2. Тайны наших болезней

Простуда вульгарис

Разумеется, такого научного названия нет, но то, что такая болезнь существует, знает каждый. В справочниках она называется «острый риноларингит», сопровождается насморком, чиханием, выделением мукуса (в просторечье — соплей), головной болью, иногда слабостью. Обычно проходит через неделю, а если лечить — то через семь дней, как говорят остряки. Причина состоит в том, что лекарств против простуды нет, есть только вспомогательные средства. Людям кажется, что простуда настолько безопасна, что с ней можно жить, но знающие люди говорят нам, что простуда человечеству обходится в миллиарды долларов ежегодно (в одних Соединенных Штатах — 60 миллиардов), потому что люди не выходят на работу или работают кое-как.

Простуда — состояние нездоровое, неприятное, у астматиков она еще вдобавок вызывает добрую половину их приступов, а у детей и стариков порой даже опасна для жизни, так что лучше бы все-таки иметь от нее надежное лекарство. И вот, кажется, на пути к этому сделан важный шаг. В сообщении ученых Мэрилендского университета говорится, что им удалось расшифровать геномы всех главных разновидностей вируса, вызывающего простуду (риновируса), выявить его слабое звено и сосредоточить на нем внимание фармацевтических фирм. Дальнейшее уже — дело техники (в смысле поиска препарата, способного воздействовать на это слабое звено) и экспериментов (которые должны будут показать, верны были надежды ученых и врачей или хитроумный вирус в очередной раз окажется победителем).

Я говорю о хитроумном вирусе, хотя на самом деле никакого особого хитроумия, да и ума у риновируса (как и у других его собратьев), разумеется, нет. Просто природа запрограммировала его для размножения, убрав все лишнее и оставив лишь то, что нужно для этой цели. Ведь что делает, скажем, риновирус в носу? Он внедряется в клетку, заставляя ее производить материалы, нужные для создания множества новых риновирусов, затем образует обильный мукус, чтобы всем этим новым вирусам было где жить, а под конец вызывает чихание, чтобы капельки мукуса вылетали в воздух и попадали в носоглотки других людей, тем самым расширяя область размножения вируса.

Прежде ученые думали, что простуда вызывается бактериями, но сколько ни искали, бактерий не нашли, а вот вирус, связанный с простудой, у больных действительно обнаружили. И не один. Я лишь для простоты говорю только о риновирусах, но они вызывают 30–50 процентов всех случаев простуды, остальные вызываются аденовирусами, коронавирусами, энтеровирусами, а еще 20–30 процентов — вообще вирусами, науке неизвестными. Ученые с каждым годом обнаруживают все больше риновирусов новых разновидностей, ибо одна из отвратительных особенностей риновирусов — их бешеная изменчивость. Они рождаются прямо на ходу, в многострадальных клетках нашего сопливого и чихающего носа. Кстати, мэрилендские ученые сделали шаг и к объяснению этой энергичной изменчивости, но об этом дальше.

Народная молва связывает простуду с холодом. В 2005 году ученые Кардиффского университета в Великобритании экспериментально, на девяноста добровольцах, проверили, насколько верно мнение, что простуду вызывают промокшие или переохлажденные ноги. И мнение оказалось верным… Кардиффские экспериментаторы высказали мысль, что холод может вызывать сужение сосудов в носу, а это препятствует доступу иммунных клеток в клетки носоглотки, то есть ведет к уменьшению иммунной защиты. Но есть и другое объяснение: холод уменьшает проницаемость клеточных мембран и это мешает доступу защитных комплементарных белков в зараженные ткани. Так что в любом случае полезно на холоде закутывать нос шарфом. Еще одним неприятным — и тоже экспериментально подтвержденным — фактом является связь простуды со стрессом, и тут в ходу такое объяснение: стресс вызывает усиленное выделение кортикостероидных гормонов, а эти гормоны отличаются среди прочего тем, что подавляют иммунную систему.

Однако все сказанное относится только к тому, какие факторы помогают вирусу вторгнуться в носоглотку, — а что он делает там?

Риновирус (сосредоточимся на нем, потому что упомянутая выше работа мэрилендских ученых связана именно с этим видом возбудителя простуды) — это удивительное создание природы. Он так мал, что относится к наномиру, — его диаметр составляет всего 20 нанометров, и нужно уложить рядом 50 тысяч таких вирусов, чтобы получить один миллиметр. А если вы захотите покрыть ими монету — скажем, пятак, — вам понадобятся 1500 миллиардов вирусов! Но, несмотря на свою ничтожную малость, этот вирус имеет структуру. На его оболочке есть белковые молекулы, свернутые так, что образуют углубления специфической формы. Эта форма в точности подходит к выступам белковых молекул на поверхности клеток нашей носоглотки, что позволяет вирусу прикрепляться к клетке, а потом проникать в нее. Точнее, в клетку проникает не сам вирус, а только его геном, состоящий из одной-единственной нуклеиновой молекулы РНК, которая насчитывает примерно семь тысяч химических звеньев. Вот эта-то РНК и несет в себе механизм воспроизводства вируса. Этот механизм заставляет клетку прекратить обычную работу и целиком переключиться на производство тех белков, а также РНК, которые необходимы для построения новых вирусов. Когда новых вирусов образуется очень много, они разрывают клетку, выходят наружу и вселяются в другие клетки, а затем в капли мукуса, чтобы с ними выйти наружу и заражать других людей.

В места скопления этих чужих для организма вирусных частиц в носу спешат иммунные клетки. Они выделяют белки-цитокины, которые вызывают среди прочего ощущение усталости и потерю аппетита. Кроме того, выделяются другие белки и химические вещества для борьбы с вирусами, и вся эта химическая смесь порождает симптомы (насморк, чихание и т. п.), которые мы называем в совокупности простудой. Особенно важную роль в этой смеси играет маленький белок брадикинин — как показали опыты, если ввести его в носоглотку здорового человека, у того появляются все признаки простуды. Последними на сцене появляются антитела — они запоминают врага, чтобы в следующий раз защитить от него клетки нашего носа. Увы, запоминают они только данный вид вируса, а так как риновирусов существует свыше сотни разных видов, то, вылечившись от одной простуды, вы вполне можете тут же подхватить другую. Чем вызвано это коварное многообразие риновирусов и нельзя ли найти универсальную отмычку против всех них сразу? Задав этот вопрос, мы плавно возвращаемся к работе мэрилендских ученых.

Путем длительной и кропотливой работы они сумели расшифровать последовательность всех 7000 химических звеньев в каждой РНК всех 99 разновидностей, которые составляют референтную группу риновирусов (своего рода библиотеку их главных видов). После этого они произвели сравнение всех этих РНК. Это позволило установить места, где чаще всего происходят случайные изменения вирусного генома, а также выявить, как эти мутации накапливались в ходе эволюции вирусов.

Возвращаясь вспять по ступенькам этих мутаций, ученые сумели доказать, что все виды риновирусов произошли от одного общего предка, но постепенно распались на три большие группы (обозначаемые обычно А, В и С), однако их РНК тем не менее все еще сохраняют одну общую особенность — во всех на одном их конце химические звенья образуют участок, свернутый в виде кленового листа. И состав этого участка остается неизменным все время эволюции, — стало быть, он очень важен. И действительно, вглядываясь дальше, исследователи установили, что именно в «кленовом листе» находятся те гены вируса, с помощью которых он, попав в клетку носоглотки, начинает строить нужные ему белки, а затем и новые РНК, служащие для образования новых вирусов. Это побудило их сделать вывод, что «кленовый лист» — слабое звено вирусной РНК, и если удастся найти препараты, способные блокировать работу этого участка, то есть надежда, что вирус не сможет размножаться.

В то же время соседний с «кленовым листом» участок РНК оказался интересным в другом отношении — выяснилось, что именно там легче и чаще всего происходят изменения, превращающие один вид вируса в другой. Причем особенно часто эти изменения у риновирусов происходят в том случае, если в носоглотке встречаются два разных вида — они радостно падают друг другу в объятия и в ходе такой тесной встречи обмениваются кусками этого участка своей РНК (этот обмен называется в науке рекомбинацией). В результате весьма часто рождаются новые разновидности, что и объясняет (по крайней мере, частично) изменчивость риновирусов. И не исключено, что подходящее химическое воздействие на этот участок вирусной РНК сумеет блокировать это свойство…

Не повезло с названием…

Если вы подключитесь к дренажной трубе по имени Гугл и попросите ее выдать вам все, что связано со словами «Аспен-синдром», то из русского отвода трубы на вас первым долгом хлынет мутный поток всевозможного мусора, вроде «синдром откладывания на потом», «синдром Гулливера», «синдром обструктивного апноэ» и тому подобное. Я иной раз удивляюсь — кто там на русском Гугле ухитряется так изобретательно собирать именно то, что имеет самое далекое отношение к запрашиваемому? Впрочем, когда поток мусора несколько схлынет, появятся и более содержательные ссылки — например, на статьи о веселом времяпрепровождении богатеньких русских на американском лыжном курорте под названием Аспен, а также о тракторной фирме под этим же названием. Но «Аспен-синдрома» вы так и не дождетесь.

Несколько лучше будет ситуация на английском отводе поисковой трубы. Там сразу же, как и нужно, появятся словосочетания, действительно включающие слово «синдром», но в огромном большинстве это будет иной синдром — синдром Асперберга (так называется одна из комбинаций признаков аутизма). Появится, впрочем, и сам «Аспен», но увы — либо как аббревиатура английских слов, означающих что-то вроде «Информационного центра», посвященного все тому же «синдрому Асперберга», либо как название все того же модного лыжного курорта (он же место различных научных конференций). Синдрому Аспена явно не повезло с названием — его затерли между модным курортом и тяжелой болезнью. И, только тщательно поискав, вы увидите наконец ссылку, которая приведет вас к статье Дж. Зигеля и его коллег, опубликованной в 1993 году в «Урологическом журнале» («Journal of Urology»), где была впервые описана малоприятная совокупность болезненных признаков, названная авторами «Аспен-синдромом».

Строго говоря, «аспен» тут — тоже аббревиатура, и расшифровать ее по-русски трудновато, так как почти каждое слово требует отдельного объяснения. Но все же попробуем. Речь идет о подмеченной Зигелем связи, или ассоциации (отсюда начальное «а» в слове «аспен»), серповидно-клеточной (отсюда «с») анемии, сопровождаемой так называемым «приапизмом» («п»), с определенными нейрологическими нарушениями («н»), которые появляются, когда упомянутый приапизм лечат методом трансфузии (то есть переливания крови). Во всем этом наборе терминов самые знакомые, пусть и понаслышке, слова (после «переливания крови», конечно) — это «серповидно-клеточная анемия», вот за нее и ухватимся, чтобы потянуть цепочку.

