МАШИНА СМЕРТИ

Таинство абсолютно Черного

Далее рассказ пойдет о том, как были преодолены козни дьявола против молекулярно-кинетической теории, какой ценой удалось сохранить величественное здание классической физики, едва не рухнувшее под грузом парадоксов. В этой истории тоже основную роль играет некая машина, которая, к счастью, не работала. Ее без всяких дурных намерений создал лорд Релей, создал лишь на бумаге. Заработай такая машина, она «перемолола» бы всю тепловую энергию мира в энергию излучения, «насытившись» только тогда, когда все тела охладились бы до абсолютного нуля.

Многие ученые тщательно анализировали прискорбные результаты ее возможного действия. Если бы такая машина заработала, то могли случиться и другие фантастические события, например: чайник, окрашенный лучшей черной краской, излучал бы видимый свет. Мы наблюдали бы свечение стен в полностью затемненной комнате, не замечая в ней никаких предметов, потому то они светились бы так же, как и стены, совершенно не выделяясь на их фоне.

История этой машины восходит к Кирхгофу, который в 1858 году установил удивительное свойство оболочек, способных идеально удерживать внутри себя теплоту. Если бы такую оболочку удалось изготовить, то, независимо от ее размеров и формы, от свойств находящихся внутри нее тел, все они, в конце концов, пришли бы в тепловое равновесие между собой и с оболочкой — даже если они не соприкасаются ни с нею, ни друг с другом. Обмен энергией между ними осуществляется без касания, только за счет излучения и поглощения. Вывод из такого мысленного эксперимента очевиден: любое тело может не только излучать энергию, но и поглощать ее. Этот мысленный опыт интересен не просто как упражнение ума. Его суть отражает жизнь Вселенной, является прообразом одного из типов взаимодействия составляющих ее тел.

В следующем году Кирхгоф ввел в науку понятие абсолютно черного тела — тела, которое способно полностью поглощать все падающее на него излучение. Оказалось, что такое тело может существовать. Кирхгоф придумал и способ, как сделать его модель. Это не сложно. Достаточно изготовить замкнутую полость из какого угодно материала и проделать в стенке небольшое отверстие. Тогда любое излучение, попавшее в отверстие, полностью поглотится. Произойдет это так. Вошедшее излучение попадет на внутреннюю поверхность стенки полости и частично поглотится ею. Остаток рассеется в разные стороны и попадет на другие части внутренней поверхности и, после нескольких скачков, поглотится полностью.

Обычно внутренние стенки такой полости делают темными и шероховатыми, чтобы доля поглощенного света была велика, а рассеяние было бы равномерным по всем направлениям. Однако даже если стенки сделать зеркальными, результат изменится не сильно. Ведь лучшие посеребренные зеркала отражают свет не полностью, а только на 95 %. Легко подсчитать, что интенсивность отраженного света в полости быстро уменьшается по мере роста количества отражений.

Подобное устройство было названо абсолютно черным телом, ибо, независимо от цвета, оно поглощает абсолютно все излучение, падающее на отверстие, и не отражает ничего. Но абсолютно черное тело и его модель — полость с малым отверстием — не только поглощают, но и излучают. Ведь через отверстие в стенке полости излучение «выливается» наружу так же свободно, как «вливается» вовнутрь. А интенсивность излучения внутри полости зависит только от температуры ее внутренних стенок. Название «абсолютно черное тело» звучит парадоксально, если учесть, что отверстие может сиять ослепительно ярко, когда внутренняя поверхность оболочки раскалена, а внешняя поверхность окружена теплоизоляцией, которая снаружи остается холодной.

Так Кирхгоф нашел простой способ проверить свой мысленный эксперимент с замкнутой, абсолютно изолированной полостью.

Многих заинтересовал вопрос о том, каковы свойства излучения абсолютно черного тела, но ответить на этот вопрос оказалось далеко не просто. Только через 19 лет венский профессор Иозеф Стефан вычислил первую характеристику такого излучения. Оказалось, что полная энергия, излучаемая абсолютно черным телом, пропорциональна четвертой степени его абсолютной температуры. Еще через пять лет один из крупнейших теоретиков Больцман, тоже работавший в Вене, показал, что закон, обнаруженный Стефаном, может быть получен как следствие законов термодинамики — надо учесть давление излучения, рассчитанное Максвеллом из его уравнений электромагнитного поля.

