В общем случае система может состоять из одного ансамбля, совокупности многих ансамблей или даже фрагмента отдельного ансамбля. При этом система может принадлежать любому из количественных уровней мироздания: микро-, макро-, мега- и тому подобным мирам.

Известны различные виды специфических и универсальных воздействий окружающей среды на систему. Один из них заключается в переносе через контрольную поверхность определенного количества вещества dE . Сам по себе процесс переноса говорит о наличии специфического воздействия. Но одновременно совершается работа dQ , равная произведению экстенсора dE на интенсиал Р . Следовательно, перенос вещества свидетельствует также и о наличии универсального воздействия. Процесс переноса сравнительно легко обнаруживается, если наблюдать за тем, что происходит непосредственно на контрольной поверхности.

Второй вид воздействия связан с эффектом экранирования веществами друг друга в пределах системы. В состоянии экранирования и после нарушения этого состояния вещество ведет себя по-разному, что существенно влияет на свойства системы. Прекращение экранирования во многих отношениях равносильно появлению в системе вещества. Например, соответствующие условия возникают, если нейтрон, в котором взаимно скомпенсированы (экранированы) положительный и отрицательный электрические заряды, распадается на протон и электрон. При этом в системе как бы появляются положительное и отрицательное электрические вещества. С другими весьма распространенными примерами экранирования придется столкнуться в гл. XIII.

Очень большой интерес представляет также третий вид изменений экстенсора системы - за счет парена. Этот процесс пока наименее исследован, но ему предстоит большое будущее.

При изучении и расчетах второй и третий виды воздействий могут быть сведены к первому путем соответствующего выбора контрольной поверхности, системы и окружающей среды. При этом экранированное вещество и вещество парена мысленно относятся к окружающей среде, хотя на самом деле они находятся в пределах системы. Нарушение экранирования и появление вещества из парена условно рассматриваются как перенос вещества через контрольную поверхность. С похожими условными методами выбора контрольной поверхности, системы и окружающей среды приходится сталкиваться также при изучении химических и фазовых превращений [17, с.303; 21, с.205].

Следовательно, в качестве основного вида воздействий окружающей среды на систему можно принять первый, который сопровождается переносом через контрольную поверхность вещества в количестве dE . Этот вид является наиболее общим, к нему могут быть сведены все остальные, поэтому ниже его изучению уделяется наибольшее внимание.

Введение понятий контрольной поверхности, системы и окружающей среды, а также установление основного вида воздействий позволяют очень четко обозначить принадлежность величин, содержащихся в уравнении (31), то есть определить, какие из них относятся к системе, какие - к контрольной поверхности и окружающей среде. Например, совершенно очевидно, что величина dU должна принадлежать системе, поскольку энергия определяет связь между всеми веществами, образующими систему. В термодинамике энергию U принято называть внутренней. Однако в ОТ существует только одна энергия - мера, поэтому такая конкретизация названия не имеет особого смысла.

В противоположность энергии экстенсор dE относится к окружающей среде, ибо в процессе взаимодействия вещество в количестве dE переходит из окружающей среды в систему. Этот процесс сопровождается совершением работы dQ . Работу совершает окружающая среда над системой, поэтому величина dQ также принадлежит окружающей среде.

Следовательно, в целом левая часть уравнения (32), а значит, и (31) относится к системе, а правая - к окружающей среде. При этом положительному приращению величины экстенсора системы dE (переходу вещества из окружающей среды в систему) соответствует положительная работа dQ (окружающей среды над системой) и положительное приращение (возрастание) энергии dU системы. В этом заключается правило знаков для энергии, работы и экстенсора.

Необходимо отметить, что в термодинамике в качестве некоего исключения принято считать так называемую механическую работу, связанную с изменением объема системы. В этом случае положительное приращение dU получается при отрицательном приращении объема dV : при совершении положительной работы система сжимается - ее объем уменьшается. Поэтому механическую работу обычно записывают в виде

dQv = - pdV Дж, (43)

или dL = pdV Дж,

где использовано известное обозначение

dQv = - dL Дж.

Однако ниже по мере расшифровки физического смысла введенных понятий станет ясно, что во всех случаях положительному dU отвечают положительные dQ и dE . Причина кажущегося исключения для механических явлений заключена толь ко в неадекватном способе традиционного выбора механического экстенсора, то есть объема V (см. параграфы 2 и 4 гл. XV). Кстати, на примере механической работы легко показать органическую связь, существующую между уравнениями (28) и (43) и таким образом перекинуть мост к общему уравнению (34). Для этого достаточно обратиться к рис. 1, где изображена система, изменившая свой объем на величину dV под действием давления р ; площадь контрольной поверхности равна F.


Рис.1. Схема для определения связи между формулами (28) и (43).

Находим

dQx = Pxdx = pFdV/F = pdV = dQv = dQk (44)

где Px = pF ; dx = dV/F .

Здесь знак минус опущен (рассматривается абсолютное значение работы); давление р, равномерно распределенное по площади F , выражено через силу Рх ; приращение объема dV, отнесенное к площади, дает перемещение контрольной поверхности на расстояние dx [ТРП, стр.99-102].


6. Внутренние и внешние степени свободы системы.

Установим далее физический смысл величины l, которая входит в правую часть уравнения (31), принадлежащую окружающей среде.

Допустим, что данная система, определяемая уравнением (27), внутренне восприимчива к l конкретным веществам, она способна приобретать и терять через контрольную поверхность эти вещества. Тогда такую систему можно определить как обладающую l внутренними степенями свободы. Следовательно, под внутренними степенями свободы мы будем понимать располагаемые, потенциально заложенные в системе возможности взаимодействий с окружающей средой.

Однако реализация имеющихся возможностей зависит не только от свойств системы, но не в меньшей мере и от свойств окружающей среды. Ведь последняя на границе с системой - на контрольной поверхности - располагает вполне определенными своими внутренними степенями свободы. В общем случае количество этих степеней, внешних по отношению к системе, равно lе , причем не все степени из числа lе обязательно совпадают со степенями из числа l . Очевидно, что взаимодействие между системой и окружающей средой возможно только по сопряженным степеням свободы, когда система и среда одновременно способны воспринимать и терять соответствующие вещества.

Если число сопряженных между собой степеней свободы системы и среды обозначить через n , то должно соблюдаться требование [18, с.61; 21, с.47]

n ? 1 (45)

Величина n характеризует фактически реализуемые взаимодействия между системой и окружающей средой, то есть определяет внешние степени свободы системы, зависящие от свойств окружающей среды.

Отсутствие какой-либо конкретной степени свободы - внутренней или внешней - говорит о внутренней или внешней изоляции системы по отношению к соответствующему веществу. Например, жидкости и твердые тела практически несжимаемы, то есть внутренне изолированы по отношению к объему, поэтому они не могут быть использованы в качестве рабочего тела в тепловом двигателе; фарфор и стекло внутренне изолированы по отношению к электрическому заряду, значит, они не могут служить проводниками электричества. Аналогично внешняя изоляция системы по отношению к объему может быть достигнута путем применения жесткой окружающей среды (оболочки), как в калориметрической бомбе; внешняя электрическая изоляция обеспечивается с помощью оболочки из фарфора, стекла и т.п.

Теперь должно быть ясно, что уравнение (31) выведено при условии, когда l = le = n . Это соответствует крайнему частному случаю полного совпадения всех внутренних и внешних степеней свободы системы. В противоположном крайнем случае, когда все степени свободы не совпадают между собой, величина n = 0 , при этом система полностью внешне изолирована, взаимодействие между нею и окружающей средой невозможно.

Из сказанного следует, что в уравнение (31) вместо величины l правильно подставлять величину n , которая является характеристикой не только системы, но и окружающей среды и однозначно определяет условия взаимодействия системы с последней [ТРП, стр.102-103].


7. Первое начало ОТ, или закон сохранения энергии.

Теперь все величины, входящие в основное уравнение (31) для ансамбля простых явлений, нам известны. Необходимо обобщить полученные результаты и установить смысл уравнения в целом.

Мы убедились, что левая часть соотношения (31) определяет изменение энергии системы, а правая - внешние работы, которые на контрольной поверхности совершает окружающая среда над системой. Работы совершаются в процессе переноса веществ через контрольную поверхность. Для этих условий уравнение (31) утверждает факт существования однозначной связи между изменением энергии системы и суммой внешних работ, причем сумма работ, совершаемых над системой, равна изменению энергии последней.

Уравнение (31) с равным успехом может быть применено также к окружающей среде. По отношению к последней совершаемые работы оказываются отрицательными. Поэтому изменение энергии среды dUc тоже должно быть отрицательным. Поскольку в обоих случаях рассматриваются одни и те же работы, постольку должно быть справедливо равенство

dU + dUc = 0 (46)

Как видим, на сколько увеличивается энергия системы, на столько же уменьшается энергия окружающей среды. Иными словами, суммарное изменение энергии системы и среды равно нулю, то есть совокупная энергия системы и среды остается неизменной при любых процессах их взаимодействия.

Следовательно, соотношение (31) представляет собой не что иное, как уравнение закона сохранения энергии, или просто закона энергии. Это уравнение выведено для первого - начального - шага эволюционного развития явлений. Поэтому закон энергии заслуживает наименования первого начала ОТ. Из уравнения (31) в качестве частных случаев получаются все известные уравнения этого типа: уравнение первого закона термодинамики, уравнение Гиббса и т.д. (см. параграфы 19 гл. XV и 3 гл. XX).

Первое начало в наиболее общем виде выражает идею сохранения количества поведения вещества при любых взаимодействиях системы и окружающей среды. Оно справедливо для любого уровня мироздания и любой по сложности формы явления, то есть представляет собой предельно универсальный, абсолютный закон природы. В самой общей формулировке первое начало гласит: энергия (количество поведения вещества) Вселенной постоянна.

Впервые идея сохранения в самом общем виде как основной принцип развития мира зародилась еще в древности. Например, греческий философ Эмпедокл (450 лет до н.э.) учил, что ничего не может происходить из ничего и ничто не может быть уничтожено. В простейшей форме эта идея получила количественное выражение в законе рычага Архимеда. Согласно этому закону, сила обратно пропорциональна перемещению (золотое правило механики), что соответствует постоянству их произведения, то есть работы. Леонардо да Винчи распространил этот закон на вращательное движение (ворот). При этом постоянным оказывается произведение вращательного момента на угол поворота. В 1842 г. Р. Майер экспериментально открыл закон эквивалентности теплоты и работы и определил числовое значение механического эквивалента теплоты. В 1843 г. Д. Джоуль и независимо от него в 1844 г. Э.X. Ленц установили закон сохранения энергии применительно к термическим и электрическим явлениям (закон Джоуля-Ленца). Наконец, в 1847 г. Гельмгольц обобщил этот закон, распространив его на все формы движения материи. Термин «энергия» происходит от греческого слова energeia - деятельность.

Таким образом, закон сохранения энергии был установлен экспериментально и всегда считался чисто опытным законом, который невозможно получить теоретически. Однако парадигма ОТ позволяет по-новому взглянуть на мир, благодаря чему удается аналитически вывести уравнение, определяющее одно из важнейших свойств природы. В данном случае упомянутый выше метод эстафеты сопровождается передачей в ОТ самого замечательного закона естествознания.

Чтобы не возникало неясностей при практическом использовании уравнения (31), надо сделать несколько пояснений, касающихся математических символов d , входящих в это уравнение; о них еще не говорилось. Очевидно, что d перед U представляет собой полный дифференциал, то есть бесконечно малое изменение, бесконечно малую разность; в данном случае имеется в виду разность значений энергии между двумя состояниями системы. Аналогичный смысл полного дифференциала имеет знак d перед Е . Величина dE определяет количество перенесенного через контрольную поверхность вещества, в соответствии с этим изменяется и экстенсор системы.

В противоположность этому знак d перед Q не является дифференциалом, ибо работа dQ есть не изменение чего-либо, а просто бесконечно малая величина. Работа совершается в процессе переноса вещества через контрольную поверхность. В момент окончания процесса работа прекращается. О качественной и количественной стороне совершенной в закончившемся процессе работы можно судить только по косвенным признакам: по изменениям экстенсоров и энергии системы. Иными словами, работа не может содержаться в системе, поэтому она не может изменяться и, следовательно, dQ не есть дифференциал работы (не есть разность каких-то двух значений величины Q в системе).

Отмеченное различие в физическом смысле знаков d в уравнении (31) имеет принципиальное теоретическое и практическое значение. Например, оно делает невозможным одинаковый подход при определении величин Е , U и Q , что будет ясно из дальнейшего изложения.

