На мирных трассах



Сердце самолета

Виды реактивных двигателей

Мы уже говорили о том, что надутый, но незавязанный воздушный шарик летает за счет реактивной тяги. На том же принципе работают и реактивные двигатели в авиации. Рассмотрение их конструкций давайте начнем с прямоточного воздушно-реактивного двигателя — ПВРД. Он имеет наиболее простую схему.

Представьте себе металлическую трубку, движущуюся в воздушном потоке. Передний край трубки вбирает в себя воздух — это воздухозаборник. Из сопла — задней части трубки — выходят отработанные газы. Средняя часть — камера сгорания.

Для разгона попадающего в трубку воздуха сделаем в ее средней части маленькое отверстие и вставим в него тонкую трубочку — форсунку. Через нее будем впрыскивать в камеру какое-нибудь топливо (лучше всего керосин) и подожжем его электрическим разрядом.



Современный турбореактивный двигатель

Теперь все части ПВРД стали оправдывать свои названия. Воздухозаборник всасывает воздушный поток. В камере сгорания горит воздушно-топливная смесь. Температура газа при этом повышается, возрастает скорость его движения. Раскаленные газы с силой выбрасываются через сопло, создавая реактивную тягу.



Схема турбореактивного двигателя: 1 — воздухозаборник; 2 — компрессор; 3 — камера сгорания; 4 — турбина; 5 — реактивное сопло

ПВРД может работать лишь тогда, когда на входе имеется скоростной напор воздуха. Значит, стартовать с таким двигателем летательный аппарат не может. Его нужно предварительно разогнать.

Обычный самолет разгоняется при помощи воздушного винта, который вращается двигателем внутреннего сгорания — ДВС. Однако, как показала практика, такой двигатель не может обеспечить ни большой скорости полета, ни большой мощности.

А что, если мы попробуем винтом-пропеллером просто разгонять поток воздуха на входе реактивного двигателя? Благодаря такой догадке появился ТРД — турбореактивный двигатель. Чтобы запустить его, к компрессору подсоединяют стартер. Он раскручивает вал с лопатками, те загребают воздух и направляют его внутрь. Реактивный двигатель начинает работать.

Теперь стартер можно и отключить, поскольку конструкторы предусмотрели такую хитрость. На пути раскаленных газов к соплу они поставили дополнительно газовую турбину и соединили ее единым валом с компрессором. Выходящие газы крутят турбину, соединенный с ней компрессор нагнетает воздушный поток в камеру сгорания, топливновоздушная смесь горит, горячие газы вырываются из сопла, и цикл повторяется снова.

Вроде бы все достаточно просто. Однако такой простоты инженеры добивались не одну сотню лет. Ведь первые газовые турбины были известны еще в Древней Греции. Герон, например, развлекался тем, что выпускал струи пара из сосуда, в котором кипела вода, на крыльчатку, наподобие той, что выставляют мальчишки на ветер. И крыльчатка

Герона исправно крутилась, даже когда никакого ветра не было.

Но должны были пройти многие века, даже тысячелетия, чтобы игрушка превратилась в действительно нужное, полезное изобретение.

"На решение проблемы газовой турбины уже затрачена громадная умственная работа, и не только изобретателями и учеными, но и производственными фирмами; для развития этого типа машин принесены также громадные финансовые жертвы, но пока не достигнуто никакого практического результата".

Так писала техническая энциклопедия еще в 1934 году.

Конечно, какие-то турбины в то время уже существовали. Но именно «какие-то». Скажем, в 1940 году словацкий инженер Аурель Стодола, всю свою жизнь посвятивший турбинам, сумел построить лучший по тому времени агрегат из жаропрочных сталей, выдерживающих нагрев внутри до 650 °С. Но коэффициент полезного действия (КПД) такой турбины составлял всего 18% . Чтобы добиться большего, нужны были еще более жаропрочные материалы.

Лишь когда появились сплавы, могущие сохранять рабочую форму, будучи даже раскаленными добела, когда конструкторы научились охлаждать лопатки во время работы (многие из них теперь умеют «потеть», то есть выделять через крошечные отверстия в теле лопатки охлаждающие газы), когда были разработаны десятки конструкций с более-менее высоким КПД, турбовинтовые двигатели завоевали себе прочное место в авиации.

Теперь даже пропеллеры винтовых самолетов и роторы вертолетов крутят не двигатели внутреннего сгорания, а все те же турбины. Конструкторы догадались продлить вал, соединяющий вентилятор и турбину, еще вперед и насадили на него пропеллер. Он и помогает нагнетать дополнительные порции воздуха внутрь двигателя и создает подъемную силу, обдувая крыло.

Хождение на звук

Однако не думайте, что, получив в свое распоряжение более-менее надежные реактивные двигатели, конструкторы раз и навсегда решили все свои проблемы. С разработкой каждого нового двигателя его создателям приходится как бы вкратце проходить всю историю газовой турбины снова. Заново просчитываются пути прохода газовых потоков внутри двигателя, снова и снова проверяются тепловые режимы, подбираются лучшие стали и сплавы.



Простейший стенд для испытания двигателей: 1 — входной диффузор; 2 — рабочая камера; 3 — выходная часть

Прежде чем поставить новый двигатель на самолет, его работоспособность вновь и вновь проверяют на специальных стендах. Скажем, в Центральном институте авиационного моторостроения — ЦИАМе им. П.И. Баранова— есть специальные комплексы, где можно испытывать двигатели не только в наземных условиях, но и создавая с помощью эксгаустеров (в отличие от компрессоров они не нагнетают воздух, а, напротив, разрежают его, понижая давление) атмосферные условия больших высот. Здесь же моделируются и условия полета в неких экстремальных условиях, например, проверяют, не захлебнется ли экспериментальный двигатель, если самолет попадает в тропический ливень, град и т.д.

