Глава 8 ПОЛЕВЫЕ И ВЕГЕТАЦИОННЫЕ МЕТОДЫ АГРОХИМИЧЕСКИХ ИССЛЕДОВАНИЙ


8.1. ПОЛЕВЫЕ ОПЫТЫ С УДОБРЕНИЯМИ


Полевой опыт — исследования в полевой обстановке для установления действия удобрений на рост, развитие и урожайность культур, качество получаемой продукции и показатели плодородия почв. Это биологический метод изучения реакции возделываемых культур на испытываемые виды, дозы, сроки и способы применения удобрений в различных почвенно-климатических и агротехнических условиях, без точной характеристики которых результаты опыта не могут быть распространены на другие, аналогичные по указанным признакам территории. Эти обстоятельства обусловливают целесообразность и необходимость различного и обязательного сочетания в полевых опытах метеорологических, почвенных, биологических, химических, физико-химических и других методов исследований. Все это необходимо для определения типичности, точности, достоверности полученных результатов, возможности их распространения на другие территории, а также для квалифицированной трактовки результатов и выводов о потреблении растениями питательных элементов из почв и удобрений и баланса их, об изменении качества получаемой продукции и пищевого режима почв, агрономической, экономической и энергетической эффективности изучаемых факторов и т. д.

Результаты полевых опытов используют не только в науке, но и в практике для внедрения в сельскохозяйственное производство и определения объемов, видов и форм минеральных удобрений, мелиорантов и других химических средств, применяемых в сельском хозяйстве, а также машин и механизмов для качественного применения удобрений и мелиорантов.

По целям, задачам, месторасположению, длительности проведения, количеству изучаемых факторов и размеров делянок выделяют несколько видов полевого опыта.

Полевые (лабораторно-полевые) опыты. Проводят на специально выбранных участках (опытных полях) научно-исследовательских учреждений и хозяйств для углубленного познания действия отдельных факторов, приемов и комбинаций их на растения и почву с детальным разделением изучаемых условий и тесной взаимосвязью с другими методами исследований. Обобщенные результаты таких опытов могут предназначаться для крупного района, региона или зоны, а размеры делянок в зависимости от целей, задач, техники закладки и проведения исследований обычно составляют до 100—250 м2.

Производственные опыты. Проводят с малым числом (2—3) вариантов в отдельных полях и севооборотах хозяйств с целью уточнения в конкретных почвенно-агротехнических и организационно-хозяйственных условиях результатов полевых и лабораторнополевых опытов, для определения хозяйственной пригодности (агроэкономической эффективности) изучаемого (рекомендуемого) приема (условия). Размеры делянок здесь составляют от 500— 1000 м2 до 1—2 га и более, а результаты применимы для небольших районов с аналогичными природно-климатическими и организационно-хозяйственными условиями.

Многолетние опыты. Проводят в одном географическом пункте в течение 5—10 лет и более. При длительности 10—15 лет и более их называют стационарными. Цель их — учет действия изучаемых факторов при среднемноголетних и ежегодных погодных условиях; для качественного учета каждого метеоусловия (по влажности и температуре) их повторяемость должна быть не менее 3—4 лет. Многолетние опыты проводят при изучении влияния удобрений на растения и почву в севооборотах и в бессменных посевах: при учете действия и последействия удобрений и мелиорантов, при сравнительной эффективности отдельных видов (органические и минеральные, простые и комплексные, стандартные и новые), доз, форм, сроков и способов внесения удобрений, на одном или нескольких фонах, в сочетаниях и без других приемов (обработки почв, уходов за посевами и т. д.).

Однолетние опыты. Проводят ежегодно (даже при постоянной схеме) на новых участках, т. е. когда исследуемый фактор (условие) изучают только в течение одного вегетационного периода или действие изучаемого фактора не может быть длительным, например некорневая подкормка или обработка семян однолетних культур и т. д.

Однофакторные (простые) опыты. Содержат в схеме один изучаемый прием, условие или фактор на одном постоянном фоне.

Многофакторные (комплексные) опыты. Содержат в схеме два или более изучаемых приемов, условий или факторов разнокачественного (удобрения и пестициды, удобрения и орошение, удобрения и мелиоранты, удобрения, мелиоранты и пестициды и т. д.) или однокачественного (органические и минеральные удобрения в различных видах, комбинациях и т. д.) характера.

Единичные опыты. Проводят по разным схемам и программам в отдельных пунктах страны. Это большинство стационарных и длительных опытов научно-исследовательских учреждений и отдельные опыты в различных хозяйствах; последние нередко называют эпизодическими опытами.

Массовые (географические) опыты. Проводят по общей тематике, единым согласованным схемам и программам, допускающим обобщение полученных результатов с целью изучения влияния природных условий на эффективность того или иного приема, условия или фактора в пределах отдельных районов, областей, краев, регионов, зон и страны в целом для обоснованного планирования производства и распределения удобрений, мелиорантов, пестицидов и т. д.

Научно-методическое руководство Географической сетью опытов научно-исследовательских учреждений осуществляет ВИУА, а Агрохимслужбы Министерства сельского хозяйства РФ — ЦИ-НАО.

Основная задача Географической сети опытов — научное обоснование оптимальных доз, комбинаций, сроков и способов внесения удобрений и мелиорантов под отдельными культурами и в севооборотах по почвенно-климатическим зонам и административным регионам страны.

Основные задачи массовых опытов Агрохимслужбы — разработка рекомендаций и планов применения удобрений в хозяйствах и определение нормативов затрат удобрений на получение единицы прибавки урожая для уточнения потребности в удобрениях по культурам с учетом их размещения по регионам страны. Массовые опыты проводят сериями по 10 и более с единой схемой и программой в каждом, выделенном по ряду признаков (почва, история полей, культура, сорт, агротехника, метеоусловия) комплексе условий региона или зоны.