Закон Стефана — Больцмана неоднократно подтверждался различными опытами. Было известно также, что распределение энергии излучения абсолютно черного тела по спектру не зависит от свойств материала его стенок и имеет вид несимметричной горбатой кривой. Она начинается с нуля на очень коротких волнах, поднимается к максимуму и затем падает (но не до нуля) по мере удлинения излучаемых волн. Кривая выглядит острой и высокой при больших температурах, но плавной и низкой, если температура мала. При повышении температуры максимум заметно смещается в сторону коротких волн… Все это было известно, но никто не знал, почему это так…

Прошло еще десять лет, и Вильгельм Вин, исходя из мысленных экспериментов, пришел к удивительному и непонятному результату. Произошло это так. Вин попытался определить, как изменяется при нагревании излучение абсолютно черного тела. Он прослеживал изменения по отдельным интервалам длин волн. И обнаружил, что интенсивность излучения вовсе не пропорциональна четвертой степени температуры, как это следует для всего суммарного излучения. Следует, если верить Стефану…

Вин нашел, что энергия излучения, измеренная в узких интервалах длин волн, должна быть пропорциональна пятой степени температуры, умноженной на какую-то неизвестную функцию длины волны и температуры. Если это не так, утверждал Вин, то будет нарушено Второе начало термодинамики. Но в то время все квалифицированные ученые знали, что Второе начало термодинамики должно соблюдаться. Значит, это так.

Закон Вина представлялся таинственным не только потому, что непонятным был скрытый в нем смысл. Никому не удавалось найти вид функции, вид, при котором закон не противоречит опыту.

Вин сам попытался найти эту функцию, но потерпел неудачу. Любые функции, которые ему удавалось найти, опираясь на известные в то время законы физики, приводили к резкому противоречию с опытом. Единственное, что ему удалось получить из нового закона, без противоречия с опытом, это объяснение смещения горба кривой Стефана — Больцмана при изменении температуры. Впрочем, он нашел не объяснение, не причинную связь со свойствами вещества или излучения, а лишь математическую связь между двумя величинами: произведение абсолютной температуры тела на длину волны, соответствующую максимуму кривой интенсивности излучения, остается постоянным. Совсем в духе Ньютона — важно найти математический закон, даже если причины остаются скрытыми. Много лет спустя Вин получил Нобелевскую премию за исследования свойств излучения, главным образом за формулировку закона смещения этого максимума.

Удивительное положение: закон верен в общем виде потому, что только этот общий вид удовлетворяет Второму началу термодинамики. Но любая попытка придать ему конкретную форму, найти, вид неизвестной функции, приводит к противоречию с опытом…

Апокалиптические видения лорда Релея

Задачей заинтересовался лорд Релей. Перебрав варианты расчетов, он пришел к выводу, что закон Вина верен только в области коротких волн и низких температур, а на длинных волнах и при высоких температурах он резко противоречит опыту. Однако Релей подтвердил, что следствие из неверного закона — найденный Вином закон смещения — сохраняет силу, что, впрочем, было уже известно из опыта.

Релей решил начать все сначала, основываясь на работах Максвелла и Больцмана, на общепринятом законе равного распределения энергии по степеням свободы. Он получил новый закон: удельная мощность излучения абсолютно черного тела должна быть пропорциональна абсолютной температуре и обратно пропорциональна четвертой степени длины волны. Формула Релея, полученная из признанной и казавшейся тогда безупречной молекулярно-кинетической теории, расходилась с опытом еще сильнее, чем формула Вина! Из нее не получался даже закон смещения. Кривая стремительно и неограниченно нарастала в сторону коротких волн.

Давая сравнительно хорошее совпадение с опытом на длинных волнах, формула приводила к вопиющему абсурду по мере укорочения длины волны. Из нее, вопреки закону Стефана — Больцмана и вопреки опыту, получалось, что черное тело при любой температуре излучает бесконечную энергию. Значит, любое тело остынет до абсолютного нуля, если не подводить к нему непрерывно бесконечную энергию. Более абсурдные результаты трудно придумать, а ведь они без какой-либо ошибки получены из «безупречной» молекулярно-кинетической теории…

Возникло парадоксальное положение, подчеркивающее, что при любой температуре любое тело должно, исходя из молекулярно-кинетической теории, излучать бесконечную энергию на коротких волнах, более коротких, чем ультрафиолетовые волны. Формула Релея превращала любое тело в тепловую машину, в машину смерти, неудержимо преобразующую без остатка тепло в излучение. Это должен быть необратимый процесс. Все предметы должны сиять фиолетовым пламенем и полыхать коротковолновым излучением. Так в науку ворвался призрак «ультрафиолетовой катастрофы»…

Начались разговоры о тепловой смерти Вселенной, ибо этот процесс может прекратиться только тогда, когда мир остынет до абсолютного нуля. Все понимали, что этого не может быть, что необходимо опровергнуть формулу Релея, иначе придется отказаться от молекулярно-кинетической теории, от всей классической физики!