Как видим, знак d перед Q имеет условный смысл. Но определенная условность содержится также и в знаках d перед энергией и экстенсорами. Ведь исходное уравнение (30) найдено для макроскопической системы, его дифференцирование связано с устремлением в пределе к нулю каждого экстенсора. При этом система как бы последовательно переходит из макромира в микромир, наномир и т.д., которые обладают неодинаковыми свойствами: континуальными (непрерывными), дискретными (квантовыми) и т.д. Поэтому во избежание неясностей и недоразумений надо четко представлять себе, что устремление dE к нулю происходит мысленно, условно, на том уровне свойств, которые рассматриваются в каждом данном конкретном случае, например на уровне макромира. Если фактические размеры системы приближаются к величинам отдельных порций (квантов) веществ, тогда скачкообразно начинают изменяться энергия и интенсиалы, а также коэффициенты А и К , которые появляются в третьем и пятом началах ОТ. Это обстоятельство необходимо учитывать. При этом следует различать дискретность экстенсоров и скачки в значениях величин U , P , А и К . Эти скачки применительно к каждой данной степени свободы уменьшаются с ростом числа квантов соответствующего вещества в системе. При решении подобных задач большую помощь могла бы оказать особая дискретная алгебра, сейчас делаются попытки ее разработки [ТРП, стр.104-106].




















Глава VIII. Второе начало ОТ.


1. Вывод уравнения.

Приступим теперь к систематическому анализу основного уравнения ОТ для ансамбля простых явлений. Это позволит обнаружить у некоторых из введенных характеристик многие важные свойства, вывести дополнительные уравнения и сформулировать новые законы. Такое углубление содержания основных понятий теории будет осуществляться в ходе всего последующего изложения.

Обратим внимание на одну чрезвычайно важную особенность процесса переноса вещества через контрольную поверхность. При этом будет выявлено второе замечательное свойство природы, которое позволяет существенно расширить наши представления о веществе и его мере Е . Для количественного определения этого свойства выведем соответствующее дифференциальное уравнение.

Предположим, что система 2 мысленно отделена от окружающей среды 1 оболочкой 3 толщиной dx (рис. 2, а). Свойства системы, оболочки и окружающей среды будем считать одинаковыми. Следствием этой одинаковости, как мы убедимся в дальнейшем, является то, что кривая распределения данного интенсиала ? не претерпевает изломов или скачков на поверхностях соприкосновения оболочки с системой и окружающей средой. Предположим далее, что из окружающей среды в оболочку входит определенное количество вещества, мерой которого служит экстенсор dEс . Одновременно из оболочки в систему выходит то же вещество в количестве dE . Опишем этот процесс с помощью первого начала, причем уравнение составим применительно к оболочке.

Для простоты будем считать, что система, оболочка и среда обладают одной сопряженной степенью свободы (n = 1). В этих условиях общее уравнение (31) первого начала приобретает вид

dU = PcdEc + PсиdE , (47)

где Рс - интенсиал поверхности окружающей среды; Рси - интенсиал поверхности системы.

Если теперь толщину dx устремить к нулю, то оболочка превратится в обычную контрольную поверхность. При этом изменение энергии оболочки

dU = 0 , (48)

так как геометрическая поверхность не способна накапливать или отдавать энергию, а интенсиалы Рс и Рси , станут равными интенсиалу Рп контрольной поверхности, то есть

Рс = Рси = Рп (49)

ибо величина Рп является общей для системы и среды (рис. 2, а и б). С помощью соотношений (48) и (49) выражение (47) преобразуется к виду

dE + dEc = 0 (50)

Это и есть искомое уравнение. Аналогичное равенство можно составить для любой сопряженной степени свободы системы и окружающей среды. Следовательно, уравнение (50) в общем случае справедливо для произвольного числа n [ТРП, стр.107-108].







2. Второе начало ОТ, или закон сохранения количества вещества.

Дифференциальное уравнение (50) напоминает соответствующее уравнение для закона сохранения энергии (46); оно говорит о том, что в процессе взаимодействия системы и окружающей среды количество вещества, вышедшего (или вошедшего) из окружающей среды через контрольную поверхность, равно количеству вещества, вошедшего (или вышедшего) в систему через ту же поверхность. Это значит, что общее количество вещества в системе и окружающей среде остается неизменным: на сколько уменьшается количество вещества в окружающей среде, на столько же увеличивается это количество в системе и наоборот.

Следовательно, равенство (50) выражает закон сохранения количества вещества, или, короче, закон вещества. Этот закон является вторым законом природы, относящимся к начальному шагу эволюции явлений, поэтому его можно назвать вторым началом ОТ.

Второе начало выражает идею сохранения количества вещества. Оно справедливо для любого вещества, включая все известные, перечисленные в параграфе 2 гл. VI, в том числе термическое (вермическое), и все неизвестные, которые, возможно, еще будут открыты, для любой по сложности системы и для любого уровня мироздания, поэтому представляет собой предельно универсальный, абсолютный закон природы. В самом общем виде второе начало может быть сформулировано следующим образом: количество вещества Вселенной постоянно. Увеличение этого количества в одном месте Вселенной всегда неизбежно сопровождается его уменьшением в другом и наоборот.

Второе начало ОТ в совокупности с первым определяет все то, что сохраняется в этом мире. Оказывается, что в общем случае сохранению подлежат только количества - вещества и его поведения (количества материи и движения). Все остальное способно и вынуждено при определенных для каждого конкретного случая условиях претерпевать соответствующие изменения. Этим самым уточняется и конкретизируется древняя идея сохранения, принадлежащая еще Эмпедоклу: свойством не происходить из ничего и не быть уничтоженными обладают лишь две категории: количество вещества и количество поведения последнего. Все остальное преходяще.

Второе начало является новым законом, впервые сформулированным в рамках ОТ; об этом говорится, например, в работах [17, с.11 и др.; 18, с.66, 246; 20, с.236; 21, с.48]. Ранее были известны лишь две частные формы этого начала. Речь идет о законах сохранения массы и электрического заряда. Первый из них применительно к химическим явлениям был экспериментально установлен М.В. Ломоносовым в 1756 г. и французским ученым Лавузье в 1770 г. и поэтому иногда именуется законом Ломоносова-Лавуазье. Масса и электрический заряд служат мерами количеств соответствующих веществ - кинетического и электрического; согласно второму началу ОТ, они подлежат обязательному сохранению при любых процессах взаимодействия системы и окружающей среды. Обязаны сохраняться также объем ? , являющийся мерой количества метрической (пространство) формы вещества (см. параграф 2 гл. XV), количество термического (вермического) вещества и количества всех остальных веществ [ТРП, стр.109-110].


3. Особенности применения второго начала ОТ.

Использование второго начала ОТ для изучения и расчета реальных объектов требует известной осмотрительности, ибо на практике часто приходится иметь дело с совокупностью контактирующих между собой разнородных тел, а также с эффектом экранирования, обсуждаемым в гл. XIII. В первом случае на контрольной поверхности наблюдается либо излом кривой распределения интенсиала (рис. 2, б), либо даже скачки последнего (рис. 2, в и г) - все зависит от конкретных свойств контактирующих тел. В этих условиях, чтобы применение закона вещества не вызывало затруднений, скачок интенсиала и все, что происходит в этом скачке, надо рассматривать как окружающую среду по отношению к системе. При этом интенсиалом, через который определяется работа, служит величина Рп , находящаяся на контрольной поверхности со стороны системы (рис. 2, виг).

Эффект экранирования связан с кажущимся появлением или исчезновением вещества, в частности электрического, теплового (вермического) и т.д. Это появление или исчезновение учитывается с помощью дополнительного слагаемого dEэ , вводимого в уравнение (50) второго начала ОТ. Имеем

dE + dEc ? dEэ = 0 (51)

Знак плюс перед последним слагаемым говорит о появлении в системе некоторого, дополнительного количества вещества, знак минус - об исчезновении этого количества.

Здесь очень важно еще раз подчеркнуть, что появление и исчезновение вещества в системе являются кажущимися; они связаны с экранированием одних веществ другими. В результате экранирования данное вещество начинает или пере тает участвовать в силовом поведении, а это участие обычно служит для нас тем признаком, по которому мы только и можем судить о наличии в системе того или иного вещества. Поэтому эффект экранирования ни в коем случае нельзя рассматривать как нарушение второго начала ОТ. Просто в процессе экранирования начинают или перестают проявляться силовые свойства определенного вещества, что отражается на величине совершаемой работы, которая входит в уравнение первого начала [ТРП, стр.110-111].


Глава IХ. Третье начало ОТ.


1. Вывод уравнения.

Следующей важнейшей характеристикой, входящей в основное уравнение ОТ для ансамбля простых явлений, служит интенсиал Р , который является мерой качества поведения вещества. Анализ этой меры позволяет установить третье интереснейшее свойство природы.

Согласно второй строчке общего уравнения (15), интенсиал, играющий роль меры N5 , есть однозначная функция экстенсора N , (см. формулу (27)). Следовательно, для системы с n степенями свободы можно написать

Pk = fk(E1 ; E2 ; ... ; En) (52)

Общее количество этих равенств равно n , то есть k =1,2, ... , n - по числу интенсиалов; вид функций fk нам неизвестен.

Уравнение (52) напоминает прежнее соотношение (30) для энергии, в частности у этих соотношений одинаковы аргументы. Однако между указанными уравнениями имеются и существенные различия. Одно из них заключается в том, что абсолютное значение энергии найти невозможно, поэтому нам пришлось ограничиться определением ее изменений. Применительно к интенсиалам таких затруднений не возникает: имеется реальная возможность определять как абсолютные значения интенсиалов, так и их изменения. Оба эти случая играют важную роль в теории и практических расчетах.

Разумеется, изменения интенсиалов находятся много проще, чем абсолютные их значения, поэтому начать придется с определения изменений. С этой целью, как и прежде, необходимо продифференцировать функцию (52) [17, с.28; 18, с.21; 21, с.52]. Однако с целью экономии места целесообразно рассмотреть только две степени свободы. Для n = 2 уравнение (52) выглядит следующим образом:

P1 = f1(E1 ; E2) ; (53)

P2 = f2(E1 ; E2) .

Дифференцирование этих равенств дает

dP1 = A11dE1 + A12dE2 (54)

dP2 = A21dE1 + A22dE2

где

A11 = (?P1/?E1)E2 = ?2U/?E21 ; A22 = (?P2/?E2)E1 = ?2U/?E22 ; (55)

A12 = (?P1/?E2)E1 = ?2U/(?E1?E2) ; A21 = (?P2/?E1)E2 = ?2U/(?E2?E1) ; (56)

Индекс внизу скобки указывает на экстенсор, который при дифференцировании сохраняется постоянным. В соотношениях (55) и (56) использованы значения интенсиалов, определяемых равенствами (37).

В случае гипотетической системы с одной внутренней степенью свободы (n = 1) имеем

P = f(E) (57)

dP = AdE (58)

где

A = dP/dE = d2U/dE2 (59)

Выведенные соотношения (54) и (58) представляют собой дифференциальные уравнения второго порядка, в них отсутствуют неизвестные функции f , f1 , f2 . Эти уравнения определяют изменения интенсиалов в функции изменений экстенсоров. В термодинамике экстенсоры и интенсиалы обычно принято именовать параметрами состояния системы. Следовательно, найденные уравнения тоже могут быть названы уравнениями состояния.

Однако из уравнений состояния видно, что в них роль независимых переменных - аргументов играют экстенсоры, а роль зависимых переменных - функций - интенсиалы. Поэтому истинными параметрами состояния правильно считать только экстенсоры, интенсиалы же являются функциями состояния. В соответствии с этим должна быть уточнена и вся остальная терминология.

Под свойствами системы я буду понимать различные ее характеристики, такие, как Е , U , Р , А и т.д. Состояние - это полная совокупность всевозможных свойств системы. Очевидно, что для однозначного определения состояния системы необходимо и достаточно задать значения только параметров состояния, или экстенсоров Е . Все остальные свойства являются функциями состояния. К числу функций состояния относятся величины U , Р , А и т.д. Всего существует бесчисленное множество различных функций состояния.

В противоположность этому работа Q не является ни параметром, ни функцией состояния, поскольку она не определяет какое-либо свойство системы. Работа представляет собой характеристику процесса взаимодействия системы и окружающей среды, поэтому она является функцией процесса [ТРП, стр.112-114].


2. Третье начало ОТ, или закон состояния.

Уравнения (54) и (58) связывают между собой параметры и функции состояния системы, поэтому они фактически выражают закон состояния. Уравнения выведены применительно к начальному шагу эволюции, следовательно, закон состояния заслуживает наименования третьего начала ОТ. В общем виде третье начало можно сформулировать следующим образом: изменение любого данного качества поведения пропорционально изменениям количеств всех веществ системы.

Из уравнений (52)-(59) явствует, что каждый интенсиал зависит от всех экстенсоров одновременно. Следовательно, третье начало ОТ с качественной и количественной стороны определяет всеобщую связь простых явлений - это третье замечательное свойство природы. Но, согласно правилу вхождения, эта связь должна также наблюдаться во всех более сложных явлениях (системах). Поэтому уравнения типа (54) в наиболее общей и универсальной форме выражают закон всеобщей связи явлений. Нетрудно сообразить, что всеобщность придается этой связи упомянутым выше универсальным взаимодействием.

В общем случае под системой можно понимать всю Вселенную. Однако с расстоянием, как будет ясно из дальнейшего, взаимное влияние веществ ослабевает. Это служит реальным основанием для рассмотрения ограниченной системы и для мысленного отделения ее от окружающей среды.

