этом участке есть группа нейронов, которую ученые так и назвали — «центр жажды». И правильно сделали. Потому что именно в этот центр приходят сигналы из нескольких разных мест, где первым долгом ощущается нехватка воды. Одно из этих мест — слизистая оболочка нашего рта. Она непрерывно «смазывается» слюной. Нехватка воды вызывает нехватку слюны, и тогда слизистая оболочка рта высыхает. А в ней находятся нервные окончания, которые реагируют на такое «нарушение порядка», — они немедленно доносят об этом «по начальству», то есть посылают нервный сигнал. Куда? Конечно, в центр жажды, эти нейроны изначально связаны именно с этим центром. Но это еще не все. Нехватка воды быстро сказывается и на состоянии крови. Как я уже сказал, кровь — это раствор. Она состоит из воды и растворенных в ней веществ (прежде всего белков-альбуминов, но также глюкозы, минеральных ионов, гормонов и т. п.) Если воды становится меньше, концентрация растворенных в ней веществ становится, естественно, больше. Это ведет к росту осмотического давления крови. А у центра жажды есть «свои люди» также и в кровеносных сосудах. Это специальные датчики, которые называются «осморецепторы». По сути, это тоже окончания нервных волокон, которые немедленно сигнализируют гипоталамусу, что осмотическое давление в крови изменилось против нормы. Третье место, где нехватка воды вызывает серьезное недовольство, — это почки. Здесь рост осмотического давления крови тоже улавливается осморецепторами, и по их сигналу почки реагирует на это усиленным производством некоего гормона. Избыток этого гормона в крови сигнализирует гипоталамусу, что воды в организме маловато. И когда все эти сигналы сходятся в одном и том же месте, количество, как говорится, переходит в качество — становится ясно, что нужно принимать срочные меры.

Я нарочно рассказал все это так подробно — хочется показать, как искусно (и как сложно) увязана в нашем организме каждая мелочь, даже такая на первый взгляд «простая», как желание пить. Сильно недостает воды — и вот в гипоталамусе, в его центре жажды, раздаются сразу три тревожных звоночка — от слизистой рта, от крови и от почек. А что делает этот центр? Он тотчас посылает донесение об этом в тот район головного мозга, который заведует эмоциями. А там, в этом районе, есть участок, который активируется этим донесением и немедленно ввергает нас в безошибочно понятное и знакомое состояние — нам чего-то хочется. Более того, мы начинаем понимать, чего именно нам хочется. Нам хочется пить, и теперь мы не успокоимся, пока не выпьем. Как сказал поэт, «если я чего решил, я выпью обязательно». Мы ощущаем жажду, и мы жадно припадаем — к стакану, к крану, к бутылочке. И что тогда? Снова чудеса природы. Замечали ли вы, что с первым же глотком ощущение жажды как рукой снимает? И действительно, оно пропадает первым, еще до прихода воды в желудок, а все потому, что нервные окончания в слизистой рта успокаиваются сразу же с первым смачиванием. Затем вода попадает в желудок и растягивает его. Тогда «механорецепторы» желудка, реагирующие на давление в нем (это они, гады, создают наше ощущение тяжести в животе), посылают в гипоталамус соответствующий сигнал, и центр жажды еще более успокаивается. Затем осмотическое давление крови спадает до нормы, «осморецепторы» перестают трезвонить, и тогда центр жажды успокаивается совсем и перестает просить о помощи. В эмоциональных участках коры «дают отбой»: водный гомеостаз восстановлен.

А что, кстати, происходит в это время в почках? Мы сказали о слизистой, о крови, а о почках забыли. А в них, оказывается, тоже происходит в это время интересный процесс. И мало того что интересный, но, как недавно выяснилось, имеющий прямое отношение к вопросу о том, почему мы не пьем ночью. Вот этот процесс вкратце. Гормональный сигнал почечной тревоги, приходящий в гипоталамус, вызывает у гипоталамуса гормональный же ответ: оттуда тотчас же посылается нервный сигнал в соседний (и тоже очень важный) участок мозга — гипофиз, где в определенном месте хранятся готовые молекулы некого гормона по названию «антидиуретический гормон», или АДГ (он же вазопрессин). Получив сигнал из гипоталамуса, гипофиз немедленно выделяет этот АДГ в кровь, и сей гормон, распространяясь по сосудам вместе с кровью, вскоре достигает своей цели. А цель эта — почки. (Вообще-то у АДГ есть много других функций: в сосудах, где он влияет на кровяное давление, и в мозгу, где он определяет социальное поведение, — но сейчас нам важно только его действие на почки.) Как только молекулы АДГ усаживаются на предназначенные для них рецепторы почечных клеток, под их влиянием расширяются почечные канальцы и вода из первичной мочи уходит обратно в почечные клетки, а оттуда всасывается в кровь (этот процесс обратного всасывания воды называется реабсорбцией). Что и требовалось совершить.

Так почему же все-таки нам не хочется (как правило) пить ночью? Ведь воду, хоть и в малых количествах, мы теряем и ночью: выдыхаем с воздухом, отдаем (если жарко) с потом, тратим на производство мочи. Надо думать, что природа и тут придумала некий механизм, который помогает нам компенсировать ночные потери воды без появления чувства жажды. Какой же это механизм, интересно? Ответить на этот вопрос взялись недавно канадские исследователи Бурке и Трудель из университета Макгилл в Монреале. Они провели исследования и пришли к занятному выводу, каковой опубликовали в сентябре 2011 года. Оказалось, ради нашего удобства, чтобы нам не вставать ночью от жажды и не искать на ощупь, с грохотом роняя стулья, запропастившийся стакан, природа мобилизовала ни больше, ни меньше наши биологические часы. Вы, конечно, слышали о них. У нас у всех (включая животных и даже насекомых, не знаю, как насчет бактерий) есть в мозгу группа нейронов (с замысловатым названием «супрахиазматическое ядро»), которые отличаются тем, что в них непрерывно происходит образование нескольких белков; за счет такого процесса (его период составляет примерно 24 часа) эта группа клеток непрерывно испускает «сигналы точного времени», рассылая их по всему организму.

Казалось бы, какое дело часовому механизму до механизма жажды? Но если вдуматься, связь есть. Ведь мы не вообще не хотим пить, а именно в определенное время суток. А часовой механизм как раз временем и заведует. И действительно, когда Бурке и Трудель тщательно всмотрелись в работу биологических часов, они обнаружили, что их «стук» существенно влияет на сигнализацию из гипоталамуса в гипофиз. Днем сигналы «часов» сильнее, и, оказывается, именно в это время помехи сигналам гипоталамуса больше. А ночью сигналы биочасов ослабевают, и тогда «слышимость» на линии «гипоталамус — гипофиз» заметно улучшается. Это, как установили те же Бурке и Трудель, приводит к тому, что гипофиз ночью выделяет существенно больше вазопрессина, чем днем. А вазопрессин, как мы уже теперь знаем, увеличивает реабсорбцию воды из мочи. И вот так мы с вами, сами того не зная, без всякого ощущения жажды восполняем себе ночью недостающую воду (тем самым уменьшая количество мочи и потребность от нее отделаться) и потому можем сладко спать, не прерывая заслуженного отдыха. А ведь природе как раз и нужно, чтобы наш драгоценный организм отдыхал, а не носился посреди ночи по квартире в поисках воды. Вот поэтому она и придумала связать наши биологические часы (которые отличают день от ночи) с работой почек (которые и днем, и ночью заняты совсем-совсем иным делом).

Большое спасибо товарищу природе за наше счастливое устройство.

Что делает в нас железо?