За дело взялся Макс Планк — физик, первым ставший официальным физиком-теоретиком, он действительно первым в 1885 году занял должность экстраординарного профессора теоретической физики в Кильском университете. Через четыре года Планк получил ту же должность в Берлинском университете, а в 1892 году стал там ординарным профессором. Некоторые еще продолжали считать должность профессора теоретической физики излишней, пишет он в своей автобиографии и продолжает: «Ведь я тогда был среди всех физиков единственным теоретиком… что сделало мое положение не совсем легким». До него, начиная с Галилея, каждый физик, изучая природу, выступал и как экспериментатор и как теоретик. Потом и для физики возникла необходимость разделения труда, специализации не только по областям исследования, но и по методам. Конечно, не перевелись и универсалы, которые по-прежнему объединяют в себе обе ипостаси, и многие из них успешно конкурируют с узкими специалистами.

Позже Планк рассказывал, что он не надеялся на удачу при попытке отыскать неизвестную функцию в законе Вина или при поисках нового закона. Слишком многие уже потерпели неудачу. Он рассуждал так. Закон Вина, несомненно, справедлив в области коротких волн, а закон Релея в области длинных волн. Но они кажутся несовместимыми.

Нужно приняться за дело как-то иначе. И не спешить.

Эмоции сильнее доказательств?

Драматическая история возникновения квантовых идей со временем трансформировалась и обросла рядом стереотипов. Некоторые из них возникали из лучших педагогических побуждений, имевших целью облегчить восприятие идей, столь далеких от привычных и наглядных основ классической науки. Другие родились на последующих этапах, когда кванты уже казались естественными образованиями, без которых невозможно понимание явлений микромира. Недаром «отец квантов» Планк написал: «Обычно новые научные истины побеждают не потому, что их противников убеждают и они признают свою неправоту, а большей частью потому, что эти противники постепенно вымирают, а подрастающее поколение усваивает истину сразу».

Человеческая психика такова, что эмоции сильнее доказательств. Люди менее остро ощутили зверства нацистов из протоколов и репортажей о Нюрнбергском процессе, чем из дневников Анны Франк, маленькой девочки, бесхитростно фиксировавшей течение своих последних дней.

Проследим же историю возникновения квантов по воспоминаниям главного участника. Планк взялся за дело, зная, что всех его предшественников постигла неудача. Будучи чрезвычайно педантичным, трудолюбивым человеком, он решил пройти весь путь с самого начала, приняв за отправные пункты только безусловно достоверное. За достоверное он счел термодинамику и электродинамику. И конечно, закон Стефана — Больцмана, полученный из непосредственного опыта.

Итак, внутри замкнутой полости все тела приходят в равновесие с излучением, подчиняясь при этом Первому и Второму началам термодинамики и уравнениям Максвелла. Безразлично, что находится в полости: куски металла, или камертоны, или вибраторы, незадолго до того изученные Герцем. Для обычных веществ все было ясно. При равновесии внутри полости на любой вид. движения атома, молекулы или частицы твердого вещества — вращательное, поступательное, колебательное — на каждую степень свободы приходится одинаковая доля всей находящейся внутри полости энергии, доля, зависящая только от температуры.

Планк был уверен, что задача будет решена полностью, если он применит эту общеизвестную закономерность к конкретному простейшему случаю — к вибраторам Герца. Планк увидел в вибраторе Герца удобную модель излучающего и поглощающего тела. С точки зрения излучения этот вибратор, каким бы ни было его конкретное устройство, является системой с одной степенью свободы. Он поглощает только те электромагнитные волны, которые может излучать. Совсем так, как ведет себя камертон по отношению к звуковым волнам. Удобная модель. Но Планк заподозрил, что, в отличие от камертона, в вибраторе Герца процесс излучения чем-то отличается от процесса поглощения и это позволит вскрыть особенности равновесного состояния внутри полости.

Из этого не вышло ничего. Никаких особенностей не обнаружилось. Больцман, узнав о попытке Планка, объяснил ему, что никаких новых результатов и не следовало ожидать, оставаясь в рамках классической динамики. И в заключение сказал, что решить эту загадку невозможно, не введя в рассмотрение каких-то элементов прерывности, дискретности…

Это указание, туманное, как слова Дельфийского оракула, вошло в сознание или, вернее, в подсознание Планка. Он только не мог придумать, какой смысл можно сюда ввести. Впрочем, и Больцман не мог предложить ничего более определенного. Его мнение опиралось только на интуицию.