Третье начало - это новый всеобщий закон природы, впервые сформулированный в ОТ. Все известные уравнения состояния являются частными случаями общего уравнения состояния (52). Из последнего могут быть получены также многие новые частные уравнения, представляющие большой интерес |17, 18, 21].

При практическом использовании третьего начала необходимо не упускать из виду, что любое данное конкретное уравнение состояния справедливо только для определенного ансамбля. Если в ходе изменения состояния изменяются состав и структура ансамбля, то одновременно должно измениться и Уравнение состояния. При этом изменения могут коснуться не только характеристик А , но и вида самого уравнения. В частности, такая ситуация может возникнуть из-за появления у системы дополнительных степеней свободы, например, в результате эффекта экранирования, диссоциации вещества и т.п.

Разумеется, всякое изменение состояния всегда сопровождается изменением экстенсоров, а следовательно, и состава системы. Однако в данном случае речь идет о принципиальных изменениях состояния, требующих изменения вида уравнения. Не очень кардинальные изменения состояния отражаются лишь на характеристиках А , при совсем несущественных изменениях состояния величины А можно считать постоянными.

В уравнении (54) характеристики А играют роль коэффициентов пропорциональности, связывающих между собой интенсиалы и экстенсоры. Эти характеристики именуются коэффициентами состояния. Коэффициенты состояния типа А11 и А22 определяют влияние количества данного вещества на сопряженное с ним качество поведения системы, эти коэффициенты называются основными. Коэффициенты состояния типа ?12 и А21 определяют влияние количества данного вещества на несопряженные с ним качества поведения системы и именуются перекрестными, или коэффициентами взаимности [20, 21]. Очевидно, что именно коэффициенты взаимности характеризуют количественную сторону взаимного влияния - всеобщей связи - различных явлений природы.

В настоящее время описано большое множество эффектов взаимного влияния разнородных физических явлений. Вспомним органическую связь, существующую между термической и механической степенями свободы в газе. Хорошо известны также термоэлектрические, термомагнитные, электромагнитные, пьезоэлектрические и многие другие эффекты. Благодаря большим значениям коэффициентов взаимности все эти эффекты легко бросались в глаза и были обнаружены в опытах задолго до того, как появилось третье начало ОТ. Однако без третьего начала было практически невозможно понять истинную физическую природу наблюдаемых эффектов. Теперь должно быть ясно, что все эффекты взаимного влияния суть не что иное, как результат проявления всеобщей связи явлений, определяемой третьим началом. Кстати, известные эффекты взаимного влияния хорошо подтверждают справедливость третьего начала. Но еще лучшие подтверждения можно найти в тех прогнозах, которые непосредственно вытекают из третьего начала. Третье начало позволяет предпринять систематический поиск новых эффектов, которые не были известны ранее и которые характеризуются, быть может, не столь броскими значениями коэффициентов взаимности. Некоторые из таких эффектов описаны в работах [17, 18, 21] [ТРП, стр.114-116].


3. Емкость системы по отношению к веществу.

В уравнении третьего начала ОТ особого внимания заслуживает характеристика А. Чтобы лучше разобраться в свойствах коэффициента состояния А , введем новую величину К , обратную этому коэффициенту. С учетом формулы (59) имеем

К = 1/А = dЕ/Р ; А = 1/К . (60)

Отсюда видно, что величина К численно равна количеству вещества, которое изменяет интенсиал системы на единицу. Такого рода величины нам хорошо известны, они именуются емкостями системы по отношению к веществу. Например, количество подведенного электричества d? , изменение электрического потенциала системы d? и ее электроемкость ?? связаны между собой следующим известным соотношением, вытекающим из (60) в качестве частного случая:

?? = Ф(d?/d?) (61)

Согласно формулам (60) и (61), чем выше емкость К , тем больше вещества надо подвести к системе, чтобы ее интенсиал увеличился на единицу.

Наличие емкости К предполагает существование у системы способности как-то заполняться веществом, поглощать его. При этом уже имеющиеся в системе запасы вещества могут быть охарактеризованы таким понятием, как содержание. Очевидно, что понятия емкости и содержания дополняют друг друга, они органически связаны между собой.

Необходимо отметить, что специфичность и неповторимость каждого простого явления неизбежно накладывают на введенное понятие емкости свой характерный отпечаток, без знания которого иногда можно прийти к неверным выводам. Из-за указанной специфики, например, слишком упрощенным было бы представление, что система - это как бы капиллярно-пористое тело, пустоты которого заполняются подводимым веществом. В частности, такая трактовка не согласуется с данным в ОТ определением метрического явления. Однако подобное грубо схематическое, условное представление все же может оказаться полезным для лучшего понимания вопроса.

Характерным примером влияния специфики может служить известное выражение (61) для электроемкости, которое в определенных условиях приобретает отличное от традиционного толкование. При этом выражение (61) приходится относить не к системе в целом, а к каждому ее атому; учитывать тот факт, что заполняющее систему вещество по-разному влияет на ее состояние, когда оно двигается или остановилось, и т.п. [12, с.198; 17, с.137; 18, с.280].

Благодаря введению характеристики К коэффициент состояния А предстает перед нами в новом свете: он является величиной, обратной емкости системы по отношению к веществу определенного сорта. В свою очередь, благодаря коэффициенту А расширяются наши представления и о емкости. Теперь мы уже должны различать емкости основные типа

К11 = 1/А11 ; К22 = 1/А22 (62)

и перекрестные (взаимности) типа

К12 = 1/А12 ; К21 = 1/А21 (63)

При определении перечисленных емкостей надо помнить, что математические производные берутся при постоянных значениях всех экстенсоров, кроме данного. Перекрестные емкости ответственны за взаимное влияние различных степеней свободы системы, они суть следствия универсальных взаимодействий [ТРП, стр.116-117].


4. Другие виды емкости системы.

Рассмотренная здесь трактовка понятия емкости представляется наиболее простой, естественной и строгой. Однако на практике в термодинамике обычно используются две другие емкости - по отношению к энергии и работе, которые содержат много условностей. Например, емкость по отношению к энергии

C = dU/dP (64)

откуда

dU = CdP Дж,

условна в том смысле, что система и окружающая среда в процессе взаимодействия обмениваются между собой не энергией, а веществом. Энергия-мера, как и интенсиал, способна лишь изменяться в этом процессе.

В термодинамике выражение (64) обычно употребляется в следующем виде:

C = dU/dТ Дж/К, (65)

где

dU = CdТ Дж, (66)

В этих равенствах изменение энергии сопоставляется с изменением температуры, а величина С именуется теплоемкостью системы.

Понятие емкости по отношению к работе, то есть

C = dQ/dP (67)

откуда

dQ = CdP Дж,

носит еще более условный характер, чем понятие емкости по отношению к энергии. Это объясняется тем, что работа, как и энергия, не является субстратом обмена между системой и окружающей средой. Кроме того, понятие емкости естественно предполагает наличие у системы соответствующих запасов работы. Но применительно к работе бессмысленно говорить о запасах, то есть о содержании: работа не способна содержаться, она может только совершаться в процессе переноса определенного количества вещества через контрольную поверхность, с окончанием этого процесса прекращается и работа. На практике емкость (67) обычно применяется только для термических явлений. При этом роль термической работы играет так называемое количество тепла dQQ . В соответствии с этим

C = dQQ/dТ Дж/К (68)

dQQ = CdТ Дж, (69)

Величина С называется теплоемкостью. В термодинамике имеет хождение также термин «теплосодержание», которым определяются либо запасы энергии в теле, либо энтальпия [ТРП, стр.117-118].


5. Специфическая мера качества, или структуры, вещества.

Вникнув достаточно глубоко в содержание понятия емкости, мы можем теперь на новой основе вернуться к обсуждению коэффициента состояния. Из предыдущего ясно, что емкость характеризует способность системы заполняться посторонним веществом, или, условно говоря, ее некие пустотные, полостные свойства. В качестве упомянутого выше грубого примера можно сослаться на капиллярно-пористое тело, объем пор которого, или пористость, определяет емкость тела, его способность заполняться, например, влагой.

Следовательно, коэффициент состояния, обратный емкости, должен характеризовать прямо противоположные свойства системы - способность последней препятствовать проникновению в нее постороннего вещества, то есть фактическую заполненность собственным веществом, распространенность, или полноту, структуры этого вещества. В примере с капиллярно-пористым телом коэффициент состояния допустимо сопоставлять с объемом вещества самого тела, этот объем не может быть заполнен влагой. Чем больше объем собственного вещества, выше плотность упаковки структуры тела, тем меньше его емкость и больше коэффициент состояния.

Рассмотренные соображения позволяют довольно четко представить себе физический смысл коэффициента состояния и найти ему надлежащее место в системе взглядов ОТ. Очевидно, что коэффициент состояния есть не что иное, как мера качества, структуры вещества ансамбля (системы). Поэтому коэффициент состояния можно также назвать коэффициентом структуры, или просто структурой. И, следовательно, коэффициент структуры играет роль характеристики N2 в уравнении (15) применительно к ансамблю простых явлений (26), то есть

N2 = А (70)

С каждым специфическим простым веществом сопряжена своя определенная совокупность основного и перекрестных коэффициентов структуры (см, формулы (55) и (56)). Следовательно, коэффициент структуры представляет собой специфическую меру качества вещества. Эта специфичность выражается в том, что система с l внутренними степенями свободы, состоящая из l простых веществ, имеет l2 самостоятельных структурных характеристик, из которых l основных, а остальные перекрестные (коэффициенты взаимного влияния, или взаимности). Каждой их этих структур соответствует своя специфическая емкость.

На этом круг главных количественных мер ОТ применительно к ансамблю простых явлений замыкается: найдена последняя характеристика, она определяет структуру простого вещества. Согласно уравнениям (14), (15) и (26), всего таких мер четыре; все они, кроме энергии, специфические, вот эти меры:

N1 = Е ; N2 = A ; N4 = U ; N5 = Р (71)

Следовательно, система с l внутренними степенями свободы определяется l экстенсорами Е , причем функциями экстенсоров являются l 2 структурных характеристик А , одна универсальная мера U - энергия и l интенсиалов Р . Ниже, однако, будет показано, что коэффициент А далеко не исчерпывает всех особенностей структуры, поэтому главная мера N2 будет дополнена еще другой, равноправной с А характеристикой.

Таким образом, физический смысл мер, входящих в уравнение ансамбля (26), более или менее прояснился: вместо неравенств (26) мы пришли к равенствам (71). Однако прежде чем продолжить анализ основного уравнения (31) с целью вывода оставшихся четырех начал ОТ и выяснения многих других важных свойств перечисленных характеристик, целесообразно рассмотреть соотношения, с помощью которых можно находить величины А [ТРП, стр.118-120].


6. Закон качества, или структуры, вещества.

Воспользуемся первой строчкой уравнений (15) и выразим, с учетом равенств (27) и (70), основные и перекрестные коэффициенты А в виде соответствующих функций f от экстенсоров Е . Имеем

А11 = f11(E1 ; E2)

А12 = f12(E1 ; E2) (72)

А21 = f21(E1 ; E2)

А22 = f22(E1 ; E2)

Для простоты мы ограничились только двумя степенями свободы (n = 2); этого вполне достаточно, чтобы отразить все особенности взаимного влияния различных явлений.

Не желая иметь дело с абсолютными значениями величин и неизвестными функциями f , мы, как и прежде, воспользуемся формальным математическим приемом дифференцирования функций нескольких переменных. Находим

dA11 = B111dE1 + B112dE2

dA12 = B121dE1 + B122dE2 (73)

dA21 = B211dE1 + B212dE2

dA22 = B221dE1 + B222dE2

где

В111 = (?А11/?E1)E2 = ?2Р1/?E21 = ?3U/?E31 ;

В112 = (?А11/?E2)E1 = ?2Р1/(?E1?E2) = ?3U/(?E21?E2) ;

В121 = (?А12/?E1)E2 = ?2Р1/(?E2?E1) = ?3U/(?E21?E2) ;

В122 = (?А12/?E2)E1 = ?2Р1/(?E22) = ?3U/(?E1?E22) ; (74)

В211 = (?А21/?E1)E2 = ?2Р2/(?E21) = ?3U/(?E2?E21) ;

В212 = (?А21/?E2)E1 = ?2Р2/(?E1? E2) = ?3U/(?E22?E1) ;

В221 = (?А22/?E1)E2 = ?2Р2/(?E2? E1) = ?3U/(?E22?E1) ;

В222 = (?А22/?E2)E1 = ?2Р2/?E22 = ?3U/?E32

В гипотетических условиях системы с одной степенью свободы (n = 1) имеем

А = f(E) (75)

dА = ВdE (76)

где В = dА/dE = d2Р/dE2 = d3U/dE3 (77)

В формулах (74) и (77) производные от структур А определены через производные от интенсиалов ? с помощью равенств (55) и (56), а производные от интенсиалов - через производные от энергии с помощью равенств (37). Из формул (37), (55), (56) и (74) видно, какие экстенсоры при дифференцировании остаются постоянными.

Выведенные соотношения (73) и (76) представляют собой дифференциальные уравнения третьего порядка. Они определяют изменения структур А в зависимости от изменений экстенсоров Е .