И лишь после серии испытаний на земле, убедившись, что новый двигатель вполне работоспособен, его вывозят на аэродром и прикрепляют к самолету-лаборатории. У него кроме экспериментального есть свои надежные и проверенные двигатели. Они позволят самолету-лаборатории взлететь, выведут на нужный режим, и лишь после этого на определенный срок будет включен экспериментальный мотор. Все особенности его работы зафиксируют на лентах самописцев и в памяти бортовых компьютеров, а потом на земле специалисты дадут заключение, что нужно подправить, чтобы двигатель работал еще лучше. И так шаг за шагом его научат летать.

Есть и еще одна забота у подобных летающих лабораторий. Некоторые типы двигателей в принципе неспособны начать работу на стоянке. Таков, как мы уже говорили, ПВРД — прямоточный воздушный реактивный двигатель. Если в обычном ТРД — турбореактивном двигателе — воздух в камеру сгорания нагнетается специальным компрессором, вращаемым турбиной, то в ПВРД сжатие воздушного потока происходит из-за скорости движения двигателя. Но для этого его, естественно, надо предварительно разогнать. Используют для этого обычно те же ТРД. Они поднимают самолет с аэродрома, разгоняют его до скорости порядка 1 тыс. км/ч, а после этого включают «прямоточку», позволяющую повысить скорость еще в 6—7 раз.

Идею такого двигателя высказал еще в 1907 году французский инженер Рене Лоран, а построили его впервые советские специалисты. Сначала, в 1929 году, тогда еще будущий академик Б.С. Стечкин разработал теорию воздушно-реактивного двигателя, а четыре года спустя в ГИРДе (группе изучения реактивного движения) впервые испытали ПВРД на практике.

Поскольку соответствующих стендов тогда еще не было, конструкторы под руководством Ю.А. Победоносцова придумали такую хитрость. Двигатель разместили в корпусе снаряда 76-миллиметровой пушки и выстрелили им. Испытания показали, что снаряды с ПВРД оказались способны развить скорость более 2 М (М, напоминаем еще раз, — скорость звука в воздухе); быстрее в то время не летал ни один аппарат в мире. Тогда же гирдовцы построили и испытали модель пульсирующего ПВРД — он был экономичнее.

В 40-е годы работы по «прямоточке» велись специалистами ЦИАМа. Ими оснащались некоторые типы экспериментальных летательных аппаратов, в том числе и ракеты. Однако вскоре выяснилось, что на скоростях более 7 М такие двигатели малоэффективны: воздух, попадавший в воздухозаборник, сильно нагревался из-за трения. Кроме того, при таких температурах начинали диссоциировать, распадаться даже молекулы продуктов сгорания, поглощая энергию, и тяга двигателя падала.

Тогда в 1957 году участник первых испытаний Е.С. Щетинков изобрел ГПВРД — гиперзвуковой реактивный двигатель. Благодаря использованию расширяющегося сопла воздушный поток в нем не тормозится, а ускоряется даже на больших скоростях движения.

Несколько позднее за рубежом была предложена схема ГПВРД с внешним горением. У самолета с таким двигателем топливо горит прямо в воздухе, под фюзеляжем летательного аппарата. Тяга при этом, правда, несколько снижается, зато налицо выигрыш в весе и габаритах двигателя.

И вот совсем недавно, в начале 90-х годов, наши конструкторы разработали и испытали ГПВРД нового типа — двухрежимный. При скорости порядка 3 М он работал как обычная «прямоточка», а после 5—6 М как гиперзвуковая.

После стендовых испытаний, проводившихся в ЦИАМе, в качестве гиперзвуковой летающей лаборатории (ГЛЛ) было решено использовать снимаемую с вооружения зенитную ракету. Разгон ГЛЛ осуществлялся с помощью обычных пороховых ускорителей, а затем начинал работать ГПВРД.

Наши специалисты приложили немало выдумки и труда, чтобы испытания состоялись. И наградой за их упорный труд был заслуженный успех — ГПВРД развил скорость 6200 км/ч (чуть больше 5,2 М). Стало понятно, что уже в ближайшие десятилетия появятся первые гиперзвуковые летательные аппараты, использующие в качестве топлива не традиционный керосин, а куда более экологичный водород.

Полеты за облаками

Реактивные пассажирские

Как уже говорилось, первые реактивные самолеты были боевыми. Сначала во всем мире строили лишь истребители и бомбардировщики. Однако в середине 50-х годов А.Н. Туполев предложил переделать бомбардировщик Ту-16 в реактивный пассажирский самолет Ту-104. Это был революционный по тому времени шаг, тем не менее Андрей Николаевич добился своего. Под его руководством был заново спроектирован фюзеляж, вмещавший в зависимости от модификации самолета, дальности полета, на которую он рассчитывался, от 50 до 115 пассажиров. Впервые в отечественной практике и экипаж, и пассажиры могли свободно дышать на высотах 10 км и более в полностью герметизированной кабине.



Самолет Ту-104

Было предложено и немало других новшеств. Скажем, носок самолетного крыла обогревался горячим воздухом от компрессора двигателя — это позволяло не бояться обледенения при полетах на большой высоте, где, как известно, постоянно царит мороз.



Самолет Ту-114

В 1956 году Ту-104 был успешно испытан и стал первым в мире серийным пассажирским реактивным самолетом. Два года спустя на Всемирной выставке в Брюсселе самолету и его конструктору была присуждена золотая медаль. На нем было установлено 26 мировых рекордов.

