Взлет под облака



Постепенно, методом проб и ошибок, неустанных размышлений над событиями окружающего мира, человечество накапливало опыт покорения Пятого океана, пока наконец количество не перешло в новое качество — были созданы первые аппараты, на которых действительно можно было летать. Вот как это было...

От размышлений к действию

Неистовый Сирано-изобретатель

Жил во Франции XVII века поразительный человек. Жизнь его настолько богата событиями, что послужила основой для пьесы, которая и по сей день идет во многих театрах мира. Кто же он был? Блестящий фехтовальщик и острослов, философ и математик, он еще поражал окружающих безудержной фантазией. В своих романах он рассказывал столь удивительные вещи, что многие его современники думали: «Не прилетел ли этот человек на Землю с Луны или какой иной планеты? »

Ну вот, скажем, в одном из своих романов, изданном в 1657 году и названном по моде того времени достаточно длинно — «Иной свет, или Государства и империи Луны», Сирано де Бержерак — так звали этого человека — описал несколько способов, как без особых хлопот добраться с Земли до Луны.

Например, один из полетов герой романа хотел совершить с помощью множества... бутылок, наполненных росой! Вода под действием солнечных лучей испарялась, и образовавшийся пар, или, как писал автор, «туман», поднимал человека в воздух.



Со времен Сирано де Бержерака люди размышляют, как можно долететь до Луны

Конечно, такой летательный аппарат никогда не сможет оторваться от земли, как не может взлететь закипающий чайник. Но вот что интересно: идея сама по себе не так уж плоха — из водяного пара, как известно, состоят облака, а они летают!

Сирано де Бержерак, впрочем, и сам быстро понял недостатки такой конструкции. Первый полет его героя завершился неудачей, и в следующих главах тяжелые бутылки были заменены гораздо более легкими пузырями. И наполняли их не росой, не паром, а горячим дымом от костра.

Сегодня мы знаем: таким образом до Луны не долетишь. Но в воздух подняться действительно можно! Ведь писатель довольно точно обрисовал схему воздушного шара, который несколько десятилетий спустя на самом деле взлетел.

Костер в саду

До сих пор точно неизвестно, читали ли братья Жозеф и Этьен Монгольфье книгу Сирано де Бержерака или сами заново придумали всю конструкцию... Скорее всего, читали — ведь они были сыновьями бумажного фабриканта, а бумага в то время, как и сейчас, использовалась в основном для печатания книг.

Во всяком случае, в своих первых опытах братья, подобно литературному герою, использовали водяной пар. И конечно, потерпели неудачу. Подъемная сила пара мала, он не может поднять в воздух что-либо, кроме самого себя. Лишь когда братья наполнили склеенную из бумаги и полотна оболочку дымом от разведенного в саду костра, шар взлетел.



Воздушный шар братьев Монгольфье

Так в мае 1783 года люди начали покорение Пятого океана Земли — воздушного. Впрочем, на первом монгольфьере — братья обессмертили фамилию в своем изобретении — полетели вовсе не они. Первыми аэронавтами стали... баран, утка и петух. Полет кончился благополучно — пассажиры остались живы. Однако вскоре выяснилось, что у петуха сломано крыло, что тут же послужило основой слуха: в воздухе людям делать нечего — вон даже кости полетов не выдерживают. И лишь после тщательного разбирательства удалось выяснить, что причиной травмы стал не воздух, а баран, по нечаянности придавивший петуха к стенке клетки.

Первые аэронавты

Теперь очередь лететь была за людьми. И такие смельчаки нашлись. Осенью того же года в воздух поднялись Пилатр де Розье и Арланд. На этот раз аэростат продержался в воздухе рекордное время — 25 минут. Но полет чуть не кончился трагически: от подвешенного на цепи под оболочкой очага, в котором сжигали шерсть и солому, чтобы подогревать воздух в шаре и во время полета, начала тлеть и сама корзина, в которой помещались воздухоплаватели. Им с большим трудом удалось погасить огонь.

И наконец, в декабре все того же, 1783 года в Париже состоялся полет воздушного шара другой конструкции. Профессор Жак Шарль сделал его оболочку из шелка, пропитанного сырой резиной — каучуком, а наполнил ее не дымом, а легким газом — водородом. По имени профессора такие шары стали называть шарльерами.