В общем случае при n степенях свободы системы изменение любой данной структуры А складывается из n величин, каждая из которых пропорциональна изменению соответствующего экстенсора ? ; коэффициентами пропорциональности служат структуры В . Этот результат составляет содержание закона качества, или структуры, вещества.


Таким образом, мы определили специфические меры качества, или структуры, вещества А , играющие в уравнении состояния (54) роль коэффициентов пропорциональности. Конкретные зависимости величин А от экстенсоров (см. уравнение (72)) можно наблюдать на примере рис. 3, а и б, где приведены мольные, отмеченные индексом ?, значения коэффициентов взаимности А12? (сплошные линии 1) и А21? (штриховые линии 2) в функции объема V? (при S? = 126 кДж/кмоль·К.) и энтропии S? (при V? = 18 м3/кмоль); коэффициенты найдены по известным справочным данным для водяного пара [17, с. 132]; соответствующие значения основных структур в функции тех же экстенсоров приведены в табл. 2 работы [17, с.126]. В рассматриваемом примере роль экстенсора для термических явлений играет энтропия S .

Из дальнейшего изложения станет ясно, что на процесс структурообразования системы решающее влияние оказывают интенсиалы, входящие в уравнение состояния (54) в виде разностей и производных первого порядка (см. соотношения (55) и (56)). Поэтому закон, позволяющий определять неизвестные коэффициенты структуры А уравнения состояния с помощью равенств (73) и (76), можно также назвать законом структуры первого порядка [ТРП, стр.120-122].

7. Законы структуры второго и более высоких порядков.

Коэффициенты пропорциональности В , входящие в уравнения (73) и (76), тоже выражаются через интенсиалы, но уже в виде производных второго порядка (см. соотношения (74) и (77)). Поэтому они представляют собой коэффициенты структуры второго порядка, или просто структуры второго порядка, ибо связаны с силовым поведением вещества и, следовательно, характеризуют соответствующие более тонкие особенности процесса структурообразования, причем структуры В111 и В222 - основные, а остальные (В112 , В121 и т. д.) - перекрестные, или взаимности.

Для определения неизвестных величин В можно воспользоваться третьей строчкой основного уравнения (15). При этом структуры В играют роль свойств Xi , то есть

Xi = В (78)

Из соотношений (15), (27) и (78) получаем следующую систему уравнений, охватывающих все восемь коэффициентов В , входящих в равенства (74) (для простоты выписываем

только первую строчку этой системы):

В111 = f111(Е1 ; Е2) (79)

...

Продифференцировав уравнения (79), находим

dB111 = C1111dE1 + C1112dE2 (80)

...

где

С1111 = (?В111/?Е1)Е2 = ?2А11/?Е21 = ?3Р1/?Е31 = ?4U/?Е4 (81)

...

В частном случае

В = f(Е) (82)

dВ = СdЕ (83)

где

С = dВ/dE = d2А/dE2 = d3Р/dE3 = d4U/dE4 (84)

Дифференциальные уравнения четвертого порядка (80) и (83) определяют коэффициенты структуры второго порядка В через более тонкие свойства С - основные и перекрестные, - являющиеся коэффициентами пропорциональности при экстенсорах. Из этих уравнений видно, что изменение любого данного коэффициента структуры второго порядка складывается из n величин, каждая из которых равна произведению соответствующего коэффициента структуры третьего порядка С на изменение сопряженного с ним экстенсора.

Найденный результат составляет содержание закона структуры второго порядка. С его помощью находятся структуры В , входящие в уравнения (73) и (76) закона структуры первого порядка (закона качества, или структуры, вещества).

Эту цепочку законов структуры различных порядков можно было бы продолжить, выразив коэффициенты структуры третьего порядка С через экстенсоры по типу равенств (78) и (79), при этом появятся коэффициенты структуры четвертого порядка D и т.д. [18, с. 20, 73; 21, с. 52]. Каждый последующий закон характеризует все более тонкие особенности процесса структурообразования, причем число этих особенностей непрерывно возрастает, особенно сильно сказывается состав системы, в частности величина n . Например, при n = 1 мы имеем по одному коэффициенту А , В и С ; при n = 2 количество этих коэффициентов соответственно равно 4, 8 и 16. Среди всех этих законов наиболее важное значение имеет первый, соответствующий третьему началу ОТ: он связывает две главные характеристики вещества и его поведения – интенсиал ? (мера качества поведения) и структуру А (мера качества вещества).

На практике роль отдельных свойств А, В, С, D и т. д. определяется тем, насколько заметно они изменяются с экстенсорами. Например, если в первом приближении можно считать, что структура А (или емкость К) есть величина постоянная, тогда коэффициенты структуры В , С , D и т.д. обращаются в нуль. Если точность первого приближения недостаточна, то во втором приближении для определения теперь уже переменной структуры А (или емкости К) используются уравнения (73); при этом коэффициенты структуры В считаются постоянными, а величины С и т.д. равны нулю. В третьем приближении нужно пользоваться уравнениями типа (80) при постоянных значениях коэффициентов С и нулевых D и т.д. [ТРП, стр.123-124].



Глава Х. Четвертое начало ОТ.


1. Вывод уравнения.

Дополнительный анализ третьего начала позволяет установить новые интересные особенности взаимного влияния различных степеней свободы системы. Эти особенности легко обнаруживаются путем сопоставления правых частей равенств (56).

Как известно из математики, величина смешанной производной типа (56) не зависит от порядка переменных, например Е1 и Е2 , по которым берется производная. Поэтому из соотношений (56) непосредственно вытекает следующее равенство:

(?P1/?E2)E1 = (?P2/?E1)E2 (85)

или

А12 = А21 (86)

Это равенство представляет собой дифференциальное уравнение второго порядка в частных производных. Оно определяет симметричный характер взаимного влияния любой пары степеней свободы системы. Поэтому равенства указанного типа называются уравнениями, или соотношениями, взаимности.

Соотношения типа (85) имеют важное теоретическое и практическое значение. В частности, с их помощью существенно сокращается общее число коэффициентов состояния, которые необходимо определять при изучении свойств любой данной системы [ТРП, стр.125].


2. Четвертое начало ОТ, или закон взаимности (симметрии структуры).

Уравнения (54) и (86) определяют количественную сторону взаимного влияния различных явлений ансамбля. Согласно этим уравнениям, количество данного вещества влияет на качество поведения любого другого вещества точно так же, как количество этого другого вещества влияет на качество поведения данного. Этот результат составляет содержание закона взаимности.

Закон взаимности относится к начальному этапу эволюции, поэтому его можно назвать также четвертым началом ОТ. Закон взаимности выражает четвертое фундаментальное свойство природы. В соответствии с принципом вхождения этому закону обязано подчиняться любое явление, находящееся на произвольном уровне эволюционного развития.

Справедливость четвертого начала ОТ легко может быть проверена экспериментально. Для этого достаточно воспользоваться многочисленными опытными данными, имеющимися в справочной литературе применительно к самым различным веществам. Например, для газа, который рассматривается как термомеханическая система, соотношение взаимности (86) приобретает вид

- А12 = А21 (87)

где

А12 = (?Т/?V)s К/м3

А21 = (?р/?S)v Н?К/(Дж?м2).

Здесь роль экстенсора для термических явлений играет энтропия S ; знак минус говорит о том, что при положительном приращении объема V и уменьшении давления р ; (при расширении газа) приращение температуры Т оказывается отрицательным, то есть газ охлаждается; это делает коэффициент А12 отрицательным.

На рис. 3, а и б были приведены конкретные значения коэффициентов А12 и А12 для водяного пара. Из рисунка видно, что коэффициенты взаимности равны друг другу с удовлетворительной степенью точности. Имеющиеся расхождения не выходят за пределы ошибок опыта и графических построений. Это прямо подтверждает справедливость закона взаимности и косвенно - закона состояния.

Симметрия во взаимном влиянии различных явлений, определяемая соотношениями типа (86), может быть наглядно проиллюстрирована на простейшем примере системы с двумя степенями свободы (n = 2). Из уравнений (54) видно, что коэффициент взаимности А12 определяет влияние второго экстенсора Е2 на первый интенсиал Р1 , а коэффициент А21 - влияние первого экстенсора Е1 на второй интенсиал Р2 . Согласно формулам (56), величина А12 численно равна изменению первого интенсиала при изменении второго экстенсора на единицу, величина А21 - изменению второго интенсиала при изменении первого экстенсора на единицу. Соответствующие изменения первого и второго интенсиалов между собой равны. Это прямо следует из равенства (85), если в нем изменения экстенсоров, стоящие в знаменателе, положить равными единице. Например, в случае газа изменение объема на единицу вызывает изменение температуры на такую же величину, на какую изменяется давление при изменении энтропии на единицу.

Таким образом, мы вплотную подошли к интереснейшему вопросу, который непосредственно вытекает из четвертого начала ОТ и касается, в частности, проблемы симметрии в природе. Эта проблема издревле привлекала к себе пристальное внимание ученых. Теперь появилась возможность вникнуть в детали физического механизма этого удивительного и всеохватывающего явления.

Коэффициенты взаимности А12 и А21 фактически определяют симметричный характер силового поведения вещества, ибо мы находимся на эволюционном уровне простейшего силового взаимодействия. Поэтому первоначальное формирование ансамбля из соответствующих квантов неизбежно должно сопровождаться возникновением симметричных вещественных структур. Следовательно, коэффициенты взаимности можно назвать также коэффициентами симметрии структуры, или просто коэффициентами симметрии.

Обсуждаемая симметрия непосредственно определяется производными первого порядка от интенсиалов (см. уравнение (85)), поэтому заслуживает наименования симметрии первого порядка; она наиболее ярко выражена в ансамбле. В соответствии с этим величины А12 и А21 , суть коэффициенты симметрии первого порядка, а закон взаимности - четвертое начало ОТ - можно назвать также законом симметрии структуры первого порядка, или просто законом симметрии первого порядка.

Обращает на себя внимание разнообразие свойств, которыми одновременно обладают коэффициенты А , и определяющих эти свойства терминов. Все это разнообразие есть следствие той важной роли, которую играют в природе третье и четвертое начала ОТ, а также универсальное взаимодействие. Более тонкие виды симметрии (более высоких порядков) выявляются в ходе дальнейшей расшифровки смысла коэффициентов А методами ОТ [ТРП, стр.125-127].


3. Закон симметрии структуры второго порядка.

В уравнениях (73) количественная сторона влияния любого данного экстенсора на любую из структур А определяется коэффициентами пропорциональности В . Среди них особый интерес представляют перекрестные коэффициенты, так как именно они характеризуют механизм образования тонкой симметричной структуры второго порядка.

Набор перекрестных коэффициентов в законе структуры (73) оказывается значительно более обширным, чем в третьем начале (54). В законе (73) перекрестные коэффициенты определяют как влияние данного экстенсора на несопряженную с ним основную структуру (В112 и ?221), так и совместное влияние обоих экстенсоров на перекрестные структуры (В121 , B122 , B211 и В212).

Сопоставление правых частей формул (74) позволяет прийти к интереснейшему заключению о том, что в случае закона (73) тоже имеется определенная симметрия во взаимном силовом влиянии веществ и их структур. Эта симметрия в условиях, когда ? = 2, может быть выражена с помощью следующих соотношений взаимности, вытекающих из уравнений (74):

В112 = В121 = В211 ; B122 = B212 = B221 (88)

С увеличением числа степеней свободы n количество таких соотношений резко возрастает.

Из равенств (73) и (88) видно, что второе вещество Е2 влияет через коэффициент В112 на первую основную структуру А11 в количественном отношении точно так же, как первое вещество ?1 влияет через коэффициенты В121 и В211 на обе перекрестные структуры А12 и А21 . В свою очередь, влияние первого вещества ?1 на вторую основную структуру А22 в точности равно влиянию второго вещества Е2 на каждую из перекрестных структур А12 и А21 , причем количественная сторона этого влияния определяется перекрестными коэффициентами B221 , B122 и B212 .

Результат (88) составляет содержание закона симметрии структуры второго порядка. В данном случае действует прежний механизм силового взаимодействия между квантами вещества в ансамбле, но при этом проявляются более тонкие, чем прежде, особенности структурной симметрии. Перекрестные величины В являются коэффициентами симметрии второго порядка [ТРП, стр.127-128].


4. Законы симметрии структуры третьего и более высоких порядков.

Равенства (81), определяющие коэффициенты структуры третьего порядка С , которые входят в уравнения закона структуры второго порядка (80), позволяют найти уравнения закона симметрии структуры третьего порядка. Для этого надо сопоставить правые части развернутых равенств (81). Имеем

С1112 = С1121 = С1211 = С2111 ;

С1122 = С1212 = С1221 = С2112 = С2121 = С2211 ; (89)

С1222 = С2122 = С2212 = С2221 .

Из соотношений (80) и (89) следует, что общее число коэффициентов структуры С равно 16, из них коэффициентов симметрии 14.