Начнем с известного. Наша кровь содержит красные кровяные тельца, или эритроциты, содержащие молекулы гемоглобина, в состав которых входят атомы кислорода, прицепившиеся к сидящему в центре молекулы гемоглобина иону железа. Эритроциты подхватывают этот кислород в легких и разносят затем по всему организму. Этот процесс составляет одну из основ жизни: ей нужен кислород; недостаточно кислорода — нет жизни. И вот при серповидно-клеточной анемии кислорода в клетки поступает недостаточно. А причиной этого является особая форма эритроцитов.

Обычно здоровый эритроцит имеет приятную округлую форму. Однако у некоторых людей (особенно в тропической Африке) один из генов, отвечающих за образование гемоглобина, испорчен мутацией. Это крохотная мутация: изменение одного-единственного химического звена в структуре гена, — но она влечет за собой замену одной аминокислоты в молекуле гемоглобина на другую. Казалось бы — какой вред может принести замена одной аминокислоты, если их в гемоглобине 574. А вот оказывается, что порой даже такое вроде бы ничтожное изменение может внести тяжелый разлад в нашу тончайше отлаженную биологическую машину. Замененная аминокислота в гемоглобине была гидрофильной, а вставшая на ее место — гидрофобна, а поскольку «гидрофобность» означает, что она не любит соседствовать с водой, то новая аминокислота, в силу этой нелюбви, старается, в отличие от прежней, потеснее окружить свою молекулу гемоглобина другими гемоглобиновыми молекулами. Для этого она связывает их друг с другом, чтобы они вытеснили воду из ее окружения. А такое слипание («полимеризация») молекул гемоглобина меняет форму эритроцитов: из округлых они становятся удлиненными, больше похожими на палочку или на серп — отсюда и слово «серповидная» в названии болезни.

Сама болезнь вызывается тем, что эритроциты, внутри которых гемоглобин полимеризован, теряют обычную пластичность, становятся жесткими и не могут, как прежде, легко менять форму, чтобы протиснуться в тончайшие капилляры. Возникает ишемия, то есть недостаточность кровоснабжения. К тому же и сами испорченные эритроциты тоже живут много меньше нормальных, что опять-таки не способствует здоровью. В целом такая порча гена, если она унаследована и от папы, и от мамы, влечет за собой раннюю смерть, но, даже если порча унаследована только от одного родителя, она сокращает срок жизни человека до 42–46 лет. Но почему она вообще наследуется? Ведь эволюция не жалует людей с испорченными генами — их быстро вытесняют со сцены жизни люди здоровые, которые производят больше здорового потомства. Оказалось, однако, что зловредная мутация сохранилась, потому что, наделяя людей одной тяжелой болезнью — серповидно-клеточной анемией, — она одновременно защищает их от другой, еще более губительной — от малярии, особенно свирепой в тех местах Африки, где эта мутация возникла.

Вот, стало быть, что такое «с» в названии Аспен-синдрома, но я понимаю, что самые внимательные среди нас давно уже и нетерпеливо ждут, когда мы объясним второе, мучительно знакомое им, но никак не вспоминаемое по смыслу слово, которое выше сопровождало теперь уже понятную нам «серповидно-клеточную анемию», — тот «приапизм», при лечении которого методами «трансфузии» возникают, согласно Зигелю и его коллегам, обнаруженные ими «нейрологические нарушения». Что ж, перейдем к приапизму, раз уж мы ради него растревожили весь Гугл своими запросами. «Приапизм» — это, понятно, от слова «Приап», а уж это слово русский Гугл знает. Ибо Приап — это древнегреческий бог плодородия, рожденный то ли Афродитой, то ли Дионой, то ли от Адониса, то ли от Диониса, то ли от Гермеса, то ли от Сатира и тотчас брошенный мамашей по причине своего «безобразия», как стыдливо сообщает русская Википедия, не менее стыдливо объясняющая затем, что оное безобразие состояло в «чрезмерно развитых» (как и положено, надо думать, такому богу) половых органах. Проще говоря, Приап отличался таким огромным членом, что однажды, как рассказывают древние греки о своих богах и героях, победил в соответствующем соревновании даже личного осла бога Диониса.

Все это, разумеется, весьма любопытно, хотя не очень-то необычно, если учесть общий фон выдающегося разгула сексуальности среди древних греков вообще и в их мифологии в частности. Но для нас в контексте нашей темы куда более интересно, что Приап, как правило, изображался и изображается с неизменно стоящим, к тому же сильно загнутым к животу членом. Из этого можно заключить, что этот бог, видимо, страдал той болезнью, которая позже была названа его именем, ибо приапизм, который врачи разделяют на ишемический и неишемический, в любом случае состоит в затяжной эрекции, вызванной тем, что кровь, заполнившая пещеристые тела полового члена, по каким-то причинам не оттекает оттуда, а повышенное давление в них распределено так, что вдобавок задирает этот напряженный орган кверху. Читательниц прошу нервно не хихикать, потому что науке известен также приапизм клиторальный. Хотя виагра таким мужчинам действительно не нужна и они могут на ней изрядно сэкономить, но завидовать тут нечему, потому что такое состояние длительной эрекции не только мучительно болезненно, но и опасно — застой крови может привести в лучшем случае к импотенции, в худшем — к гангрене. Запишите в ваши книжечки, господа: если эрекция продолжается больше четырех часов, необходимо врачебное вмешательство. Это было известно еще в Древнем Египте, о чем свидетельствует так называемый «папирус Эберса» с указанием средств лечения. В Европе первое упоминание о приапизме появилось в 1616 году в трактате «Гонорея, сатиризм и приапизм», и его почти триста лет лечили пиявками. А в начале XX века отец и сын Хинман показали, что он вызывается сочетанием застоя венозной крови с ее повышенной вязкостью.

Впрочем, сегодня известно, что существует и другой вид приапизма, вызванный не столько нарушениями оттока венозной крови, сколько избыточным притоком артериальной, но это не отменяет того факта, что приапизм первого типа появляется прежде всего как одно из следствий серповидно-клеточной анемии. В перечне болезней, вызывающих этот вид приапизма, она стоит на первом месте и именно потому, что кровь, содержащая серповидные эритроциты, становится повышенно вязкой. Так что Зигель и его коллеги не случайно писали о «приапизме, сопряженном с серповидно-клеточной анемией». Так что грамотные врачи, оказывается, давно знают, что такая анемия, как правило, сопряжена с приапизмом, и мой энтузиазм оправдывает лишь то, что я пишу не для врачей. И еще одно знал долгое время каждый грамотный врач: если в случае других вариантов приапизма рекомендуются разного рода лекарства (и, как крайнее средство, хирургическое вмешательство), то в случае, так сказать, «серповидно-клеточного приапизма» издавна рекомендуется прежде всего попробовать трансфузию. И вот именно последствия этой рекомендации как раз изучали Зигель и его коллеги.

Так что оставим теперь в покое Приапа в его пикантном положении, он бог, ему неспешно, и вернемся к Аспен-синдрому. Ибо этот синдром, обнаруженный Зигелем и его коллегами, состоял, напомню, как раз в том, что лечение ишемического приапизма методом трансфузии влечет за собой весьма неприятные нейрологические последствия. Они начинаются с мучительной головной боли, а продолжаются снижением чувствительности и судорогами, которые сами по себе требуют врачебного вмешательства. По мнению авторов, эти явления, возможно, объясняются резким повышением уровня гемоглобина при переливании крови больному, мозг которого, в силу «серповидно-клеточной анемии», уже привык к постоянному недостатку гемоглобина.

Открытие Аспен-синдрома, при всей его частности, имело важные для больных медицинские последствия. Оно побудило других исследователей более критично отнестись к давней рекомендации, и в результате сегодня в последнем по времени обзоре методов лечения приапизма, опубликованном в 2006 году, можно уже увидеть специальную оговорку (со ссылкой именно на статью Зигеля и его коллег), что в случае «серповидно-клеточного приапизма» к трансфузии нужно прибегать не в первую, а, напротив, в последнюю очередь, после испробования всех других методов — именно из-за возможных при этом нейрологических нарушений (то есть Аспен-синдрома). А по следам этой настороженности возникло решение внимательней приглядеться к трансфузии вообще.

Результатом этого стал обзор, опубликованный спустя некоторое время в Канаде. Авторы обзора проанализировали все имевшиеся на то время сообщения о лечении приапизма, сочетающегося с серповидно-клеточной анемией. В 16 из 42 изученных случаев для лечения применялись современные методы: отсасывание крови из вен в сочетании с капельным введением сосудосужающего вещества фенилефрина. Эти методы полностью устраняли последствия затяжной эрекции в среднем за 8 дней. В 26 других случаях лечение проводилось методом трансфузии, и тот же результат был достигнут в среднем за 10,8 дня, причем в 9 случаях из 26 был замечен Аспен-синдром. Вывод обзора был выразительно сформулирован уже в его заглавии, которое гласило: «Миф о переливании крови как якобы самом эффективном средстве лечения приапизма, связанного с серповидно-клеточной анемией».

Вот так движется порой наука: новое открытие подталкивает в конечном счете к пересмотру давней догмы. Оказалось, что в случае серповидно-клеточной анемии приапизм следует лечить новыми методами, а трансфузия попросту не эффективна. К счастью, за прошедшие годы эти другие методы уже найдены. Поучительная история, ничего не скажешь.

Вирус гриппа и его помощник

Снова пришла зима, и снова пришел грипп. На сей раз не птичий, а для разнообразия свиной. Что это за напасть такая — почему грипп, вроде бы предназначенный для кур или свиней, способен вторгаться в дыхательные пути человека? Что говорит по этому поводу наука?

Наука по этому поводу говорит, что вторжение вируса гриппа в наш организм представляет собой совершенно замечательный по изяществу и тонкости процесс своеобразного молекулярного танца, исполняемого, как и положено танцу, двумя партнерами — некой молекулой, находящейся на поверхности клетки, и некой другой молекулой, находящейся на поверхности вируса гриппа. И далее наука говорит, что именно изысканно-согласованные пируэты этих двух молекул как раз и открывают разным вирусам путь в наши дыхательные пути. Присмотримся же и мы к этой «научной картине гриппа» — авось тогда и для нас кое-какие загадки гриппа перестанут быть загадками.