Точно известно, что фрукты есть полезно. Овощи тоже. Менее точно известно почему. Две шведские исследовательницы, Вейцберг и Лундберг, после длительных и серьезных экспериментов выдвинули предположение, что главная польза от регулярного поедания овощей и фруктов состоит в нитратах. Эти азотистые соединения, которых много в упомянутых овощах и фруктах, превращаются в организме в нитриты, каковые нитриты затем превращаются в окись азота. А окись азота — это тоже давно известно — расширяет наши артерии и потому должна, в принципе, несколько защищать нас от сердечно-сосудистых заболеваний. Но в таком случае возникает вопрос: если нитраты так полезны, почему бы не заменить скучное жевание какого-нибудь шпината просто приемом пищевой добавки с нитратами? А потому, говорят врачи, что нитраты токсичны. И это правда. Но вот сейчас Лундберг и Вейцберг обнаружили, что среди бактерий, живущих у нас во рту, есть такие, которые так и рвутся поскорей превратить токсичные для нас нитраты в полезные для нас нитриты, чтобы те потом, уже в организме, превратились в еще более полезную для нас окись азота.

Из всего этого, говорят вышеупомянутые научные дамы, следует важный вывод. Оказывается, нужно быть весьма осторожным, когда выбираешь, чем полоскать рот. Некоторые препараты для полоскания так сильны, что могут «выполоскать» из вашего рта полезные бактерии — и кто тогда защитит нас от токсичности? А кроме того, говорят те же Лундберг и Вейцберг, надо поменьше плеваться. Ну, плеваться, скажем мы, антиобщественно, невоспитанно и негигиенично, и слюна к тому же крайне ценное для организма вещество, им надо дорожить — не случайно наши железы производят в день до полутора литров слюны, потому что она нужна для множества дел во рту, включая, например, первичное разложение углеводов. А вот теперь Вейцберг и Лундберг вдобавок говорят, что, выплевывая слюну, мы лишаемся своих драгоценных бактерий. Так или не так, время покажет, но на всякий случай прислушаемся к их совету.

Следует еще сказать, что в том же исследовании Лундберг и Вейцберг открыли, что нитраты, находящиеся в овощах и фруктах, вроде бы делают более эффективной работу митохондрий. Митохондрии — это такие крохотные энергетические фабрики, которые в большом количестве разбросаны внутри каждой клетки нашего организма и запасают нужную клетке для жизни энергию. Чем эффективнее работают наши митохондрии, тем мы сильнее. Так что ешьте побольше шпината, с улыбкой заканчивают Вейцберг и Лундберг, имея в виду, разумеется, овощи и фрукты вообще, и будете сильными и здоровыми.

Но я должен вам сказать, что в этой последней рекомендации они не оригинальны. Далеко нет. Уже многие годы назад в Америке пользовалась бешеной популярностью реклама с изображением здорового, по-американски румяного мальчиша-кибальчиша с накачанными мускулами, рядом с которым стоит тарелка шпината. Мол, хочешь быть сильным, парень? — ешь побольше шпината! Правда, в одном пункте эта реклама расходилась с призывом шведских исследовательниц: те, как мы видели, говорят, что в шпинате сила, потому что он богат нитратами, а американская реклама утверждала, что шпинат полезен не нитратами, а содержащимся в нем железом. Мол, где железо, там штанга, а где штанга, там мускулы, как у Шварценеггера. В результате этой рекламы американские детишки свято уверовали, что шпинат напичкан железом (что не так уж близко к истине), и один такой будущий Шварценеггер даже задал редакции своего детского журнала вполне логичный вопрос: «Верно ли, что очень сильный магнит может притянуть тарелку со шпинатом?»

Пытливому ребенку, разумеется, разъяснили, что железо в шпинате (как и в прочих фруктах-овощах и даже мясе) находится, так сказать, в «рассредоточенном» виде, в виде отдельных разбросанных атомов, тогда как по-настоящему железные предметы притягиваются к магниту потому, что в них атомы железа сидят микроскопически близко друг к другу — настолько близко, прямо плечом к плечу, что по зову магнита поворачиваются «все вдруг», как солдаты на смотру, и от этого сила их притяжения к магниту намного усиливается. Но я лично думаю, что по-настоящему пытливого ребенка должен был бы заинтересовать другой вопрос — а зачем растению шпинату вообще нужно железо, будь оно сосредоточенное или рассредоточенное? И на такой его вопрос редакция, разумеется, ответила бы иначе.

Она бы сказала: дорогой наш мальчиш Сэм, Фрэнк или, там, Джон! Да будет тебе известно, что железо есть не только в растении шпинат. Оно есть во всех растениях, во всех животных и даже в бактериях, если ты уже знаешь такое слово. И все это потому, что железо необходимо любому организму для жизни. Вообще говоря, да будет тебе известно, организму нужна чуть не вся таблица Менделеева. Это просто удивительно, какие элементы ему нужны. Ну, казалось бы, зачем организму хром? Он же не автомобиль «Мустанг»! А вот оказывается, что хром помогает организму бороться с избытком сахара, увеличивает мышечную массу и позволяет сердечным клеткам запасать энергию. Если хочешь стать Шварценеггером, Сэм, то тебе понадобится много хрома. А зачем тебе, ты спросишь, такой редкий металл, как селен? Ты, наверно, даже не знаешь его названия, а вот твоя печень его усердно накапливает, потому что он, как обнаружила наука, очень помогает организму бороться с так называемыми свободными радикалами, а кроме того, как выяснили китайские ученые, без селена сердечная мышца у детей становится угрожающе слабой.

В общем, можно перебрать чуть не всю таблицу Менделеева, все 88 элементов, которые до радия, и обнаружится, что почти все они важны для живых существ — и медь, и кобальт, и кремний с германием, и никель с хлором, фтором, йодом и бромом, — но ты, кажется, спрашивал о железе, не так ли? Так вот, железо, дорогой наш Фрэнк, то железо, которое самый распространенный на Земле элемент из всех 88, — это, как говорится, всем им голова, мало что сравнится с ним по важности для нашей жизни — ну, разве какие-нибудь натрий-калий-кальций-фосфор-кислород, не говоря уже об углероде, который всему основа. А вот почему железо — такой важный для жизни элемент, в этом стоит разобраться. И тогда мы сразу увидим, что важность железа связана прежде всего с кислородом.

Ну, про сам кислород объяснять не нужно. Всем известно, что он совершенно необходим для жизни. Ибо точно так же, как любая машина сжигает топливо и получает благодаря этому энергию, необходимую для движения, так любая клетка нуждается в кислороде, чтобы «сжигать» пищу и благодаря этому получать энергию, необходимую для жизни. Это верно для всех животных и даже для большинства бактерий (существуют, впрочем, так называемые «анаэробные» бактерии, которые вырабатывают энергию иначе, без участия кислорода, но это очень небольшая энергия). Все живые существа, которым нужен кислород, получают его из воздуха, а в воздух его непрерывно выбрасывают цианобактерии, водоросли и наземные растения. Они пользуются энергией солнечного света, чтобы разложить воду на водород и кислород. Водород они соединяют с углекислым газом, чтобы сделать для себя углеводородную пищу, а кислород выделяют в воздух. Правда, ночью, когда нет солнечной энергии, многие растения временно переходят на кислород, но за ночь они поглощают кислорода меньше, чем выделяют днем, так что животным и бактериям тоже остается на жизнь. Так вот — всем этим живым существам, чья жизнь основана на кислороде, необходимо железо, потому что только с помощью железа они могут доставить кислород во все свои клетки, органы и ткани.