Тогда Планк взялся за дело с другого конца, приняв за исходный пункт термодинамику, в которой он чувствовал себя более твердо, чем в электродинамике. Термодинамика показывала, как нужно изучать необратимые процессы, текущие из любого начального состояния в сторону равновесия. Расчеты привели Планка к чрезвычайно изящному результату. Этот результат потряс ученого. Он многократно проверял вычисления. Ошибки не было. Так из термодинамики неожиданно получилось соотношение, эквивалентное закону Вина, верному для коротких волн и неверному для длинных. Значит, термодинамика тоже привела Планка в тупик.

Последовал период мучительных раздумий, в результате которых Планк обнаружил, что, не противореча термодинамике, можно получить решение, справедливое для длинных волн, добившись того, чтобы та же функция оказалась пропорциональной не энергии, а ее квадрату. Но в этом случае результат был бы эквивалентен закону Ре-лея а значит, терял бы смысл в диапазоне коротких волн, приводя к ультрафиолетовой катастрофе.

Тогда Планк решил, хотя бы временно, отказаться от лобового решения коварной задачи и ограничиться полумерой. Он задался целью скомбинировать полученные результаты так, чтобы, приходя со стороны коротких волн к формуле Вина, а со стороны длинных к формуле Релея, они в середине совпадали с известным из опыта законом Стефана — Больцмана. Это было несложно. Достаточно скомбинировать сумму двух решений так, чтобы для коротких волн преобладал первый член с первой степенью энергии, а для длинных — второй с ее квадратом, причем нужно еще ввести общий множитель, чтобы обеспечить совпадение с опытом на средних волнах.

Формула, сработанная таким образом, действительно отражает истинные свойства излучения абсолютно черного тела, соответствует условиям равновесия излучения и вещества внутри замкнутой полости…

19 октября 1900 года Планк представил свои результаты Берлинскому физическому обществу и рекомендовал проверить полученную формулу. На следующее утро его разыскал экспериментатор Рубенс и взволнованно сообщил, что в ночь после заседания он сравнил формулу с результатами своих прежних измерений и всюду нашел удовлетворительное совпадение…

Это был сугубо теоретический расчет, сделанный первым профессиональным физиком-теоретиком. Головоломка с излучением абсолютно черного тела казалась кабинетной забавой, заумью, настолько далекой от повседневной жизни, от потребностей и интересов людей, что могла занимать только коллег Планка. Однако все дальнейшее развитие физики подтвердило потенциальную мощь работы Планка, ее значение для теории и практики.

А когда, уже в наши дни, другие физики-теоретики предприняли неслыханный мысленный эксперимент — решили представить акт рождения Вселенной и воссоздать секунду за секундой все этапы ее развития вплоть до сегодняшнего дня, оказалось, что главной опорой в этой неслыханной попытке стал Планк. Именно его расчеты стали путеводными в составлении сценария, главными героями которого были элементарные частицы, рожденные в момент Большого взрыва, и электромагнитное поле. Именно игра вещества и излучения сформировали мир, который нам посчастливилось увидеть.

В своей замечательной книге «Первые три минуты», переведенной у нас в 1981 году, Стивен Вайнберг, специалист в области элементарных частиц, Нобелевский лауреат, прослеживает, как Вселенная расширялась, как клокотал космический «суп», как варились в нем все те составные части, которые сейчас составляют плоть мира. Весь расчет взаимоотношений между излучением и веществом строится на модели «черного тела».

Вайнберг пишет: «В течение первого миллиона лет или около того, когда излучение и вещество находились в состоянии теплового равновесия, Вселенная должна была быть заполнена излучением черного тела с температурой, равной температуре того вещества, из которого она состояла».

Расширяющаяся Вселенная уподоблена черному телу, заполненному излучением. Энергия в любом интервале длин волн, плавно растет с уменьшением длины волны, достигает максимума, а затем плавно падает. Это распределение Планка, оно универсально и не зависит от природы вещества, которым взаимодействует излучение, а зависит только от его температуры. Сегодня излучение черного тела означает любое излучение, в котором распределение энергии по длинам волн подчиняется формуле Планка независимо от того, действительно ли оно испущено черным телом или нет. И это обстоятельство дает возможность ученым провести еще более немыслимый мысленный эксперимент — проследить не только прошлое нашей Вселенной, но и проанализировать достоверные пути к будущему…

Вайнберг подчеркивает: «Важность планковского расчета выходит далеко за пределы проблемы излучения черного тела, так как в этом расчете Планк ввел новую идею — энергия может существовать в виде отдельных порций, или квантов».

Итак, в расчетах Планка родился квант энергии.

Великая таинственная «аш»

Казалось, следует торжествовать — задача решена. Может быть, другие и могли восторгаться. Но не Планк. Его мучительные сомнения достигли высочайшего предела.