Прежде всего — что знает наука об этих танцевальных партнерах? Начнем с вируса. Всякий вирус, говорят ученые, состоит из генетической молекулы и оболочки, в которой эта молекула упакована. У вируса гриппа эта генетическая молекула принадлежит к классу РНК, которая имеет некоторые химические отличия от всем известной ДНК, и, в частности, состоит из одной длинной цепи, а не из двух, как ДНК. Однако у вируса гриппа (как, впрочем, и у многих других вирусов) эта РНК «сегментирована», то есть ее длинная цепь разбита на несколько отдельных кусков. Это позволяет вирусу очень быстро эволюционировать. Действительно, если два разных вида такого вируса встретятся в одном месте, то каждый сможет передать часть сегментов своей РНК другому. Благодаря такой «пересортировке» (или «виральному сексу», как ее иногда называют) потомство этих двух вирусов получит новые гены, а с ними — новые свойства. Но для этого они должны прежде всего произвести такое потомство. А вирус, как известно, — не живое существо: у него нет тех органелл, с помощью которых живет и размножается всякая обычная клетка. Поэтому вирусу для размножения нужно пробраться в обычную клетку — там он сможет воспользоваться всеми ее органеллами.

Как же он туда пробирается? С этого вопроса мы начали и к нему вернулись. Как уже сказано выше, ученые обнаружили, что проникнуть в клетку вирусу помогают специальные молекулы, торчащие на его оболочке. Увеличенный под электронным микроскопом, вирус выглядит как шарик, утыканный «гвоздиками» и «грибками». Они торчат в жировой оболочке вируса таким образом, что основная их часть находится снаружи, а «хвосты» входят внутрь оболочки. «Гвоздики» — это молекулы особого сахаро-белка, который называется хем-агглютинин, или сокращенно Н (не русское «эн», а английское «эйч»!). Такое название молекула Н получила за свою способность «агглютинировать», то есть склеивать друг с другом красные кровяные тельца-эритроциты, несущие в себе железистые «хем-группы» гемоглобина. Изучая вирусы гриппа класса А (самого вирулентного из трех классов гриппозных вирусов), исследователи обнаружили (на момент написания этого текста) 16 разных видов молекул Н, в основном — из вирусов диких птиц (например, вид Н16 был открыт в 2006 году на оболочке вируса гриппа диких гусей, обитающих в Швеции и Норвегии).

Второй тип молекул, торчащих на оболочке вируса, то, что мы назвали «грибочки», — это нейраминидаза (сокращенно N). Это тоже соединение одного из видов сахара с одним из видов белков: длинная цепочка сахара играет роль ножки, а белковая цепочка свернута в плоскую «шапочку» гриба, над которой поднимаются еще несколько сахарных цепочек. В вирусах разных птиц и животных найдено девять разных видов нейраминидазы, от N1 до N9. Подобно хем-агглютинину нейраминидаза тоже образуется по инструкциям вирусной РНК. В целом эта РНК у вируса гриппа содержит 11 разных генов: один — для Н, один для N, а девять остальных — для девяти видов белков, находящихся вместе с РНК внутри вирусной оболочки (они помогают вирусу в деле его размножения и образования потомства внутри клетки-хозяина). В вирусах гриппа А эти 11 генов разбросаны по восьми сегментам. И поскольку эти сегменты в процессе размножения, как мы уже знаем, проходят «пересортировку», то гены разных Н и разных N на оболочке вируса-потомка могут соединяться в самых разных комбинациях. И это крайне важно для существования вирусов.

Это крайне важно потому, что в отличие от упомянутых девяти белков, которые помогают вирусу внутри клетки, молекулы Н и N помогают ему снаружи — в тот момент, когда вирусу нужно проникнуть в клетку, и потом, когда его потомкам нужно выйти из нее. А для проникновения в клетку и выхода из нее вирус как раз и пользуется той или иной комбинацией этих двух молекул, как мы — кодом домофона. Например, вирус, преимущественно атакующий клетки свиньи, несет на своей оболочке «код» H1N1, а вирус, особенно охотно вторгающийся в клетки птицы, — H5N1. Поэтому в организме свиньи, заболевшей гриппом, исследователи, как правило, обнаруживают вирус типа H1N1, а в организме курицы — H5N1. И соответственно называют их вирусом «птичьего» или вирусом «свиного» гриппа. Но такая избирательность не абсолютна. Вирусы, несущие на себе другие коды, тоже зачастую могут проникать в эти клетки. И, встречаясь там друг с другом, могут, как описано выше, обмениваться сегментами своих РНК, что приводит к появлению новых видов гриппозных вирусов (это особенно часто происходит в клетках свиней, которые в этом смысле являются своеобразными «плавильными котлами» природы).

Справедливо это и для людей: в клетки дыхательного тракта человека могут проникать не только вирусы гриппа, специализирующиеся на ежесезонном вторжении в них, но и такие вирусы, которые несут на себе H-N «коды» птиц или животных. Вот, для иллюстрации, список «кодов», обнаруженных в гриппозных вирусах во время последних эпидемий или вспышек гриппа у людей: H1N1 (знаменитая «испанка» 1918 года — 500 миллионов заболевших, 50 миллионов погибших, а также эпидемия свиного гриппа 2009 года); H2N2 (эпидемия «азиатского» гриппа 1957 года — 1 миллион погибших), H3N2 («гонконгский» грипп 1968 года — 500 тысяч погибших, а также вспышка 2007 года); H5N1 («птичий» грипп 2004 года), а кроме того, H7N7, H1N2, H9N2, H7N2, H7N3 и H10N7.

Мы, однако, все еще не ответили на вопрос, что именно делает возможным такое проникновение в наши клетки всех этих «инородных» вирусов. Как показали исследования, всем этим вирусам «открывает дверь» некий единый «тайный помощник». Он находится на поверхности клеток дыхательных путей и является тем вторым партнером упомянутого выше «молекулярного танца», который завершается проникновением вируса в клетку. Но он имеет не одну, а две ипостаси и потому способен помогать разным вирусам, не только «нашим» человеческим, но и «инородным». Помощник этот называется «сиаловая кислота».

Последуем за вирусом внутрь нашего дыхательного тракта. Всякий вирус, попадая внутрь организма, «видит» перед собой множество самых разных клеток. В этом «лесу» он должен найти нужные ему «деревья» — те клетки, в которых он способен размножаться (вирусы, как правило, специализируются не только на организмах определенного вида, но и на тканях определенного типа). Это нелегко, потому что каждая из окружающих вирус клеток покрыта, как шубой, густой порослью защитных молекул сахаро-белков и сахаро-жиров. Жиры образуют оболочку клетки, белки заякорены в ней, а из тех и других торчат вверх, как ворсинки, длинные цепочки сахарных молекул. Вся эта «шуба» называется «гликокаликс». Она не только защищает клетку — она еще и помогает ей соединяться с соседними клетками, образуя ткань, она позволяет этим клеткам общаться друг с другом, а также с иммунными клетками, и, наконец, она наделяет организм способностью отличать свои клетки от инородных «интервентов» вроде того же вируса — поскольку все клетки одного организма имеют уникальный гликокаликс (только у идентичных близнецов он одинаков), то на этом фоне «чужак» немедленно заметен. Так что наш вирус должен поторопиться и побыстрее проникнуть в какую-нибудь клетку, в противном случае против него будут вскоре «приняты меры» — брошены в атаку клетки иммунной системы.

Но как же найти подходящее укрытие?

Вот тут-то на сцене и появляется «тайный помощник». Как выяснили ученые, над «шубой» подходящих вирусу клеток всегда вьется некий опознавательный вымпел, как бы сигнализируя ему: «Сюда!» Этим «вымпелом» является кончик одной специфической сахарной цепочки, входящей в состав гликокаликса. Дело в том, что все сахарные цепочки несут на верхнем конце некие группы атомов, которые химически являются кислотами. На разных клетках эти кончики разные. На тех клетках, в которых только и способен размножаться вирус гриппа, есть сахарные цепочки, так называемые «галактозы», которые кончаются упомянутой выше сиаловой кислотой. Вот она-то и сигнализирует вирусу, в какие клетки он должен проникнуть. Но этим ее роль не исчерпывается. Вслед за этим сиаловая кислота еще и помогает вирусу проникнуть в указанные клетки. Тут-то и начинается их «танго для двоих».

Первое «па» этого танца состоит в том, что молекула Н на оболочке вируса сближается с сиаловой кислотой. Это служит химическим сигналом, в ответ на который клетка в месте соприкосновения образует углубление, этакую полусферу, охватывающую вирус. Следующий пируэт «танца» начинается с того, что в образовавшееся углубление входят из клетки ионы водорода. «Почуяв» их, молекула Н преобразуется: ее белковая часть сворачивается, как пружина, и тем самым подтягивает вирус вплотную к мембране клетки, а затем «склеивает» оболочку вируса с этой мембраной. Следующее «па»: углубление, в котором все это происходит, закрывается снаружи, образуя полную сферу — этакий микроскопический пузырек, внутри которого находится вирус. На последнем этапе ионы водорода входят внутрь вируса и вызывают химическую реакцию, в результате которой вирусная РНК вместе со своими белками освобождается от оболочки, после чего один из белков перерезает «пуповину» — молекулу Н, которая держала оболочку приклеенной к мембране клетки. Оболочка отпадает, и внутри пузырька остается только вирусная РНК с ее белками. Затем пузырек втягивается в клетку, и вирус начинает там свое размножение.

Танец закончен, болезнь началась. Теперь вирус начнет размножаться, и его потомки, выходя из клетки, разрушат ее, а потом вторгнутся в другие такие же клетки и, в свою очередь, разрушат и их тоже. Остается лишь добавить, что при выходе вирусов-потомков из клетки примерно тот же процесс повторится в обратном порядке: новые вирусы выйдут наружу внутри пузырьков, приклеенных к клеточной мембране цепочками тех же галактоз с присоединенными к ним сиаловыми кончиками, с которыми раньше вступала в «танец» молекула Н. Но теперь в танец с ними вступит молекула N, нейраминидаза, причем в «танец» обратный — она разорвет связь сиаловых кислот с новорожденными вирусами и тем самым отделит эти вирусы от клеточной мембраны, что даст им возможность устремиться на поиски новых клеток для своего размножения.