Если пойти по этому пути дальше и выразить коэффициенты структуры третьего порядка С через коэффициенты структуры четвертого порядка D , то последних будет 32, из них коэффициентов симметрии 30 и т.д. С увеличением тонкости структуры и числа степеней свободы системы n количество признаков симметрии возрастает многократно. Продолжить эту цепочку законов симметрии структуры не составляет большого труда [18, с.23, 184; 21, с.60].

Таким образом, проясняется физический механизм формирования симметричных структур. Этот механизм проявляется уже на первом этапе эволюционного перехода явлений от парена (абсолютного вакуума) к простым явлениям и распространяется далее в соответствии с правилом вхождения на все без исключения более сложные формы явлений природы. Причина механизма заключается в действии третьего и четвертого начал ОТ, что позволяет по-новому взглянуть и на сами эти начала.

Теперь должно быть ясно, что третье начало не только характеризует всеобщую связь явлений, обусловленную наличием универсального взаимодействия, но одновременно определяет также важнейшие особенности этой связи, которые заключаются в симметричном способе воздействия одних веществ на другие. Симметричное силовое взаимодействие имеет своим следствием обязательный симметричный характер формирования структуры любого ансамбля. Количественная сторона определенных наиболее заметных сторон этой симметрии зафиксирована в четвертом начале ОТ и вытекающей из него цепочке законов симметрии. При этом третье начало играет роль силового дирижера, управляющего симметрично направленным процессом объединения порций разнородных веществ в ансамбли. Четвертое начало определяет всевозможные подробности симметрии на различных по тонкости уровнях ансамблей. Завершающие мазки в этой калейдоскопически разнообразной картине будут нанесены при рассмотрении пятого и шестого начал ОТ.

В течение последних столетий многие ученые с различных позиций подходили к проблеме симметрии и внесли в ее решение весомый вклад. Вспомним, например, работы таких классиков естествознания, как В.И. Вернадский, Л. Пастер, А. Пуанкаре и др. Термодинамика позволяет заложить под эту проблему наиболее общий фундамент и на этой основе вывести необозримое множество новых теоретических следствий и прогнозов, отражающих взаимное влияние различных степеней свободы системы и поддающихся непосредственной экспериментальной проверке.

Обычно поражает воображение и радует глаз бесконечно разнообразная и красочная картина симметрии структуры у кристаллов. Здесь может быть получено особенно много новых полезных для практики результатов, в частности, при искусственном выращивании кристаллов, при управлении процессами формирования структуры металлургических отливок и слитков и т.д. Симметричный характер процессов кристаллизации объясняется следующим образом.

Ансамбль состоит из множества порций разнородных простых форм вещества (см. формулу (27)). Все эти порции связаны между собой универсальным и специфическими взаимодействиями, причем последние значительно интенсивнее первого. На микроуровне отдельные порции вещества создают вблизи себя очаги специфических силовых взаимодействий, так как в этих очагах наблюдаются резкие изменения интенсиалов в соответствии с уравнениями состояния типа (54). Поэтому в процессе кристаллизации присоединение квантов, а также ориентация и объединение микроансамблей в более сложные системы происходят избирательно именно по этим очагам. В результате образуются сложные симметричные системы. Вид симметрии этих систем определяется цепочками уравнений законов структуры и симметрии структуры, согласно которым интенсивность локальных специфических взаимодействий изменяется симметрично под действием любой из подведенных порций вещества.

Не меньший интерес представляет симметрия, наблюдаемая в живых организмах. Этот вопрос тоже может быть успешно обсужден в рамках изложенных соображений. Суть дела сводится к тому, что строение любого живого организма всегда бывает запрограммировано на уровне микромира - в генах. Но атомные и молекулярные структуры, ответственные за программу развития организма, формируются по изложенным выше законам симметрии. Следовательно, симметрия организма тоже есть результат действия третьего и четвертого начал.

Из сказанного должно быть ясно, что симметрия окружающего нас органического и неорганического мира обязана своим происхождением третьему и четвертому началам, которые, в свою очередь, суть непосредственные следствия наличия универсального взаимодействия. Наблюдаемые случаи отклонения от строгой симметрии объясняются различными привходящими обстоятельствами: изменениями внутренних и внешних условий в процессе образования микроансамблей, включая действие всевозможных полей; наличием посторонних примесей вещества в этих микроансамблях и т.д. [ТРП, стр.128-131].


5. Обобщенный закон взаимодействия, или обобщенный третий закон Ньютона.

Детальный разбор третьего и четвертого начал ОТ позволил по-новому взглянуть на проблему симметрии и тем самым заметно расширить наше понимание соотношений взаимности. Физическое содержание этих соотношений еще лучше проясняется, если равенство (85) переписать в виде

?Р1?Е1 = ?Р2?Е2 Дж, (90)

где

?Р1?Е1 = dQ1 ; ?Р2?Е2 = dQ2 (91)

При такой записи надо не забывать, что изменение каждого данного экстенсора рассматривается в условиях постоянства всех остальных.

Из выражений (90) и (91) видно, что величины dQ1 и dQ2 представляют собой некие работы, и это вполне естественно, ибо речь идет о силовом механизме взаимного влияния различных степеней свободы ансамбля. Именно поэтому симметричное изменение состояния системы требует равенства между собой работ, которые совершаются в ходе реализации взаимодействий.

Взаимодействие происходит между подводимым веществом и неподвижным ансамблем системы. Отмеченная закономерность (90) наблюдается в момент присоединения (или отрыва) вещества к ансамблю на завершающем (начальном) участке пути вещества. Так что фактически все осуществляется вблизи неподвижного ансамбля и сопровождается изменением состояния системы.

После прекращения этого процесса утрачивают смысл такие понятия, как работа, сила и перемещение. Результатом совершенной работы является энергия (см. уравнение (31)), которая представляет собой количественную меру связи порций веществ в ансамбле. Следовательно, равенство работ (90) можно рассматривать как равенство энергий связи первого вещества со вторым и второго с первым, что вполне закономерно.

Сделанный вывод имеет огромное теоретическое и практическое значение. Во-первых, он позволяет понять глубинный смысл соотношений взаимности. Во-вторых, он говорит о том, что при взаимодействии двух веществ (ансамблей, тел) должно соблюдаться не равенство сил действия и противодействия, как того требует известный третий закон механики Ньютона, а равенство соответствующих работ или энергий связи. Этот чрезвычайно важный результат, который будет иметь необозримое количество всевозможных последствий для науки и техники, мы будем именовать обобщенным законом взаимодействия, или обобщенным третьим законом Ньютона.

Обобщенный третий закон Ньютона, утверждая равенство работ взаимодействия (энергий связи), ни слова не говорит о действующих силах и пройденных путях. Это можно трактовать и так, что для процессов взаимодействия важны только работы и энергии и не существенны силы и пути. Такое понимание в принципе не исключает возможности несоблюдения равенства сил действия и противодействия, если окажутся неодинаковыми пройденные пути, которые пребывают в прямой зависимости, например, от хода реального физического времени на взаимодействующих телах. Таким образом, особую ценность полученного результата надо видеть в том, что он в принципе позволяет нарушать третий закон механики Ньютона. Все эти вопросы более подробно и наглядно излагаются в гл. XXI, где находятся необходимые и достаточные условия для такого нарушения - посредством управления ходом времени.

Из обобщенного третьего закона Ньютона также следует, что порции веществ (ансамбли, тела) удерживаются друг подле друга не силами, ибо сила есть мера качества поведения тел в процессе их сближения или отдаления (то есть в процессе совершения работы) и после прекращения этого процесса в телах не остается, а энергией (соответствующее понятие энергии связи в свое время было выработано в физике). Что касается собственно третьего закона Ньютона, то он справедлив в том случае, когда при равенстве работ оказываются равными между собой также пройденные пути. Вместе с тем равенство по абсолютной величине сил действия и противодействия еще не может служить основанием для утверждения, что тела удерживают друг друга силами (такую терминологию нередко можно встретить в механике) [ТРП, стр.131-132].

6. Нелинейность дифференциальных уравнений ОТ.

В законах структуры и ее симметрии обращает на себя внимание удивительно симметричная, простая и удобная форма записи соответствующих дифференциальных уравнений. По-видимому, только такая форма и способна наиболее эффективно отразить все многообразие существующих в природе явлений структурной симметрии. Однако симметричная форма основных уравнений может навести на неверную мысль о том, что в них каждое данное свойство (Р , А , В , С , D и т.д.) линейно (в первой степени) зависит от всех экстенсоров и свойств более высоких порядков, а сами уравнения являются линейными дифференциальными уравнениями.

Действительно, надо отдавать себе ясный отчет в том, что эта линейность является кажущейся. На самом деле в общем случае обсуждаемые дифференциальные уравнения в частных производных с математической точки зрения далеко не линейны из-за тех связей, которые имеются между упомянутыми свойствами и экстенсорами. Чтобы в этом убедиться, достаточно подставить в уравнения (54) значения свойств А , В и С из выражений (55), (56), (73), (74), (80) и (81) и принять во внимание, что приращения аргументов (экстенсоров) в действительности зависят от приращений интенсиалов. Это последнее обстоятельство выясняется при выводе уравнения пятого начала ОТ. В результате множители при производных от неизвестных функций ? содержат сами эти неизвестные функции и уравнения оказываются нелинейными.

Следовательно, симметричная (по виду линейная) форма записи уравнений еще не означает линейности самих уравнений. Благодаря существенной нелинейности дифференциальных уравнений математический аппарат ОТ приобретает исключительные гибкость и универсальность [21, с.55]. Это замечание в равной мере относится к уравнениям всех семи начал ОТ.

Принятая симметричная форма записи уравнений не случайна. Она потребовалась для того, чтобы специально выделить в уравнениях те их части, то есть те свойства А , В , С , D и т.д., которые подчиняются законам симметрии структуры типа (86), (88), (89) и т.д. При другой форме записи было бы значительно труднее установить эти законы [ТРП, стр.133].


7. Идеальная система.

Нелинейные дифференциальные уравнения ОТ становятся линейными лишь в отдельных частных случаях, например когда свойства А в уравнениях типа (54) оказываются величинами постоянными, при этом структуры В , С , D и т.д. обращаются в нуль. Систему, обладающую такими свойствами, будем называть идеальной.

Существует много различных определений понятия идеальной системы, из них логически оправданными можно считать два. Первое предполагает отсутствие в системе трения. Это понимание сыграло в науке свою положительную роль. Однако такого рода идеализация большого интереса для нас не представляет, ибо в ОТ сформулирован всеобщий закон диссипации - седьмое начало, поэтому пренебречь трением значит пренебречь одним из важнейших законов природы, то есть вместе с водой выплеснуть из ванны и ребенка.

Второе определение к идеальным относит системы, у которых физические коэффициенты типа А , К и т.д. не зависят от экстенсоров и, следовательно, являются величинами постоянными. Именно такое определение мы будем использовать в качестве основного. Преимущество его заключается в том, что математический аппарат исследования предельно упрощается, вместе с тем все главные свойства системы, характеризуемые началами ОТ, не выпадают из поля зрения исследователя. Этого рода идеализация является значительно более общей и важной для теории и практики, чем первая; в частности, она позволяет крайне упростить изучение реальных систем с трением. Вторая идеализация, как и начала ОТ, может быть применена к любому количественному уровню мироздания (нано-, микро-, макро- и т.д.) и любому агрегатному состоянию системы (твердому, жидкому, газообразному).

Разумеется, в действительности не существует идеальных систем, они являются предельной абстракцией. Однако в первом приближении допущение о постоянстве свойств типа А , К и т.д. сделать часто возможно. Возникающая в расчетах ошибка будет тем меньше, чем ближе реальная система подходит по своим свойствам к идеальной.

В качестве простейшего примера проинтегрируем дифференциальное уравнение состояния (54) применительно к идеальной системе (А = const; n = 2). Имеем

Р1 = А11Е1 + А12Е2 (92)

Р2 = А21Е1 + А22Е2

где

А12 = А21

Постоянные интегрирования положены равными нулю, так как при Е = 0 интенсиал системы Р = 0, что прямо следует из свойств парена (см. параграф 1, гл. XVII).

В условиях одной степени свободы (A = const; n = l) из дифференциального уравнения (58) с учетом равенства (60) получаем

Р = АЕ ; Е = КР (93)

Из уравнений (92) видно, что каждый интенсиал зависит от всех полных экстенсоров системы, при этом сохраняется симметрия во взаимном влиянии степеней свободы. Из выражения (93) следует, что у идеальной системы интенсиал пропорционален экстенсору, например, электрический потенциал пропорционален электрическому заряду, температура - энтропии, сила - деформации (закон Гука), момент силы - углу закручивания и т.д.; в трех последних примерах использованы не истинно простые, а условно простые экстенсоры (см. параграфы 5, 9 и 16 гл. XV) [ТРП, стр.133-135].













Глава ХI. Пятое начало ОТ.


1. Состояние и перенос.

Продолжим анализ интенсиала Р , входящего в основное уравнение (31) для ансамбля простых явлений и представляющего собой специфическую меру интенсивности силового взаимодействия вещества. Это позволит обнаружить следующее - пятое - важнейшее свойство, одновременно присущее также всем явлениям, находящимся на более высоких уровнях эволюционного развития.