По размерам делянок опыты разделяют:

на производственные — от 500—1000 м2 до 1—2 га и более;

полевые — в эпизодических опытах с культурами сплошного посева 50—100 м2, с пропашными 100—200 м2, в многолетних опытах 200—400 м2;

мелкоделяночные — 10—20 м2;

микрополевые — от 200—300 см2 до 1—3 м2; на таких делянках обычно проводят опыты с применением стабильных изотопов (15N).

Существуют обязательные методические требования к качеству закладки и проведения полевого опыта любой модификации.

Принцип единственного различия или тождества всех условий, кроме изучаемого, предполагает выровненность природных условий и строгое соблюдение в каждом варианте всех агротехнических условий, принятых в схеме и программе опыта. Однако непродуманный и формальный подход к этому требованию может привести к неверным вариантам в схеме и, следовательно, к неправильным результатам. Например, эффективность фосфоритной муки нельзя сравнивать с эффективностью суперфосфата при внесении их весной перед посевом; хлориды и сульфаты калия нельзя сравнивать при возделывании чувствительных к хлору культур и т. д.

В длительных и стационарных опытах по истечении каждой ротации севооборота следует на основании полученных результатов вносить коррективы в схему и программу исследований, так как постоянство тождественных условий во времени нередко ограничивает действие (и взаимодействие) изучаемых факторов, приемов и условий.

При постановке новых многофакторных длительных опытов необходимо предусматривать введение параллельных повторных делянок (дубликатов) по важнейшим вариантам, чтобы в последующие ротации применять на них новые, более совершенные приемы.

Типичность, или репрезентативность, полевого опыта — это соответствие условий его проведения тем почвенно-климатическим (природным) и организационно-хозяйственным (агротехническим) условиям, в которых будут использовать его результаты.

Типичность почвы предполагает учет ее типа, подтипа и разности, гранулометрического состава, реакции, содержания гумуса, подвижных форм питательных элементов и других показателей, отражающих разнообразие и пестроту почвенного покрова. Для соблюдения типичности метеорологических условий опыт проводят в течение 3—5 лет и более, чтобы учесть изменение погоды в отдельные годы и в среднем за весь период.

В агротехническую типичность включают пригодность фона (или фонов: без навоза и с ним, без мелиорантов и с ними и т. д.) для изучаемых доз, видов и форм удобрений, подбор типичных культур и районированных сортов для зоны, лучших и типичных предшественников, строгое соблюдение зональной агротехники и т. д.

Точность количественных результатов (величина урожая, качество получаемой продукции, агрохимические показатели почвы, агрономическая, экономическая и энергетическая оценки эффективности и др.) — объективный показатель эффективности изучаемого в опыте приема, условия или их сочетаний.

Степень соответствия истинных и полученных в опыте результатов определяет точность и ошибки (погрешности) опыта, причем последние имеются в любом опыте по следующим причинам:

из-за ошибки в измерениях, обусловленной неточностью инструментов и приборов: чем меньше делянка, тем точнее должны быть измерения и взвешивания;

из-за пестроты почвенного покрова, рельефа и микрорельефа и неодинаковой предшествующей истории, с учетом которой определяют форму и размеры делянок, их расположение и число повторностей в опыте;

из-за случайных ошибок — огрехов и просевов при закладке, поврежденных растений и потерь урожая и др.; для их устранения применяют выбраковку делянок или выключку частей их, подвергшихся случайному повреждению.

Точность опыта определяют путем математической обработки результатов его методами вариационной статистики. В многолетних и стационарных опытах необходима большая точность, чем в краткосрочных и однолетних опытах.

Достоверность опыта тесно связана с его точностью, но не идентична ей. Различают достоверность опыта по существу, т. е. соответствие поставленным целям и задачам исследований, и достоверность, или существенность, результатов опыта.

Критический анализ обоснованности схемы и программы (соответствие их задачам исследований), результатов соответствующих наблюдений и учетов, методики и техники закладки и проведения опыта дает оценку достоверности его по существу.

Достоверность результатов — это математически (статистически) доказанная разница между сравниваемыми вариантами опыта, позволяющая установить границы случайных и существенных различий между ними. Поэтому статистическая обработка результатов опыта является обязательным звеном методики его проведения, дающим объективную оценку его точности, которая всецело зависит от методики постановки и тщательности проведения всех работ.

Полная, точная и объективная документация определяет ценность всех результатов полевого опыта (для внедрения в производство, воспроизведения в аналогичных и близких условиях и др.). По каждому опыту должна иметься первичная документация — дневник полевых работ с хронологическими записями всех данных характеристики опытного участка, всех работ, наблюдений, учетов и измерений. Все записи делают во время проведения соответствующих работ. Журнал полевого опыта — основной сводный документ, в который переносят все записи из дневника, результаты всех анализов, обработок и других проводимых работ.

8.1.1. ПОСТРОЕНИЕ (РАЗРАБОТКА) СХЕМ ОПЫТОВ С УДОБРЕНИЯМИ

Схема опыта — это совокупность всех сравниваемых между собой вариантов, причем одни из них содержат изучаемые приемы, а другие (контрольные или стандартные) служат для сравнения с первыми.

Вариант опыта — это совокупность принятых приемов возделывания растений, осуществляемых на всех повторениях (повторных делянках) этого варианта.

Опытная делянка — элементарная составная часть опыта, на которой осуществляют все приемы возделывания растений, принятые для данного варианта во всех повторениях.