Первый шарльер

Аэростат, в корзине которого находился сам изобретатель вместе со своим другом Робером, продержался в воздухе больше 2 часов и опустился в 40 км от места старта. Шарльер летал дольше потому, что водород обеспечил большую подъемную силу: ведь этот газ в 3,5 раза легче воздуха.

Шарль внес усовершенствования и в конструкцию самого аэростата. В оболочку был встроен клапан — пружинная «калитка», с помощью которой часть газа можно выпустить из оболочки, когда придет пора снижаться. Догадался изобретатель запастись и балластом — песком в мешочках. Если аэростат опускается, а аэронавт намерен продолжить полет, он высыпает часть песка за борт, шар становится легче, и полет продолжается. Гондола — прочная корзина, сплетенная из ивовых прутьев, — была подвешена не к нижней части шара, как в монгольфьере, а к специальной сетке, охватывавшей всю оболочку. А значит, меньшей была опасность, что гондола оторвется при резком рывке, порыве ветра. В гондоле имелся и якорь-гайдроп — длинный канат, который выбрасывали за борт при посадке. Он волочился по земле и тормозил аэростат, гонимый ветром.

Таким образом, Шарль предусмотрел практически все приспособления, которыми воздухоплаватели пользуются и по сей день.

Полеты продолжаются

Удачные полеты в Париже ободрили воздухоплавателей других стран. Первые аэростаты появились также в Германии, Англии, Испании... В ноябре 1783 года состоялся такой полет и в России.

Во Франции тем временем воздушные путешествия становятся все более популярными. Один из знаменитейших людей Парижа и его окрестностей, Феликс Турнашон, по прозвищу Надар — художник и писатель, фотограф и изобретатель — был занят сооружением огромного воздушного шара, который так и назывался — «Гигант». Его двойная оболочка, имевшая 90 м в окружности, должна была нести гондолу, построенную в виде шале — двухэтажного дачного домика с террасой; в нем предполагалось разместить 12 пассажиров, не считая самого пилота!

Надар, кстати, подсказал своему приятелю, начинающему писателю Жюлю Верну, тему для его первого романа и даже консультировал его в затруднительных случаях. Так во Франции одновременно готовились к полету два воздушных шара — один на самом деле, другой — на страницах романа.



Первый розьер

Жюль Верн придумал замечательный аэростат. Описанная им «Виктория» имела температурное управление. Это значит, что специальное приспособление для нагрева газа позволяло аэронавтам подниматься и опускаться, не сбрасывая балласта и не выпуская газа из оболочки. (В скобках заметим, что эта идея воплощена в наши дни на розьерах — третьем типе воздушных шаров, соединяющих в себе преимущества монгольфьеров и шарльеров. Название этот тип шаров получил в честь уже известного нам первого аэронавта Пилатра де Розье.)

"Летучая вода" Льва Толстого

Первые полеты заинтересовали многих людей на земном шаре. Но далеко не все могли понять, почему воздушные шары летают. Этого толком не знали даже сами братья Монгольфье, полагавшие, что шар обязательно должен быть наполнен дымом, а вовсе не теплым воздухом.

Логика рассуждений такова. Все мы видим, как по небу плавают облака и тучи. Из них часто льет дождь и сверкают молнии. А коли так, значит, полету может способствовать электризация воздуха...

В общем, чтобы шар полетел, полагали братья, нужно наполнить его «облакоподобным веществом» — паром или дымом. Тогда произойдет эта самая электризация и монгольфьер взлетит.



Кипящая вода


На самом деле все, конечно, не так. Лучше других, пожалуй, объяснил суть происходящих процессов знаменитый наш писатель JLН. Толстой, весьма живо интересовавшийся вопросами воздухоплавания. Он писал:

«Если взять надутый пузырь и опустить его в воду, а потом пустить, то пузырь выскочит на верх воды и станет по ней плавать. Точно так же если кипятить чугун воды, то на дне, над огнем, вода делается летучею, газом; и как соберется пар, немножко водяного газа, он сейчас пузырем выскочит наверх. Сперва выскочит один пузырь, потом другой, а как нагреется вся вода, то пузыри выскакивают, не переставая; тогда вода кипит. Так же, как из воды выскакивают наверх пузыри, надутые летучей водою, потому что они легче воды, — так из воздуха выскочит на самый верх пузырь, надутый газом — водородом, или горячим воздухом, потому что горячий газ легче холодного воздуха, а водород легче всех газов...»