Этот процесс доставки кислорода в клетки удивителен по своей стройности. У человека он начинается в легких. Наши разветвляющиеся дыхательные пути заканчиваются крохотными пузырьками-альвеолами, и, когда мы вдыхаем, вошедший в легкие воздух слегка раздувает альвеолы, и кислород воздуха проникает в кровеносные капилляры в стенках альвеол. А по этим капиллярам движутся красные кровяные клетки — эритроциты, битком набитые молекулами особого белка гемоглобина, который состоит из белков-глобинов, обладающих способностью присоединять к себе углекислый газ, непрерывно производимый в нашем организме при сжигании пищи. А держит все глобины вместе некая центральная группа атомов, находящаяся в середине молекулы гемоглобина. Эта группа называется «гем» (отсюда «гемо-глобин»), и она особая, потому что в ее сердцевине находится атом железа. А железо имеет удивительную особенность — оно жадно соединяется с кислородом. (Вспомним, как ржавеют все железные предметы, — это хороший пример того, как жадно окисляется, то есть соединяется с кислородом, железо.)

Так вот, проходя по телу, эритроциты захватывают углекислый газ, присоединяя его к белковой части своего гемоглобина, к глобинам. А приходя в легочные альвеолы, они выделяют этот газ через их стенки (и он уходит по дыхательным путям в воздух), а вместо него присоединяют — на этот раз к гему (благодаря наличию в нем железа) — кислород. При этом они из пурпурных становятся красными (вот почему, если порезаться, свежая кровь имеет красный цвет, а со временем, потеряв на воздухе кислород, темнеет до пурпурной). Захватив кислород, эритроциты уходят по капиллярам в артерии, разносятся ими по всему телу, достигают всех клеток, тканей и органов, отдают им необходимый для жизни кислород, а на пути обратно в легкие снова собирают и уносят из тела вредный углекислый газ.

Так что в конечном счете клетки получают необходимый им для жизни кислород именно благодаря замечательному круговороту гемоглобина с его железом. Но при всей важности гемоглобина роль железа в нашей жизни этим не исчерпывается. В организме взрослого, здорового человека содержится 4–5 граммов железа, а в гемоглобине его примерно 2–2,5 грамма. Это значит, что остальное железо делает в организме что-то другое. И действительно, как установили ученые, часть этого железа (тоже в составе гемов) содержится в других белках — так называемых цитохромах. Они тоже крайне важны для жизни, потому что играют центральную роль в том химическом процессе (он называется зубодробительным словом «окислительное фосфорилирование»), с помощью которого клетки запасают энергию для жизненных реакций.

Этот циклический процесс еще сложнее, чем дыхание. Он начинается со сжигания (окисления) пищи, то есть противоположен тому, что делают растения на свету: растения поглощают энергию света, чтобы с ее помощью превратить воду и углекислый газ в кислород и углеводороды, а здесь клетки, наоборот, превращают кислород и углеводороды (белки, жиры и сахара) в воду и углекислый газ, при этом выделяя энергию. А затем эта энергия (полученная в конечном счете из пищи) идет на закручивание огромного множества особых молекулярных «пружин» (они именуются АТФ), которые могут позже, в любое нужное время и в любом месте клетки, раскручиваясь, вернуть ей нужное количество запасенной в них энергии.

Цитохромы принимают активное участие в этом важнейшем кругообороте жизни. Если гемоглобин доставляет для этого процесса кислород и уносит образующийся в этом процессе углекислый газ, то цитохромы — опять-таки благодаря своему железу (которое может легко переходить из одного электронного состояния в другое) — помогают быстро и в нужном порядке производить реакции, необходимые для запасания энергии в ходе образования АТФ. Но не менее важную роль играют и те атомы железа, которые связаны с белками третьего вида — трансферринами. Молекула трансферрина — это главное транспортное средство для переноса железа во все клетки организма. Этот важный процесс происходит так. Железо поступает в организм вместе с пищей. Пища переваривается в кишечнике, всасывается в его стенки и отдает их клеткам все нужные организму вещества. В том числе и атомы железа. Эти атомы подхватываются молекулами трансферрина, которые присоединяют железо к себе к себе и плывут с ним в кровотоке, пока не встретят клетки, нуждающиеся в железе. Им они и отдают свой драгоценный груз.

Один из главных получателей «железного» груза — группа клеток костного мозга, жизненное назначение которых — превратиться в зрелые эритроциты. На поверхности таких клеток есть специальный приемник трансферрина, присоединившись к которому молекула трансферрина вместе с ее железом втягивается внутрь клетки. Там она отдает свое железо, которое потом войдет в состав гемоглобина, а сама выходит из клетки обратно в кровоток и отправляется в кишечник на поиск новых атомов железа. Так что без трансферрина не было бы гемоглобина, а значит — и кислород не мог бы соединяться с эритроцитами и поступать в клетки. Но эритроциты живут недолго — они разрушаются, и «чистильщики»-макрофаги пожирают их останки вместе с содержащимся в них железом. Поэтому организму нужны все новые и новые эритроциты, то есть все новое и новое железо, и потому трудяги-трансферрины практически никогда не отдыхают. Вечные труженики.

Честно трудятся и другие железосодержащие белки — молекулы миоглобина. Этот белок, как видно по названию, — родственник гемоглобина, только его гем (та химическая группа, напомним, в центре которой находится атом железа) имеет несколько иную структуру (и даже называется иначе — порфирин). Миоглобин — один из главных белков всех мышечных тканей и одно из главных (после гемоглобина) хранилищ железа в организме (не случайно телятина полезней в качестве источника железа, чем, скажем, рыба). Благодаря обилию железа миоглобин обеспечивает наши мышцы кислородом, и тогда они лучше работают (специальные опыты показали, что мыши, искусственно обедненные миоглобином, хотя и живут кое-как, но их сердечная мышца при этом на треть слабее нормальной). Так что сила наших мышц, как видим, зависит от железа, и если шпинат дает нам какую-нибудь силу, то не потому, что в нем есть нитраты, а потому, что в нем есть железо.

Железо выполняет в нашем организме множество жизненно важных функций — куда там селену или тому же хрому. Но как оно само попадает в организм? Как уже говорилось, оно приходит вместе с пищей, которая всасывается клетками стенок кишечника. Эти клетки наделены от природы способностью получать химические сигналы о количестве железа, имеющегося в любой данный момент в организме, и стало быть — о том, сколько железа организму нужно. Дело в том, что железо все время выводится из организма: после того как макрофаги пожирают останки железосодержащих клеток, эти останки перерабатываются и в конце концов выходят наружу. Ушедшее железо надо восполнять, и клетки стенок кишечника, в зависимости от полученных химических сигналов, отправляют в организм то или иное количество железа — понятно, с помощью молекул трансферрина. Остальное железо они хранят «на всякий случай» — внутри молекул ферритина.

В норме этот процесс непрерывного пополнения уровня железа имеет определенную, рутинную скорость, но он резко ускоряется в случае большой кровопотери. И тут особенно плохо женщинам — они теряют железо как с кровью во время менструаций, так и во время беременности, потому что отдают часть своего «железного запаса» драгоценному зародышу. И эту последнюю потерю особенно трудно восполнить — как показали исследования, у часто рожающих женщин уровень железа так и остается ниже нормы, потому что они не успевают его восполнять. Одно время существовало даже мнение, что с началом менструаций железо в женском организме тоже не успевает восполняться и потому его уровень вроде бы должен из года в год уменьшаться. Однако Р. Бергстром еще в 1985-м показал, что это не так: несмотря на менструации, уровень железа в женском организме в среднем остается практически постоянным. А вот о мужчинах этого сказать нельзя. С началом выработки мужского полового гормона (тестостерона) уровень железа у подростков начинает расти, и этот рост продолжается до определенного возраста. У женщин тестостерон почти не вырабатывается, вот почему у них уровень железа (по достижении зрелости) практически не меняется.