Из закона состояния должно быть ясно, что в готовом ансамбле интенсиал характеризует интенсивность, напряженность, активность поведения сопряженного с интенсиалом вещества. Эта активность сохраняется в течение всего времени существования системы в данном состоянии и реализуется в ходе изменения этого состояния.

Вместе с тем ранее было установлено, что при образовании и распаде ансамбля интенсиал определяет интенсивность процесса, является специфическим аналогом силы. Это прямо следует из сопоставления формул (28) и (42), то есть

Рх = Р(dE/dx) ; Р = Рх(dx/dE) (94)

Поэтому интенсиал оказывает соответствующее влияние и на интенсивность, скорость переноса вещества, причем специфика заключается в том, что с каждым данным веществом сопряжен свой особый интенсиал, ответственный за перемещение только этого вещества.

Таким образом, выясняется новая роль интенсиала - служить движущей причиной переноса, распространения вещества. Об интенсивности этого переноса можно было бы наглядно судить, например, по величине универсальной силы Рх , если бы ее удалось выразить через такие специфические меры, как интенсиал и экстенсор. Однако в этом вопросе имеются и определенные тонкости, ибо интенсивность поведения вещества в данном состоянии и интенсивность его перемещения в ходе изменения указанного состояния - это принципиально различные вещи. Поэтому в рассматриваемых условиях найти необходимую универсальную меру Рх , например, по формуле (94) не представляется возможным. Требуется разобраться в этих тонкостях.

Каждое основное вещество излучает и окружено веществом взаимодействия. Это значит, что основное вещество взаимодействует одновременно со всех сторон и приобретает способность перемещаться только в том случае, если разнонаправленные воздействия на него не уравновешивают друг друга. Иными словами, для переноса вещества существенна не абсолютная величина активности, а равнодействующая, или разность, этих величин. Именно эта разность участвует в процессе переноса данного вещества.

Обсуждаемая разность определяется в зависимости от характера распределения интенсиала. Например, если на интересующем нас участке нет скачка интенсиала, тогда разность dP берется на расстоянии dx (похожие условия изображены на рис. 2, а), где

dР = Рс - Рси (95)

При наличии скачка в данном сечении разность составляет величину ?? (такие условия для контрольной поверхности показаны на рис. 2, в и г). Имеем

?Р = Рс - Рси (96)

где Рс - значение интенсиала окружающей среды; Рп - значение интенсиала на поверхности системы. Величина dP именуется перепадом интенсиала на участке dx , а ?? - напором интенсиала на поверхности.

Следовательно, чтобы определить искомую силу Рх , надо пользоваться не формулой (94), а приравнять работы типа (28) и (91). Например, с учетом разности (95) находим

Рхdх = - dРdЕ ,

откуда

Рх = - (dР/dх)dЕ . (97)

Универсальная сила Рх , участвующая в процессе переноса, пропорциональна градиенту интенсиала dP/dx и количеству переносимого вещества dE . Знак минус говорит о том, что сила направлена в сторону уменьшения интенсиала, то есть градиент и сила смотрят в противоположные стороны.

Из сказанного должно быть ясно, что равнодействующая, суммарная сила, определяемая формулой (97) и ответственная за перенос вещества, не равна силе (94). Благодаря этой разнице большая активность поведения не обязательно сочетается с высокой интенсивностью распространения вещества, а малая активность - с низкой. Для переноса важен не уровень активности Р , а разность уровней dP (см. формулу (97)). Например, при высокой активности разность интенсиалов может быть небольшой, тогда интенсивность процесса переноса будет незначительной. Наоборот, вблизи нуля интенсиала, когда активность поведения невелика, разность интенсиалов может быть сравнительно высокой и процесс распространения вещества окажется более интенсивным, чем в первом случае.

Установленная разница между активностью поведения и интенсивностью распространения вещества имеет важное принципиальное значение для всего последующего. Она заставляет рассматривать отдельно эти две категории отношений, а также позволяет по-новому взглянуть на полученные ранее результаты, в частности на третье начало ОТ.

Становится ясно, что интенсиал, входящий во все предыдущие уравнения, фактически является характеристикой активности, напряженности, интенсивности поведения (состояния) системы. Что касается интенсивности переноса, то этот вопрос упомянутыми уравнениями непосредственно не решается. Сказанное относится и к третьему началу ОТ, которое определяет только активность состояния системы.

Таким образом, мы пришли к интереснейшему выводу о необходимости различать состояние и перенос, который является причиной изменения состояния. Более того, анализ показывает, что в природе существуют только эти две основные категории отношений - состояние и изменение состояния. Поэтому теория приобретет необходимую законченность только в том единственном случае, если она сможет с исчерпывающей полнотой описать одновременно обе указанные категории.

Детально оценивать состояние системы с помощью интенсиала и выведенных ранее уравнений мы уже умеем. Теперь предстоит научиться то же самое проделывать с изменением состояния. Для этого надо вывести соответствующие уравнения переноса, которые бы связали с интенсиалом количество перенесенного вещества. Очевидно, что без интенсиала и здесь обойтись невозможно, ибо именно через него определяется суммарная сила, ответственная за перенос вещества (см. формулу (97)) [ТРП, стр.136-138].


2. Вывод обобщенного дифференциального уравнения переноса.

Из равенства (97) и комментариев к нему видно, что интенсивность процесса переноса, а значит, и количество перенесенного вещества dE должны зависеть от разности интенсиалов d? . Следовательно, в уравнении переноса в отличие от уравнения состояния экстенсор dE должен быть выражен через разность интенсиалов dP . Чтобы найти соответствующую функциональную зависимость, необходимо обратиться к третьему началу ОТ.

Согласно третьему началу, имеет место однозначная связь между интенсиалами и экстенсорами (см. уравнение (52)). Отсюда прямо следует, что экстенсоры можно выразить через интенсиалы, для этого из каждой строчки уравнения (52) находится соответствующий экстенсор и подставляется в остальные строчки. В результате выполнения указанной процедуры получается совокупность следующих так называемых обращенных зависимостей:

Ek = fk(Р1 ; Р2 ; ... ; Рn) (98)

где k = 1, 2, ... , n ; fk - некие новые неизвестные функции.

В обращенном уравнении (98) роль аргументов играют интенсиалы, а роль функций - экстенсоры. Однако отсюда вовсе не должно вытекать, что интенсиалы, подобно экстенсорам, являются первичными величинами и их можно именовать параметрами состояния. В действительности, как мы видели, первичность и вторичность тех или иных характеристик определяются из других соображений.

По-прежнему для простоты ограничимся системой с двумя степенями свободы. В этом случае уравнение (98) приобретает вид (n = 2)

E1 = f1(Р1 ; Р2 ) (99)

E2 = f2(Р1 ; Р2 )

Путем дифференцирования находим

dE1 = KP11dР1 + KP12dР2 (100)

dE2 = KP21dР1 + KP22dР2

где

KP11 = (?Е1/?Р1)Р2 ; KP22 = (?Е2/?Р2)Р1 ; (101)

KP12 = (?Е1/?Р2)Р1 ; KP21 = (?Е2/?Р1)Р2 . (102)

Индекс, стоящий внизу скобки, указывает на интенсиал, который при дифференцировании сохраняется постоянным. В наиболее простом частном случае, когда n = 1, получаем

Е = f(Р) (103)

dЕ = КdР (104)

где

К = 1/А = dЕ/dР (105)

Выражения (100)-(102) несколько напоминают уравнения состояния (54)-(56). Вместе с тем между ними имеется и существенная разница.

Прежде всего необходимо отметить, что в новое уравнение (100) входят емкости Кр , найденные при постоянных значениях интенсиалов; это обстоятельство подчеркивается индексом Р . В уравнениях состояния, где емкости К и структуры А определяются при постоянных экстенсорах, соответствующий индекс ? при них опущен.

Как и прежде, емкости Кр обратны характеристикам Ар , которые тоже берутся при постоянных Р, то есть

Ар = 1/Кр (106)

Характеристики Кр и Ар в принципе отличны от характеристик К и А . Неучет этого обстоятельства может привести к серьезным ошибкам, особенно если система находится вблизи нуля интенсиалов. Разницы между указанными характеристиками нет только в том гипотетическом частном случае, когда система располагает всего одной степенью свободы (см. формулы (60) и (105)).

Экстенсоры dE в уравнениях (54) и (100) имеют один и тот же смысл - они характеризуют количества переданных веществ. Что касается разностей dP , то в первом случае они определяют изменение состояния системы, а во втором - те перепады или напоры, которые служат причиной переноса веществ. Естественно поэтому, что разности dP в уравнениях (54) и (100) не равны между собой.

Дифференциальное уравнение (100) связывает количества перенесенных веществ с имеющимися разностями интенсиалов, следовательно, его допустимо трактовать как некое обобщенное дифференциальное уравнение переноса. Согласно этому уравнению, количества перенесенных веществ dE пропорциональны разностям интенсиалов dP , причем коэффициентами пропорциональности служат емкости Кр , найденные при постоянных значениях интенсиалов. Эти емкости именуются обобщенными проводимостями [17, с.37; 18, с.142; 21, с.64]. Из выражений (100), (101) и (102) видно, что существуют два типа обобщенных проводимостей: основные, индексы которых составлены из одинаковых цифр, и перекрестные, их индексы содержат разные цифры. В частном случае из равенств (100) и (104) могут быть получены все известные уравнения переноса [ТРП, стр.139-141].


3. Термодинамический поток и «сила».

Обобщенное дифференциальное уравнение переноса (100) весьма примечательно, ибо оно в самом общем виде описывает процесс распространения любого вещества, в том числе метрического и хронального, которые имеют отношение к пространству и времени. Но вопрос о пространстве и времени требует особого, более глубокого рассмотрения. Поэтому в настоящей главе мы ограничимся лишь приведением уравнения (100) к общепринятому виду, в котором пространство и время играют роль неких вспомогательных, опорных, эталонных характеристик.

Чтобы иметь возможность перейти к традиционной записи уравнения (100), необходимо вначале ввести понятия термодинамических потока и «силы», как это делается в термодинамике необратимых процессов. Для практических целей в работе [17, с.37-53] рекомендуются восемь различных основных вариантов выбора потоков и сил. Из них здесь рассматриваются четыре наиболее употребительных. В случае распространения метрического и хронального веществ приходится принимать во внимание также некоторую их специфику (см. параграфы 1 и 2 гл. XV).

Термодинамический поток, или просто поток, пропорционален количеству перенесенного вещества, характеризуемого экстенсором dE . Наибольший практический интерес представляют два весьма характерных выражения для потока. В первом случае количество вещества dE относится к единице площади поверхности dF и единице времени dt . Такой удельный поток обычно обозначается буквой J . Имеем

J = dE/(dFdt) (107)

Во втором случае количество вещества относится только к единице времени и обозначается буквой I . Получаем

I = dE/dt (108)

Потоки J и I , характеризующие конкретные условия переноса, широко применяются на практике: первый поток наиболее известен в теории теплопроводности, второй - в электротехнике, где именуется силой тока.

Термодинамическая сила, или просто сила, ответственная за перенос вещества, пропорциональна разности интенсиалов (об этом уже говорилось). Применительно к силе тоже предусмотрены два характерных варианта, отражающих конкретные условия переноса. В первом случае сила обозначается через X , она представляет собой напор интенсиала ?? , определяемый формулой (96). Имеем

Х = - ?Р = - (Рс – Рп) (109)

Вторая конкретная сила, обозначаемая буквой ? , представляет собой градиент интенсиала dР/dх , то есть

Y = - dP/dx (110)

Знак минус в правых частях равенств (109) и (110) свидетельствует о том, что вещество распространяется от большего значения интенсиала к меньшему, при этом разности ?Р и dP оказываются отрицательными. Но потоки веществ J и I , а следовательно, и силы X и ? должны быть положительными. Поэтому знак минус компенсирует отрицательные значения разностей ?? и dP .

Заметим, что термин «термодинамическая сила», или «сила», является общепринятым в термодинамике необратимых процессов. Однако он ничего общего не имеет с истинным понятием силы. Именно поэтому упомянутый термин был заключен нами в кавычки. В дальнейшем кавычки опускаются, но нужно не забывать об имеющейся в этом термине условности. Теперь мы располагаем уже тремя сходными по названию понятиями: сила, специфическая сила (интенсиал) и термодинамическая сила (разность или градиент интенсиала). Только первое понятие является силой в истинном смысле этого слова, два других понятия - это условные силы, они связаны с истинной силой соотношениями (94) и (97). Еще более условный смысл имеет понятие сила тока в электротехнике. Отметим также, что в принятых равенствах (107)-(110) по традиции в качестве опорных, эталонных использованы следующие пространственные и временные характеристики: площадь F , протяженность х и время t [ТРП, стр.141-142].


4. Четыре частных уравнения переноса.

Воспользуемся теперь конкретными потоками J и I и силами X и ? и преобразуем обобщенное уравнение (100) к виду, удобному для практического использования. При этом всего получаются четыре частных варианта дифференциальных уравнений переноса, ибо каждый из потоков J и I может сочетаться с каждой из сил X и ? .