Если невозможно или нецелесообразно изучение отдельных агротехнических приемов, вариантом опыта может быть весь комплексный прием в целом, а не отдельная его часть. В схеме, программе и при опубликовании результатов таких опытов следует подчеркивать комплексность изучаемого приема. Сравнение между собой комплексных приемов нельзя квалифицировать как нарушение принципа единственного различия, так как это сравнение проводится при тождестве прочих условий, которые не являются составными элементами сравниваемых агрокомплексов. Такие сравнения нередко проводят при определении оптимальных доз и соотношений удобрений, изучении сроков и способов внесения их, сочетаний с другими средствами химизации и т. д.

Первым обязательным условием результативности опытной работы является точная формулировка цели и задач опыта с указанием конкретных условий его проведения, т. е. разработка целенаправленной схемы опыта и программы исследований. На этом этапе не должно быть ошибок, устранение которых в последующем невозможно, поэтому все планирование эксперимента должно быть детально, неоднократно и критически проанализировано.

Варианты схемы должны отличаться изменением того условия, действие которого и является задачей сравнения; все другие условия должны быть одинаковыми. Если изучаемое условие связано с изменением других условий, то в схему вводят дополнительные варианты для определения влияния изменившихся условий. Например, с увеличением доз удобрений возрастает не только обеспеченность растений элементами, но и концентрация почвенного раствора с возможным изменением реакции среды. Нужно разработать такую схему, которая обеспечила бы интенсивное питание растений без отрицательных сопутствующих факторов.

К фактору единственного различия необходимо добавить фактор обстоятельности схемы опыта, т. е. растения должны быть чувствительны к изменениям изучаемого фактора. Например, для определения усвояемости элемента из разных форм удобрений нужно, чтобы растения вообще реагировали на внесение данного элемента. Если этого не будет, можно сделать вывод только об отсутствии действия данного элемента, а об испытывавшихся формах удобрений сказать будет невозможно.

Варианты, с которыми сравнивается изучаемое условие, называют контрольными, а вариант без удобрений — чистым или абсолютным контролем. Правильно выбранные контрольные варианты опыта — отличительный признак научного эксперимента. Общее число вариантов схемы должно быть минимальным, но достаточным для полного и четкого ответа на сформулированные цель и задачи исследований.

Пример простейшей схемы опыта — это два варианта: контроль без удобрений и удобряемый вариант.

В схемах с видами удобрений контрольными могут быть чистый контроль и фоновый вариант. В схемах по изучению действия трех видов удобрений контрольными являются чистый контроль и вариант без изучаемого удобрения. Классическая ортогональная схема состоит из 8 вариантов: О, N, Р, К, NP, NK, РК и NPK. Нередко ее сокращают до 5 вариантов: О, NP, NK, РК и NPK или до 4 вариантов (без чистого контроля). На почвах, богатых одним элементом, применяют укороченные схемы. Например, если известно, что калий не действует, применяют схему О, N, Р, NP и NPK.

При изучении новых форм удобрений полная схема опыта может иметь следующий вид: контроль (без удобрений), основное удобрение (фон); фон + 0,5 дозы стандартного удобрения (с. у.); фон + 0,75 дозы с. у.; фон + 1,0 доза с.у.; фон + 1,0 доза первой испытуемой формы; фон + 1,0 доза второй испытуемой формы и т. д.

В опытах со сложными (комплексными) удобрениями может быть следующая схема: без удобрений или фон; сложное удобрение; эквивалентные количества односторонних стандартных удобрений; сложное + одностороннее стандартное удобрение для получения оптимальных доз питательных элементов; эквивалентные предыдущему варианту количества элементов односторонних стандартных удобрений. Такая схема наряду со сравнительной эффективностью сложных и эквивалентных смесей стандартных удобрений позволяет уточнить соотношения элементов в сложном удобрении для испытуемых культур в конкретных почвенно-климатических условиях.

Схемы опытов для определения оптимальных доз удобрений в зависимости от целей и задач разрабатывают двумя принципиально разными подходами: эмпирически и расчетными методами.

Эмпирический метод (метод проб и оши-б о к). Применяют, когда требуется определить, какая доза в конкретных условиях обеспечивает максимальную урожайность, или максимальную оплату удобрений прибавками урожая, или какая доза является хозяйственно наиболее выгодной, или если нужно получить кривую изменения урожаев при возрастании доз удобрений. Для этого в схеме наряду с контролем без удобрений должны быть 3—4 дозы, причем интервалы между ними делают достаточными, чтобы прибавки урожая от соседних доз могли различаться на величину, превосходящую ошибку опыта.

Испытанные на одном фоне дозы удобрений, как правило, не подходят на другом. Например, оптимальные дозы фосфора на фоне азотных удобрений будут одни, без азота — другие, на фоне орошения — одни, без него — другие и т. д. Поэтому однофакторные опыты с дозами отдельных удобрений, естественно, переходят в многофакторные, комплексные по изучению соотношений питательных элементов при разных дозах и насыщенности удобрениями.

В многофакторных опытах наиболее правильным, точным и достоверным является ортогональное построение схемы, содержащей всевозможные сочетания всех изучаемых факторов. Например, при изучении трех видов удобрений (NPK) в трех дозах и трех соотношениях в схеме должно быть 27 вариантов (3 * 3 * 3). При 27 делянках в одном повторении очень трудно исключить пестроту почвенного плодородия при закладке опыта в 3—4-кратной повторности, поэтому опыт получается недостаточно точным. Для уменьшения ошибки опыта используют метод звеньев, или расщепленных делянок. Например, при комплексном изучении шести азотных форм или доз, двух фосфорных и трех калийных комбинаций удобрений в ортогональной схеме в каждом повторении должно быть 36 вариантов (6*2* 3). Если все 6 (2 • 3) комбинаций фосфора с калием разместить как бы в одной делянке и на ней же поперек всех этих комбинаций наложить 6 азотных форм или доз удобрений, получим звено опыта, в котором есть все варианты схемы, т. е. одну полную повторность, рядом с которой аналогичным образом можно разместить еще 2—3 повторности этого опыта. При таком размещении повышается точность сравнения вариантов внутри каждого звена опыта.