А теперь, после этого гимна во славу пользы железа, скажем несколько слов также о его двойственности. Напомню прежде всего, что, как мы видели, железо в организме во всех случаях находится в связанном виде — будь то в гемоглобине, цитохроме или трансферрине. А всякое свободное, неработающее железо немедленно связывается внутри молекулы ферритина. Невольно возникает впечатление, что, хотя организм очень нуждается в железе, он избегает железа свободного. И это правильное впечатление. Всякий излишек железа, который не может быть связан всеми упомянутыми выше способами, выводится из организма с помощью сложной системы реакций, все время поддерживающих «железное равновесие» в организме.

Почему же организм так избегает свободного железа? Дело в том, что железо не только с легкостью принимает электроны, но с такой же легкостью их отдает, и, если бы в организме имелись свободные атомы железа, они бы при любом удобном случае отдавали свои электроны окружающим молекулам, тем самым превращая их в свободные радикалы (так называются атомы и молекулы с лишними, свободными электронами). А такие радикалы разрушительно действуют на ткани и органы. Вот почему организм научился в ходе эволюции так тщательно прятать свое свободное железо.

Но свободное железо необходимо связывать и по причине инфекций. Как уже отмечалось выше, бактерии и другие инфекционные агенты, будучи существами «кислородными», с тем же циклом дыхания, сжигания пищи и «окислительного фосфорилирования», что все прочие живые существа (кроме анаэробных), остро нуждаются в железе и там, где есть свободное железо, находят его и немедленно начинают бурно размножаться, усиливая заражение и болезнь. Этому есть множество самых разных примеров. Так, исследователи Африки открыли, что зулусы употребляют пиво, которое варят в железных горшках, и в результате много чаще страдают амебными болезнями, чем масаи, которые такими горшками не пользуются. Можно думать, что частицы железа, попадающие в организм из горшков, не усваиваются (будучи «лишним» железом) и уходят в кишечник, где становятся пищей для амеб. О том же говорит тот факт, что среди масаев, которые почему-либо получали пищевые добавки с железом, 88 процентов вскоре заболели. Аналогичная ситуация была с туберкулезными больными в Америке. Туберкулез вызывает анемию, и многие врачи предписывали больным пищевые добавки, содержавшие слишком много железа. Результатом во многих случаях было обострение болезни. Любопытно, что последующий опрос показал, что 90 с лишним процентов врачей и фармацевтов не понимали, что при больших дозах вводимого таким образом железа трансферрин не успевает переносить его в ферритин и оставшиеся свободными атомы железа становятся мощным стимулом размножения туберкулезных палочек. Такое же непонимание опасной роли свободного железа существовало до недавнего времени и в отношении беременных женщин, которым зачастую предписывали слишком большие дозы пищевых добавок с железом.

В отличие от этих врачей и фармацевтов природа знает, что нужно защищать организмы от свободного железа, и в ходе эволюции выработала для этого не только систему стабилизации уровня железа в организме, но и многие другие, вспомогательные защитные механизмы. Почему, например, дети, выращенные на коровьем молоке, чаще становятся жертвами разных инфекций, чем дети, растущие на молоке материнском? Оказывается, в молоке есть связующий железо белок лактоферрин, но в человеческом молоке его 20 процентов, а в коровьем — всего 2 процента (разумеется, свою роль играют также гормоны и антитела, получаемые младенцем с молоком матери). А вот другой интересный пример изобретательности природы. Он был обнаружен, когда стали исследовать куриные яйца. Оказалось, что белок на 12 процентов состоит из молекул белка кон-альбумина, который связывает все без исключения атомы свободного железа. И хотя бактерии могут проникнуть в яйцо через его пористую скорлупу, но до желтка с его запасами железа им не добраться — они гибнут еще на пути к нему, в белке, где для них железа нет. Не случайно в старину белком куриного яйца смазывали открытые раны, «чтобы зараза дальше не пошла». Оказывается, это не просто создавало на ране защитную пленку, но пленку, лишенную железа, то есть вдвойне непроницаемую для бактерий. Вот так во множестве случаев на пути «заразных» бактерий стоят выработанные эволюцией механизмы связывания свободного железа. Только благодаря им жизнь без опасности для себя использует железо, а благодаря железу — существует и развивается.

На кой нам цинк?

Недавняя почта принесла медицинскую новость из Америки. Группа профессора Эмили Хо из Научно-исследовательского института имени Лайнуса Полинга провела изучение роли цинка на различных лабораторных животных в разном возрасте и пришла к важным результатам. Оказалось, что с возрастом в организме, среди прочих неприятностей, нарушается кругооборот цинка. Те белки, которые переносят цинк в нужные места, производятся в недостаточном количестве, и в результате содержание этого химического элемента в организме понижается. А это, как свидетельствуют результаты исследования Эмили Хо, влечет за собой нарушение механизма починки возможных генетических повреждений, а также нездоровое повышение уровня воспалительных реакций. Воспаление, в определенных пределах, необходимо организму, это нормальная реакция на всякого рода инфекции и раны, но, перешагнув эти пределы, оно может способствовать всякого рода заболеваниям, вплоть до раковых. По всем этим причинам профессор Хо считает необходимым повысить рекомендуемые нормы потребления цинка для пожилых людей. Сегодня эти нормы для них такие же, как для молодых взрослых, хотя не только содержание цинка у них снижается, но и усвоение его из пищи.

В свете всего сказанного мы, непросвещенные, какого бы мы ни были возраста, вправе заинтересоваться: в чем дело? Какую такую роль играет этот металл в нашем организме? Ну-ка, доложите немедленно!

Немедленно докладываю. Нашему организму, как давно уже показали исследования, нужны всякие металлы, хотя и в малых количествах. Для каждого металла — цинка, железа, магния и т. п. — есть некая норма, в которой он должен присутствовать в организме. А дефицит цинка ведет, в частности, к замедлению роста, половому недоразвитию у мужчин, изменениям кожи, притуплению умственных реакций, большей податливости инфекциям и плохому заживлению ран. Поэтому считается, что главной группой риска в отношении цинка являются дети, в следом за ними — подростки и молодые люди. Теперь оказывается, что к ним нужно добавить также пожилых. Выходит, мы все нуждаемся в нормальном уровне содержания этого металла.

Что делает внутри нас цинк? Очень многое, хотя и невидимое простому глазу. А вот научному глазу очень даже видимое. Вот уже добрых полвека, если не больше, науке известно, что цинк участвует в реакциях метаболизма, то есть, грубо говоря, превращении съеденной нами пищи, выпитой воды и вдохнутого кислорода в биологические «кирпичики», из которых все клетки организма строят белки, необходимые для этого метаболизма. А поскольку эти белки, поработав немного, умирают, то нам нужны новые белки, а для этого опять нужны пища, воздух и вода, такой вот кругооборот. По крайней мере три сотни разновидностей беловых молекул, участвующих в этом кругообороте (они называются ферментами, то есть ускорителями реакций метаболизма), содержат атомы цинка.

Если глянуть на многие ферменты и другие белковые молекулы, то бросается в глаза их огромность (в молекулярных масштабах, разумеется). Они состоят порой из многих сотен «кирпичиков» — аминокислот. Зачем так много? — спросите вы. А затем, что белки могут успешно выполнять свои функции только в том случае, если свернуты в определенную пространственную структуру (свою для каждого вида белка). При таком свертывании у молекулы на поверхности появляются разного рода впадины, где могут задерживаться разные другие молекулы. А задержавшись, эти другие молекулы скорее встретятся и прореагируют друг с другом, чем просто плавая в огромных просторах клетки. Благодаря этому белки и могут ускорять реакции. Но для этого им нужно эту свою структуру все время сохранять. А для такого сохранения нужно, чтобы эта структура была скреплена многими связями между разными частями молекулы. А чтобы этих связей было побольше (и больше была бы устойчивость структуры), белковой молекуле нужно много разных частей, то есть много аминокислот. И на каком-то этапе эволюции природа стала использовать для скрепления их структуры атомы цинка.