В первом варианте сочетаются поток J и сила X . В простейших условиях двух степеней свободы (n = 2) из выражений (100), (107) и (109), заменив разность dP на ?Р , получим

J1 = ?11X1 + ?12X2 (111)

J2 = ?21X1 + ?22X2

где

?11 = - KP11(1/(dFdt)) ; ?22 = - KP22(1/(dFdt)) (112)

?12 = - KP12(1/(dFdt)) ; ?21 = - KP21(1/(dFdt)) (113)

В гипотетических частных условиях, когда n = 1, имеем

J = ?X (114)

где

? = - К(1/(dFdt)) (115)

В уравнениях переноса (111) и (114) величина ? представляет собой частную проводимость, которая играет роль, например, коэффициента отдачи вещества на контрольной поверхности системы. В частном случае из равенства (114) получается известное уравнение закона теплообмена на поверхности тела Ньютона (см. параграф 2 гл. XX).

Во втором варианте сочетаются поток I и сила X . Ограничиваясь двумя степенями свободы (n = 2), из выражений (100), (108) и (109) находим

I1 = ?11X1 + ?12X2 (116)

I2 = ?21X1 + ?22X2

где

?11 = - KP11(1/dt) ; ?22 = - KP22(1/dt) (117)

?12 = - KP12(1/dt) ; ?21 = - KP21(1/dt) (118)

При n = 1 получаем

I = ?X (119)

где

? = K(1/dt) (120)

В уравнениях переноса (116) и (119) частная проводимость ? есть, например, коэффициент отдачи вещества на контрольной поверхности системы. В отличие от коэффициента ? , относящегося к единице площади поверхности, величина ? относится к поверхности в целом.

В третьем варианте сочетание потока J и силы ? при двух степенях свободы (n = 2) позволяет получить из выражений (100), (107) и (110) следующее частное дифференциальное уравнение переноса:

J1 = L11Y1 + L12Y2 (121)

J2 = L21Y1 + L22Y2

где

L11 = - KP11(dx/(dFdt)) ; L22 = - KP22(dx/(dFdt)) (122)

L12 = - KP12(dx/(dFdt)) ; L21 = - KP21(dx/(dFdt)) (123)

При n = 1 имеем

J = LY (124)

где

L = - K (dx/(dFdt)) (125)

В уравнениях (121) и (124) коэффициент L представляет собой удельную проводимость системы по отношению к веществу. В частных случаях выражение (124) дает известные уравнения законов теплопроводности Фурье, электропроводности Ома, диффузии Фика и фильтрации Дарси [17, 18, 21].

Наконец, в четвертом частном варианте сочетаются поток I и сила ? . Для двух степеней свободы (n = 2) из равенств (100), (108) и (110) находим

I1 = M11Y1 + M12Y2 (126)

I2 = M21Y1 + M22Y2

где

M11 = - KP11(dx/dt) ; M22 = - KP22(dx/dt) (127)

M12 = - KP12(dx/dt) ; M21 = - KP21(dx/dt) (128)

При n = 1 имеем

I = MY (129)

где

M = - K (dx/dt) (130)

Частная проводимость ? отличается от L тем, что относится не к единице площади сечения системы, как L , а ко всему сечению. Именно в такой форме обычно используется закон электропроводности Ома.

Перечисленные частные дифференциальные уравнения переноса позволяют охватить самые характерные и наиболее часто встречающиеся на практике условия распространения вещества [ТРП, стр.143-145].


5. Пятое начало ОТ, или закон переноса.

Из дифференциальных уравнений переноса - обобщенного (100) и частных (111), (116), (121) и (126) - следует, что в процессе распространения вещества наблюдается взаимное влияние всех n потоков и термодинамических сил. Даже при наличии только одной какой-либо силы ни один из потоков не обращается в нуль. Отсюда можно сделать интереснейший вывод о том, что всеобщая связь присуща не только явлениям состояния, но и явлениям переноса. Выведенные уравнения позволяют детально разобраться в характере и причинах имеющейся связи.

В случае явлений состояния всеобщая связь сводится к тому, что происходит взаимное влияние всех n веществ, находящихся в системе. Это влияние с качественной и количественной стороны определяется третьим и четвертым началами ОТ, оно прежде всего сказывается на величине интенсиала, характеризующего активность, напряженность, интенсивность поведения системы, причем интенсиал определяется уравнением состояния.

В случае явлений переноса речь идет о том, что каждое данное вещество распространяется под действием сопряженной с ним термодинамической силы (разности или градиента интенсиала). Но одновременно наблюдается также перенос всех остальных веществ из числа n , на которые данная термодинамическая сила непосредственно не влияет. Конечно, имеются в виду условия, когда все прочие термодинамические силы, кроме данной, равны нулю. Это значит, что остальные вещества увлекаются данным и в этом может быть повинно только универсальное взаимодействие, присущее всем веществам без исключения. Следовательно, не только система, но и объект переноса обладает свойствами ансамбля, в котором связанны между собой разнородные вещества.

Как видим, всеобщая связь явлений приводит к объединению порций веществ в ансамбли, составляющие систему, а также в ансамбли, служащие объектами переноса. Одновременно происходит взаимное влияние указанных двух типов ансамблей, что находит соответствующее отражение в уровнях активности поведения системы и интенсивности распространения вещества. При этом интенсивность распространения сказывается на величине потоков, которые определяются уравнениями переноса.

Всеобщая связь явлений, проявляющаяся в процессах распространения вещества, составляет замечательное свойство природы, оно может быть сформулировано в виде особого закона переноса. В общем случае закон переноса, или пятое начало ОТ, выглядит следующим образом: поток любого вещества складывается из n величин, каждая из которых пропорциональна соответствующей термодинамической силе, коэффициентами пропорциональности служат проводимости - основные и перекрестные, обобщенные или частные.

Пятое начало ОТ - это известный физический закон, впервые сформулированный Онзагером в его термодинамике необратимых процессов. Однако в ОТ этот закон приобрел наиболее общую и универсальную форму: он был распространен на все разнообразные вещества природы. Ему также дано новое физическое толкование. Благодаря этому появляется возможность дополнительно сделать большое число теоретических прогнозов, не доступных для традиционной теории и поддающихся непосредственной экспериментальной проверке. В частности, пятое начало ОТ позволяет экспериментально подтвердить факт существования универсального взаимодействия и определить конкретные значения величины универсальной силы, которая ответственна за объединение разнородных веществ в переносимые ансамбли (см. параграф 7 гл. XX) [21, с.352].

Следует заметить, что любое конкретное уравнение переноса справедливо только для условий, при которых в ходе процесса не изменяются существенно ни свойства системы, ни особенно состав переносимых ансамблей. Всякие такого рода изменения прежде всего сказываются на значениях коэффициентов состояния и переноса, а в отдельных случаях могут привести даже к изменению числа степеней свободы системы. Такие условия могут возникнуть, например, при очень больших перепадах интенсиала в системе, если ее свойства и свойства переносимых ансамблей сильно изменяются с изменениями этого интенсиала. Соответствующие достаточно подробные оговорки были сделаны ранее в параграфе 2 гл. IX применительно к третьему началу ОТ.

На практике обычно пользуются частными уравнениями переноса. В некоторых дисциплинах отдельные виды проводимостей именуются по-разному, в частности коэффициентами переноса (например, коэффициент массопереноса, теплопереноса), коэффициентами отдачи, если речь идет о поверхности тела (например, коэффициент массоотдачи, теплоотдачи), коэффициентами передачи, когда в процессе участвует цепочка типа среда - тело - среда (например, коэффициент массопередачи, теплопередачи) и т.д. Мы не будем пренебрегать традиционными наименованиями, но все же предпочтение будем отдавать терминам, которые ближе отвечают духу ОТ.

Во всех уравнениях переноса - обобщенных и частных - основные проводимости, или основные коэффициенты переноса, отражают влияние данной силы на сопряженный с нею поток, а перекрестные проводимости, или перекрестные коэффициенты переноса, - на несопряженные с нею потоки. Основные проводимости имеют индексы, составленные из одинаковых цифр, перекрестные - из разных. Перекрестные проводимости именуются также коэффициентами увлечения [20, 21]. Коэффициенты увлечения определяют количественную сторону взаимного увлечения различных потоков [ТРП, стр.145-147].


6. Проводимость и сопротивление.

Дополнительные интересные сведения о пятом начале ОТ можно получить, если углубиться в анализ физического смысла коэффициентов переноса КР , ? , ? , L и М . При этом вполне достаточно ограничиться рассмотрением только одной величины КР , ибо через нее выражаются все остальные.

Уже отмечалось, что в уравнениях переноса характеристика КР играет роль обобщенной проводимости. Очевидно, что по своей физической сути проводимость, грубо говоря, должна определять некие пустотные, полостные свойства системы, ее способность пропускать сквозь себя постороннее вещество. Это значит, что проводимость сродни емкости, именно поэтому в уравнениях переноса роль проводимости играет емкость.

Однако должно быть совершенно ясно, что способность пропускать вещество, определяемая емкостью КР , не тождественна способности заполняться веществом, определяемой емкостью К (см. параграф 3 гл. IX). Имеющуюся разницу легко себе представить на условном примере двух капиллярно-пористых тел, обладающих одинаковыми суммарными объемами пор, но различными по размерам и конфигурации капиллярами. У этих тел способности заполняться влагой окажутся одинаковыми, но пропускательные способности будут между собой не равны из-за неодинаковых гидродинамических сопротивлений капилляров. Несходство этих двух способностей находит свое отражение в разнице между емкостями при постоянных интенсиалах и постоянных экстенсорах.

Следовательно, коэффициент АР , обратный обобщенной проводимости КР (см. формулу (106)), должен характеризовать свойство системы сопротивляться прохождению сквозь нее вещества. Иными словами, характеристика АР представляет собой коэффициент обобщенного сопротивления системы, или просто обобщенное сопротивление системы. Чем большей проводимостью обладает система, тем меньше ее сопротивление и наоборот. Отдельные частные виды сопротивлений обозначим через А? , А? , AL и АМ , они обратны соответственно проводимостям ? , ? , L и М.

На практике находит применение следующая частная форма полного сопротивления проводника длиной ?х и сечением F :

R = AM?х = ?х/M = AL(?х/F) = ?х/(FL) (131)

Через полное сопротивление R потоки J и I выражаются так:

J = ?P/(RF) (132)

I = FJ = ?P/R (133)

E = JFt = It = ?Pt/R (134)

где ?? - разность интенсиалов на концах проводника; ? - количество перенесенного вещества; t - длительность процесса. В форме (133) обычно записывается закон электропроводности Ома.

Все сказанное позволяет хорошо уяснить смысл величин, входящих в равенство (106) [ТРП, стр.147-149].

7. Вторая специфическая мера качества, или структуры, вещества.

Очевидно, что величина АР , тождественная сопротивлению и обратная емкости, по сути дела должна характеризовать заполненность системы собственным веществом, полноту структуры этого вещества, причем эта полнота рассматривается под углом зрения способности системы пропускать переносимое вещество. Следовательно, величина АР тоже представляет собой некую меру качества, структуры вещества, или просто структуру вещества.

Одна структура нам уже известна - эта величина А , она определяется формулой (60). Очевидно, что структуры А и АР не тождественны: первая подчеркивает заполненность системы собственным веществом, оставляя открытым вопрос о возможности проникновения постороннего вещества в систему, вторая, наоборот, делает упор на проницаемость системы для постороннего вещества, не подчеркивая роли заполненности. В совокупности обе величины хорошо определяют главные свойства структуры системы, дополняя друг друга.

В силу сказанного величину АР в отличие от А целесообразно именовать второй мерой качества вещества, или второй структурой. При этом вторая мера качества АР , как и первая А , является мерой специфической, сопряженной с каждым отдельным специфическим веществом системы.

Таким образом, коэффициент АР играет роль второй характеристики, входящей в состав меры ?2 уравнения (15) применительно к ансамблю простых явлений (26). Теперь вместо выражения (70) мы должны записать

N2 = f(А ; АР) (135)

где f - некоторая функция, зависящая от особенностей структуры системы.

В соответствии с этим полная совокупность главных количественных мер (71), характеризующих ансамбль простых явлений, должна быть несколько дополнена. Имеем

N1 = E ; N2 = f(А ; АР) ; N4 = U ; N5 = P (136)

Полученный результат интересен с познавательной точки зрения. Оказывается, хорошо известное понятие сопротивления является второй количественной мерой структуры, благодаря чему оно попадает в разряд главнейших характеристик вещества. Такая новая окраска сопротивления, проводимости и емкости при постоянных интенсиалах позволяет по-новому взглянуть на пятое и третье начала, на их взаимную связь и на проблему единства окружающего мира и его законов [ТРП, стр.149-150].


8. Второй закон качества, или структуры, вещества.

Продолжим обсуждение пятого начала, сделав уклон, как и в случае третьего начала, в сторону определения структурных характеристик вещества. С этой целью нетрудно непосредственно выразить вторые структуры АР (основные и перекрестные) через экстенсоры, согласно первой строчке уравнения (15), либо через интенсиалы, согласно уравнениям (15) и (98); при этом можно получить много полезных результатов. Однако, имея в виду шестое начало ОТ, мы для краткости пойдем по пути определения проводимости КР , которая обратна второй структуре АР , следовательно, мы здесь мало что теряем.