Хитрость Архимеда

Современный ученый, впрочем, наверное, пояснил бы суть дела немного по-другому. «Всем известно, — сказал бы он, — если бросить в воду деревянную дощечку, она поплывет. А вот стальной гвоздь сразу утонет. Это происходит потому, что у дерева меньший удельный вес, чем у воды, а у стали — больший...»

Удельный вес — это вес кубика любого вещества со стороной, равной 1 см. Если мы мысленно вырежем такой кубик из дерева — он будет весить меньше 1 г, а из стали — больше. Вес же кубика воды как раз равен 1 г. Вот и получается: дерево плавает, потому что оно легче воды, а сталь тонет, поскольку тяжелее.

«Но ведь по морям и океанам плавают большие корабли, — возможно, вспомните вы. — Они сделаны из стали и все-таки не тонут...»

А не тонут они потому, что в данном случае инженеры пошли на хитрость. Суть ее заключается в следующем. Если мы сделаем из стали не сплошной кубик, а полый, заполненный воздухом внутри, то он будет плавать. Ему не позволит утонуть воздух, заключенный внутри. Примерно так же плавают и стальные суда — ведь внутри они тоже полые. Даже если заполним часть объема судна грузами и механизмами, все равно места для воздуха остается еще достаточно.

Существует даже специальный физический закон, объясняющий это явление.

«На тело, погруженное в жидкость, — гласит он, — действует выталкивающая сила, направленная вертикально вверх и равная весу жидкости, вытесненной им».

Этот закон каждый может проверить самостоятельно. Стоит нырнуть в пруд, бассейн или просто залезть в ванну с водой, как вы почувствуете: тело словно бы потеряло в весе. И если кубик, судно или тело вытесняют воды больше, чем весят сами, они плавают, если меньше — тонут.

Говорят, закон был открыт древнегреческим ученым Архимедом при довольно любопытных обстоятельствах. Сиракузский царь Гиерон заподозрил, что его новая корона сделана мастером не из чистого золота, а из сплава с другими металлами. Но так ли это? Проверку он поручил своему придворному мудрецу Архимеду.

Тот долго думал, как выполнить поручение царя. И в конце концов решил задачу. Причем идея пришла к нему в бане. Когда он погрузился в ванну, полную до краев водой, часть ее, конечно, выплеснулась на пол — ее вытеснило тело Архимеда. И это обстоятельство подсказало ученому ход решения. Он так обрадовался своему открытию, что тотчас выскочил из ванны и как был, мокрый, побежал домой по улицам родных Сиракуз с криком: «Эврика! Нашел!..»

Он действительно нашел способ, как решить задачу царя: Архимед опустил корону в сосуд, полный воды. Часть ее опять-таки выплеснулась. Ее объем был равен объему короны. А зная объем и вес царского украшения — взвесить-то его проще простого! — можно найти и удельный вес материала, из которого это изделие и было изготовлено. Для этого поделим вес на объем и получим вес в граммах кубика вещества со стороной в 1 см. Точно так же Архимед определил и удельный вес слитка из чистого золота. Осталось сравнить полученные результаты. При этом, говорит история, выяснилось, что ювелир все-таки смошенничал...



Говорят, так, в ванне, Архимед открыл свой закон...

Но мы несколько отвлеклись. Ведь эта книжка не об Архимеде и его открытиях... Главное для нас в этой истории вот что. Тот же физический закон, открытый Архимедом, распространяется не только на водное, но и на воздушное пространство; шарльер летает потому, что его наполняют водородом — газом, который легче воздуха. В монгольфьерах внутри хотя и находится воздух, но температура его гораздо выше, чем снаружи. А горячий воздух легче холодного. В этом можно убедиться с помощью простейшего опыта. К пламени зажженной свечи или газовой горелки сбоку можно поднести руку довольно близко. А вот над свечой тепло чувствуется на значительном расстоянии — нагретый воздух поднимается вверх.