С увеличением видов, доз, форм удобрений и других факторов (сортов, мелиорантов, орошения, способов обработки почв и т. д.) количество вариантов ортогональных схем опытов резко возрастает. Например, при изучении тех же комбинаций минеральных удобрений (6 • 2 • 3) на фоне извести и без нее число вариантов в схеме возрастает в 2 раза (6 • 2 • 3 • 2) и составит уже 72, а если добавить еще два разных фона обработки почвы — еще в 2 раза и составит 144 варианта и т. д.

Проведение опыта с таким числом вариантов в схеме становится невозможным, поэтому возникает необходимость сокращения схемы по принципу выборок или синтетического опыта путем выбора из общей схемы только части вариантов, равномерно охватывающих всю область изучаемых доз, комбинаций, форм и сочетаний удобрений с другими факторами. Подобное нарушение ортогональности, естественно, приводит к уменьшению достоверности выводов по полученным результатам.

Упрощенные ортогональные схемы комплексных опытов содержат обычно варианты с тремя дозами каждого элемента на фоне одной комбинации двух остальных. При этом можно выявить влияние на культуру четырех степеней обеспеченности любым из изучаемых элементов: без удобрений, при 1, 2 и 3 дозах вносимых удобрений. При размещении блоками по такой упрощенной схеме в опыте может быть 15—16 вариантов, тогда как при ортогональной схеме их было бы 64 (4 • 4 • 4).

Расчетные методы. Используют при разработке схем опытов для определения доз и соотношений удобрений с целью получения плановых (программируемых) уровней урожаев сельскохозяйственных культур желаемого качества. Основу определяемой дозы удобрений здесь составляют биологические потребности в питательных элементах культур и сортов для создания планируемого уровня и качества получаемой продукции в конкретных при-родно-экономических условиях, которые далее трансформируются в дозы удобрений разными методами, подробно описанными в предыдущей главе.

Схемы таких опытов в зависимости от цели и задач исследований состоят из 5—8 вариантов, причем во всех вариантах, кроме контрольного, изменение доз и соотношений удобрений обусловливается уровнями и качеством планируемой продукции при постоянных коэффициентах использования элементов из удобрений и почвы или вариациями коэффициентов при одном плановом уровне и качестве продукции. Если нужно, изменяют те и другие, но тогда схемы усложняются, превращаются в многофакторные и могут содержать гораздо больше вариантов.

Результаты опытов с дозами удобрений позволяют оценить степень пригодности лабораторных методов для установления нуждаемости культур в удобрениях с одновременным уточнением результатов анализов почв по обеспеченности подвижными формами элементов для разных культур в конкретных почвенно-климатических и агротехнических условиях.

Сравнение действия органических и минеральных удобрений изучают в длительных опытах при внесении их в эквивалентных дозах по элементам, содержащимся в испытываемой дозе органических удобрений. Полная схема такого опыта должна кроме контрольного содержать и дополнительные варианты: внесение минеральных удобрений в нормальном (оптимальном) соотношении и органических удобрений с добавлением минеральных в количестве и соотношениях, эквивалентных предыдущему варианту.

Для выявления роли органического вещества в навозе ( и других органических удобрениях) С. В. Щербой предложена схема, в которой возрастающие дозы минеральных удобрений вносят на фоне навоза и без него. По характеру кривых увеличения урожая (прибавок) определяют, чем оно вызвано: наличием элементов в навозе и минеральных удобрениях или действием органического вещества и другими свойствами (щелочность, буферность, микрофлора и др.) навоза.

Для определения усвоения азота навоза А. В. Соколов предложил сравнивать действие его с возрастающими дозами азота на достаточном фосфорно-калийном фоне. Аналогично можно выстраивать схемы по изучению эффективности и других питательных элементов органических удобрений.

Эффективность совместного применения органических и минеральных удобрений можно изучать по схеме: контроль без удобрений; навоз; NPK (полная, оптимальная доза); навоз (0,5 дозы) + NPK (0,5 дозы); навоз — 0,5 дозы; NPK — 0,5 дозы.

При изучении техники внесения удобрений контрольными являются варианты без удобрений и с обычным (стандартным) способом (техникой) внесения их. Так как многие способы внесения дают эффект при определенных дозах, обязательным является установление такой дозы. Не следует забывать и о дополнительных контрольных вариантах внесения удобрений. Например, при глубокой заделке удобрений нужен еще контроль с такой же обработкой без удобрений.

Сроки внесения удобрений при одной дозе их изучают в зависимости от целей и задач исследований по разным схемам. Например, без удобрений, осенью, весной, в период вегетации. При изучении дробного внесения удобрений следует использовать схему: без удобрений; полная доза до посева; часть дозы до посева, другая — при посеве или в подкормку; часть дозы до посева, другая — при посеве, остальная — в подкормку.

Результаты опытов с подкормками зависят от способов внесения основного удобрения и подкормки, и нередко различия способа, а не времени внесения определяют разницу в эффективности изучаемых вариантов.

При сравнительном изучении гранулированных и порошковидных форм удобрений в схемах следует предусматривать равенство доз и тождество способов внесения. Здесь важно определить, что обеспечивает эффект: форма или изменение способа внесения, так как в первом случае надо рекомендовать гранулирование удобрения, а во втором — производство машин и орудий для лучшего способа внесения обычных удобрений. Поэтому схема при одинаковой дозе должна быть следующей: без удобрений; гранулированная форма вразброс; порошковидная вразброс; гранулированная локально; порошковидная локально.