После этого туполевцами было построено еще несколько пассажирских самолетов с турбореактивными и турбовинтовыми двигателями. Самые известные из них— Ту-110, Ту-124, Ту-134 и другие. Особняком в этом ряду стоит Ту-114— самолет-гигант с четырьмя турбовинтовыми двигателями, построенный на базе стратегического бомбардировщика Ту-95. Он мог без посадки преодолевать громадные расстояния, перевозя своих

220 пассажиров из Москвы в Дели, Токио, Га-ванну, Нью-Йорк... Самолету была уготована долгая славная жизнь — он был снят с линий лишь в 1976 году, прослужив верой и правдой около 20 лет, установив 32 мировых рекорда.

Одиссея ТУ-144

В начале 70-х годов КБ Туполева приступает к созданию сверхзвукового пассажирского самолета Ту-144. Работы над ним ведутся в большой спешке, поскольку стало известно, что над подобной же машиной работают совместно английские и французские конструкторы.

Внешне иностранный «Конкорд> и наш Ту-144 похожи, как родные братья. Оба самолета выполнены по схеме «бесхвостка», имеют по четыре двигателя, треугольное крыло переменной стреловидности — в передней части угол отклонения больше... Это в общем-то понятно: одинаковые условия задачи диктовали и схожие ответы. Да и разведка, наверное, тоже поработала...



Но вот судьба у самолетов оказалась разной. А все потому, что, впервые встретившись воочию на международном авиасалоне в Ле-Бурже под Парижем, самолеты показали весьма разные результаты. Когда свой демонстрационный полет закончил «Конкорд», в небо поднялся Ту-144. Начав исполнение своей показательной программы, он вдруг резко спикировал и рухнул на пригород французской столицы...

Что именно и почему произошло, официально так никто и не удосужился нам рассказать до сих пор. Версии же случившегося таковы. Согласно одной из них в зоне пилотирования почему-то оказался французский истребитель «Мираж». Чтобы избежать столкновения с ним, наши пилоты предприняли резкий маневр. Но высоты для его выполнения оказалось недостаточно и... Версия вторая: получив приказ от высокого чина, находившегося на борту, пилоты пытались продемонстрировать «нечто этакое», чтобы удивить видавшую виды публику. Но маневр машины на небольшой высоте оказался неудачным, конструкция не выдержала резких перегрузок...

В общем, так или иначе, дорога на международный рынок Ту-144 оказалась закрытой. Попытка наладить эксплуатацию на местных линиях тоже оказалась неудачной. Еще после двух аварий около десятка остроносых машин начиная с 1978 года оказались «на приколе».

Лишь, совсем недавно одному Ту-144 удалось вернуться в небо. В рамках российско-американского проекта создания сверхзвукового самолета нового поколения уцелевший Ту был модернизирован и превращен в летающую лабораторию.

Потомки «Конкорда»

Так обстоят дела на сегодняшний день. Исследователи ведут эксперименты, в результате которых и будут сформулированы главные требования к двигателю будущего. На основе таких двигателей затем будет спроектирован и сам сверхзвуковой лайнер второго поколения. Поднявшись в небо XXI века, он сможет перевозить свыше 300 пассажиров со скоростью более 2 тыс. км/ч, обещают нам конструкторы.

Такой громоздкий и дорогой проект не под силу осуществить какой-либо одной стране. Поэтому данную разработку и ведут совместными усилиями — вместе теперь работают авиаконструкторы России, США и Европы. По их мнению, потребность в сверхзвуковых пассажирских авиалайнерах второго поколения может достигнуть 1 тыс. машин.



Сверхзвуковой «Конкорд»

Однако какими должны быть эти машины? Уже сегодня понятно, что далеко не все они должны вмещать по нескольку сотен пассажиров. Как показывает 20-летний опыт эксплуатации «Конкорда», зачастую он летает полупустым — для очень многих пассажиров выигрыш в 3—4 часа при трансатлантическом перелете не является таким уж существенным. Зато платить за это приходится чуть ли не вдвое дороже...

Тем же, кто действительно спешит, у кого время на вес золота, — конструкторы могут предложить сверхзвуковые самолеты бизнес-класса, или, как их еще называют, служебные авиалайнеры. Их типичным представителем может, например, послужить авиалайнер «Гольфстрим», над которым совместно работают американские и российские специалисты из ОКБ имени П.О. Сухого. Этот самолет вмещает не сотни, а всего 30—40 пассажиров, которых он способен доставить, скажем, из Москвы в Токио или из Лондона в Нью-Йорк со скоростью не менее 2 тыс. км/ч всего за 3—4 часа. Такой самолет намного тише и экономичнее полномасштабного авиалайнера, на него можно поставить менее мощные, а значит, и более экономичные двигатели.

Впрочем, это вовсе не значит, что на самолетах типа Ту-144 окончательно поставлен крест. В том же АНТК имени А.Н. Туполева сегодня ведутся работы над проектом Ту-244. По оценкам генерального директора АНТК

В.П. Климова, экспериментальный образец новой машины может быть построен уже к 2000 году; все необходимые конструкторские проработки для этого имеются, нужны лишь соответствующие средства (порядка 500 млрд долларов).

Понимая, что страна наша таких средств выделить сегодня не может, туполевцы ищут возможности международной кооперации и ... продолжают конструкторские изыскания. В XXI веке наверняка возникнет надобность не только в сверх-, но и гиперзвуковых самолетах.