Оказывается, цинк успешно заменяет самый важный вид связей внутри белковой молекулы — двойную сульфидную связь, так называемый серный мостик. Цинк даже лучше этого мостика. Серный мостик легко распадается в щелочной среде, что, понятно, грозит нарушением структуры белка, а цинковая связь в этом смысле устойчива. Серная связь, будучи двойной, очень жестка, а цинковая придает белку больше гибкости, и в то же время она прочнее. Жаль, что природа слишком поздно ее изобрела, почему число белков с цинком намного меньше, чем обычных (а у бактерий их вообще нет). Жаль, потому что они оказались весьма эффективным орудием управления некоторыми важнейшими процессами в клетке.

В общем понятно, зачем организму цинк. И потому он старательно поддерживает в себе необходимую концентрацию этого металла. Она невелика: в среднем в организме взрослого человека содержится около двух граммов цинка. Примерно 60 процентов его забирают себе наши мышцы, около 30 процентов — кости, остальное расходится по другим местам. Но беда в том, что цинк в организме не задерживается. Он входит в состав белков и при их распаде выносится из организма вместе с белковыми обломками, через почки и кишечник. Кроме того, атомы цинка улетучиваются еще и через кожу. В целом организм за день теряет от 0,5 до 30 миллиграммов цинка. Что означает такой разброс? Он означает, что организм непрерывно следит за тем, чтобы в нем не было не только недостатка, но и излишка цинка (ибо излишек тоже вреден). Такой процесс поддержания равновесия именуется в биологии гомеостазом. Механизм цинкового гомеостаза — то есть как именно осуществляется слежение за концентрацией цинка, какие сигналы понуждают ускорять или замедлять его выведение из организма — науке пока не известен, но само наличие такого гомеостаза, а следовательно, и важности цинка для жизни человека было осознано впервые в 1963 году (когда появились первые работы, посвященные изучению биологической роли цинка в организме людей). А уже через десять лет американское Управление продовольственных и лекарственных препаратов опубликовало первые нормы рекомендуемого потребления цинка.

Откуда мы получаем цинк? Прежде всего из красного мяса (его там в четыре раза больше, чем в овощах), затем из грубого (цельнозернистого) хлеба и волокон, из бобовых и так далее, подробности можно найти в Гугле. Там же можно найти важную деталь: фитиновая кислота, которая содержится в диетических хлопьях и белом хлебе, препятствует усвоению цинка из пищи; напротив, белковая пища и некоторые витамины помогают ему. Но никакой Гугл, понятно, не может — и не должен — заменить профессиональные рекомендации врачей, поэтому оставим им дальнейшее. Сами же вернемся к данным науки — у нее есть новое сообщение насчет цинка. Исследователи из университета Макерере (главное высшее учебное и научно-исследовательское учреждение Уганды) обнаружили благодетельное влияние цинковых добавок на исход пневмонии у детей, особенно у детей, зараженных СПИДом.

Исследование угандийских врачей охватило 350 детей в возрасте от полугода до пяти лет, которых лечили от пневмонии с помощью антибиотиков. Половине детей давали добавки цинка, другой половине давали плацебо. Распределение детей по группам было проведено случайным образом, а добавки и плацебо давали так, что ни врачи, ни дети не знали, что кому дают. Результаты эксперимента показали, что время выздоровления (возвращение к нормальной температуре, дыханию и т. п.) было одинаковым в обеих группах, но важнейший параметр: число смертельных исходов — оказался различным. В группе, получавшей цинк, умершие от пневмонии дети составили 4 процента, а в группе, получавшей плацебо, — 12 процентов. Что еще интересней: в подгруппах, куда были включены только дети-носители вируса ВИЧ, разница составила 26 процентов! «Цинк подстегивает иммунную систему, — объяснил профессор Джеймс Тумвайн, руководивший этим исследованием, — а в Уганде дефицит цинка в некоторых районах достигает семи процентов».

И знаете, сколько стоили цинковые добавки, спасшие жизнь тринадцати детям из первой подгруппы?

Меньше четырех долларов.

Нужна ли нам боль?

В середине декабря 2006 года газеты мира облетело сообщение о том, что британские ученые обнаружили в Пакистане сразу несколько случаев полной нечувствительности к боли. Все шестеро детей, у которых была обнаружена такая аномалия, оказались носителями испорченной копии одного гена — SCN9A. От него зависит пропуск в нервные клетки ионов натрия.

Вообще говоря, врачи различают два типа болевой нечувствительности: один, когда болевые сигналы достигают мозга, но почему-либо не вызывают соответствующей реакции (например, мозг не отдает приказ отдернуть руку, если она прикоснулась к горячему), и второй, когда болевые сигналы по какой-то причине вообще не поступают в мозг. Болевая нечувствительность пакистанских детей оказалась нечувствительностью второго рода. Зная, чем она вызвана, врачи могут теперь искать пути искусственного (например, химического) воздействия на «натриевые ворота» нервных клеток, чтобы с помощью таких воздействий спасать людей от боли. Очень важно при этом, что дефект гена в данном случае не сопровождается какими-либо другими последствиями для нервной системы, кроме болевой нечувствительности (хотя известно, что сам ген участвует в ряде других процессов — в частности, в деятельности симпатической нервной системы, которая управляет, скажем, ритмами сердцебиений). Это позволяет надеяться, что препараты, которые будут подавлять боль благодаря воздействию на «натриевые ворота» клетки, тоже не будут иметь никаких вредных последствий. Не случайно сразу после того, как авторы открытия опубликовали сообщение о нем в журнале «Nature», на сайт журнала посыпались письма людей, долгие годы страдающих самыми разными болями, с просьбой записать их добровольцами на испытание будущих таких препаратов.

История борьбы медицины с болью насчитывает немало столетий. Но история самой боли намного длиннее — она длиннее даже истории самих людей. Боль, по всей видимости, была изначально «придумана» природой, чтобы защищать все свои творения. Недаром чувством боли наделены буквально все организмы, кроме одноклеточных (этих природе, видимо, не жалко), и не случайно ученые могут изучать те или иные свойства боли не только на больших животных, но и на самых крохотных мушках-дрозофилах. Даже некоторые растения демонстрируют наличие у них этого свойства, когда, пытаясь избежать неприятных воздействий, сворачивают листья при неосторожном прикосновении человеческой руки. Во всех случаях боли у животных имеет место прохождение по нейронам каких-то особых, «болевых» сигналов, которые сообщают мозгу о некой физиологической угрозе и необходимости ее устранения. Так «работает» всякая боль, но — до определенных пределов. Увы, как это часто бывает, перейдя разумные пределы, защитный сигнал обращается в свою противоположность и становится тем, что мы называем просто болью — режущей, ноющей, тупой, острой, невыносимой и нестерпимой.

Люди так много думают об избавлении от боли, что всякий случай природной болевой нечувствительности немедленно привлекает к себе широчайшее внимание и тотчас порождает очередные надежды на скорое появление чудодейственных антиболевых препаратов. Но и то сказать — таких случаев, как пакистанский, история медицины знает немного. За всю историю медицины совершенно нечувствительных к боли людей известно всего 33, причем не все эти сообщения достоверны. Самым недавним (до пакистанских детей) «счастливчиком» был 17-месячный Бенджамин Уайтеккер из Йоркшира (Великобритания) о котором английские газеты сообщили в ноябре 2005 года. Этот ребенок ступал на переломанную ножку, не подавая никаких признаков боли. По рассказам родителей, он не знал чувства боли с самого рождения.