Разработка схем каждого опыта с удобрениями, сортами, севооборотами и т. д. имеет специфические особенности, обусловленные целью и задачами исследований, методикой размещения опытов в пространстве и статистической обработкой их результатов. Поэтому реальная схема —это синтез разных требований и возможностей. Возможности не всегда удовлетворяют требованиям, поэтому приходится сокращать число вариантов, но в опытной работе лучше сделать меньше, но хорошо. При сокращении числа вариантов следует помнить, что, исключая контрольные варианты, исследователь выбрасывает и результаты научного изучения.

8.1.2. ПРОГРАММА, ТЕХНИКА ЗАКЛАДКИ И ПРОВЕДЕНИЯ ОПЫТОВ

Содержание программы, так же как и схемы, опыта зависит от цели и задач исследований и должно предусматривать все условия (почвенно-климатические, агрохимические, фенологические, агротехнические и т. д.), методы (отбора проб и анализов почвы и растений, учета урожая, статистической обработки результатов и т. д.) и сроки проведения всех работ, имеющих значение в решении поставленных цели и задач исследований и в получении точных и достоверных выводов.

При выборе участка для закладки опыта важно, чтобы по рельефу, почвенным условиям и предшествующей истории он был наиболее однородным и типичным для тех зон и регионов, на которые предполагается распространять результаты опыта.

Рельеф участка должен быть выровненным — ровное плато или равномерный односторонний склон с уклоном 1—2,5 м на 100 м длины без замкнутых понижений (западин, блюдец), бугорков и свально-развальных борозд. При размещении на склоне все делянки опыта должны быть равномерно вытянуты в одну сторону вдоль склона, чтобы по обеспеченности влагой, питательными элементами и освещенности они находились в равных условиях. По этой же причине опытный участок нельзя размещать на склонах разных крутизны и экспозиции.

Для стационарных опытов нивелировку участка проводят с нанесением горизонталей на почвенную карту через 0,1 —0,2 м, а для краткосрочных — через 1,0 м или ограничиваются глазомерным определением направления и крутизны склона.

Почвенные условия участка определяют по почвенной карте, для полной характеристики которой проводят необходимые обследования и анализы. Детализация почвенного обследования опытного участка зависит от пестроты почвенного покрова и размера делянок. Для длительных опытов проводят наиболее тщательное обследование почв, причем исходные образцы почвы сохраняют для контроля за изменением свойств ее под влиянием удобрений и других изучаемых факторов.

Предшествующая история участка необходима для соблюдения принципа единственного различия и типичности опыта и определяется по Книге истории полей и другим имеющимся материалам.

В последние 3—4 года опытный участок должен иметь одинаковые агротехнические условия (чередование культур, удобрение их, обработка почвы и т. д.). Особо важно однообразие приемов мелиорации, запасного применения органических и минеральных удобрений, углубления пахотного горизонта, посевов многолетних бобовых и т. д. Сильная и неравномерная засоренность участка должна быть предварительно устранена, иначе это скажется на результатах опыта.

Предшествующая история чрезвычайно важна и при закладке опытов в производственных условиях, где участок не подвергают специальной подготовке, применяемой на опытных полях.

Случайные факторы также могут нарушать однородность участка и точность результатов опыта. На участке не должно быть следов земляных работ, засыпанных ям и канав, воронок, раскорчевок, остатков строений, стоянок скота, бывших токов, площадок перегрузки и хранения удобрений и мелиорантов, грунтовых дорог и т. д.

Размещать опыты следует на расстоянии не менее 200 м от водоемов, 40—50 м от построек и леса, 25—30 м от отдельных деревьев, 10—20 м от дорог и 10 м от плотных изгородей.

Требования к выбору опытного участка по однородности и типичности не всегда совпадают, поэтому в каждом конкретном случае нужно согласовывать их, поступаясь в допустимых пределах тем или иным.

Подготовка участка для опыта. Это уравнительные и рекогносцировочные посевы на нем в течение одного или более лет до закладки опыта.

Уравнительный — это сплошной посев одной культуры на участке в течение 2—3 лет с тщательным и однообразным проведением всех работ на высоком агротехническом фоне, согласованном со схемой и программой предстоящего опыта.

Уравнительные посевы — это прием борьбы с засоренностью и ликвидации пестроты плодородия участка, вызванной предшествующими приемами агротехники с коротким последействием. Тщательный осмотр уравнительных посевов по росту и развитию растений позволяет выбрать для опыта наиболее выровненную часть участка.

Рекогносцировочный — это последний уравнительный посев, но с обязательным дробным учетом урожая. Чем меньше площадь элементарной делянки при дробном учете урожая, тем полнее учет пестроты участка и больше возможность выбора оптимальных величины, формы и расположения делянок будущего опыта.

Результаты дробного учета по равным (близким) величинам урожая делят на группы и придают им на схематическом плане определенную окраску (штриховку). Затем выделяют наиболее однородные участки для расположения на них самостоятельных опытов, отдельных повторений или комбинированных делянок одного опыта.

Другой путь — обработка результатов дробного учета методами вариационной статистики. Для вариационных рядов из элементарных и средних урожаев комбинированных (по величине, форме и направлениям) делянок вычисляют статистические характеристики: среднее (стандартное) квадратичное отклонение (о), вариационный коэффициент (Vy %) и относительную ошибку средней, или точность опыта (т, %). Зная вариационный коэффициент и желая иметь заданную точность, находят необходимое число повторений (п) в опыте по формуле п =(V/m)2.