Для их сооружения понадобятся не только новые конструкционные материалы, но и новые конструкторские решения. Скажем, по расчетам, на некоторых участках полета такого летательного аппарата кромки крыльев и его нос могут разогреться до температуры порядка 2500 °С. От такого жара не спасут уже и титановые сплавы.

«Для преодоления теплового барьера нужен новый подход, — полагают конструкторы. — Необходимо создавать активные системы охлаждения...»

Поскольку для таких аппаратов будут использовать в качестве топлива сжиженный водород, то его перед тем, как отправить в двигатель, прогонят по системе трубопроводов, расположенных в особо нагревающихся частях конструкции. Жидкое топливо нагреется, что само по себе неплохо, а заодно и отберет лишнее тепло у обшивки.

Такие вот горизонты авиации XXI века открывают перед нами конструкторы.

Геркулесы неба

О самолетах пишут часто и много. Но обычно публикации посвящены либо новым пассажирским авиалайнерам, либо перспективной военной технике. А вот транспортники — эти трудяги неба — почему-то чаще всего остаются в тени. Давайте восстановим справедливость.

Детство крылатых грузовиков

Авиация стала транспортной, считай, с самого своего рождения. Уже в первом полете Орвилл Райт имел в карманах кое-какую мелочевку, пошедшую потом на сувениры.

Да и чуть позже, когда многоместным считался аэроплан, поднимавший в небо двух человек, летчики частенько вместо пассажира норовили взять с собой какой-нибудь груз. Во времена военные то были бомбы или иное вооружение, в мирное время самолеты чаще всего возили почту. О том, каких трудов и героизма стоило доставлять почту в начале 30-х годов нашего века, прекрасно описано хотя бы в книге французского писателя и летчика Антуана де Сент-Экзюпери «Земля людей». Взлетев на маленьком, не очень надежном аппарате, пилот зачастую оказывался один на один с небом, обрушивающим на него то грозу, то туман, то еще какую напасть. Когда скисал ненадежный мотор, пилот шел на вынужденную посадку там, где заставала его авария — в горах или в пустыне. И если оставался жив, принимался за ремонт машины, а когда не удавалось и это, терпеливо ждал, кто первым поспеет к его машине — его товарищи или кочевые племена, зачастую не признававшие законов цивилизованного мира...



Антуан де Сент-Экзюпери. «Земля людей»

Со временем моторы становились все мощнее и надежнее, сами самолеты — вместительнее, комфортабельнее. Стали открываться первые регулярные авиалинии, и грузовые перевозки отошли на второй план — авиалайнеры перевозили багаж пассажиров, почту и иные грузы заодно с людьми.

Однако постепенно выяснилось, что люди все-таки не мешки с картошкой; и то и другое лучше возить на специализированном транспорте. И конструкторы, уже на стадии проектирования, наряду с военными и пассажирскими модификациями того или иного летательного аппарата стали предусматривать и транспортный вариант.

Первый самолет, предназначенный для военно-транспортных и десантных операций, был построен в Германии. То был Ю-52/ЗМ, созданный в 1932 году знаменитой фирмой «Юнкере».

Во второй мировой войне кроме него широко использовались разработанные американцами в конце 30-х годов легкие военно-транспортные самолеты С-46 и С-47.

После войны основные работы по военнотранспортной авиации стали проводиться за океаном. В конце 40 — начале 50-х годов здесь

наряду с легкими начали строить и средние военно-транспортные аппараты. Фирма «Дуглас» выпустила С-123 и С-124. В дальнейшем основным разработчиком грузовых самолетов стала фирма «Локхид». Ею выпускались как средние транспортники С-130 (1954), так и тяжелые — С-141 (1963), С-5А(1968) и С-5В (1958).

Развивалась военно-транспортная авиация и в других странах — в Великобритании, Франции, Италии и, конечно, в СССР. Но о ней, видимо, надо рассказывать особо. Здесь же разговор лишь о гражданских транспортных самолетах.

До начала 40-х годов грузовые перевозки осуществлялись на пассажирских, в крайнем случае на грузопассажирских самолетах, имевших на борту грузовые люки больших размеров. Первые специализированные грузовозы с хвостовыми люками были построены в годы второй мировой войны и сразу после ее окончания. В течение 1944—1945 годов в США взлетел С-82, в Германии— «Арадо-232», в Великобритании — «Бристоль-170».

Первый советский специализированный грузовой самолет Ан-8 был создан в 1956 году. Затем был построен Ан-12, а в 1965 году — первый в мире широкофюзеляжный гражданский транспортный самолет Ан-22 «Антей». Вслед за ними последовали Ан-24Т, Ан-26, Ан-32 и Ан-28. Наша страна стала выходить на передовые рубежи по созданию воздушных грузовиков.




Транспортный самолет Ан-24

В 60—70-е годы окончательно определился типичный облик грузовоза. Это моноплан с высоким расположением крыла, на котором располагаются 2 (или 4, а то даже 6) турбовинтовых, реже турбореактивных двигателя. В фюзеляже обязательно имеется обширный хвостовой (или носовой) грузолюк с откидывающейся рампой, позволяющей втаскивать в кабину тяжелые контейнеры, агрегаты и машины. с помощью тягачей. Пол грузовой кабины отличается повышенной прочностью. Нередко на ней располагаются транспортные приспособления типа конвейера, а у потолка, как правило, имеется кран-балка. Шасси весьма мощное, обеспечивающее взлет и посадку на грунтовых полосах. И наконец, навигационное и эксплуатационное оборудование рассчитано на полную автономность, на то, что самолет придется эксплуатировать с глубинных, мало оборудованных аэродромов.

Именно таковы типичные черты Ил-76 ТД и Ан-124 «Руслан», которые и поныне перевозят львиную долю грузов на территории бывшего СССР.