Показательно, что почти все случаи болевой нечувствительности относятся к детям, — люди с врожденной болевой нечувствительностью обычно живут недолго, поскольку быстро становятся жертвами всевозможных несчастий, вроде сломанных костей, пролежней или хронических инфекций, которых слишком долго не замечают. Многие из них вообще погибают в раннем детстве, именно из-за своей «глухоты к боли». Доктор Вудс, исследователь из Кембриджского медицинского института, который обнаружил группу нечувствительных к боли пакистанских детей, наткнулся на них именно в этой связи — во время одной из его научных поездок в Пакистан ему рассказали о мальчике, который выступает на базарах, поражая зрителей тем, что втыкает себе ножи в любое место тела и ходит босиком по раскаленным углям. Этот мальчик погиб раньше, чем доктор Вудс его нашел, — на свой день рождения он задумал удивить сверстников прыжком с крыши высокого дома, не понимая, чем грозит такой прыжок, — и, разумеется, убился. Идя по следам погибшего, Вудс разыскал в конце концов еще шестерых таких же детей — все они принадлежали к группе трех родственных семей из одного и того же клана. Все дети отличались тем, что в младенчестве не раз, сами того не замечая, глубоко, до крови, надкусывали себе губы и языки; у двух из них языки были вообще съедены на треть! Мальчик из Йоркшира тоже, по рассказам его родителей, часто надкусывал губы и язык. Легко понять, как много возможностей погибнуть еще в детстве поджидает таких «счастливчиков», лишенных чувства боли.

Я ловлю себя на такой мысли: сегодня на Западе вошли в моду научно-популярные книги, посвященные влиянию тех или иных отдельных факторов на историю общечеловеческой культуры, — например, «Соль» или «Кофе». Я знаю даже одну такую книгу, посвященную культурной истории… мусора! Кто-нибудь должен был бы написать «Краткую историю боли» — она была бы, во всяком случае, не менее интересна, чем знаменитая «Краткая история времени» Стивена Хокинга. Ведь подобно сексу и голоду на чувстве боли основаны все социальные отношения, и они же лежат в конечном счете в основе всякого подчинения, власти и государств-левиафанов. Но, в отличие от голода, боль имеет еще какой-то загадочный метафизический смысл: недаром итальянское pena, немецкое Pein, английское pain и французское peine — все они, восходя к латинскому poena, означают и боль, и наказание, и пытку; за какую же провинность наслано на людей это бедствие? Зачем оно? Над этими вопросами на протяжении веков размышляли глубочайшие религиозные и светские умы, начиная от Будды до Фридриха Ницше, не говоря уже о сотнях менее известных. Об этом можно написать целую книгу, и если кто-нибудь решится на это, то большую главу в такой книге, а то и большую часть займет, конечно, история научного познания истоков боли и поиск путей борьбы с нею.

Что же знает наука о боли? Болью мы называем психологическое переживание, которое рождается в мозгу в ответ на приходящие туда сигналы определенного типа. Сигналы эти рождаются в кончиках нейронов, если место, где они находятся, будь то ткани или органы, почему-либо раздражено — механически, термически или химически (например, ушибом, прикосновением к горячему, каким-нибудь хроническим воспалением или повреждением). То, что мы называем «острой болью» (колющей, режущей и т. п.), врачи называют «хорошей болью», ибо она играет упомянутую выше защитную роль — порождающие ее сигналы сообщают мозгу о необходимости принять срочные меры для устранения причин этой боли, и мозг реагирует на них немедленным приказом, посылаемым по моторным нейронам, — отдернуть руку от горячего, перестать напрягать мышцу, которой грозит вот-вот порваться, и т. д. Понятно, что сигналы, порождающие «хорошую боль», должны приходить в мозг быстро, и действительно — они бегут туда по специальным «быстрым» нейронам; эти нейроны окутаны изолирующей миелиновой оболочкой и потому проводят электрохимический сигнал за тысячные доли секунды. Сигналы о последействии (от ушиба, ожога, повреждения какого-либо органа или его воспаления или заболевания) идут в мозг по «медленным» нейронам, не имеющим такой оболочки и потому проводящим сигнал в течение целых секунд. Такие сигналы порождают ощущение «плохой боли» — тупой, тянущей, вяжущей, ноющей и т. д., короче говоря — боли хронической, свидетельствующей о каком-то продолжающемся процессе в организме.

Все «болевые» сигналы приходят сначала в основное тело проводящего их нейрона, то есть в спинной мозг, где они вызывают выделение особых химических веществ — глютамата (в случае «хорошей» боли) или так называемого вещества Р (в случае боли «плохой»). Оба эти вещества представляют собой нейротрансмиттеры, с их помощью «болевой» сигнал достигает головного мозга и поступает там в гипоталамус. И только оттуда он, наконец, посылается в специальный «центр боли», который и порождает боль, как психологическое ощущение. Одновременно гипоталамус посылает сигнал в гипофиз, и гипофиз, отвечая на этот сигнал, начинает спешно производить молекулы особых «антиболевых» гормонов. Химически эти молекулы представляют собой простейшие белки пептиды, состоящие из небольшого (5–30) числа звеньев, так что выработать их — дело несложное и быстрое, но роль этих небольших молекул в борьбе с болью огромна. Выйдя из гипофиза, они мгновенно находят соответствующие им места на нейронах, так называемые «опиоидные рецепторы» (чувствуете знакомое слово «опиум»?!), и, усаживаясь на них, глушат «болевые» сигналы, идущие в мозг по этим нейронам. В результате уровень боли существенно уменьшается.

Существование собственных «антиболевых» веществ в мозгу было обнаружено сравнительно недавно, в 1975 году. Первый по времени открытия тип таких веществ — эндорфины — получил свое название из слияния двух слов: «эндо-генный», то есть производимый самим организмом, и «мо-рфины», то есть подобные морфию; позднее были найдены еще два класса аналогичных веществ — энкефалины и динорфины. Все они действуют как естественный морфий (который, кстати, по сей день остается самым сильным из всех известных болеутоляющих). Они, кстати, подобны морфию или опиуму и в том, что способны вызывать чувство удовольствия, порой доходящее до эйфории. А поскольку производство эндорфинов в мозгу резко усиливается не только при боли, но и при физической нагрузке, то они появляются и во время сексуального акта, способствуя оргазму. Некоторые эксперименты указывают на роль эндорфинов и в «эффекте плацебо».

Молекулы морфия или опиума, попав в организм, тоже садятся на опиодные рецепторы и имитируют действие антиболевых гормонов. При этом морфий настолько сильный анальгетик, что подавляет не только «болевые» сигналы как таковые, но заодно и близкие по характеру сигналы, приходящие от раздраженного воспалением простуженного горла и вызывающие позывы к кашлю. Но конечно, пользоваться морфием как средством от простуды — все равно что стрелять из пушек по воробьям: и дорого, и опасно, потому что морфий, как известно, вызывает привыкание. Поэтому против простуды пользуются куда более слабым кодеином. И раз уж мы заговорили о воспалении, то скажем еще, что его «болевые» сигналы специфичны — они порождаются особыми веществами, образующимися в воспаленной ткани, — простогландинами. Эти вещества делают доброе дело, сигналя мозгу о воспалении, но сигналят они порой так сильно, что их хочется унять, и тогда мозг использует для этого нейротрансмиттер глицин, работающий примерно так же, как эндорфины. Ну, а там, где глицина не хватает, наука придумала аспирин и ему подобные препараты — они подавляют действие ферментов, без которых простагландины просто не образуются.