Таким образом, для взлета воздушным шарам вовсе не нужно разгоняться, как самолетам. Они не взлетают, а всплывают в воздушном океане, подобно тому как в океане водном всплывает брошенная щепка или мячик.

Область науки, которая изучает неподвижный воздух, называется аэростатикой («статос» в переводе с греческого означает «неподвижный») в отличие от аэродинамики, которая познает законы движущегося воздуха.

Так что воздушные шары правильнее будет называть аэростатами, ведь зачастую они бывают отнюдь не круглыми.

Люди на "летающих ладьях"

Вспомните: «Виктория» Жюля Верна предназначалась отнюдь не для увеселительных прогулок. Писатель хотел отправить придуманного им профессора Фергюссона и его друзей в полет над Африкой за новыми географическими открытиями.

Самое замечательное, Жюль Верн во многом предугадал действительные события! Меньше чем через год вслед за литературными героями к истокам Нила — самой большой реки Африки — отправились настоящие путешественники. И они убедились, что писатель был прав: Нил действительно вытекает из озера Виктория.

Правильно оценил писатель и другое: воздушные шары действительно переставали быть просто игрушкой, средством развлечения. И хотя настоящий «Гигант» вскоре прекратил свое существование, потерпев аварию в одном из первых полетов, человечество уже не могло остановиться на пути освоения Пятого океана. Шары продолжали строить один за другим, потому что они нужны были для дела.

Первый полет с научными целями совершили в 1802 году немецкие ученые Гумбольдт и Бомлан. С помощью аэростата они установили, что с подъемом температура окружающего воздуха снижается.

В 1804 году в научном полете, организованном Петербургской академией наук, принял участие академик Я.Д. Захаров. Несколько полетов совершили известные французские ученые Жан Батист Био и Жозеф Луи Гей-Люссак. Ими были получены достоверные данные о том, что с высотой меняется не только температура, но и давление, влажность и состав воздуха. Было установлено, что человек на большой высоте начинает задыхаться.



Выяснили ученые и причину этого. Поскольку с высотой давление уменьшается, во вдыхаемом воздухе уже не содержится достаточного количества кислорода. Как только аэростат поднимается выше 5 тыс. метров, у аэронавтов появляются первые признаки «горной болезни» — человек слабеет, у него начинает кружиться голова, снижается острота зрения и слуха... При длительном пребывании на высоте около 8 тыс. метров человек вообще может потерять сознание и умереть от кислородного голодания. Поэтому в качестве лекарства против горной или высотной болезни аэронавты стали брать с собой в полет баллоны с кислородом.

Начали использовать аэростаты и для астрономических наблюдений. Ведь аэронавты теперь могли подняться выше облаков, а значит, погода уже не могла помешать им увидеть Солнце, Луну, другие звезды и планеты.

Так, в 1887 году великий русский ученый Д.И. Менделеев совершил полет, чтобы увидеть своими глазами солнечное затмение. Причем обстоятельства этой экспедиции складывались в достаточной степени драматично. Началось с того, что аэростат «Русский» за ночь перед стартом вымок под дождем настолько, что его отяжелевшая от влаги оболочка не могла поднять двух человек, как предполагалось ранее. Тогда Менделеев решил лететь в одиночку, оставив на земле... командира аэростата, военного аэронавта. Более того, ученый пригрозил попросту выбросить того из корзины, если он не подчинится.



«Солнечное затмение ждать нас не будет!» — заявил ученый и стартовал. А ведь то был первый полет Менделеева; он не только не имел опыта управления аэростатом» но даже не успел толком ознакомиться с его устройством.

И все же риск оправдался: во время трехчасового полета ученый не только провел все необходимые наблюдения, но и смог справиться с управлением и совершил благополучное приземление.

Аэростат стали рассматривать как надежное средство для совершения полетов. Тем более что к концу XIX века рекордная продолжительность полетов достигла уж 35 часов 45 минут! Аэронавты преодолели за это время расстояние 1922 км!

Единственный недостаток воздушного шара исследователи видели лишь в том, что лететь все время приходилось по воле ветра. Нужно было что-то придумать для преодоления этого недостатка.

Наперекор ветрам

Под парусами — хоть к полюсу?