Рекогносцировочные посевы — обязательный прием при постановке многолетних стационарных опытов.

Размер делянки. Зависит от целей, задач, степени и характера пестроты плодородия почвы, возделываемых культур, агротехники и требований к точности опыта. Различают опытную (посевную) и учетную площади делянок. Опытная — это площадь, на которой проводят все операции в соответствии с программой исследований, учетная — с которой учитывают урожай; она меньше посевной из-за выделения по ее краям защитных полос (рис. 22). Защитные полосы необходимы для исключения краевого влияния удобрений и соседних растений на урожай. Ширина защитной полосы в однолетних опытах с культурами сплошного посева не менее 0,75 м, а в многолетних — не менее 1 м, для пропашных культур — соответственно не менее 1 и 2 рядов. Для разворотов и в целях защиты от потрав и повреждений с концов делянок на границах участка выделяют защитные полосы шириной не менее 10 м.

Форма делянки. Может быть в виде вытянутого прямоугольника или близкой к квадрату, первая гарантирует большую точность, так как полнее охватывает пестроту участка. Отношение длины к ширине должно быть не более 10, иначе значительно возрастет площадь защитных полос, которая должна быть не более 25 % площади опытного участка.

Повторность опыта. Это повторное расположение каждого варианта на нескольких делянках; оно оказывает большое влияние на точность опыта. Чем меньше делянка, тем больше должна быть повторность опыта: при делянках 10—20 м2 не менее 6—8-кратной, 50—100 м2 не менее 4—6-кратной, в стационарных опытах не менее 4-кратной. В рекогносцировочных, демонстрационных и производственных опытах применяют 2—3-кратную повторность.

Число вариантов в опыте. Определяется целью и задачами исследований и считается нормальным при наличии не более 8—12 вариантов. При увеличении числа вариантов необходимо увеличить повторность контрольных вариантов. В многофакторных опытах следует стремиться к размещению вариантов методом расщепленных делянок или звеньев (блоков).

По размещению целых повторений опыта различают:

1-я делянка 2-я делянка

однорядное расположение (рис. 23, а) — применяют при малом числе вариантов и при изучении техники внесения удобрений;

двух- и многорядное расположение (рис. 23, б, в) — удобнее при большом числе вариантов и повторений и небольших делянках укороченной формы.

По размещению вариантов в каждом повторении различают:

Рис. 22. Опытная и учетная площади делянки и защитные полосы:

ABCD и DCEF— опытные делянки; abed и deef— учетные делянки

1-е повторение 2-е повторение
3-е повторение 4-е повторение б
12345678
78123456
56781234
34567812

Рис. 23. Различные способы расположения делянок:

а— однорядное последовательное; 6 —двухрядное; в — многорядное ступенчатое

систематическое, т. е. в определенном порядке, например, последовательно (см. рис. 23, а), ступенчато или другим способом, допуская сближение одноименных вариантов не менее чем через два других в вертикальном и горизонтальном направлениях (см. рис. 23, б, в);

случайное (рендомизированное) — расположение вариантов по жребию или по специальным таблицам случайных чисел методами случайных блоков (повторений) или латинским квадратом. Число блоков равно числу повторений, а в каждом блоке варианты располагают по жребию. В латинском квадрате число повторений равно числу вариантов, причем число последних здесь обычно от 4 до 7, а размещение их может быть случайным и ступенчатым.

Перед закладкой опыта в дневнике и журнале опыта составляют схематический план его с указанием всех размеров: длины, ширины делянок, защитных полос, дорог — с обозначением расположения вариантов и повторений (рис. 24). По этому плану закладывают опыт в натуре и фиксируют («привязывают») его на местности с помощью постоянных ориентиров (репер, дерево, столб и т. д.), расстояния от которых до опытного участка отмечают на плане. Многолетние опыты «привязывают» по двум основным линиям границ участка.

Рис. 24. План полевого опыта

Разбивка и фиксация опытного участка в натуре. Их осуществляют в соответствии со схематическим планом и с точным соблюдением всех требований методики опытного дела:

провешивают длинную сторону участка с помощью вешек-шестов высотой 2,0—2,5 м (всего их надо 4—5 шт.), натягивают шнур и по этой линии мерной лентой отмеряют короткие стороны нужного числа делянок, вбивая колышки длиной 35—40 см (всего их нужно вдвое больше, чем число делянок в опыте);

угломерными инструментами (буссоль, гониометр, теодолит или зеркальный эккер) восстанавливают перпендикуляр к длинной стороне в углу крайней делянки, провешивают по нему линию и отмеряют по ней длинные стороны делянок, в конце крайней из них вновь восстанавливают перпендикуляр и по нему провешивают и измеряют вторую длинную сторону участка и т. д.

Противоположные стороны опытного участка при правильно восстановленных перпендикулярах равны между собой, поэтому отклонение периметра участка при разбивке опыта не должно превышать 5—10 см на каждые 100 м.

Для установления границ делянок и всего участка в продолжение одной-двух сторон его в оба конца на определенном (указанном на плане) расстоянии нужно иметь фиксированные ориентиры — реперы.

Подготовка и внесение удобрений. Это очень ответственные операции, так как допущенные при этом ошибки впоследствии

нельзя исправить и обнаружить. Необходимое количество (дозу) каждого удобрения определяют по формуле

х= ас/(\00Ь),

где х —доза удобрения, кг на делянку; а — доза питательного элемента, кг/га д. в. (по схеме); с — плошадь опытной делянки, м3; Ь — содержание действующего вещества в удобрении, %.

Навески менее 1 кг взвешивают с точностью до 1 г, от 1 до 10кг —до Юг и более 10кг — до 100г. Взвешивают удобрения в лаборатории или в поле. Техника внесения удобрений (сеялками или вручную) должна обеспечивать наиболее равномерное распределение их по каждой делянке, причем вносить удобрения можно раздельно или, соблюдая правила смешивания, в смешанном виде.