Транспортный самолет Ил-76ТД, разработанный КБ им. С.В. Ильюшина под руководством генерального конструктора академика Г.В. Новожилова, предназначен для перевозок на воздушных трассах грузов общим весом до 47 т с крейсерской скоростью 750—800 км/ч на расстояние до 5 тыс. км. Оптимальная высота полета— 9—12 км.

Большие размеры грузовой кабины (3,4 х 3,46 х 20 м) позволяют использовать любые типы авиационных и автомобильных контейнеров, поддонов как отечественного, так и зарубежного производства. Самолет оборудован бортовыми лебедками, крепящимися к полу роликовыми дорожками, имеет подвижную рампу-подъемник. Все это позволяет экипажу производить погрузку-разгрузку собственными силами.




Транспортный самолет Ан-124 «Руслан»

Многоколесное шасси повышенной проходимости в сочетании с хорошей механизацией крыла и мощными двигателями самолета дает возможность взлетать даже с укороченных грунтовых полос. А навигационное оборудование позволяет экипажу успешно летать как днем, так и ночью, в самых сложных метеоусловиях.

Накопив за 20 лет эксплуатации Ил-76 ТД необходимый опыт, в апреле 1997 года ильюшинцы выкатили на всеобщее обозрение новый, уже дальнемагистральный грузовой самолет Ил-96 Т. Он способен поднять в воздух сразу 92 т груза (в том числе и морские контейнеры), преодолевать без посадки до 11 тыс. км. Поскольку самолет на 8,5 м длиннее уже освоившего пассажирские трассы Ил-96—300, то места в грузовой кабине хватит для самого габаритного груза.

Муки «Антонов»

Долгое время единственным СКБ страны, специализировавшимся на проектировании именно грузовых самолетов, была фирма им. О.К. Антонова, которая базируется на Украине, близ Киева.

Вспомните хотя бы, какой фурор произвел в 1985 году построенный под руководством генерального конструктора П.В. Балабуева самолет Ан-124 «Руслан». Его размеры — размах крыла 73,3 м, длина фюзеляжа 69,1 м и высота по килю 20,78 м — даже специалистам казались фантастическими. Поднять же он мог 150 т, а это, между прочим, 60 автомобилей типа «Жигули».

Грузовая кабина оснащена двумя мостовыми кранами, двумя лебедками, рольганговым и швартовочным оборудованием. Кроме того, при погрузке-выгрузке самолет может ложиться на грунт, как бы поджимая под себя шасси. При этом впервые в отечественной практике все операции могли производиться как через хвостовой люк, так и со стороны пилотской кабины, которая при этом откидывается вверх.

«Руслан» имеет скорость 800—850 км/ч; в рекордном полете одолел без посадки 20 151 км. Другой рекордный показатель: груз весом 171 219 кг был поднят на высоту 10 750 м.




Самолет Ан-225 «Мрия» с экспериментальным космическим аппаратом на «спине»

Как и другие грузовозы, Ан-124 способен взлетать и садиться на грунтовые полосы (и это при общем весе 405 т!), имеет высоконадежные системы управления, компьютерной навигации, автоматического пилотирования...

Первые рабочие рейсы Ан-124 выполнил в 1986 году. А уже два года спустя появилась еще одна громадина— АН-225 «Мрия». Сохранив примерно те же летно-технические качества, гигант способен принять на борт уже 250 т груза; общий взлетный вес при этом достигает 600 т! Причем нагрузка может размещаться не только в кабине, но и прямо на фюзеляже. Это «Мрия» неоднократно демонстрировала на международных авиасалонах, совершая полеты с «Бураном» на «спине».

В январе 1994 года из сборочного цеха Киевского авиационного завода вышел еще один новый аппарат — Ан-70. Эта машина рассчитана на замену уже морально и физически устаревших Ан-12 и Ан-22, производство которых прекращено соответственно в 1972 и 1975 годах. Самолет может транспортировать 30 т груза на расстояние до 5 тыс. км со скоростью 750 км/ч.



Самолет Ан-70

Несмотря на то что внешне он напоминает своего предшественника Ан-12, данный летательный аппарат выполнен по новой технологии с широким применением композитов. Крыло большого удлинения снабжено мощной механизацией. Вместо обычных пропеллеров на двигателях установлены винтовентиляторы, которые резко увеличивают подъемную силу на взлете и посадке, давая возможность эксплуатировать самолет на аэродромах длиной 600—800 м, а также позволяет на треть экономить топливо.

Герметичная кабина позволяет перевозить практически любую гражданскую и военную технику. Использование современной авионики с многофункциональными цветными индикаторами позволило вдвое уменьшить экипаж.

К сожалению, судьба самолета складывается не очень счастливо. Первый экземпляр опытного Ан-70 потерпел катастрофу во время четвертого испытательного полета. В настоящее время изготовлен второй самолет, испытания продолжаются, однако перспективы остаются туманными. Дело, в том, что самой Украине такой самолет, как и его старшие собратья Ан-124 и Ан-225, практически не нужен: размеры страны не позволят использовать авиацию «на полную катушку». Таким образом, украинские конструкторы по-прежнему надеются на российский рынок.

Дайте мне «ТУ» — рабочую лошадку...

На смену вылетавшим уже свой ресурс Ан-12 и Ан-26 намерены выдвинуть продукцию и сотрудники старейшей в России авиафирмы — АНТК им. А.Н. Туполева. Ныне они предлагают семейство из трех «грузовиков» для перекрытия всего диапазона перевозок на местных (Ту-130), региональных (Ту-230) и среднемагистральных (Ту-330) авиалиниях.