Что это, удачная находка, счастливое сочетание математических кривых, неожиданное решение математического кроссворда или за этим скрывается физический смысл?

«После нескольких недель напряженнейшей в моей жизни работы, темнота рассеялась и наметились новые, неподозреваемые ранее дали». Заметьте, Планку открылась не тихая гавань, не решение, а дальнейший путь в неведомое.

Речь шла о сложнейших взаимоотношениях между неизбежностью и случайностью в природе, нащупанных и введенных в науку Больцманом, человеком с могучей интуицией. Он поразительно красиво примирил Второе начало термодинамики (неизбежность течения всех тепловых процессов лишь в одну сторону — от теплых тел к холодным) с вероятностью случайного всплеска энергии в той или иной области Вселенной, что спасает мир от тепловой смерти. «Примирил» — даже не то слово. Великий немецкий физик подглядел в сложном борении сил природы один из самых таинственных и непостижимых поединков — поединок случайности с неизбежностью.

Неизбежность — предсказанное Вторым началом остывание мира. Оно является следствием принципа, установленного, вернее, понятого, Карно — все виды энергии переходят в тепло без остатка, а тепло течет только в одном направлении — от более горячих тел к менее нагретым и не может полностью переходить в другие формы энергии. Мир остывает — и это неизбежно. Ни бог, ни дьявол не могут спасти мир от постепенного охлаждения. Больцман понял — если мир все еще существует, его спасает случай! Где-то в безбрежном океане остывающей Вселенной обязательно возникает всплеск энергии — и он прервет, нарушит умирание мира, вольет в него новую энергетическую кровь!

Много позже того как Планк закончил свою удивительную работу вслепую, он тоже будет вынужден признать, что в его формулах скрыта возможность стихийных всплесков энергии, но не где-то в глубинах космоса, а в недрах вещества, в атомах и молекулах. Именно там — время от времени и тоже по закону случая — электроны, вращаясь вокруг ядер и перескакивая с орбиты на орбиту, излучают порции энергии, которые получили название квантов. Подобные процессы можно понять только с новых позиций, приняв новую точку зрения, примирившись с необходимостью дополнить прежние законы, которые добыла классическая физика, новыми законами микромира, квантовыми законами. Классическая физика не знала этих законов. Познать их и учесть предстояло Планку, Эйнштейну, Бору и другим создателям новой, квантовой физики. А познав их, они поняли причины неувязок, которые произошли вследствие попыток изучить микромир с помощью физики, созданной для познания макромира.

Но понимание пришло после. А пока Планк, мучаясь и сомневаясь, боролся с собственной интуицией. Нечто подобное происходило и с Больцманом. Ученые не сразу поверили ему Было трудно, почти противоестественно признать власть такого ненаучного понятия, как случай, над непреклонным закономерным развитием природы… Открытие Больцмана должно было «созреть». Но сам великий ученый не дожил до этого. Споры, нестерпимое интеллектуальное напряжение, непонимание привели его к самоубийству. Конечно, ученые понимали, что случай — вовсе не произвол. Это не значит, что законы природы ускользают из-под контроля, не подвластны предсказанию. Но предсказать единичный случай тем не менее невозможно. Как же учитывать вероятность того или иного события? В дополнение к статистической теории явлений макромира были созданы — не одна, а даже две разные — теории, которые помогли физикам ориентироваться в микромире, предсказывать события микромира, и в том числе такие события, как перескок электронов с орбиты на орбиту внутри атома и связанное с этим событием следствие — всплеск энергии, излученной из него. (Оказалось, что многообразные микрочастицы разделены на две группы, принадлежат к двум семействам, что и привело к необходимости двух статистических теорий микроявлений. Но об этом позже.)

Планк установил непреложную истину — излучение энергии возможно только в виде сгустков определенной величины. Эйнштейн показал, что, будучи излученными, они продолжают существовать в форме сгустков электромагнитной энергии, которые позже назовут фотонами. Это будет проявлением нового процесса, незнакомого макромиру, где мельчайшие квантовые сгустки энергии невозможно ощутить порознь и изменения энергии представляются непрерывными. Поэтому-то формулы классической физики, описывающие непрерывные процессы, отказались работать уже на пороге микромира, к которому подошли исследователи занявшись проблемой излучения абсолютно черного тела. Планк нащупал истину интуитивно, пытаясь согласовать формулу излучения абсолютно черного тела с результатами опыта. Чтобы согласовать теорию с реальностью, он ввел в формулу коэффициент, который примирил его теорию с опытом, сделал теорию отражением реальности. Но какой реальности? Этого Планк долго не мог осознать, бунтовал против им же введенного таинственного кванта…

Очень важный момент творчества — интуиция вывела ученого на правильную дорогу, он этого еще не понимает, протестует, сопротивляется. Интуиция помогает человеческому разуму, воспитанному на традициях, а порой и на предрассудках, преодолевать их. Именно интуиция заставила Планка ввести в формулу излучения коэффициент, отражающий дискретную, квантовую структуру энергии.