Вспомните, первые корабли и лодки могли плыть в основном по ветру. Если же такой курс не устраивал моряков, они вынуждены были садиться за весла. Силе ветра они могли противопоставить лишь мощь своих мускулов.

Но физических сил у человека не так уж много. Куда сильнее он умственно. И потому со временем люди научились строить такие корабли, которые могли бороздить морские просторы наперекор ветру и волнам.

Сначала парусники стали плавать против ветра, используя его же силу. Корабль или яхту заставляют двигаться переменными галсами, то есть разными курсами под углом по направлению ветра. Управляя парусами и рулем, умелые мореплаватели в конце концов приводят судно к намеченной цели. Потом на кораблях появились двигатели с винтами, которые сделали паруса вообще ненужными.



«Летающая ладья» итальянца Франческо де Лана Торци

Примерно то же самое происходило и в небе. Поначалу воздухоплаватели тоже пробовали брать с собой в полет весла. Но быстро поняли их бесполезность. Вода в 800 раз плотнее воздуха, а кроме того, практически несжимаема, поэтому от нее и удается оттолкнуться веслом. Воздух же легко поддается напору, и единственное, что можно сделать, махая веслами в воздухе, так навеять ими прохладу, словно веерами-опахалами.

Впрочем, несколько полезных идей аэронавты у мореплавателей все же почерпнули. Например, известно: узкая лодка движется быстрее широкой при одинаковых усилиях гребцов. Оболочки аэростатов тоже стали делать вытянутыми, сигарообразной формы.

Для полетов над водой изобретатель Сивель предложил использовать якорь-конус — своеобразное ведро, которое сбрасывалось вниз из гондолы на длинной веревке, наполнялось водой и притормаживало аэростат лучше обычного гайдропа.

Еще одно новшество — некоторые изобретатели стали ставить на аэростатах... паруса. Например, в 1897 году шведский инженер Соломон Август Андре с двумя спутниками рискнул отправиться на воздушном шаре «Орел» к Северному полюсу. Перед началом полета Андре долго ждал ветер нужного направления. Но еще больше, чем на ветер, который ведь всегда может перемениться, инженер надеялся на те новшества, которые он придумал.



«Орел» на льду. Рисунок сделан по фотопластинке, обнаруженной в багаже экспедиции

Попеременно управляя гайдропами и парусами, Андре научился отклонять полет шара почти на 30 градусов в сторону от направления ветра и надеялся, что ему все-таки удастся направить шар именно к Северному полюсу.

Однако, как показал опыт экспедиции, Андре чересчур понадеялся на достоинства своей конструкции. Шар вскоре обмерз, отяжелел, потерял подъемную силу, и экспедиция была вынуждена высадиться на лед. Ее участники, так и не добравшись до полюса, отправились в обратный путь пешком. От холода и недоедания люди вскоре обессилели, заболели... Закончилось все трагически — никто из участников экспедиции не добрался до берега...

Первые дирижабли

«Дирижабль» в переводе с французского означает «управляемый». Так называют аэростат, который способен двигаться наперекор ветрам. Каким образом? Раз весла и паруса не помогают, значит, надо, как и на воде, использовать винты-пропеллеры и двигатели.

Первым предложил сделать это французский инженер М. Менье. И представьте себе — еще в 1794 году, всего через год после того, как в небо поднялись первые монгольфьеры и шарльеры. Для управления ими Менье тут же предложил поставить воздушные винты, вращаемые... не моторами— таковых в ту пору еще не существовало, — а людьми! Усилий 80 человек, по мнению Менье, достаточно, чтобы воздушный корабль перестал быть игрушкой ветра.



Дирижабль Дюпюи де Лома

Однако на практике получилось не так, как рассчитывал изобретатель. Чтобы поднять большой экипаж, нужен корабль немалых размеров: по расчетам выходило, что его длина должна составлять 84,5 м, диаметр оболочки 42 м, а ее объем — 79 тыс. куб. м.