Для удобства рассуждений проводимость выразим через интенсиалы. Например, для системы с двумя степенями свободы (n = 2) из уравнений (15) и (98) имеем

КР11 = fР11(Р1 ; Р2)

КР12 = fР12(Р1 ; Р2) (137)

КР21 = fР21(Р1 ; Р2)

КР22 = fР22(Р1 ; Р2)

Дифференцирование этих общих уравнений дает

dКР11 = ВР111dР1 + ВР112dР2

dКР12 = ВР121dР1 + ВР122dР2 (138)

dКР21 = ВР211dР1 + ВР212dР2

dКР22 = ВР221dР1 + ВР222dР2

где

ВР111 = (?КР11/?Р1)Р2 = ?2Е1/?Р21 = ?3А2/?Р31

ВР112 = (?КР11/?Р2)Р1 = ?2Е1/(?Р1?Р2) = ?3А2/(?Р21?Р2)

ВР121 = (?КР12/?Р1)Р2 = ?2Е1/(?Р2?Р1) = ?3А2/(?Р21?Р2)

ВР122 = (?КР12/?Р2)Р1 = ?2Е1/?Р22 = ?3А2/(?Р1?Р22) (139)

ВР211 = (?КР21/?Р1)Р2 = ?2Е2/?Р21 = ?3А2/(?Р2?Р21)

ВР212 = (?КР21/?Р2)Р1 = ?2Е2/(?Р1?Р2) = ?3А2/(?Р22?Р1)

ВР221 = (?КР22/?Р1)Р2 = ?2Е2/(?Р2?Р1) = ?3А2/(?Р22?Р1)

ВР222 = (?КР22/?Р2)Р1 = ?2Е2/?Р22 = ?3А2/?Р32

Здесь величина А2 представляет собой некую функцию, которая в термодинамике применительно к термомеханической системе именуется свободной энтальпией. Более подробно об этой функции говорится в следующей главе (см. параграф 1 гл. XII).

В гипотетическом частном случае, когда n = 1, из предыдущих уравнений находим

КР = fР(Р)

dКР = ВРdР (141)

где

ВР = dКР/dР = d2Е/dР2 = d3А2/dР3 (142)

Уравнения (137)-(142), выведенные для явлений переноса, напоминают соответствующие уравнения (72)-(77), найденные для явлений состояния. Равенства (139) и (142) получены с учетом зависимостей (101) и (102). Индекс при скобках по-прежнему указывает на то, какие величины остаются при дифференцировании постоянными.

Закономерности, выраженные уравнениями (138) и (141) и определяющие свойства обобщенных проводимостей, действительны также для всех остальных проводимостей, поскольку обобщенные и конкретные проводимости связаны между собой простейшими соотношениями (112), (113), (117), (118), (122), (123), (127) и (128).

Указанные закономерности представляют большой интерес по той причине, что проводимость КР есть величина, обратная второй структуре АР . Следовательно, уравнения (138) и (141) можно рассматривать как выражающие второй закон качества, или структуры, вещества. При n степенях свободы системы изменение каждой данной проводимости dKР (отношения l/dAР) складывается из n величин, каждая из которых пропорциональна изменению соответствующего интенсиала dP , коэффициентами пропорциональности служат вторые коэффициенты структуры второго порядка ВР , основные и перекрестные, или увлечения.

Второй закон структуры принципиально отличается от первого, описываемого уравнениями (73) и (76). Первый закон относится к явлениям состояния, он характеризует структуру с точки зрения способности системы заполняться веществом. Второй закон относится к явлениям переноса, он характеризует структуру с точки зрения способности системы пропускать сквозь себя вещество [ТРП, стр.150-152].


9. Вторые законы структуры второго и более высоких порядков.

Разовьем далее цепочку вторых законов структуры. По аналогии с первыми законами коэффициенты ВР можно выразить через экстенсоры. Однако для целей шестого начала в качестве аргументов целесообразно воспользоваться интенсиалами, тогда применительно к системе с двумя степенями свободы (n = 2) можно написать (ограничиваемся только первыми строчками уравнений)

ВР111 = fР111(Р1 ; Р2) ; (143)

...

Продифференцировав эти уравнения, получаем

dВР111 = СР1111dР1 + СР1112dР2 ; (144)

...

где

СР1111 = (?ВР111/?Р1)Р2 = ?2КР11/?Р21 = ?3Е1/?Р31 =?4А2/?Р41 ; (145)

...

В гипотетическом частном случае системы с одной степенью свободы (n = 1) имеем

ВР = fР(Р) (146)

ВР = СРdР (147)

где

СР = dВР/dР = d2К/dР2 = d3Е/dР3 = d4А/dР4 (148)

Уравнения (143)-(148) напоминают прежние выражения (79)-(84), они определяют вторые коэффициенты структуры второго порядка ВР через более тонкие свойства СР - вторые структуры третьего порядка, основные и перекрестные, или увлечения, являющиеся коэффициентами пропорциональности при изменениях интенсиалов – dP . Полученный результат составляет содержание второго закона структуры второго порядка.

Если выразить коэффициенты пропорциональности СР через интенсиалы, то можно продолжить цепочку вторых законов структуры и получить новые, более тонкие вторые структуры четвертого порядка DР , которые являются коэффициентами пропорциональности в уравнении второго закона структуры третьего порядка, и т.д. В случае идеальной системы обобщенные проводимости КР являются величинами постоянными, а коэффициенты ВР , СР , DР и т.д. обращаются в нуль. Результаты, полученные для обобщенной проводимости КР , в равной мере справедливы также и для частных проводимостей ? , ? , L и М , входящих в частные уравнения переноса [ТРП, стр.152-153].


10. О теореме Кюри.

При практическом использовании уравнений переноса необходимо принимать во внимание некоторые тонкости. В частности, это связано с тем, что между конкретными потоками J и I , а также термодинамическими силами X и ? с математической точки зрения имеется существенная разница. Например, сила X представляет собой скаляр, а сила ? - вектор. Это накладывает на уравнения переноса известный отпечаток и, кроме того, служит причиной возникновения определенных заблуждений, имеющих принципиальное значение. Ввиду важности затронутого вопроса остановимся на нем более подробно.

Принято считать, что возможность сочетания в одном уравнении потоков J и I и сил X и ? определяется известной теоремой Кюри (также Генрио) [4, с.11; 36, с.100]. Согласно этой теореме, потоки и силы в уравнениях переноса должны иметь одинаковый тензорный ранг или разница в рангах должна быть четной. В противном случае потоки и силы подставлять в уравнения нельзя. Принято также думать, что при несоблюдении теоремы Кюри потоки не способны влиять друг на друга [4, с.19; 36 с.129, 152].

Различают тензоры нулевого, первого и второго рангов. К тензорам нулевого ранга относятся скалярные величины. Скалярами, в частности, являются интенсиалы - температура, давление, электрический и химический потенциалы и их разности. Следовательно, сила X - напор интенсиала - есть типичная скалярная величина, или тензор нулевого ранга.

К тензорам первого ранга относятся векторные величины. Векторами являются градиенты скаляров, в частности градиенты интенсиалов - температуры, давления, электрического и химического потенциалов и т.д. Следовательно, сила ? - градиент интенсиала - представляет собой вектор, или тензор первого ранга.

Тензорами второго ранга являются обычные тензоры. В частности, поток вязкой жидкости, определяемый законом вязкостного трения Ньютона, является тензорным потоком.

Что касается потоков J и I , то они могут рассматриваться либо как скаляры - тензоры нулевого ранга, если имеется в виду только их абсолютная величина, или модуль, либо как векторы - тензоры первого ранга, если имеются в виду их модуль и направление одновременно.

Запрет, налагаемый теоремой Кюри на сочетание в уравнении переноса тензоров, разница в рангах которых нечетна, рассматривается как запрет на возможность взаимного влияния соответствующих потоков. Например, считается, что поток вязкой жидкости, определяемый тензорным законом Ньютона, в принципе не способен взаимодействовать с потоками теплоты, электричества, диффундирующей массы и т.д., поскольку последние описываются векторными законами Фурье, Ома, Фика и т.п. и, следовательно, разница в рангах для них равна единице - величине нечетной.

Однако такой запрет игнорирует факт существования универсального взаимодействия, благодаря которому все вещества без исключения способны и вынуждены влиять друг на друга. Поэтому поток вязкой жидкости обязан взаимодействовать с потоками теплоты, электричества, диффундирующей массы и т.д. Этот вывод ОТ содержит в себе прогноз исключительной принципиальной важности, прямо затрагивающий теорему Кюри, особенно в части запрета веществам влиять друг на друга [ТРП, стр.153-155].


11. Некоторые эксперименты. подтверждающие вывод ОТ.

Для подтверждения теоретического прогноза ОТ о наличии взаимодействий между всеми разнородными потоками вещества, включая поток вязкой жидкости, были поставлены специальные эксперименты. Простейшие из них описаны в работе [12, с.251], где говорится о взаимном влиянии потоков вязкой жидкости и теплоты, а также в работах [14, с.266; 17, с.290; 18, с.323], где дополнительно рассматривается электрическая степень свободы системы. В опытах изучается трубчатый стеклянный замкнутый циркуляционный контур, на двух контрольных участках которого, заполненных капиллярно-пористыми телами (песок, торф и т.д.), созданы разности температур и электрических потенциалов. В рассматриваемых условиях при отсутствии посторонней разности давлений в контуре возникает круговая циркуляция воды. За циркуляцией наблюдают вне контрольных участков с помощью микроскопа. При этом вода перемещается в направлении от меньшей температуры к большей и от плюса к минусу. Действие разностей температур и электрических потенциалов в полном согласии с уравнением типа (121) подчиняется простейшему закону аддитивности - оно суммируется с учетом знаков имеющихся разностей.

Результаты соответствующих экспериментов с циркуляцией жидкости и газа под влиянием разностей электрических потенциалов и температур приведены в работе [17, с.278-293]. Движение газа через капилляр под действием разности электрических потенциалов описано в работе [17, с.247]. Например, скорость переноса паров воды от плюса к минусу через стеклянный капилляр диаметром 8,7 мкм и длиной 20 мм при разности потенциалов около 1300 В составляет 10-8 г/с, воздух из системы не удалялся. Скорость переноса воды от плюса к минусу в пристеночном слое стеклянного капилляра диаметром 0,2 мм и длиной 10 мм при разности потенциалов 4000 В и Т = 293 К равна 0,4 мм3/с [17, с.237]. Движение (скольжение) газа вдоль поверхности неравномерно нагретой пластины или капилляра наблюдал и измерял 3.Ф. Слезенко, его опыты описаны в работах [17, 18, 21). Например, на расстоянии 2,5 мкм от твердой поверхности и при градиенте температуры вдоль этой поверхности, равном 5 К/см, сухой воздух при давлении около 133 Н/м2 скользит в сторону возрастающей температуры со скоростью 0,8 мм/с [17, с.222]. В своих опытах по термическому скольжению газов 3.Ф. Слезенко во всех случаях фиксировал также факт возникновения разности электрических потенциалов. О взаимном влиянии различных других потоков, обусловленных явлениями смачивания, диффузии, вибрации и т.д., говорится в работах [12, 14, 17, 18, 21].

Полученные экспериментальные результаты убедительно подтверждают справедливость пятого начала ОТ и вытекающего из него вывода о реальности эффектов взаимного влияния самых разнообразных потоков вещества, в том числе потока вязкой жидкости. Одновременно эти эксперименты должны свидетельствовать о наличии универсального взаимодействия, которое характерно в равной мере как для явлений состояния, так и для явлений переноса.

Кроме того, из экспериментов следует, что теорема Кюри не выдерживает испытания опытом, когда речь идет о налагаемом ею формальном математическом запрете на взаимное влияние потоков, ибо возможность взаимного влияния определяется не способом аналитического выражения потоков и сил, а физическим механизмом изучаемых явлений, в данном случае фактом наличия универсального взаимодействия.

И вообще, должен заметить, что искусственное смещение акцентов с физической стороны на математическую всегда чревато разного рода недоразумениями и ошибками. Именно поэтому в ОТ я с самого начала решительно встал на путь подчинения математики физике (природе). Главная забота - это физическая суть явления, а способ математического описания может варьироваться в зависимости от конкретных обстоятельств. В частности, чтобы избежать неудобств, связанных с применением тензорного закона движения вязкой жидкости Ньютона, я в свое время сформулировал новый векторный закон, уравнение которого является частным случаем общего выражения (124) и напоминает известное уравнение фильтрации Дарси. Новое уравнение переноса вязкой жидкости приводится в работах [12, с.150; 14, с.172; 17, с.129]. Там же даются значения соответствующих проводимостей, найденных на основе известных опытных законов гидродинамики. Благодаря такой постановке вопроса легко находятся, например, с помощью уравнения переноса типа (121) все необходимые эффекты взаимного влияния потоков вязкой жидкости, теплоты, электричества и т.д.

Загрузка...