А теперь разъясним, что это за две ипостаси сиаловой кислоты, о которых мы упомянули выше. Как уже говорилось, сиаловая кислота вьется, как вымпел, на конце молекулы галактозы, и вот исследования показали, что она способна прикрепляться к этой галактозе двумя способами, которые химики условно обозначают «альфа 2–3» и «альфа 2–6». И те же исследования показали, что с каждым из этих «посадочных мест» — они называются «рецепторы» — связывается свой вид вирусов: рецептор «альфа 2–3» имеет вид, который соответствует молекулам хем-агглютинина и нейраминидазы на оболочке вируса птичьего гриппа (H5N1), тогда как рецептор «альфа 2–6» соответствует вирусу человеческого гриппа (H1N1). А поскольку к клетках дыхательного тракта человека представлены и те, и другие «альфы», то становится понятно, почему вирус птичьего гриппа может заражать не только птиц, но и людей. Во всем виновата сиаловая кислота с двумя ее вариантами соединения с галактозой.

Однако загадки нашего гриппа на этом не кончаются. Хотя оба вируса проникают в организм одним и тем же путем, с помощью сиаловой кислоты, но тяжесть заболеваний при этом оказывается разной: птичий грипп более суров и вызывает больше смертных случаев. В чем же дело? В 2006 году эту загадку атаковали сразу две группы исследователей, и в результате выяснилось, что рецепторы «альфа 2–3» и «альфа 2–6» находятся в разных местах дыхательного тракта. «Вымпел» «альфа 2–6» развевается преимущественно над клетками носоглотки и бронхов; глубже, в самих легких, таких клеток становится все меньше (хотя они есть и там). Напротив, «вымпелов» «альфа 2–3», приманивающих вирус птичьего гриппа, особенно много именно внутри легких, в тех альвеолярных клетках, где, собственно, и происходит газообмен. Эти клетки секретируют особый белок, который не дает легким «спадать», и возможно, что этот же белок помогает вирусу размножаться. А поскольку эти клетки находятся в основном внутри легких, то последствия их разрушения вирусом оказываются более тяжелыми. Как бы то ни было, но при вскрытии умерших от гриппа больных вирусы птичьего гриппа обнаруживаются именно в разрушенных альвеолярных клетках.

Любопытно, что у самих птиц рецептор «альфа 2–3» находится в основном на клетках кишечника — и не случайно грипп у птиц чаще всего протекает как кишечное заболевание. И это, кстати (или некстати?) сразу напоминает нам о вирусе свиного гриппа, с которого мы начали эту заметку, — а что с ним? Каковы его особенности? И почему он тоже проникает в клетки нашего дыхательного тракта?

Вирус свиного гриппа был впервые выделен еще в 1930 году. Позже было показано, что он одинаков во всех случаях свиного гриппа по всему земному шару. Он повсюду вызывает заболевание, симптомы которого очень похожи на человеческий грипп: чихание, выделения из носа, «лающий» кашель, повышенная температура, вялость и пониженный аппетит (кстати, у собак и лошадей симптомы гриппа такие же, хотя «коды» их вирусов несколько иные, тогда как так называемый «кошачий грипп» вообще не связан с вирусом гриппа). Тогда же, в 1930 году, было обнаружено, что люди, часто контактирующие со свиньями, иногда заражаются вирусом свиного группа. И наоборот — больные люди могут заразить свиней вирусом человеческого гриппа (человеческий H1N1 или H2N3).

Однако такие случаи оставались локальными вплоть до 2009 года, когда в Мексике появилась новая разновидность вируса свиного гриппа. Хотя кодом этого вируса был уже известный человеку H1N1, но его РНК, как показали исследования, содержала один сегмент, пришедший от РНК вируса человека, два сегмента — пришедших от РНК птичьего вируса и целых пять — от РНК собственно свиного вируса H1N1 (человеческий и свиной H1N1 имеют небольшие различия в белковой части молекулы Н). Это был типичный продукт того обмена сегментами РНК, о котором мы уже говорили: три РНК оказались одновременно в одной и той же клетке и по-новому пересортировали свои сегменты. И это наверняка произошло внутри клетки дыхательного тракта свиньи, ибо, как показало дальнейшее изучение, такая клетка может иметь как рецептор «альфа 2–6», так и рецептор «альфа 2–3», то есть в них могут проникать и человеческие, и птичьи вирусы (у птиц почти нет клеток с рецепторами «альфа 2–6», так что в их клетках такой «виральный секс», или по-научному «антигенный сдвиг», произойти не мог).

Вот так мексиканская свинья случайно оказалась тем «плавильным котлом», в котором путем пересортировки трех вирусных РНК сформировался новый вирус, вызвавший затем пандемию 2009 года. Для нас он просто «вирус свиного гриппа», а его точное научное название: «Новый H1N1 вирус класса А свиного гриппа». Благодаря наличию в его РНК сразу трех видов генетических сегментов он способен соединяться и с рецепторами «альфа 2–6», и с рецепторами «альфа 2–3», что делает вызываемый им грипп много опаснее, чем человеческий или птичий грипп по отдельности.

Схватка титанов

«Синдром хронической усталости» и без того спорное понятие, а в недавнее время он к тому же стал предметом титанического сражения двух научных групп, одна из которых — со ссылкой на многомесячные исследования — упорно утверждает, что обнаружила причину этой болезни, а другая — со ссылкой на многомесячные исследования — столь же упорно утверждает, что ничего подобного обнаружить не удалось. Решать научные споры мы, разумеется, не беремся, но попытаться понять, в чем они состоят, наверняка полезно и даже интересно, потому что на хроническую усталость не жалуется разве что очень ленивый человек, хотя и он иногда, плетясь за модой, тоже жалуется.

Прежде всего синдром хронической усталости (будем впредь именовать его сокращенно СХУ) — это не просто усталость, а целая совокупность признаков, среди которых усталость занимает видное, но далеко не самое почетное место. В том букете признаков, который врачи определяют как СХУ, цветут еще боль во всех мышцах и суставах, расстройства памяти и мышления, хроническое, зачастую тяжелое умственное и физическое истощение, а также, как пишут справочники, «другие характерные признаки, которые внезапно появляются у прежде умственно и физически здорового человека». Нужно еще при этом, чтобы все эти признаки устойчиво держались на протяжении многих месяцев без всякой видимой причины (впрочем, иногда — после вирусной инфекции). А если еще к этому прибавляются жалобы пациента на мышечную слабость, депрессию, головокружения при переходах из сидячего положения в стоячее, проблемы с сердцем или с дыханием или «другие характерные признаки…» — врач тут же безошибочно определяет, что перед ним не зловредный симулянт, а человек, реально страдающий СХУ.

Если читатель заметил несколько насмешливый тон приведенного выше описания, то он заметил правильно. Трудно всерьез отнестись к болезни, о которой нет согласия даже в медицинских справочниках. Например, по номенклатуре Фукуды 1988 года для диагностирования СХУ достаточно было одновременного присутствия от шести до восьми из перечисленных выше признаков; по той же номенклатуре 1994 года достаточно четырех и более; канадская «Рабочая номенклатура» 2003 года удовлетворяется двумя, но лишь в том случае, если это признаки иммунологического или эндокринного характера, а так называемый «Оксфордский критерий» согласен даже на один, но чтобы он имел характер ментального истощения, и тогда состояние больного квалифицируется как форма психического расстройства. Даже название этой поразительной болезни — и то оспаривается. Многие пациенты, их адвокаты и даже медицинские эксперты заявляют, что в словах «хроническая усталость» содержится скрытый намек на тривиальную усталость и они не передают всей серьезности состояния больного, а тем самым ставят под сомнение, что он вообще чем бы то ни было болен (не случайно американские комики прозвали эту болезнь «яппи-гриппом»). Однако, несмотря на спорность, казалось бы, всего, что связано с СХУ, включая, как мы видим, само его название, этой болезнью страдают сегодня четыре на каждую тысячу жителей США и Великобритании — преимущественно после 40–50 лет, а не в детстве, почему-то преимущественно женщины, а не мужчины, а также почему-то преимущественно черные, а не белые — и полностью выздоравливают всего 5–10 процентов.

Как бы то ни было, СХУ при всей туманности ее определения болезнь вполне серьезная. Она чаще всего обрушивается на людей внезапно (первые случаи ее появления произошли в двух крупных американских больницах и затронули такое большое число врачей и медсестер, что сомневаться в реальности болезни было невозможно); она не выявляется никакими клиническими исследованиями, потому что для нее нет специфических тестов (и, кстати, нет никаких специфических лекарств, кроме психо- и физиотерапии); она довольно скоро переходит в острую фазу, и тогда почти в 80 процентах случаев больные вынуждены частично или даже полностью уйти с работы, — и при всем этом не известно, чем эта болезнь вызывается. Единственное утешение для больных (кроме обезболивающих) состоит в том, что, судя по данным продолжавшегося четырнадцать лет и опубликованного в 2006 году исследования, их страдания не смертельны. Однако спорный характер болезни, тот факт, что сами врачи, как показали опросы, на четверть не признают ее реальность, а в половине случаев сомневаются в собственном диагнозе, — все это, конечно, влияет на состояние больного, на степень его доверия к врачу и к методам лечения, а также на оценки страховых компаний.

Возможно, все было бы проще и оптимистичней, если бы была точно известна причина болезни и ее природа. Но и в этом вопросе бушуют давние споры. Главный из них идет между теми, кто считает СХУ следствием каких-то скрытых органических причин (например, иммунологических, эндокринных, метаболических или сердечно-сосудистых нарушений) либо же заболеванием нервной системы (в последнем случае его часто отождествляют с миалгическим, или мышечным, энцефаломиелитом, он же ME), и теми, кто видит в СХУ либо форму психологического расстройства (таковой эту болезнь признала и Всемирная организация здравоохранения), либо разновидность психической болезни (например, неврастении, как полагает ведущий британский эксперт в этой области Вессли), а то и просто психосоциальное явление типа массовой истерии, усиленно подогреваемой также средствами массовой информации (как это утверждает Элен Шоуалтер в своей недавней (2007) книге «Истории: истерические эпидемии и массовая культура»).

Спор этот такой затяжной, что некоторые остряки даже называют его «израильско-палестинским конфликтом современной медицины», предсказывая ему такой же нескорый конец. Особый накал все эти споры приобретают еще и потому, что в дело, увы, замешаны деньги, ибо страховым компаниям крайне выгодно, чтобы болезнь считалась психологической, потому что тогда выплаты больным идут по низшей ставке. В результате некоторые эксперты проталкивают «психологическое определение» по вполне корыстным причинам. Так, когда в Великобритании правительственный Департамент труда и пенсий определил СХУ как психологическое заболевание, созванная в результате жалоб в 2006 году специальная комиссия, изучив историю этого решения, тотчас обнаружила, что многие медицинские эксперты департамента одновременно состояли консультантами страховых компаний.