Все агротехнические работы (обработка почвы, посев, посадка, уход за растениями и т. д.) кроме изучаемого фактора на всех делянках опыта должны проводиться одновременно и высококачественно, так как нарушение принципа единственного различия станет причиной утраты достоверности опыта по существу.

Специальные работы на опыте. Это фиксация защитных полос после всходов культур сплошного посева, поддержание в чистоте дорожек (дорог) и запольных участков, расстановка этикеток по делянкам, отбор образцов растений и почв в соответствии с программой, фенологические и метеорологические наблюдения, подготовка к учету урожая и др. с обязательными соответствующими записями в дневнике и журнале опыта. Постоянное наблюдение за сохранностью и состоянием посевов, этикеток, дорожек следует проводить не реже 2 раз в месяц и все замеченные недостатки (неполадки) фиксировать в дневнике, а при возможности устранять.

Фенологические наблюдения от посева до уборки урожая культур. Они позволяют обнаружить любые воздействия, не сохраняющиеся до учета урожая, и искать причины их затухания. Все различия в развитии растений на делянках надо охарактеризовать конкретно и по возможности количественно; все количественные учеты проводят в соответствии с программой исследований в 3—5-кратной повторности на 2—4 повторениях опыта.

Исследование почвенных условий. Это обязательная работа не только перед закладкой, но и в процессе проведения полевого опыта в разные промежутки времени в зависимости от задач и программы исследований. Методически более правильно сравнивать результаты анализов с исходными данными этой же почвы по каждому варианту, а не только с данными контрольных вариантов. Число индивидуальных проб для смешанного образца с делянки зависит от размеров делянки, определяемого показателя и возможной точности анализа. Для малых делянок (до 20 м2) его составляют не менее чем из 5 индивидуальных проб, для средних (20—100 м2) — из 10—15 и для более крупных (> 100 м2) — не менее чем из 20 проб. Иногда образцы отбирают не со всех, а с некоторых, но не менее чем с двух несмежных повторений опыта.

При необходимости учета массы корней с каждой делянки рен-домизированно отбирают 4—10 монолитов размером 25 х 25 см (на желаемую глубину) и отдельно в каждом из них отмывают, высушивают и взвешивают корни.

Подготовка к учету урожая. Заключается в удалении растений с тех частей делянок и опыта, которые не поступают в учет (защитные полосы, выключки и выбракованные делянки).

Выключки (если повреждено не более 50 % учетной площади) и выбраковки (если повреждено > 50 %) делают с учетом предыдущих наблюдений и записей только в том случае, если есть объективные данные, объясняющие случайность повреждения, вымочку, ошибку в работе и т. д., изменившие урожайность делянки или части ее. Выключки для удобства делают прямоугольными и кратными 0,1—0,5 площади делянки.

На каждой учетной делянке с пропашными культурами подсчитывают ( и заносят в дневник и журнал) количество кустов или корней для внесения в дальнейшем поправок на недостающие растения.

Учет урожая. Осуществляют двумя методами:

сплошной (прямой) учет урожая наиболее точен, прост и надежен: убранную (машинами или вручную) массу урожая (с разделением на основную и побочную продукцию) с каждой делянки взвешивают в поле, результаты записывают в дневник по форме 1. При этом отбирают образцы основной и побочной продукции с соответствующими этикетками для определения влажности и последующих пересчетов урожаев на стандартную влажность и необходимых показателей качества продукции;

1. Форма записи при сплошном учете урожая
делянкиВариантопытаУчетнаяплоУрожай с делянки, кгКоэф-фици-ент пеУрожай, т/га
общейзерна(клубней)соломыобщейзерна(клубней)соломы
щадь, м2массы(ботвы)ресчета на 1 гамассы(ботвы)

косвенный (по пробному снопу) учет урожая проводят по делянкам так же, как при сплошном учете, но после взвешивания общей массы урожая с каждой делянки отбирают 2—4 пробных снопа массой не менее 1 % общего урожая, которые взвешивают с точностью до 10 г, снабжают этикеткой с указанием опыта, номера делянки, массы снопа и времени уборки и отправляют на сушку. Результаты всех взвешиваний заносят в дневник прямо в поле. Просушенные до постоянной массы пробные снопы вновь взвешивают до и после обмолота с точностью до 1—5 г, отбирают образцы продукции для определения влажности (с последующим пересчетом на стандартную) и показателей качества продукции. Все результаты записывают в дневник и журнал опыта по форме 2.

2. Форма записи при учете урожая по пробному снопу
--Сырая масса в поле, кгКоэффициент пересчета пробного снопа на делянкуСухая масса пробного снопа, кгУрожай на делянке, кгнУрожаи, т/га
j № делянкиснсбli.с? 2 ^IgSо 3 = £ 1 *с учетной делянкипробногоснопас?1коСзерносоломаобщи изерносоломаS =§ н-cL ЪОcru ^ с-общийзерносолома

Особенность учета урожаев пропашных культур заключается в применении поправок на изреживание, которые возможны, если оно не связано с изучаемым фактором и не превышает 20—30 % учетной площади. При этом обязательны удаление перед учетом всех растений, граничащих с пустыми местами в рядках, и учет только нормальных (средних) растений. По средней массе одного среднего растения, умноженной на нормальное число их, определяют истинный урожай на делянке.

Учет урожаев прядильных культур (лен, конопля и др.) можно проводить любым методом, но при определении выхода волокна масса пробного снопа (или образца) должна быть не менее 30 кг. Солому и семена этих культур после обмолота взвешивают отдельно (повторно).