Самолеты третьего поколения должны в полной мере использовать опыт, накопленный при конструировании пассажирских самолетов. В качестве отправных точек были взяты пассажирские Ту-204, успешно прошедший летные испытания, и Ту-334, предназначенный для замены устаревающего Ту-134. Лучшие технические решения были применены и в конструкциях грузовозов.



Самолет Ту-334

При производстве Ту-230 были использованы 3/4 агрегатов от самолета Ту-334, сохранена полная преемственность многих систем. Единственное, что пришлось радикально изменить, — расположение двигателей Д-436Т-2. Для транспортной машины оставить моторы в хвостовой части нельзя: нарушается центровка, а кроме того, фюзеляж, в котором сделан вырез под грузовую рампу, существенно ослабляется. Поэтому двигатели перенесли на крыло, расположив их на пилонах. Таким образом, Ту-230 имеет классическую компоновку «грузовика».

«Аэрокит», «Геракл» и другие

Таково сегодняшнее положение российских и украинских авиастроителей, занимающихся проблемами воздушного грузового транспорта. Ну а каковы перспективы? Что делается в дальнем зарубежье?

Про огромный грузовой самолет М-90, проектируемый в ОКБ им. В.М. Мясищева, пишут, что таких машин еще не было. Разработаны два варианта его конструкции. Один, грузоподъемностью 250 т, с шестью двигателями. А если этого покажется мало, в ход может пойти и еще более тяжелый грузовоз — на 400 т груза с восемью двигателями НК-63 разработки Н.Д. Кузнецова.

Причем груз будет размещаться не в фюзеляже, а в подвесном обтекаемом контейнере. При посадке М-90 самолет не разгружают, а просто отцепляют контейнер, а вместо него цепляют другой, уже загруженный. И можно снова отправляться в путь.

Эта же идея эксплуатируется и в конструкции еще одного перспективного самолета-тяжеловоза. Разработчики— сотрудники НПО «Молния» — назвали его «Гераклом» в честь мифического героя. Его съемный модуль рассчитан на 450 т груза или 120 пассажиров.

Из зарубежных машин есть смысл поговорить прежде всего о С-17 фирмы «Макдон-нел—Дуглас». Моноплан с высоким расположением крыла оснащен не турбовинтовыми, как обычно, а четырьмя турбореактивными двигателями. Хорошая механизация крыла, отличная энерговооруженность, возможность базироваться на грунтовых аэродромах — все это говорит, что самолет вполне способен выполнять возложенные на него задачи.

В Европе же всеобщее внимание привлечено к большегрузному самолету AST (Airbus Super Transporter), который с марта 1995 года начал перевозить особо габаритные грузы, придя на смену «летающему киту», который осуществлял подобные перевозки в прошлом десятилетии.



В полете — «Аэрокит»

AST имеет взлетную массу 150 т, широкий фюзеляж с внутренним диаметром 7 м, три киля (основной и два вспомогательных) и возможность перевозить на расстояние до 2 тыс. км груз массой 42 т.

Его характерной особенностью является нижнее расположение крыла относительно фюзеляжа. Это обусловлено тем, что AST представляет собой не серийный грузовоз, а штучную переделку аэробуса А300—600R. Его фюзеляж нарастили вверх, что и придало самолету некоторое внешнее сходство с китом или дельфином. Говоря иначе, аэробус попросту возит грузы на «спине», но в отличие от «Мрии» здесь нагрузка прикрыта обтекателем.

Говорят, в начале будущего столетия американцы намерены превзойти показатели Ан-225, создав гигантский гидросамолет для перевозки сверхтяжелых и габаритных грузов.

Их называют — «инолеты»

А как же все-таки с «тарелками»?

Каждый человек в мире, наверное, слышал сегодня об НЛО, или попросту «летающих тарелках». Ну а что, интересно, думают о возможности их создания профессиональные изобретатели и конструкторы?

Аппарат, который смело можно отнести к категории «летающих тарелок», создал не столь давно бывший профессор аэронавтики, а ныне изобретатель и бизнесмен Пол Моллер. Этот аппарат, названный «Волонтер-М200Ф», имеет 6 двигателей с винтами, расположенных в кольцевых каналах по периметру «тарелки». В середине же сидит пилот, управляющий машиной. Аппарат может летать на высоте нескольких километров со скоростью порядка 250 км/ч.



«Волонтер-М200Ф»

Следующий логический шаг сделали наши конструкторы. Один из них — тюменский преподаватель, бизнесмен и изобретатель А. И. Филимонов. Суть его разработки такова. Сразу же за пилотской кабиной фюзеляж резко расширяется, обтекая кольцевым каналом вертолетный ротор. А в районе хвоста расположены маршевые двигатели с самолетными пропеллерами. У кольца сразу несколько назначений. При крейсерском полете оно прикрывает ротор, обеспечивая лучшую обтекаемость, а значит, и экономичность. Начинается снижение — раскрутившийся винт и струйные рули обеспечивают хорошую устойчивость. Наконец, при посадке из кольца выдвигается резиновая «юбка», позволяющая мягко приземляться на «брюхо», точнее, на «воздушную подушку». Последняя, кстати, также позволяет передвигаться над самой поверхностью как по воде, так и по суше, преодолевая неровности до 0,5 м высотой.