И вот недавно в этот костер, пылающий чисто научными и не совсем чисто научными страстями, была подброшена новая охапка хвороста. И какая! Как сообщил в октябре 2009 года журнал «Science», группа американских исследователей во главе с Джуди Микович после многих месяцев стараний обнаружила наконец столь многие годы искомую причину синдрома хронической усталости. Ею оказалась выявленная еще в 2006 году инфекционная частица с замысловатым названием «ксенотропный вирус, вирусно связанный с мышиной лейкемией», или, в английском сокращении, XMRV. «Ксенотропный» в этом названии означает, что данный вирус может быть безвредным для организмов «своего» вида — например, мышей, и болезнетворным для организмов «чужого» вида — например, людей, и действительно, группа Джуди Микович обнаружила его у 68 пациентов из 101 с синдромом хронической усталости и лишь у 4 процентов здоровых людей в контрольной группе. Вздох радостного облегчения, исторгнутый этим сообщением из грудей миллионов страдальцев одновременно, был, я думаю, силой с небольшой ураган. А пока они радостно вздыхали, и плакали, и изо всех сил поздравляли друг друга (насколько у хронически усталых людей хватало сил), другие люди, куда менее усталые, вскоре начали предлагать всем желающим, кто подозревает в себе болезнь, скоростные «коммерческие» тесты на этот «ксенотропно связанный вирус» — разумеется, за небольшие, ну прямо символические деньги, каких-нибудь пару тысяч долларов за штуку (вируса, я имею в виду). Впрочем, другие люди, несколько более близкие к чистой науке, немедленно засучили рукава и стали искать лекарства против того же вируса, но увы — нашли только, что его размножение в человеческих клетках тормозит один лишь препарат, применяемый против СПИДа, да и тот не очень.

И тут с другой стороны океана, а именно — из Великобритании, грянуло другое сообщение, прямо противоположного толка. В январе 2010 года журнал «Плос» («PLoS» — «Public Library of Science») опубликовал на своих (он-лайновых) страницах статью группы британских ученых под названием «Провал попытки обнаружить вирус XMRV у больных СХУ», которая подытоживала результаты соответствующего исследования 196 британских больных. Разумеется, такой удар со стороны коллег не мог не вызвать ответа, и американские исследователи немедленно заявили, что их уважаемые оппоненты искали ДНК вируса не в лейкоцитах, как они, в США, а в крови вообще, тем самым значительно разжижив образцы и сведя концентрацию искомой ДНК к практически неуловимой. К тому же, добавили они, описание британского эксперимента, приведенное в статье, заставляет усомниться, что он вообще мог обнаружить XMRV. Лучше бы уважаемые коллеги проверили свои методы на наших, американских, образцах, которые мы немедленно готовы им предоставить. На что британские ученые ответили, что их методика в полном порядке, а вот насчет чистоты американских образцов они весьма сомневаются и думают, что эти образцы были заражены сторонней ДНК, которую их уважаемые оппоненты приняли за вирусную. А кроме того, нам известно, сказали они, что уже много лабораторий попытались повторить ваши американские результаты и тоже ничего не нашли, чему вскоре будут публичные подтверждения в разных научных журналах.

Если говорить серьезно, то научные комментаторы в целом отдают предпочтение американской работе, считая, что ее методика удовлетворяет более строгим критериям отбора пациентов. В то же время они отмечают, что больные в британском эксперименте не удовлетворяли ни упомянутым выше критериям Фукуды, ни критерию, принятому в Канаде. Кроме того, в первом эксперименте больные были собраны из разных городов США, а во втором все они были жителями Лондона. И наконец, статья американских исследователей прошла серьезный контроль экспертов журнала «Science», тогда как статью британцев, как выяснилось, прочитал редактор и 1,8 независимого эксперта (дробное число означает, видимо, что один из двух экспертов статью не дочитал до конца); причем она была опубликована уже через четыре дня после поступления в журнал.

Впрочем, сторонние наблюдатели отмечают еще одно существенное различие между двумя работами. Американская была проведена в Институте нейроиммунных заболеваний Уайтмора Петерсона, ведущие клиницисты которого издавна и свято убеждены в том, что СХУ является органическим заболеванием. В то же время среди авторов британского исследования числится тот самый (весьма влиятельный в руководстве британской медицины) Саймон Вессли, который известен (можно сказать даже — знаменит) своей решительной борьбой за признание СХУ психологическим заболеванием и считает, что лечить его следует только с помощью психотерапии. Один из комментаторов этой перепалки ученых мужей заметил, что «для Вессли признать, что причиной СХУ является вирус, — все равно что самому себя высечь» («выстрелить себе в ногу», переводя с английского). А другой комментатор, из числа биологов-экспериментаторов, выразил вежливое недоумение, как могло получиться, что Весели и его коллеги не обнаружили никаких следов XMRV ни у одного из своих 196 больных, в то время как этот вирус, по данным британской медслужбы, встречается у 4 процентов граждан Великобритании. И наконец, еще один комментатор открытым текстом заявил, что «британский медицинский истеблишмент крайне заинтересован в том, чтобы СХУ считался расстройством поведения или психики, и имеет вполне весомые финансовые причины пытаться опровергнуть, что эта болезнь может быть связана с вирусом. Впрочем, аналогичные попытки в свое время предпринимал ведущий американский Центр по контролю за болезнями (CDC), не желая признать, что в стране имеет место реальная эпидемия СХУ».

Решение спора, видимо, потребует дополнительных исследований. Но знающие люди не надеются, что такие исследования приведут стороны к полному согласию. Уж слишком велики разногласия, слишком серьезные задействованы интересы. «Разумеется, такого рода споры способствуют прогрессу науки, — меланхолически замечает видный британский журнал „Экономист“, — но думается, что вопрос о природе и причинах синдрома хронической усталости еще долгое время будет оставаться предметом ожесточенных споров». Увы.

Наш полезный паразит

Некоторые медицинские истории похожи на запутанные детективные романы. В них тоже есть жертвы (которыми, разумеется, оказываются люди, кто же еще), есть тщательно собранные обстоятельства преступления и есть подозреваемые. И, как правило, тот, кого мы подозревали в первую очередь, оказывается ни при чем, и тогда подозрения сыщика в белом халате переходят на следующего возможного виновника. Замечательный всему этому пример — болезнь Альцгеймера, на роль виновника которой предлагаются все новые и новые белки; но об этом ниже, а сейчас время поговорить об иной жертве и иных подозреваемых. Сейчас речь у нас пойдет о многострадальном ожирении и его новом возможном виновнике. Было времечко, и не такое уж старинное, когда ожирение списывали на неправильную диету, стресс и прочие внешние причины, но вот недавно вышла на сцену когорта исследователей во главе с Мартином Блейзером, профессором микробиологии Нью-Йоркского университета, и воскликнула хором, как и положено когорте: «Вся сила в бактериях! Хеликобактер пилори всему голова! А ожирение — от антибиотиков!» И тут все застыли, как в финале «Ревизора», — с разинутыми ртами.

Теперь оставим попытки беллетризовать науку и расскажем суровой прозой — о чем, собственно, кричала когорта?

В нашем желудке, как давно известно ученым, врачам и даже некоторым простым смертным, живет огромное множество всякого рода бактерий — считается, что их примерно в десять раз больше, чем всех клеток в нашем организме, и все они заняты какими-то важными для них и для нас делами. Эти наши сожители часто именуются «сапрофитами» (от слова «гнилой»), чтобы указать, что они питаются мертвыми органическими веществами, в отличие от микробов-паразитов, которые питаются живыми. Другое отличие сапрофитов от паразитов в том, что первые, как правило, безвредны для организма. Но это различие не абсолютно: в некоторых случаях обычно безвредная для нас желудочная бактерия может вызвать болезнь, и как раз Хеликобактер пилори — прекрасный тому пример.

Слово «хелико» в названии этой бактерии произведено от латинского «спираль», и действительно ее тельце имеет форму крохотной спирали. Эта необычная спиралевидная бактерия была впервые обнаружена (в слизистой оболочке человеческого желудка) еще в 1875 году и повторно (в желудке собак) в 1893 году. И уже в 1899 году польский ученый Яворский предположил, что эта бактерия как-то связана с желудочными заболеваниями, потому что примерно у 10 процентов людей (из тех, у которых эта бактерия есть) она присутствует в повышенном количестве и именно эти люди страдают желудочными заболеваниями. Эта смелая мысль Яворского была включена в старое польское руководство для врачей-гастроэнтерологов, но в новые руководства уже не вошла. Та же судьба постигла российского профессора Морозова, который в 1975 году высказал аналогичное подозрение касательно обнаруженной им в желудке спиралевидной бактерии, но, поскольку он не сумел найти среду для ее выращивания в пробирке, его подозрение не имело продолжения. И только в 1979 году австралийский ученый Уоррен, сначала сам, а потом вместе с американцем Маршаллом, ухитрился найти такую среду, вырастить бактерию (которая именно тогда получила свое нынешнее название) и показать, что она является причиной многих случаев язв желудка и двенадцатиперстной кишки, гастритов и дуоденитов, а также увеличивает (примерно на 1 процент) вероятность рака желудка. За это открытие благодарное человечество присудило Уоррену и Маршаллу Нобелевскую премию по медицине 2005 года.

И вполне заслуженно. Ведь гляньте только, что делает эта наша спиралевидная сожительница! В стремлении избежать разрушительной для нее кислотной среды внутри желудочно-кишечного тракта она с помощью своих ножек-флагелл ввинчивает свое спиральное тельце в слизь, выстилающую изнутри стенки нашего желудка, продвигаясь в сторону более нейтральной среды вблизи клеток эпителия (поверхностного слоя) стенки желудка. При этом у нее есть свой «ДжиПиЭс» — чувство хемотаксиса, позволяющее ей улавливать, в какую сторону кислотность уменьшается. В результате она рано или поздно оказывается вблизи клеток эпителия. И если бы пришла туда и поселилась там навеки, так и бог бы с ней, так нет же — она вдобавок производит по дороге фермент уреазу, который разлагает урею на ее пути. Зачем? Чтобы за счет разложения уреи вокруг кишечной палочки образовался слой азотистого соединения аммониума, который дополнительно защищает бактерию от кислот. И все бы ничего, но при этом аммониум разрушительно влияет на стенки клеток эпителия. А поскольку к этому влиянию добавляется еще столь же вредная работа других веществ, вырабатываемых той же бактерией, то не удивительно, что ее длительное пребывание вблизи стенок желудка вызывает у человека одну из вышеперечисленных болезней.