Планк еще не прозрел истину. Продолжал поиски в традиционных для классической физики рамках… Он даже не подозревал, куда заведет его уступка математической логике. Пока он думал удовольствоваться малым. Для того чтобы понять смысл полученной им формулы излучения абсолютно черного тела, требовалось уточнить значение двух постоянных величин, правильная оценка которых обеспечивала совпадение формулы с опытом.

Исследования показали, что первая постоянная может трактоваться как известная ранее универсальная газовая постоянная, отнесенная к одной молекуле. Планк вычислил ее, а вскоре многие искусные экспериментаторы подтвердили правильность расчета.

Гораздо труднее было со второй постоянной. Она, по тогдашним представлениям Планка, определяла «элементарные области вероятности». Элементарные ступеньки изменяющейся вероятности… На чем основывались эти туманные представления?

При выводе формулы, эквивалентной формуле Релея, Планк прибег к формальному приему. Он заменил интегрирование суммированием. Перешел от непрерывной математической операции к дискретной, как бы заменил подъем по непрерывной кривой движением по ступеням лесенки. Но если непрерывная кривая Релея беспредельно поднималась в направлении коротких волн, вела к ультрафиолетовой катастрофе, то подъем лесенки можно было ограничить и тем заставить второй член формулы в области коротких волн уступить место первому члену.

Удивительным оказалось то, что вторая постоянная выглядела как произведение некоторой энергии на время. Такое произведение встречается в механике и называется действием. Поэтому Планк решил назвать эту постоянную не элементом вероятности, что могло показаться совсем непонятным, а элементом действия или квантом действия. По-немецки Quantum — количество. Слово происходит от латинского quantum — сколько. А теперь оно означает порцию и входит в определение миниатюрных порций целого ряда квантованных физических величин. Планк обозначил эту постоянную буквой h (аш). Теперь она называется постоянной Планка. Величина ее очень мала, научное значение — колоссально.

Гром за две недели до XX века

14 декабря 1900 года Планк на заседании Берлинского физического общества сделал доклад «К теории закона распределения энергии в нормальном спектре». Никто из слушателей не подозревал, что начинается новая эра в науке. Классическая физика, конечно, не завершилась с концом века. Но за две недели до начала нового, XX века родилась ее дочь — квантовая физика. Даже ее отец не понимал значения совершенного им.

Придав конкретный, физический смысл обеим постоянным, Планк, однако, не мог успокоиться. Их смысл оставался формальным. Нужно было понять, что они означают в действительности. Понять — это значило (тогда, а для многих означает и теперь) объяснить в рамках классических понятий. Вывести из законов классической физики.

Особенно тревожно обстояло дело с квантом действия.

Ведь для действия — произведения энергии на время — не существовало закона сохранения, подобного закону сохранения энергии или закону сохранения импульса. Действие могло, в соответствии с законами механики, изменяться произвольно и даже исчезать. Почему же здесь, выйдя за пределы механики в термодинамику и физику излучения — электродинамику — действие стало изменяться скачками?!

Стремясь к объяснению в духе классических понятий, Планк обрек себя на новые мучения. Все попытки понять суть дела оставались тщетными. Правда, пока рассматривались процессы медленные, протекающие с большими энергиями, все было в порядке. В этих случаях можно считать вторую постоянную бесконечно малой и трактовать процессы как непрерывные. Попросту не замечать ступенек, заменять лесенку плавной кривой. Так поступала классическая физика. Но если энергия была не велика или процессы происходили быстро, то соответствующее действие становилось соизмеримым с величиной таинственной постоянной, и возникали парадоксы типа ультрафиолетовой катастрофы. Несколько лет самого напряженного труда не позволили Планку примирить квант действия с понятиями классической физики.