Дальнейшее развитие подобной идеи предложили конструкторы концерна «ЭКИП», работающие под руководством Л.Н. Щукина. И хотя форма «ЭКИПА» смахивает на НЛО, ничего фантастического в самой конструкции нет. Это, по существу, летающее крыло малого удлинения с очень толстым профилем. Внутри этого крыла и размещается полезная нагрузка, позволяющая избежать привычного фюзеляжа. Шасси на воздушной подушке дает возможность взлетать практически с любой поверхности, а уникальные аэродинамические возможности крыла с системой отсоса пограничного слоя обеспечивают почти вертикальный взлет. Первый «ЭКИП» уже летает, на очереди последующие модификации — более масштабные и грузоподъемные.

Продолжают работу и зарубежные изобретатели. Так, скажем, недавно авиационный инженер из США Джордж Ноймайер взял патент на еще одну конструкцию «летающей тарелки». Она представляет собой диск диаметром 60 м. В центре его толщина 15 м, а на периферии сходит на нет, образуя острую кромку. Сверху вся поверхность диска покрыта солнечными батареями. А в нижней части прорезаны иллюминаторы для 800 пассажиров, сидящих в четырех рядах по окружности летательного аппарата. Верхняя часть диска заполнена легким гелием для создания дополнительной подъемной силы. Под ним на поворотных шарнирах смонтированы 8 турбореактивных двигателей. Они могут поднять аппарат в воздух вертикально, а затем придать ему поступательное движение. При этом дополнительная подъемная сила создается самим диском, представляющим собой аэродинамическую поверхность. Таким образом обеспечивается запас мощности, позволяющий аппарату продолжать полет, даже если половина его двигателей вдруг выйдет из строя.

Впрочем, и при вынужденной посадке на воду при трансатлантическом рейсе ничего особо страшного нет. Аппарат имеет положительную плавучесть и может оставаться на поверхности океана сколько угодно времени; во всяком случае, до тех пор, пока не придет помощь или экипаж самостоятельно не устранит поломку.

Так конструкция выглядит на бумаге. А что покажет жизнь? Сам изобретатель настроен довольно скептически.

«После братьев Райт лишь одному человеку удалось ввести в практику США новый вид летательного аппарата, — говорит он. — То был. Игорь Сикорский, запатентовавший в 1943 году свой проект геликоптера. Хорошо, если я буду вторым...»

Хотелось бы на это надеяться. Однако до сих пор аэродинамические характеристики «дисков» и «тарелок» все же оказывались хуже, чем традиционных летательных аппаратов. Поэтому дело и не двигалось дальше экспериментов. Но опыты все же продолжаются...

Начиная с 1992 года ВВС США провели уже 135 испытательных полетов малозаметного низкоскоростного самолета-разведчика, напоминающего по форме хлебный батон с крылом. (Примерно так же выглядит, как уже говорилось, и наш «ЭКИП».) С той лишь разницей, что «Тэсит Блю» откровенно предназначен для военных целей, а посему представляет собой первый летательный аппарат, на котором малозаметности в лучах радара удалось добиться посредством плавных криволинейных обводов.

Странная же форма летательного аппарата, созданного конструкторами фирмы «Норд-роп», обусловлена прежде всего большой РЛС бокового обзора, занимающей практически весь фюзеляж этого самолета. Впрочем, летал он все же настолько плохо, что его испытания, по существу, так и не были доведены до конца, основные силы были переключены на доводку других конструкций.

В их числе, например, и экспериментальный самолет «Дакстар» («Темная звезда»), который еще больше походит на «летающую тарелку», к которой еще зачем-то добавлены два крыла.

Как и его предшественники, этот летательный аппарат предназначен прежде всего для целей разведки. Испытания этого детища конструкторов двух фирм, «Локхид Мартин» и «Боинг», оказались не очень удачными. Уже во втором полете на 10-й секунде самолет потерпел аварию, и полеты пришлось отложить почти на полгода, пока не разобрались в ее причинах.

Теперь он снова летает, но сказать что-либо определенное о его достоинствах пока трудно.

Гибриды ищут работу

Наиболее рациональным способом доставки пассажиров из одного города в другой на расстояние в несколько сотен, а то и тысяч километров уже известный нам П. Моллер считает «воздушный автомобиль». Так он называет гибридный вид транспорта, который будет сочетать в себе качества спортивного автомобиля и истребителя.

Для осуществления своей мечты профессор уже создал серию летающих гибридов. Как уже говорилось, несколько лет назад он прославился тем, что создал точную копию «летающей тарелки». Этот аппарат, названный «Волонтер-М200Ф», Моллер использует исключительно в демонстрационных целях; он просто хотел показать, что такая форма летательных аппаратов вполне реальна. Подъемную силу «блюдцу» создают четыре небольших двигателя с пропеллерами, заключенными в кольцевые шахты.

Следующая модель — «Мерлин-300» — уже ближе к «воздушному автомобилю». По внешнему виду летательный аппарат напоминает нечто среднее между автомобилем и самолетом. Шесть двигателей двухместной машины обеспечивают исключительную надежность полета, поскольку отказ даже трех моторов сразу позволяет все-таки совершить благополучную посадку.

Несмотря на необычность своих форм, «М-300» имеет вполне приличные летные характеристики. Он может пролететь с одной заправки около 1500 км со средней скоростью 250 км/ч на высоте до 9 км. В немалой степени тому способствуют экономичные двигатели, потребляющие всего литр дизельного топлива на 7 км пути.

Однако наилучшим из своих творений профессор считает «Волонтер-М400». Он представляет собой гибрид вертолета, самолета, автомобиля и существует пока что в виде чертежей и моделей. До скорости 400 км/ч крыло-ротор этого летающего гибрида будет вращаться по-вертолетному, обеспечивая вертикальный взлет и посадку. При наборе достаточной высоты и превышении стартовой скорости ротор стопорится, и лопасти превращаются в неподвижные аэродинамические поверхности, подобные крыльям. Полет продолжается за счет тяги пропеллеров, установленных на концах ротора и заключенных в кольцевые кожухи.