Прочитав все это, вы наверняка скажете: «Вредная бактерия! К ногтю ее, паршивку!» — и не останетесь в одиночестве: врачи и ученые тоже так решили, а решив, стали бомбардировать вредную X. пилори в желудках заболевших людей могучими антибиотиками. И так успешно бомбардировали, что во многих случаях победили и язвы, и гастриты, и даже не столь известные широкой публике дуодениты (так называется острое — или хроническое — воспаление слизистой оболочки двенадцатиперстной кишки). И вот тут, описав занимательно-познавательный круг окрест X. пилори, мы возвращаемся к той когорте ученых, которые (с чего мы начали) с недавних пор выступили на сцену и забили тревогу. Возвращаемся потому, что тревогу эту они забили именно в связи с антибиотиками, точнее, в связи с опасным увлечением антибиотиками, которое — опять же по их мнению — угрожает нарушить выработанное эволюцией равновесие в нашем желудке. (Имелось в виду, конечно, не лечение заболевших людей, а то массовое назначение антибиотиков, которое возникло в последние годы и уже привело к появлению новых, резистентных к антибиотикам видов бактерий.)

Одним из зачинателей этой тревоги был упомянутый выше профессор Блейзер. Еще в 1998 году в статье, опубликованной в «Британском медицинском журнале», он высказал мысль, что X. пилори так давно сожительствует с людьми, что этому наверняка есть какая-то неизвестная науке причина, а потому выкорчевывать ее из желудка может быть даже опасно. Действительно, эпидемиологи давно уже заметили, что хотя почти 50 процентов людей на Земле являются носителями этой бактерии, но число общих мутаций в ней в разных странах различно, как будто по мере удаления от какого-то исходного пункта каждая ветвь X. пилори накапливала свои особые мутации. Восходя обратно по этим ветвям, генетики сумели найти этот исходный пункт — им оказалась Африка, которая, как известно, была родиной человечества. А подсчитав среднее число «неафриканских» мутаций, накопленных бактерией, ученые пришли к выводу, что сожительство человека и спиралевидной бактерии началось примерно 58 тысяч лет назад, то есть примерно в то же время, когда, как нынче считается, племена Гомо сапиенс совершили «исход из Африки» и начали расселяться по земному шару. Иными словами, X. пилори сопровождает человечество с первых его шагов по планете. И потому у профессора Блейзера действительно были основания заключить, что «этому сожительству должны быть какие-то причины». А заключив — начать поиск этих причин.

За минувшие годы группа Блейзера обнаружила ряд интересных фактов. Оказалось, что после курса антибиотиков, резко уменьшающих содержание X. пилори в организме, у людей что-то разлаживается в желудке. Например, уровень гормона грелин, который вызывает ощущение голода, после еды обычно снижается, а у людей без кишечной палочки он остается постоянным, что побуждает их есть сверх нормы. Подопытные мыши, получившие антибиотики в том количестве, которое обычно назначается детям, страдающим инфекционными заболеваниями уха, горла и носа, начинают толстеть, хотя их диета остается прежней. И наконец (это было показано коллегами Блейзера в Гарварде и Вашингтоне), у людей, страдающих заметным ожирением, соотношение различных бактерий в желудке существенно отличается от этого же соотношения у людей худощавых. Взятые вместе, все эти наблюдения явно указывают на важную роль нормального («естественного») соотношения бактерий в желудке для сохранения нормального веса. Иначе говоря, они корректируют ныне принятую парадигму: X. пилори и ее товарки-бактерии не только вредны — причиняя вред в одном отношении, они защищают людей в чем-то другом; при нарушении (посредством антибиотиков) их нормального соотношения появляется серьезный риск ожирения. И вскоре оказалось, что не только ожирения. В том же Нью-Йоркском университете эпидемиолог Ю Чен, изучив истории болезней 7600 детей, охваченных общенациональным опросом, обнаружил прямую корреляцию между снижением концентрации X. пилори и вероятностью заболевания астмой, сенной лихорадкой и кожными аллергиями. Это согласуется с наблюдениями ученых в Германии и Швейцарии, которые нашли, что введение мышам бактерий X. пилори защищает их от астмы. Другие исследования показали, что недостаток этих бактерий идет в паре с вероятностью так называемого рефлюкса — забрасывания кислотного комка непереваренной пищи из желудка обратно в пищевод.

Какие же выводы должны мы сделать из этой истории? Сразу несколько. Во-первых, мы должны намотать на ус, что научные парадигмы — не совсем то же, что божьи заповеди: они могут меняться. Во-вторых, мы получили очередное подтверждение важной роли сохранения того гомеостаза (то бишь динамического равновесия нашего организма), который сложился за тысячи веков эволюции. И в-третьих, мы можем понять, как важно побыстрее и поглубже исследовать загадочный мир нашей желудочной микрофлоры и выяснить, какую роль играют те или иные из наших многовековых бактериальных сожительниц. Правильно говорит тот же профессор Блейзер, что чрезмерное употребление антибиотиков наверняка нарушает концентрацию и каких-то других желудочных бактерий, которые защищают нас от каких-то иных болезней. X. пилори вышла на передний план только потому, что была изучена лучше всех других наших бактериальных сожительниц. И правильно говорит еще один микробиолог, профессор Давид Рельман из Стэнфордского университета, что неприметные нарушения этого естественного «бактериального гомеостаза» могут вызываться не только злоупотреблением антибиотиками, но также многими другими «новинками» современной жизни вроде чрезмерной гигиены, резкого изменения диеты и т. д.

И вот что приятно сказать в заключение: эти открытия и предостережения не остались втуне. Они привели к важным результатам. Не так давно американский Национальный институт здоровья дал профессору Блейзеру грант размером в 6,5 миллиона долларов на исследование возможной роли нарушений нормальной микрофлоры желудка в нынешней эпидемии ожирения, а кроме того, выделил 115 миллионов долларов на развертывание научно-исследовательского проекта под названием «Микробиома человека», сравнимого по размаху со знаменитым проектом «Геном человека»: его конечная цель — расшифровать геномы всех важнейших бактерий, населяющих наш желудок, гениталии, кожу, нос и рот. Трудно сказать, что именно принесет такая расшифровка, но то, что польза от нее будет, — это несомненно.

И паразит очень вредный

Группа ученых под руководством д-ра Макконки из университета в Лидсе (Великобритания) выявила удивительный механизм, который дает крохотному паразиту возможность самым странным образом влиять на психику людей и животных, порой вызывая у них тяжелые психические заболевания, а куда чаще — меняя их поведение, привычки и даже иногда врожденные особенности.

Этот крохотный паразит называется «токсоплазма гонди» (или попросту «токса») и давно известен как причина особой болезни — токсоплазмоза. В энциклопедии об этой болезни говорится, что токсоплазмоз встречается у всех теплокровных животных, включая человека. Хотя токса передается людям в основном при общении с кошками, которые являются главными носителями паразита, но есть еще три частые причины заражения: свиное мясо, плохо вымытые после туалета руки и плохо вымытые овощи. По оценкам специалистов, около трети людей на Земле являются латентными носителями токсы, но токсоплазмозом заболевают, как правило, лишь люди с ослабленной («скомпрометированной», как говорят врачи) иммунной системой — прежде всего больные СПИДом, а также (довольно часто) беременные женщины. Паразит этот действует преимущественно на нервную систему, вызывая порой энцефалит и различные нейрологические нарушения. Но он способен вдобавок подавлять иммунную систему и влиять на работу печени, сердца и внутреннего уха, а также глаз (само изучение токсоплазмоза началось с исследований особого, легко опознаваемого врачами воспаления глаз — хориоретинита, часто вызываемого этим паразитом).

При всей своей кажущейся простоте одноклеточная токсоплазма является сегодня предметом интенсивного изучения. Интерес ученых к этому паразиту подогревается его уникальными странностями. К примеру, он (каким-то непонятным науке способом) влияет на механизм репродукции. Зараженные женщины рожают больше мальчиков, чем девочек. Если обычно соотношение при рождении 104 мальчика на 100 девочек, то в группе женщин, латентных носителей токсы (что определяется по наличию в их крови антител к паразиту), это соотношение резко сдвинуто в сторону мальчиков: 160 на 100 у женщин, слабо зараженных токсой, и 280 на 100 (!) у зараженных сильно. Это обнаружили в 2007 году чешские ученые, обследовав около двух тысяч детей, родившихся у зараженных женщин в период между 1996 и 2004 годом. Проведенная теми же учеными специальная проверка на мышах, намеренно зараженных паразитом, подтвердила эти цифры. Чешские исследователи объясняют свои результаты тем, что паразит подавляет иммунную систему беременных женщин, а это уменьшает вероятность абортирования мужских эмбрионов. (Дело в том, что на 5–7-й неделе беременности соотношение мужских и женских эмбрионов составляет 177 на 100, но затем значительная часть мужских эмбрионов отторгается иммунной системой, когда она распознает белок H-Y, производимый мужской хромосомой этих эмбрионов, как чужеродный организму матери, поскольку у нее такой хромосомы нет.)

Однако странности токсы на этом не кончаются. По некоторым данным, заражение влияет также на поведение и личность человека. Во многих работах были найдены указания на то, что токса увеличивает подозрительность и осторожность, притупляет поиск новизны, понижает интерес и внимание, увеличивает антисоциальные тенденции у мужчин и, напротив, повышает общительность женщин. Занятный вариант такой половой избирательности паразита был отмечен в работе австралийского ученого Бултера, который обнаружил, что латентные носители-мужчины более ревнивы, тогда как латентные носители-женщины, напротив, становятся менее разборчивы в своих сексуальных связях.

Вообще говоря, разное действие паразитов на хозяев разного пола известно (малярийный плазмодиум, бактерия Вольбахия и др.). В данном случае исследователи считают, что все связано с открытым в 2008 году влиянием токсы на выработку тестостерона в организме (она несколько увеличивает концентрацию этого гормона у женщин и уменьшает у мужчин). Другую любопытную корреляцию обнаружили, изучая скорость реакции у людей, зараженных токсой, и людей, ею не зараженных. У первых она оказалась заметно ниже, и на этом основании утверждается, что латентные носители токсы, медленнее реагируя на опасность, чаще становятся жертвами дорожных аварий.

Но самая неприятная — и долгое время остававшаяся самой загадочной — особенность паразита состоит в том, что, судя по многим данным, он зачастую является причиной (или дополнительным фактором) весьма серьезных психиатрических нарушений вроде депрессии или так называемого «тревожного невроза». В ряде исследований отмечены также случаи, когда заражение токсой вызывало симптомы психического расстройства, сходные с некоторыми признаками шизофрении.