Воспитание и стремление к традиционному мышлению сделали Планка консервативным человеком. Возникшая ситуация принесла ему много страданий: между квантом действия и классической физикой была пропасть. Но позже он оценил свои результаты оптимистически. В различных публикациях его отношение к кванту не вполне одинаково. В «Научной автобиографии» суть дела выражена одной фразой: «Провал всех попыток перекинуть мост через эту пропасть вскоре не оставил более никаких сомнений в том, что квант действия играет фундаментальную роль в атомной физике, и с его появлением в физической науке наступила новая эпоха, ибо в нем заложено нечто, до того времени неслыханное, что призвано радикально преобразить наше Физическое мышление, построенное на понятиях непрерывности и причинных связей с тех самых пор, как Ньютоном и Лейбницем было создано исчисление бесконечно малых». Опыт, этот высший судья, решил в микромире в пользу второй, квантовой альтернативы. Но понимание микромира в терминах классических понятий так и не возникало. За дело взялись молодые и пошли дальше.

Планк не признает свое отцовство

Первым, после пяти лет всеобщего молчаливого непонимания, сказал свое слово Эйнштейн. Он, подобно богу, сотворившему Еву из ребра Адама, сотворил из кванта действия квант энергии.

Если из формулы Планка вытекало, что электромагнитное поле, взаимодействуя с веществом, передает ему или получает от него энергию порциями, то Эйнштейн установил, что эти порции продолжают существовать в пространстве как своеобразные атомы излучения, кванты света. Впоследствии Комптон окрестил их фотонами.

Такой взгляд позволил Эйнштейну объяснить таинственный фотоэффект, при котором световые волны выбивают из вещества электроны. И делают это не так, как океанская волна, которая лижет и точит камень постепенно и незаметно. А как пуля, выбивающая из камня осколки.

Опыт говорил, что фиолетовый свет легко выбивал электроны, как ни мала интенсивность света. Но красный свет, даже при огромной интенсивности, мог действовать на металл сколь угодно долго, не выбивая ни одного электрона. Объяснить это свойствами волн невозможно. При помощи квантов света это выглядит просто и наглядно. Кванты красного света несут малые порции энергии. Каждый из них не способен передать электрону энергию, нужную тому для того, чтобы вырваться из металла. А каждый квант летит и падает на металл независимо от других. Практически невероятно, чтобы два кванта одновременно воздействовали на один электрон. Энергия же фиолетового кванта (она почти вдвое больше, чем у красного) достаточна для того, чтобы он мог в одиночку освободить электрон.

Любопытная деталь — зная о работе Планка и ссылаясь на нее, Эйнштейн тем не менее поначалу считал, что Планк идет другим путем. В одной из статей он писал: «Тогда мне показалось, что теория излучения Планка в известном смысле противостоит моей работе». Но длительные размышления привели Эйнштейна к уверенности, что теория Планка неявно использует гипотезу реального существования световых квантов. Эйнштейн дважды упоминает об этом в статье. Но он заблуждался. Планк не только не думал о квантах света как реальных, существующих в пространстве порциях электромагнитной энергии, но в течение многих лет не признавал квантовую теорию света и никогда не считал себя причастным к ее созданию!

Эйнштейн многократно защищал теорию световых квантов, да и саму идею реальности квантовых законов микромира от многих осторожных скептиков, в том числе и от самого Планка. В несовпадении мнений было повинно многое: и разница в возрасте и, что самое главное, различный подход к науке. Планк был консерватором, Эйнштейн — новатором.

Эйнштейн считал, что фундаментом дальнейшего развития теории должны быть две главные закономерности: закон сохранения энергии и связь между Вторым началом термодинамики и законом случая, найденным Больцманом. Именно отсюда вытекает то видоизменение молекулярно-кинетической теории, которое привело к правильному описанию излучения черного тела, к устранению ультрафиолетовой катастрофы и к квантам света.

Но возможности квантового подхода этим не исчерпаны, думал Эйнштейн. Признание реального существования квантов энергии должно открыть пути к разъяснению других парадоксов, возникающих при попытках применения первоначальной молекулярно-кинетической теории к задачам ей не подвластным.

Глубинные клады алмаза

И Эйнштейн со всем пылом берется за дело.

Он начинает с загадки алмаза, не подчиняющегося закону Дюлонга и Пти, так хорошо согласующемуся с представлениями теории о равномерном распределении энергии по степеням свободы. Вопрос лишь в том, что это за степени свободы. Действительно ли их одинаковое количество у каждой молекулы в твердом теле. Ведь существуют твердые тела, возникающие при отвердении веществ, построенных из многоатомных молекул. А эти молекулы имеют, кроме основных степеней свободы, еще по три на каждый атом. Как они «забывают» об этом при затвердевании?

Эйнштейн понял, что, основываясь на двух главных закономерностях — на законе сохранения энергии и на связи между Вторым началом термодинамики и вероятностью случайных процессов в природе, — можно получить для внутренней энергии твердого тела ту же формулу, к которой Планк пришел в задаче об излучении черного тела.