«Летающий автомобиль»

«Двадцать лет жизни я отдал этим моделям, их расчету и испытаниям в аэродинамической трубе, — говорит профессор. — Я полагаю, что время не потрачено даром. К 2010 году подобные гибриды станут рядовым средством городского транспорта...»

Оптимизм профессора разделяет и еще один изобретатель «летающих автомобилей». Подобно Моллеру, Фред Баркер является президентом собственной компании «Флайт инновешн», расположенной в городке Арлингтон, штат Вашингтон. Этой фирмой разработан и построен двухместный гибрид аппарата с вертикальным взлетом и посадкой. По расчетам изобретателя, три турбовентиляторных двигателя смогут нести полезную нагрузку до 270 кг на дальность 400 км со скоростью 136 км/ч. Сам аппарат без двигателей благодаря использованию композитных материалов весит всего 90 кг.

Кроме того, «Скай коммютер» — так назвал изобретатель свой аппарат — является вместилищем разного рода новшеств. Так, для одной из модификаций этого аппарата изобретатель использовал вместо реактивных турбин электродвигатели. Энергия для них вырабатывалась двумя генераторами, приводившимися в действие турбиной фирмы «Тесслер». Эта турбина эффективнее обычной авиационной благодаря плоским лопаткам, применяемым вместо стандартных, изогнутых. Такие лопатки не только дешевле в изготовлении, но и могут быть сделаны из более жаропрочных сплавов. Поэтому рабочая температура в турбине приближается к 2 тыс. градусов, что дает возможность достичь суммарного КПД силовой установки около 85 %!

Автоматизированная система управления преобразует эволюции штурвала и педалей, производимые пилотом, в серию электрических сигналов. Эти сигналы контролируются компьютером, который не допускает сваливания машины в штопор и другие критические ситуации. Одновременно ЭВМ контролирует скорость вращения ротора, выходную мощность турбин и т. д. Если все же в полете возникают неразрешимые с точки зрения компьютера проблемы, он вводит в действие парашютные спасательные системы.

Баркер надеется, что в скором будущем ему удастся наладить серийное производство своего летательного аппарата и получить разрешение на продажу его в виде конструкторского набора для самостоятельной сборки. Стоимость такого набора составит около 50 тыс. долларов.

Ну а что же наши конструкторы? Неужто довольствуются лишь оформлением патентов на свои проекты?.. Нет, оказывается, и у нас есть изобретатели, продвинувшиеся несколько дальше оформления приоритетных заявок.

Один из них — генеральный директор фирмы «Взлет» кандидат технических наук И.Н. Колпакчиев.

«Вам не кажется, что пилот в кабине летательного аппарата порою бывает лишним? — рассуждает он. И поясняет свою мысль так: — Обратите как-нибудь внимание, скажем, на работу пилота сельскохозяйственной авиации. То взлет, то посадка... Пыль, жара, в кабине такое амбре от ядохимикатов, что впору в противогазе работать. Летчик быстро утомляется, а это может привести к аварии...»

Для таких вот работ Колпакчиев и сконструировал свой ДПЛА — дистанционно-пилотируемый летательный аппарат.

Представьте себе небольшую конструкцию, имеющую форму обтекаемого диска. (Да-да, мы снова возвращаемся к пресловутой «летающей тарелке», но уже в новом качестве. Тем более что «тарелка» эта не круглая, а вытянутая, с прямоугольными сторонами и скругленными углами.)

«Стеклопластиковая оболочка крепится к силовому корпусу, — поясняет изобретатель. — Внутри четыре электровинтовых модуля, которые обеспечивают достаточную подъемную силу...»

Тут надо, наверное, сказать хоть несколько слов о самих электровинтовых модулях. В свое время Колпакчиев обратил внимание на такой физический эффект. Если молекулы воздуха, приобретая определенный заряд, взаимодействуют с аналогично заряженным острием, то по закону Кулона между ними происходит интенсивное отталкивание.

Если такими положительно заряженными остриями, а точнее, кромками будут концы пропеллера, заключенного внутри кольца из положительно же заряженной сетки, то такой многолопастный винт, по идее, должен крутиться. И он действительно крутится — Колпакчиев не раз проверял это на моделях.

Итак, четыре модуля создают подъемную силу, вектором которой управляют с помощью жалюзи. Поворачивая их створки над каждым из четырех каналов, отклоняя потоки воздуха, можно не только менять скорость подъема или горизонтального полета, но и осуществлять маневрирование.



Летающая платформа 303

Устойчивость же аппарату обеспечивает, кроме всего прочего, и эффект «летающей платформы». Вспомните, как в цирке жонглеры или клоуны бросают друг другу тарелки и шляпы. При броске достаточно подкрутить предмет, чтобы он приобрел устойчивость в полете. А если подкрутку осуществлять за счет маховика, вращающегося со скоростью 50 тыс. об/мин, то такой летательный аппарат — Колпакчиев называет его гироглайдером — вряд ли удастся опрокинуть.

Кроме того, маховик частично используется и в качестве рекуператора энергии. Когда платформа идет на снижение, освобождающаяся энергия запасается в гироскопе и затем может быть использована для динамичного подъема. На земле же, для облегчения взлета, маховик можно раскрутить от стационарного двигателя.

Подобные ДПЛА Колпакчиев предлагает использовать не только для сельхозработ, но и для патрулирования автотрасс, нефте- и газопроводов, для слежения за миграцией рыбы, предупреждения о пожарах, аэрофотосъемки, экологического контроля...

Загрузка...