Каким же образом крохотный паразит может влиять на нервную систему человека, вызывая изменения личности и серьезные психические отклонения? Возникло предположение, что, проникая в мозг, он находит там союзника в виде какого-нибудь нейротрансмиттера. Когда нервный сигнал приходит в какой-нибудь нейрон и достигает его конца, оттуда выбрасываются молекулы того или иного нейротрансмиттера, которые проходят через промежуток между этим нейроном и соседним и, достигнув кончика этого соседнего нейрона, возбуждают его, то есть порождают в нем нервный сигнал.

Понятно, что сила передаваемого таким образом сигнала зависит от количества молекул нейротрансмиттера: когда их много, сигнал усиливается, когда мало — ослабляется. В здоровом мозге имеется система регуляции: лишние молекулы нейротрансмиттера втягиваются обратно в испустивший их нейрон (этот процесс называется «реаптейк»), а при их недостаче тот же нейрон испускает дополнительную порцию нейротрансмиттера. Однако в случае каких-либо генетических изменений или некоторых заболеваний эта регуляция нарушается, и тогда концентрация того или иного нейротрансмиттера всегда остается слишком высокой или слишком низкой.

Так, например, при шизофрении в мозгу больных слишком много нейротрансмиттера допамина. Допамин и его сородичи производят множество самых разных воздействий на мозг, и, в частности, они передают в различные его участки сигналы опасности, что в итоге приводит организм в состояние возбуждения. Но допамин вдобавок выбрасывается в мозг еще и тогда, когда организм производит некое действие, которое желательно закрепить. В этом случае он играет роль химического «поощрения»: чем больше допамина, тем больше у животного или человека ощущение удовлетворения, удовольствия и даже наслаждения. (На этом, кстати, основано воздействие кокаина и некоторых других наркотиков: они подавляют процесс реаптейка этого нейротрансмиттера и тем самым создают в мозгу постоянный его избыток, то есть постоянное ощущение блаженства.)

Заметив, что при шизофрении в мозгу больных возникает избыточное количество допамина, а с другой стороны, как уже было сказано, проявления токсоплазмоза иногда напоминают симптомы шизофрении, некоторые ученые связали одно с другим и выдвинули предположение, что заражение токсой тоже может вести к избытку допамина. Первую проверку этой гипотезы произвел в 1985 году американский ученый Стиббс. Он целенаправленно заразил подопытных мышей, чтобы изучить, что происходит у них в мозгу. Надо сказать, что мыши очень любопытно реагируют на токсу — они совершенно теряют врожденный страх перед кошкой и напротив — активно лижут кошачью мочу и перестают бояться кошек. Это, кстати, помогает паразиту выживать. После того как он размножается в организме кошки, она его выбрасывает с калом и мочой; мыши, вылизывая эту мочу, заражаются токсой, а потом, когда они бесстрашно бросаются на здоровую кошку, та их пожирает, и паразит снова оказывается в тех условиях, которые нужны ему для следующего цикла размножения. Особенно активны в этом круговом процессе мышиные самцы, и некоторые ученые считают, что именно поэтому токса способствует увеличению числа самцов в помете.

Убедившись в наличии этих признаков заражения, Стиббс исследовал мозг своих подопытных и действительно обнаружил, что у носителей токсы разлажен весь комплекс катехоламиновых нейтротрансмиттеров, и в первую очередь — именно допамина. Эти исследования были продолжены Джоанной Вебстер из Окфорда, которая показала, что введение зараженным крысам галоперидола (вещества, которое подавляет допамин) ликвидирует изменения в психике, которые были вызваны токсой. Обратную связь обнаружил чешский ученый Флегр, который показал, что искусственное увеличение концентрации допамина (путем подавления его реаптейка) вызывает у здоровых мышей те же признаки, что заражение токсой.

И наконец, в 2009–2011 годах группа Гленна Макконки из университета в Лидсе, продолжая эту линию исследований, сумела разгадать главное — каким именно образом крохотный паразит ухитряется менять концентрацию допамина в мозгу и тем самым изменять поведение и психику своих жертв. С краткого упоминания об этом достижении мы начали наш рассказ — теперь некоторыми подробностями закончим. Первый успех пришел к группе Макконки в 2009 году, когда исследователи сумели расшифровать геном токсоплазмы гонди и выявить в нем два гена, тесно связанных с допамином. Оказалось, что один из этих генов позволял паразиту производить (и выделять в зараженный мозг) вещество фенилаланин гидроксилазу, которое способствует образованию тирозина, а второй — вещество тирозин гидроксилазу, которое превращает тирозин в предшественник допамина. Открытие этих двух генов позволяло думать, что именно они наделяют паразита способностью увеличивать количество допамина в мозгу жертвы.

В экспериментах 2011 года Макконки проверил и убедительно подтвердил это предположение. Детально исследовав мозг зараженных мышей, он обнаружил, что паразиты, входя в нейроны, окружают себя оболочкой, которая образует небольшую кисту. В каждом зараженном нейроне возникает множество таких кист, спрятавшись внутри которых паразит может беспрепятственно осуществлять «допаминовое отравление» мозга. Макконки нашел, что это отравление происходит в два этапа: сначала, под влиянием генов паразита, резко повышается производство допамина внутри зараженного нейрона, а затем этот дополнительный допамин энергично выходит в окружающие участки мозга. Избыток приходящего в эти участки допамина оказывает аномальное воздействие на их нейроны, причем конкретный характер такой аномалии (будет это изменение личности, или изменение поведения, или психическое заболевание), по всей видимости, зависит от того, какова функция того или иного участка.

Результаты Макконки имеют большую важность, потому что они, возможно, позволят составить «карту», показывающую, какие именно участки мозга, при их отравлении избыточным допамином, вызывают те или иные нарушения психики. А такое превращение вредного паразита в орудие исследования мозга может в конечном счете открыть путь к пониманию того, как именно те или иные участки мозга управляют психикой животных и людей.

Немного о скрытых связях

Если ваш ребенок:

• легко отвлекается от дела, упускает из виду или забывает детали и то и дело переключает внимание с одного на другое;

• с трудом сосредотачивает внимание на чем-то одном;

• получив задание, начинает скучать над ним уже через несколько минут;

• невнимателен к тому, что ему говорят;

• с трудом усваивает новую информацию;

• часто проявляет забывчивость — и так далее

и вы пожалуетесь на это врачу, то, весьма вероятно, услышите в ответ, что ваш ребенок, скорее всего, страдает синдромом дефицита внимания и гиперактивности (СДВГ) с сильным уклоном в сторону дефицита внимания.

Если же ваш ребенок:

• не может усидеть на месте;

• непрерывно болтает;

• мечется по комнате, хватая все, что подвернется под руку;

• с трудом концентрирует внимание на одном деле;

• очень нетерпелив;

• безудержно проявляет свои эмоции — и так далее и вы пожалуетесь на это врачу, то, весьма вероятно, услышите в ответ, что ваш ребенок страдает синдромом дефицита внимания и гиперактивности (СДВГ) с сильным уклоном в сторону гиперактивности и даже возбудимости.

А если ваш ребенок проявляет и те, и другие признаки, то врач, скорее всего, скажет, что это СДВГ в его комбинированном виде. Но может быть, и не скажет, потому что некоторые врачи и ученые выражают сегодня сомнение в реальном существовании такой комбинации. Однако большинство врачей, особенно на Западе, считают, что порядка 3–5 процентов детей (преимущественно мальчики) уже в дошкольном возрасте обнаруживают те или иные приметы СДВГ, а что касается школьников, то тут, по некоторым данным, число таких детей достигает 16 процентов.

Вы наверняка встречали и взрослых с такими приметами. Ничего удивительного — специальные исследования показали, что 30–50 процентов тех, у кого СДВГ был в детстве выражен особенно ярко, сохраняют его признаки и в зрелом возрасте. В США, к примеру, около 5 процентов молодых людей и взрослых диагностированы как страдающие СДВГ. И в сегодняшней медицине уже разработана специальная система лечебной и психологической помощи таким больным.

Отчего же она берется, эта болезнь?

По этому поводу проделано уже так много исследований и выдвинуто так много гипотез, что все не охватишь. Одни исследователи, изучив ее проявления у близнецов, утверждают, что она на 76 процентов наследственна и связана с мутациями в генах, причем преимущественно в генах, заведующих производством в мозгу допамина. Другие исследователи скажут, что все дело в окружающей среде — СДВГ много чаще проявляется у детей, которые очень рано (иногда еще в утробе матери) подверглись воздействию алкоголя, табака, свинца. Третьи будут обвинять во всем диету, четвертые — семейную атмосферу, одним словом — есть простор для творческого ума.

Но вот недавно, на фоне всех этих сложностей, проскользнуло в печати одно скромное, но интересное исследование, которое вроде бы указывает на совсем иную возможную причину этого синдрома, очень далекую от всех тех сложностей, которые вокруг него уже собрались. Исследование это провели британские ученые из Медицинской школы университета города Сванси. Их заинтересовали разрозненные, но настойчивые наблюдения, указывающие, что люди, страдающие СДВГ, часто жалуются также на «проблемы со сном». «Проблемы» — это значит «сонливость днем» и «трудное засыпание вечером», «нервные движения во сне», «очень короткие промежутки крепкого сна» и так далее. «Часто» — это значит, что среди детей очень часто, а у взрослых люди с нарушением ритма сна составляют целых 83 процента. Такая цифра давно взывала к вниманию, но вот почему-то до 2012 года никто ей этого внимания не оказывал.

Известно, что ритмом сна и бодрствования, равно как и многими другими циклически повторяющимися процессами в нашем организме (прежде всего активностью различных генов и выработкой различных гормонов), заправляет определенный механизм — так называемые «биологические часы». Центр его сосредоточен у животных и человека в головном мозгу, в том его участке, который называется «гипоталамус», а еще точнее — в том участке гипоталамуса, который именуется сложным термином «супрахиазматическое ядро». Это ядро представляет собой группу нервных клеток, в которых специфически активны несколько генов, заведующих выработкой определенных белков. Белки эти находятся в «круговой» связи друг с другом, и связь эта выглядит, грубо говоря, так: когда белка первого гена становится в клетке слишком много, это включает другой ген, вызывающий появление второго белка, который тормозит выработку первого. Когда в итоге первого белка становится слишком мало, это оказывается сигналом, который выключает второй ген, и тогда выработка второго белка прекращается, его действие исчезает, и выработка первого белка, не имея теперь препятствий, опять начинает нарастать. Каждый такой цикл занимает около 24 часов (даже ближе к 25), и это, несомненно, связано с так называемым «циркадным ритмом», то есть с периодичностью земных суток, проще говоря — со сменой дня и ночи.