Тогда возникает удивительная аналогия. При высокой температуре формула Планка переходит в формулу Релея, а полученное Эйнштейном выражение для теплоемкости твердых тел, очень похожее по своей структуре на формулу Планка, переходит при высоких температурах в закон Дю-лонга и Пти. Все различия между индивидуальными твердыми телами исчезают. Их теплоемкость приближается по величине к утроенной универсальной газовой постоянной. Конечно, температура не должна быть слишком большой, чтобы в веществе не происходили структурные перестройки, например, оно не начинало плавиться или перекристаллизовываться.

Формула предсказывала уменьшение теплоемкости твердых тел по мере уменьшения температуры. У одних уже при комнатных температурах — так ведут себя очень твердые тела: алмаз, бор, кремний. У других позже.

Дело обстоит так, как если бы степени свободы, определяющие теплоемкость, постепенно вымерзая, перестают участвовать в обмене энергией.

Так и происходит на самом деле. Величина кванта энергии, участвующей во внутренних движениях частиц твердого тела, пропорциональна абсолютной температуре тела. И те движения, для возбуждения которых Требуется более энергичный квант, просто не могут быть возбуждены при низких температурах, когда таких квантов практически нет. Поэтому, например, в процессе нагревания твердого тела совсем не участвуют электроны, входящие в состав атомов. Для их возбуждения нужны столь большие температуры, что задолго до их достижения все вещества уже плавятся или испаряются.

Но и в жидком и газообразном виде при обычных температурах внутриатомные электроны тоже не принимают участия в обмене тепловой энергией между молекулами и атомами. Это видно из простых расчетов, основанных На тех же двух главных законах и тоже приводящих к формулам, структура которых аналогична формуле Планка. Для того, чтобы электроны, связанные в атомах, могли участвовать в этих процессах, нужны температуры, превышающие тысячи градусов.

Так Эйнштейн, Планк, а за ними и другие ученые шаг за шагом продвигались вперед в понимании квантовых законов строения материи, разъясняя все парадоксы, «дьявольски» тормозящие развитие науки.

Они искали ключ к пониманию того, как образуются химические соединения, какие температурные условия нужны для тех или иных химических и ядерных реакций, какие элементы наиболее охотно вступают в соединение и какие условия этому благоприятствуют. Осознание механизма поведения и взаимоотношений электронов, протонов, атомов, молекул дает в руки ученых несколько возможностей. Во-первых, возможность целенаправленного управления свойствами веществ. Во-вторых, возможность создавать новые соединения. В-третьих, возможность понять, как было создано все то, что сейчас перед нами. Именно эти знания помогли физикам проникнуть мысленным взором в глубину времени на 15–20 миллиардов лет, когда возникала наша Вселенная. Эти знания помогли представить, как первородное вещество, существовавшее в виде ядерных частиц и электронов, превратилось в звезды, планеты, галактики сегодняшнего мира. И ученые уверены: сегодняшние знания — надежный фундамент для того, чтобы судить о том, что происходило так давно при экзотических условиях в новорожденной Вселенной.

…Великий Гете (в истории ученика чародея) прекрасно показал, что вызвавший дьявола, но не умеющий укротить его, неизбежно попадает в беду. Знания поражают дьявола. Знания — величайший и драгоценнейший продукт человеческой деятельности — побеждают все предрассудки, в том числе и предрассудки, возникающие в самой науке и даже маскирующиеся в одежды законов.

Заблуждение считать, что человек не способен обнаружить и понять вечные законы природы. Человечество уже достигло многого. Еще больше предстоит в будущем. Залогом тому служит один из всеобщих и основополагающих законов — закон неограниченности человеческого познания.

Стремление к умножению знаний ведет к более полному пониманию природы. Человек старается создавать все более совершенные орудия познания — инструменты, приборы, машины. Но ограниченность наших знаний, наши заблуждения, слабости, неполнота теорий сказываются в замысле, конструкции, исполнении приборов, нужных для экспериментов, и машин, необходимых для хозяйственной деятельности людей. Здесь остро проявляется драматическое столкновение старых и новых идей, точек зрения, предрассудков и пристрастий.

Эйнштейн, размышляя над противоречиями классической и квантовой трактовки природы электромагнитных волн, обратил особое внимание на судьбу таких важнейших инструментов познания макро— и микромиров, как телескопы и микроскопы.

В их работе тесно переплелись и волновые и квантовые свойства света. В их пороках отразились пороки, свойственные однобокому подходу к сущности света. В их достоинствах сказались достоинства более полного подхода, основанного на учете и волновых и квантовых особенностей света.

Попробуем разобраться в этом вопросе — он более всеобъемлющ, чем кажется. Он откроет нам глаза на многое.

Загрузка...