Как мы уже сказали, у мозга есть два главных пути для защиты организма от боли — во-первых, срочно отдать приказ убрать руку от горячего или прекратить упражнять готовую порваться мышцу, и, во-вторых, послать на опиоидные рецепторы много эндорфинов, чтобы «запереть» нейроны и тем самым прекратить доступ болевых сигналов. Существует, впрочем, и третий путь, всем нам хорошо известный: боль утихает, если больное место поглаживать, греть и т. п. Это странное влияние неболевых сигналов на степень боли объяснила так называемая «теория болевых ворот», предложенная в 1965 году Патриком Уоллом и Роном Мельзаком. Согласно этой теории нейроны, приводящие такие неболевые сигналы в головной мозг, порой кончаются в том же месте, что и нейроны, приносящие сигналы от болевых окончаний: например, сигнал от ушиба приходит туда же, куда приходит сигнал от поглаживания ушибленного места. Сходясь в одном месте, эти два вида нейронов взаимодействуют таким образом, что сигналы неболевых нейронов как бы «закрывают ворота» для прохождения болевых сигналов: поглаживание уменьшает боль.

Главный же путь борьбы с болью — это, конечно, посылка эндорфинов на опиоидные рецепторы. Любой нейрон усеян по всей своей длине тысячами самых разных рецепторов, на которые могут усаживаться молекулы самых разных веществ — гормонов и нейротрансмиттеров. Каждое из этих веществ оказывает на нейрон либо возбуждающее, либо тормозящее воздействие, в зависимости от своей химической природы; все эти усиливающие и подавляющие «микроприказы» суммируются, и результат определяет, будет ли проходить нервный сигнал по данному нейрону и насколько сильным он будет. Многие из этих «микроприказов», как, например, уже знакомые нам эндорфины, посылаются на рецепторы самим мозгом. Но есть и такие «приказы», которые доставляются к нейронам молекулами, производимыми в других участках организма, по инструкции тех или иных генов. Поэтому можно думать, что в механизме боли важную роль играют не только гены эндорфинов, но и некоторые другие гены. И действительно, недавно эта гипотеза получила блестящее подтверждение. Исследования ученых Мичиганского университета под руководством Иона-Кара Зубьеты («Science», февраль 2003), показали, что небольшое изменение («полиморфизм») в одном из генов влечет за собой совершенно разные степени чувствительности к боли.

Зубьета изучал зависимость «болевого порога» от гена под названием СОМТ, по инструкциям которого производится одноименный фермент. Этот фермент существует в двух разных вариантах, в зависимости от типа полиморфизма в гене. Эти варианты отличаются одним-единственным химическим звеном в белковой цепи фермента: звено «валин» (сокращенно «вал») заменено на «метионин» (сокращенно «мет»). Поскольку к человеку гены приходят от обоих родителей, то у него могут оказаться три разных комбинации этих двух вариантов: «вал» — «вал», «вал» — «мет» и «мет» — «мет». Так вот, исследования Зубьеты однозначно показали, что люди с комбинацией «вал» — «вал» меньше всего чувствительны к боли (то есть у них самый высокий болевой порог), люди типа «вал» — «мет» занимают промежуточное положение, а люди типа «мет» — «мет» к боли чувствительнее всего, они ощущают даже самую слабую боль. Причина этого проста. Фермент СОМТ занимается тем, что разлагает такие нейротрансмиттеры, как допамин, норадреналин и др. Благодаря такому разложению освобождаются занятые опиоидные рецепторы, и на них могут усесться молекулы благодетельных эндорфинов, которые снижают уровень боли. Так вот, оказывается, что фермент типа «вал» — «вал» является самым эффективным в смысле освобождения опиоидных рецепторов, а фермент типа «мет» — «мет» — наоборот. И вот эта мелочь — замена одного-единственного звена в цепи фермента, или иначе — замена одного-единственного звена в структуре гена — определяет, какую боль способен терпеть тот или иной человек.

Понятно, что как только стало известно, что степень врожденной чувствительности к боли зависит от небольших изменений в определенном гене (а может, и не в нем одном), неизбежно возник вопрос — а не связана ли врожденная нечувствительность к боли тоже с каким-либо геном или генами? В этом контексте можно сказать, что открытие британских исследователей, руководимых доктором Джеффри Вудсом, с которого мы начали наш рассказ, столь же блестяще подтвердило и это второе предположение. Разница лишь в том, что если степень чувствительности к боли определялась, как мы видели, полиморфизмом в гене СОМТ, то полная болевая нечувствительность оказалась (как мы тоже видели) следствием полиморфизма в ином гене — SCN9A. Этот ген, как уже было сказано, входит в группу генов, которая управляет производством белков, образующих «натриевые ворота» клетки, закрывающие (или открывающие, в зависимости от приказа) крохотную дырочку в стенке нейрона (и любой другой клетки), через которую внутрь могут входить (или наружу могут выходить) ионы натрия. Вместе с ионами калия, кальция, хлора и некоторых других элементов ионы натрия образуют на стенке нейрона электрохимический потенциал, а изменение этого потенциала, бегущее вдоль по нейрону, как раз и есть то, что мы называем нервным сигналом.

Как показали тончайшие исследования, когда молекулы эндорфинов садятся на опиоидные рецепторы нейронов, они прерывают прохождение по нему нервных сигналов как раз с помощью изменения ионного состава внутри тела нейрона. Открывая одни ионные «ворота» и закрывая другие, они меняют набор и концентрацию ионов внутри и снаружи таким образом, что в конце концов потенциал на стенке нейрона становится слишком высоким и прохождение по нему нервного сигнала оказывается невозможным.

Видимо, тот полиморфизм, который наделил шестерых пакистанских детей полной нечувствительностью к боли, меняет что-то в настройке «натриевых ворот» нейронов и тем самым создает в них такое изменение, что они раз и навсегда лишаются способности проводить «болевые» сигналы. Пока еще непонятно, как это достигается без влияния на способность нейронов проводить другие сигналы. Но если дальнейшие исследования приведут к более глубокому пониманию электрохимического механизма полной болевой нечувствительности, то станет возможным надеяться также и на появление в будущем препаратов, которые будут вызывать этот механизм искусственно, — иными словами, на появление совершенно нового типа анальгетиков.

И тогда в истории боли будет сделан еще один важный шаг к полной победе над ней.

Почему у нас разные пальцы?

Странное дело: за последние годы появилось нетривиальное множество научных исследований, посвященных нелепому на первый взгляд вопросу — существует ли связь между различного рода физическими особенностями данного человека, его врожденным риском к тем или иным заболеванием и даже его сексуальными предпочтениями — и длиной пальцев его руки.

Одно из первых таких «нелепых» исследований было проведено в 2000 году группой ученых под руководством нейропсихолога Калифорнийского (сейчас Мичиганского) университета профессора Бридлава. Они произвели измерение длины пальцев у 3000 случайных добровольцев на улицах Сан-Франциско и получили от них (под условием анонимности) сведения о их сексуальной ориентации. Полученные данные показали, что соотношение длин пальцев у женщин, назвавших себя лесбиянками, более близко к среднему такому соотношению у мужчин, чем к среднему у обычных (гетеросексуальных) женщин. Проще говоря, лесбиянки, по данным Бридлава, отличаются «более мужскими» пальцами.

Сложнее оказалась ситуация с мужчинами гомосексуальной ориентации. Здесь Бридлав обнаружил «женственность» пальцев, но только у тех гомосексуалов, которые были в семье младшими братьями (то есть имели одного или более старших братьев). Гомосексуалы, которые были единственными сыновьями, имели обычное для мужчин (и отличное от женщин) соотношение. По Бридлаву, эта разница говорит о том, что в первом случае гомосексуализм возник по причине врожденной «женственности» (о чем говорит соотношение длин пальцев), которая была вдобавок усилена подчиненным положением мальчика в семье (из-за наличия старших братьев); во втором же случае гомосексуализм был, видимо, приобретен под влиянием среды.