Нервные клетки супрахиазматического ядра, работая циклически, посылают такие же циклические сигналы в соседние участки гипоталамуса, которые заведуют циклическим включением и выключением других генов, что приводит к такому же циклическому производству определенных гормонов, прежде всего — мелатонина. Эти гормоны расходятся по организму, вызывая суточную смену тех или иных больших и малых процессов — сна, аппетита, физической активности, а также неприметных нам таких же суточных изменений в разных тканях и органах.

Но этот механизм — далеко не единственные «биологические часы» в человеческом организме. Клетки с такой парой циклически работающих генов есть не только в мозгу, но и в других частях тела, вплоть до кожи и желудка — да, и желудка, причем нарушения работы этих часов — которые, в свою очередь, корректируются сигналами, приходящими к ним из мозга, — влечет за собой ряд расстройств пищеварения и болезней печени. А некоторые специалисты даже возлагают на эти нарушения циркадного ритма также и определенную долю вины за ожирение.

Вернемся теперь к СДВГ. Британские исследователи, занявшись жалобами таких больных на «проблемы со сном», поняли, что и здесь виною могут быть нарушения циркадного ритма «биологических часов» в организме этих людей. Поэтому они решили поглубже изучить их суточную активность. Для этого они отобрали тринадцать взрослых с диагнозом СДВГ и девятнадцать людей для сравнения, соответствующих им во всем, кроме болезни. У всех участников эксперимента в течение многих суток проверяли степень физической активности в разные часы и одновременно брали образцы слюны для измерения уровня работы «часовых генов» и вырабатываемых в организме гормонов — мелатонина и кортизола. И вот что обнаружили.

Прежде всего оказалось, что люди с диагнозом СДВГ в целом более активны, чем полностью здоровые люди (что не удивительно, поскольку буква «Г» в названии болезни как-никак означает «гиперактивность»), но их повышенная активность сдвинута по времени: пик ее приходится ближе к вечеру (и они сами зачастую называют себя «вечерними людьми»). Кроме того, им много труднее засыпать: им требуется около часа в постели, прежде чем удастся уснуть по-настоящему. Но самые интересные данные принесло изучение ритма активности тех двух генов, которые составляют основу «биологических часов» — BMAL1 и PER2. У здоровых людей эта активность менялась за сутки с четко выраженным ритмом: рост днем, пик в середине каждого дня, спад к ночи. А вот у людей с СДВГ этого ритма не было. Не то чтобы он был сдвинут на несколько часов ближе к ночи или к утру — его попросту не было совсем: их «часовые гены» работали практически одинаково и днем, и ночью.

Не менее интересными оказались графики производства гормонов. У здоровых людей обнаружилась четкая синусоида производства мелатонина — того гормона, который достигает пика к вечеру и разносит сигналы центральных «часов» по всему организму, сообщая, что наступила ночь и пора снизить активность (его недаром называют иногда «гормоном сна»). У людей с СДВГ тоже выявилась синусоида, но менее четко выраженная, как бы «приплюснутая». А график производства кортизола у них оказался сдвинут на два-три часа относительно времени пробуждения. Это объясняет, почему такие люди по утрам, как правило, жалуются на сонливость.

Но вот что особенно интересно: кортизол, как известно врачам и биологам, не только способствует переработке сахаров и других веществ в организме — этот стероидный гормон также активизирует антистрессовые реакции. А стресс, как опять же известно, способен вызвать определенные изменения в поведении людей. И тут открывается интересная возможность: а не может ли этот временной сдвиг производства кортизола вызывать также и те особенности поведения, которые характерны для СДВГ? Иными словами, возникает еретическая мысль: не является ли СДВГ просто результатом разлада циркадного ритма, «порчи» «биологических часов»? Но с другой стороны, сразу же напрашивается и другая догадка: ведь возможно и обратное — что это особенности СДВГ вызывают разлад циркадного ритма.

Короче, видны какие-то странные связи. Так что есть над чем задуматься. Не все, оказывается, исчерпано прежними теориями.

Есть проблема, господа

Мужчины отличаются от женщин не только тем, о чем вы сразу подумали, но прежде всего своей мужской хромосомой. Хромосома — это завернутая в защитные белки молекула ДНК, одна из 23 парных молекул ДНК, которые составляют наш геном. 22 пары из этих 23 представляют собой наши «телесные» хромосомы (гены на них определяют свойства нашего тела), а хромосомы 23-й пары, кроме некоторых свойств тела, определяют также наш пол: если в паре две женские хромосомы, это женское тело, если одна женская, одна мужская — тело мужское. Хотя мужская половая хромосома по размеру и числу генов много меньше женской, на ней есть один участок, который всем командует: если он есть в геноме, этого достаточно — человек является мужчиной, точка, даже если он трансвестит.

И это не всегда ему хорошо, этому человеку, потому что биологи не раз предсказывали, особенно в последнее время, что мужская половая хромосома, и без того, как я уже сказал, маленькая, с каждым веком будет становиться все меньше и, возможно, в конце концов даже вообще исчезнет. Это не значит, что исчезнут мужчины: те же ученые думают, что упомянутый «главный участок» переселится на какую-нибудь телесную хромосому, — но никто не знает, как это великое переселение пола повлияет на выработку тех гормонов (прежде всего тестостерона), которые делают мужчин мужчинами не только внешне, о чем вы сразу подумали, но также сущностно, поскольку управляют активностью клеток, заведующих выработкой спермы. Правда, в последнее время другие ученые выступили с критикой этих пессимистических представлений о будущем мужской половой хромосомы, но на смену этой тревоге тут же пришла другая, и о ней я как раз и хотел поговорить.

Есть проблема, господа. Изложу ее словами специалиста, доктора Линдемана из Новой Зеландии. Вот что он пишет: «Средний мужчина выбрасывает при эякуляции около 2,75 миллилитра спермы, примерно 180 миллионов сперматозоидов. Если это число падает ниже 20 миллионов, обычно возникают проблемы с оплодотворением. 20 миллионов сперматозоидов — это очень много, откуда же проблемы? Дело в том, что приходят к яйцеклетке очень немногие. Огромная часть вообще не достигает фаллопиевой трубы, в конце которой находится яйцеклетка, большая часть оставшихся не доходит до ее конца, дошедшие погибают в безуспешной атаке на защитную оболочку яйцеклетки. Считается, что цели достигает 1 сперматозоид из миллиона. Из этого видно, что для успешного зачатия крайне важно общее число сперматозоидов. К сожалению, по данным многих исследований, это число, которое в 1940 году составляло 380 миллионов, в 1990 году понизилось до 180 миллионов, то есть уменьшилось более чем вдвое». Конец цитаты.

Господа, нас явно хотят взять если не мытьем, так катаньем. Нам говорят, что наши сперматозоиды исчезают. Если за недавние пятьдесят лет их число уменьшилось на 200 миллионов, то легко сообразить, даже без высшего образования, что это число каждые 10 лет падает на очередные 40 миллионов. Значит, сегодня оно уже меньше 100 миллионов, а еще через двадцать лет достигнет критического минимума. Что, наши дела действительно так плохи? И если да, то почему? Кто, как говорится, виноват и что делать?

Но прежде всего не будем поддаваться панике. Двадцать лет у нас еще в запасе есть, поэтому без суеты обратимся к литературе. А она говорит нам, что цифры, приведенные доктором Линдеманом, — это цифры двадцатилетней давности. В 1992 году почтенный «Британский медицинский журнал» опубликовал анализ шестидесяти с лишним исследовательских работ, проведенных за предшествующие годы, и этот анализ показал, что за пятьдесят предшествующих лет число сперматозоидов в одном миллилитре спермы упало со 113 миллионов до 66 миллионов. Значит, 66 миллионов — это на 1992 год. А как сегодня? Исправилось положение? Увы, расслабляться рано. Судя по сегодняшним данным, «обратный отсчет» продолжался и после 1990 года. Не так давно были опубликованы результаты очень широкого (в масштабах всей страны) обследования французских мужчин (около 30 тысяч человек), охватившее 1989–2005 годы. Цифры эти были замечены всеми газетами мира и вызвали легкую дрожь в международном масштабе. Они показали, что за эти семнадцать лет количество сперматозоидов у среднего француза упало на 32,2 процента. Сегодня это число составляет 50 миллионов, а доля «доброкачественных» сперматозоидов уменьшилась с 60,9 до 52,8 процента.

Выходит, дело действительно плохо? Нет, спешу сообщить, господа, что этим данным тоже нельзя доверять вполне. Против них говорят другие данные. К примеру, в Париже ученые выявили падение числа сперматозоидов на 2,1 процента в год, а в Тулузе вообще не оказалось никакого снижения.

Нет, я не призываю немедленно перебраться в Тулузу. Я просто хочу обратить внимание на царящий в этом вопросе разнобой и вызванные им оживленные дебаты. Некоторые специалисты считают, что все цифры врут, потому что они получены разными способами. Оказывается, в этом важном вопросе до сих пор нет общепринятой методики. Ведущие медицинские организации то и дело публикуют новые правила таких измерений. Например, Всемирная организация здравоохранения за последние тридцать лет четырежды (!) пересматривала свои указания на этот счет. А вот когда датчане недавно завершили исследование спермы своих граждан, охватившее несколько десятилетий, но с самого начала и до конца проводившееся по одной и той же методике, оно не показало особого падения числа сперматозоидов. Что еще интересней — даже авторы упомянутого выше французского исследования отмечают такой странный факт, что, несмотря на полученные ими устрашающие цифры падения количества и качества французской спермы, число бесплодных мужчин во Франции за те же годы не увеличилось.

Как же мы должны относиться к этому спору? Я полагаю, что со стоическим спокойствием. Капитаны не покидают тонущий корабль. Тем более что пока, как мы видим, еще не вполне ясно, тонет ли он вообще. Хотя, с другой стороны, есть грустные данные, что растет число врожденных дефектов яичек у новорожденных детей, а число рака яичек у взрослых мужчин увеличилось за последние тридцать лет вдвое, что — в сочетании со спадом показателей спермы — как бы указывает на существование каких-то тайных сил, ополчившихся на мужское начало. Некоторые специалисты считают, что во всем повинны химические вещества (бисфенол-А, например), проникающие в наш организм из окружающей среды, куда они массами попадают из наших пластмассовых упаковок. Но и тут данные противоречивы, и споры продолжаются. Я полагаю, что в сложившихся обстоятельствах мы должны быть прежде всего начеку. Мы обязаны пристально следить за развитием событий, а тем временем оставаться на посту и упрямо продолжать наше великое мужское дело.

Загрузка...