Но чем масштабнее корабль, тем больше надо сил, чтобы сдвинуть его с места, удержать на курсе, противостоять натиску воздушной стихии... Поэтому соотечественник Менье, инженер-судостроитель Дюпюи де Лом предложил построить дирижабль как можно меньших размеров. В 1872 году его проект удалось осуществить на практике. Аэростат с 8 аэронавтами и воздушным винтом действительно

поднялся в воздух и смог развить скорость 8 км/ч — т. е. он двигался быстрее, чем идущий человек.

Но на большее у аэронавтов сил все равно не хватило. Дирижаблям были нужны мощные и в то же время легкие двигатели. И вот в 1851 году механику-самоучке А. Жиффару удалось построить паровой двигатель мощностью 3 л. с. А весил он всего 45 кг. Этот двигатель считался техническим чудом своего времени — ведь обычные двигатели имели тогда около 100 кг веса на каждую лошадиную силу мощности.

Построил Жиффар и дирижабль для своего двигателя. Объем его оболочки оказался в 30 раз меньше, чем у аэростата Менье. С помощью сетки под оболочкой был подвешен деревянный брус с рулем на одном конце. К брусу-балке прикреплялась гондола, в которой была установлена паровая машина и находился сам изобретатель, выполнявший обязанности и пилота, и механика. Трехлопастной пропеллер диаметром более 3 м вращался со скоростью 110 об/мин!



Дирижабль Жиффара

В сентябре 1852 года Жиффар поднялся на высоту около 2 км, затем потушил топку и благополучно приземлился. Во время полета аэростат развил скорость 10 км/ч, двигаясь перпендикулярно направлению ветра.

Несмотря на успешные испытания, дирижабль Жиффара не получил сколь-нибудь широкого распространения. Ведь он был одноместным, даже грузы перевозить не мог.

Прошло 20 лет, прежде чем в воздух поднялся дирижабль, созданный австрийским инженером П. Хейнлейном. Он был уже больших размеров, использовал двигатель, работавший на светильном газе; этим же газом заполнялась и оболочка. С помощью четырехлопастного пропеллера дирижабль развивал скорость 19 км/ч.

В 1883 году братья Г. и А. Тиссандье оснастили свой аэростат электрическим двигателем мощностью 1,5 л. с.



Дирижабль Хейнлейна

И наконец, чуть более ста лет назад, в 1896 году, в Германии изобретатель Вельферт построил дирижабль с бензиновым двигателем.



Дирижабль братьев Тиссандье

Таким образом, к концу XIX века в дирижаблестроении были использованы все возможные виды двигателей. Наилучшим образом показал себя двигатель внутреннего сгорания, работающий на бензине или соляре, и впоследствии дирижабли оснащались в основном двигателями этого типа.

Типы дирижаблей

Их классифицируют как матрасы; дирижабли бывают жесткими, полужесткими, полумягкими и мягкими. Причем не думайте, что это розыгрыш, — такова действительная официальная градация.

Обыкновенная — мягкая — надувная оболочка все-таки недостаточно хорошо держала форму, плохо противостояла порывам ветра, вот инженеры и постарались ее укрепить. Для этого в оболочку стали встраивать, вшивать металлические балки и фермы. Чем их больше, тем более жесткой становится конструкция.



Конструкции дирижаблей: а — жесткий; б — полужесткий; в — полумягкий; г — мягкий

Итак, если ферм в оболочке относительно много — она называется полумягкой. С увеличением их числа конструкция становится полужесткой и, наконец, жесткой. В 1897 году австрийский инженер Д. Шварц построил дирижабль, который имел не только металлический каркас, но и склепанную из тонких алюминиевых листов обшивку. Гондола тоже была сделана из алюминия. В ней помещался бензиновый двигатель мощностью 12 л. с., который вращал четыре пропеллера. Два из них были расположены по бокам гондолы; с их помощью аэронавты могли легко и быстро разворачивать свой корабль. Третий винт, позади гондолы, помогал дирижаблю двигаться против сильного ветра или использовался для развития большой скорости. И наконец, последний, четвертый пропеллер находился под гондолой. Ось его вращения была расположена вертикально, как у вертолета; этот пропеллер использовался для быстрого взлета и приземления дирижабля.



Жесткий дирижабль Шварца

Испытания конструкции прошли не совсем удачно: на высоте 250 м отказал двигатель, и дирижабль при посадке поломался. Однако сама по себе идея создания жестких дирижаблей понравилась многим конструкторам, и такие летательные аппараты стали строить во всем мире.