Исследование Бридлава было опубликовано в журнале «Nature» — как известно, самом престижном и «разборчивом» научном журнале мира — и вскоре удостоилось звания «первого» в быстро растущем собрании аналогичных работ, которые стали появляться в ведущих биологических и психологическим журналах мира. Однако на самом деле Бридлав не был пионером этого рода исследований. Первым в действительности был нейропсихолог Гленн Вильсон из Королевского колледжа в Лондоне, который еще в 1983 году опубликовал результаты изучения нескольких сот женщин, из которого следовало, что такая не очень «женская» черта характера, как настойчивость, имеет явную корреляцию с соотношением длины пальцев: у особо напористых женщин это соотношение оказалось ближе к «мужскому».

Тут самое время пояснить, о каком, собственно, соотношении идет речь. Во всех вышеописанных исследованиях имеется в виду относительная длина указательного и безымянного пальцев, которые обычно у людей (а также у мышей, обезьян и многих других животных, обладающих пальцами) несколько различны.

Это различие было отмечено еще в XIX веке, но изучено лишь в 1930 году, когда канадский врач Джордж измерил длину соответствующих пальцев у 201 мужчины и 109 женщин. Сегодня уже вошло в учебники, что у мужчин указательный палец составляет в среднем 0,947 от длины безымянного, а у женщин — 0,965, причем это различие почему-то сильнее выражено на правой руке. Эти цифры меняются от этноса к этносу, но явное различие соотношения между мужчинами и женщинами при этом все равно сохраняется. Что же касается связи этого соотношения с различными физическими и психологическими свойствами, то она не ограничивается одними лишь сексуальными наклонностями или вышеупомянутой женской напористостью. Еще в 1998 году группа Маннинга обнаружила, что у мужчин это соотношение коррелирует с уровнем тестостерона в крови и количеством сперматозоидов в сперме (чем меньше указательный палец по отношению к безымянному, то есть чем меньше отношение их длин, тем выше уровень тестостерона и больше количество сперматозоидов). В 2001 году Маннинг показал, что такая же корреляция существует между этим соотношением и риском сердечных заболеваний, а несколько позже та же группа (с участием известного специалиста по аутизму Барона-Коэна) обнаружила эту корреляцию и для детей-аутистов.

Особенно большое количество таких исследований появилось в последние 5–6 лет. Тема стала «модной», и в эту область устремились многие группы, благо что измерять длину пальцев не так уж технически трудно. Да и те характеристики, поиском корреляций с которыми занимаются эти ученые, тоже зачастую не требуют особого труда. Поэтому к концу 2011 года список найденных корреляций вырос до внушительной длины. Кстати, о длине: последней такого рода работой и как раз в 2011 году было исследование южнокорейских ученых, опубликованное в «Азиатском журнале андрологии» и посвященное корреляции длины пениса с соотношением длины пальцев. Исследование было проведено на 144 мужчинах 20 лет и старше, проходивших урологические операции; длина пениса была измерена (с их согласия) одним исследователем (в вялом и возбужденном состоянии), а длина пальцев — независимо другим исследователем, и было найдено, что соотношение пальцев коррелирует только с длиной возбужденного члена, но не вялого. Странно…

Были, однако, проведены и много более серьезные исследования — например, длившееся с 1994 по 2009 год изучение корреляции между соотношением пальцев и риском заболевания раком простаты у мужчин. Проведенное британскими учеными из Варвикского университета и Института раковых исследований, это изучение охватило 1500 больных раком простаты и (для сравнения) 3000 здоровых мужчин и показало четкое наличие такой корреляции. Аналогичный вывод был сделан в отношении бокового амиотрофического склероза (ALC), он же — болезнь Лу Герига, которая стала широко известной благодаря истории Стивена Хокинга. Исследование, проведенное учеными Королевского колледжа в Лондоне на 47 больных и (для сравнения) 63 здоровых людях, и здесь показало, что более короткие указательные пальцы идут в паре с более высоким риском заболевания. Аналогичный результат был получен нейропсихологами при изучении связи длины пальцев с такими чертами личности, как степень агрессивности, лидерские качества и т. п.

С первого взгляда может показаться, что все это — некая псевдонаучная область исследования, этакая разновидность хиромантии. Не может же, в самом деле, длина пальцев оказывать влияние на свойства человека и даже на его податливость тем или иным заболеваниям? Это верно, не может. Как говорят исследователи этих корреляций, разная длина указательного и безымянного пальцев у человека ни на что не влияет — она просто является индикатором величины какого-то скрытого, но вполне реального биологического фактора, и именно этот фактор (а не пальцы) порождает те особенности, которые изучаются. По мнению сторонников этой гипотезы, этим фактором является повышенный уровень тестостерона, однако не в организме самого человека, а в организме его матери. Иными словами, по этой гипотезе перечисленные выше особенности некоторых мужчин и женщин являются следствием того, что они уже в зародышевом состоянии подверглись повышенному воздействию тестостерона.

Поначалу представляется, что эта гипотеза неверна. В самом деле, разве не все наши особенности задаются генами? При чем тут тестостерон? Но попробуем разобраться в аргументации защитников этой гипотезы. Начнем с тестостерона. Тестостерон — это стероидный гормон из группы андрогенных гормонов, основная функция которых у всех позвоночных животных — стимулировать развитие и сохранение главных (первичных и вторичных) половых признаков самца (прежде всего, развитие его половых органов, а затем их активность и т. д.). Андрогенные гормоны действуют на те или иные клетки, когда садятся на специальные молекулы (андрогенные рецепторы), торчащие на поверхности клеточной мембраны. Под влиянием этих гормонов внутри клеток усиливается образование белков, эти клетки быстрее размножаются и их становится больше. Иными словами, ткани, состоящие из этих клеток, быстрее растут. Интересно, однако, что при этом тестостерон оказывает большее влияние на зародышевой стадии развития организма, чем во взрослом состоянии.

Тут, однако, нужно различать. Первичные половые признаки от гормонов не зависят. Они определяются не гормонами, а половыми хромосомами (это две особые молекулы ДНК), которые обозначаются X и Y. Наличие в зародышевой клетке комбинации XX делает ее женской, наличие XY — мужской (ибо ведет в конечном счете к образованию яичек и пениса). Но дальше в развитии плода начинают участвовать различные гормоны (уровень которых, в свою очередь, зависит от генов ДНК, а отчасти — от окружающих условий). В списке таких гормональных факторов андрогенные гормоны играют заметную роль. В частности, они оказывают большое влияние на дифференцировку мозга, которая начинается во второй трети беременности. И если женский зародыш — в силу каких-то гормональных особенностей матери — получит в это время повышенный уровень андрогенов, он будет «маскулинизирован». И напротив, мужской зародыш, получивший низкий уровень тестостерона (или повышенный — эстрогена), будет «феминизирован».

Резкий пример первого типа дает «адреногенитальный синдром», он же «врожденная гиперплазия коры надпочечников» (по-английски congenital adrenal hyperplasia, САН). При этом генетическом нарушении клетки надпочечников производят аномально низкое количество кортизола, что, в свою очередь, приводит к росту производства андрогенов. Это не оказывает влияния на мужской зародыш, который и без того уже мужской, но сильно «маскулинизирует» женский зародыш, вплоть до того, что резко увеличиваются размеры клитора и уменьшается длина влагалища (их коррекция требует специальной операции в детстве). Вырастая, такие девочки обладают многими мужскими психологическими чертами. Синдром андрогенной нечувствительности (когда клетки зародыша нечувствительны к андрогенным гормонам) приводит к психологической «феминизации» мужского зародыша, и такой мальчик, обладая всеми физическими признаками мужчины (начиная с половых), в своем поведении демонстрирует женские предпочтения и черты. Показательно также явление псевдогермафродитизма, когда мальчик рождается по виду девочкой, но в период полового созревания у него неожиданно вырастает пенис и начинается активная выработка тестостерона. Установлено, что это связано не столько с уровнем тестостерона в клетках зародыша, сколько с нарушением цепи его дальнейших превращений.

Загрузка...