Воздушные гиганты

Прямо на поверхности Боденского озера в Германии конструктор Фердинанд Цеппелин возвел огромный эллинг — гараж для дирижаблей. Длина его была 142 м, ширина — 23 м, высота — 21 м. А на воде его поддерживали 80 понтонов-поплавков.

В этом огромном зале, где при желании можно было бы запросто поиграть в футбол, и началось строительство воздушных кораблей новой конструкции. По имени изобретателя их так и назвали — цеппелинами.

Чем же отличались дирижабли Цеппелина от своих предшественников? Во-первых, большими размерами. Так, например, в 1900 году был построен дирижабль длиной 128 м, а объем его оболочки составил 11 300 куб. м! Во-нторых, в конструкцию воздушных исполинов были введены принципиальные новшества.



Дирижабль LZ-1 конструкции Цеппелина

Всю оболочку поделили на несколько отсеков. Внутри каждого из них помещался отдельный баллон с газом. Таким образом, если какой из баллонов и давал течь, то остальные продолжали поддерживать дирижабль в воздухе.

Во время испытаний LZ-1 — так назвали новый дирижабль — показал отличные летные качества. И вслед за первым кораблем Цеппелин строит еще несколько, каждый из которых был крупнее предыдущего. Например, 128-метровый дирижабль LZ-3 мог поднять в воздух 9 человек и 2500 кг груза. Во время испытательного полета 6 октября 1906 года он взлетел на высоту 800 м и развил скорость 50 км/ч.

Летом 1910 года было завершено строительство дирижабля LZ-7 «Германия», длина которого составляла уже 148 м. Это был первый в мире дирижабль, специально предназначенный для перевозки пассажиров. Он брал на борт сразу 20 человек.

Большие дирижабли начинают строить не только в Германии, но и в других странах. Только в первом десятилетии XX века их было построено около 500. Причем в той же Германии на постройку очередного воздушного гиганта уходило менее месяца. А ведь это были громадины длиной уже более 200 м! Настоящие летающие корабли...

Так на практике была доказана справедливость расчетов выдающегося русского ученого К. Э. Циолковского. Еще в 80-е годы прошлого века, когда во всем мире только начали строить небольшие управляемые аэростаты, он научно доказал возможность и целесообразность создания именно больших дирижаблей. Глухой, почти ничего не видящий учитель из Калуги оказался дальновиднее многих всемирно признанных научных авторитетов.

В 1892 году была опубликована работа Циолковского «Аэростат металлический управляемый». Четыре года спустя Константин Эдуардович представил более подробный проект цельнометаллического дирижабля, рассчитанного на перевозку 200 пассажиров и 1400 т груза. Размеры воздушного гиганта поражают даже сегодня: длина — 210 м, объем оболочки — 70 тыс. куб. м!



Дирижабль «Гигант»

Впрочем, проект ученого не получил признания у царского правительства. Изобретателю отказали в выдаче средств даже на постройку модели. Между тем на исполнение зарубежного проекта деньги нашлись. В 1893—1894 годах в учебно-воздухоплавательном парке Петербурга по проекту австрийского изобретателя Д. Шварца, о котором уже говорилось выше, строится первый в мире цельнометаллический дирижаоль с объемом оболочки 3,86 куб. м и длиной 47,6 м. Однако и тут дело пошло не столь уж гладко: денег на окончание строительства не нашлось, и изобретатель вместе со своим детищем уехал в Германию, где в 1897 году его дирижабль и совершил первый полет.

А возьмись россияне строить дирижабль по проекту Циолковского, глядишь, и подешевле бы вышло, и мировой рекорд в дирижаблестроении не упустили...

Однако лишь два десятилетия спустя в России начинают строить первые отечественные дирижабли. Справедливости ради надо отметить, что среди них были весьма неплохие конструкции. Например, за один только 1911 год на дирижабле «Киев» изобретателя Ф. Ф. Андреса было перевезено 198 пассажиров. В 1915 году начались испытания «Гиганта» — самого крупного российского дирижабля тех лет. Его длина составляла 150 м; четыре двигателя развивали суммарную мощность 860 л. с.!

Загрузка...