Все другие методы учета урожаев (пробные площадки, отдельные растения и т. д.) сокращают учетную площадь делянок, поэтому дают приближенные результаты, что снижает точность исследований.

Статистическая (математическая) обработка результатов учета урожаев в опытах — обязательный прием объективной оценки исследовавшихся факторов и условий и последующих расчетов агрономической, экономической и энергетической эффективности любого из них.

8.1.3. ПРОИЗВОДСТВЕННЫЕ ОПЫТЫ И УЧЕТ ДЕЙСТВИЯ УДОБРЕНИЙ В ХОЗЯЙСТВАХ

Успех опытной работы в хозяйстве зависит от четкой ее организации и строгого соблюдения методики и техники проведения. В зависимости от культуры и принятой в хозяйстве технологии ее возделывания должен быть сугубо конкретный подход к выбору техники и методики проведения каждого производственного опыта.

Выбор участка под опыт зависит от возможности одновременного выполнения всех работ по вариантам с сохранением принятой агротехники и с максимальной механизацией всех операций по закладке, проведению опыта и учету урожаев. Уровень почвенной и хозяйственной однородности опытного участка определяют по почвенной карте и агрохимическим картограммам (паспортам), Книге истории полей и по состоянию посевов на нем. Делянки располагают вдоль или поперек поля; границы их фиксируют кольями (вешками) и «привязывают» к постоянным ориентирам за полем. Длина делянок равна длине или ширине поля, а ширина кратна ширине захвата машин (не менее двух) для внесения удобрений и уборки урожая. Схемы опытов короткие — 2—4 варианта, повторность 3-кратная. Программой опыта предусматривают проведение сопутствующих наблюдений и учетов.

Данные урожая с учетом влажности и засоренности (загрязненности) пересчитывают на стандартную влажность и 100%-ную чистоту и подвергают обработке методами вариационной статистики, с учетом которых определяют агрономическую и экономическую эффективность изученных приемов, условий и факторов.

Наряду с производственными опытами можно (и важно) учитывать эффективность удобрений в хозяйственных посевах любых культур. Для этого на удобряемых полях оставляют неудобренные (контрольные) участки (полосы), которые располагают в строгом направлении движения машин при внесении удобрений и уборке урожая. Ширина контрольных полос должна быть кратной ширине захвата машин (не менее двух) для внесения удобрений и уборки урожая, а длина — длине поля. Границы полос выделяют кольями (вешками) и «привязывают» к постоянным ориентирам вне поля.

Площадь контрольной полосы для культур сплошного посева должна быть не менее 0,25 га, для пропашных —не менее 0,1 га. Посев (или посадку) растений и все последующие операции проводят одновременно и одинаковым способом на всем поле.

Перед уборкой урожая восстанавливают границы контрольной полосы (если их больше, то всех) и по обе стороны от нее (них) на 10—15 м отбивают такие же удобренные учетные полосы. Учет урожаев на всех полосах проводят сплошным механизированным методом, как и в производственном опыте, отбирая при этом образцы для определения влажности и показателей качества продукции.

При трудностях с проведением сплошного учета для культур сплошного посева возможен выборочный учет по метровкам. В каждой полосе в зависимости от ее площади выделяют по нескольку метровок: при площади 0,5 га 6, до 1 га 8—9, до 5 га 10—12 и более 5 га 15, которые располагают равномерно по всей учетной полосе, избегая выделяющихся по травостою мест. Растения с метровок связывают в снопы и далее поступают с ними так же, как с пробными снопами в полевых опытах.

Агрономическую и экономическую эффективность удобрений определяют с учетом результатов статистической обработки данных урожаев.

8.2. ВЕГЕТАЦИОННЫЕ ОПЫТЫ


Выращивание растений в различных сосудах в искусственных условиях в специальных сооружениях (фитотрон, вегетационный домик, теплица, огражденные сеткой или прозрачной пленкой стеллажи) называют вегетационным методом исследований или вегетационным опытом. Этот метод позволяет детально расчленить и выявить роль и значение отдельных факторов в жизни растений при регулируемых (в разной степени в зависимости от сооружений) условиях влажности, освещенности, температуры и питательного режима в сочетании с детальными химическими, физиологическими и другими исследованиями, возможности которых трудно переоценить. Д. Н. Прянишников подчеркивал, что «задачей вегетационного метода является вскрытие существа процессов и уяснение значения отдельных факторов, прежде всего роли растения, почвы и удобрения в условиях, наиболее благоприятных для выявления этой роли».

Вегетационный опыт позволяет при необходимости изменить основные факторы жизни растений и тем самым быстрее и точнее, чем в полевом опыте, установить искомые закономерности взаимодействия растений, почвы и удобрений. Вместе с тем вегетационный метод не может заменить полевых опытов, так как условия возделывания растений в вегетационном сосуде существенно отличаются от полевых. Ценность вегетационных опытов заключается не в замене ими полевых, а в том, что полученные в них результаты позволяют понять причины тех явлений, которые наблюдаются в полевых опытах.

В зависимости от целей и задач исследований используют разные модификации вегетационного метода: почвенные, песчаные, водные культуры и гидропонику. Для решения специфических вопросов применяют и другие модификации: сменных или текучих растворов, изолированного питания, стерильных культур и др.

Построение схем опытов. Основные принципиальные подходы к разработке и примеры разных схем опытов с удобрениями в строгом соответствии с целями и задачами исследований были изложены в предыдущем разделе. Здесь подчеркнем лишь то, что в вегетационных опытах легче и точнее можно определить потребности разных культур в макро- и микроудобрениях в зависимости от любых других условий внешней среды.

В опытах с микроэлементами в водных и песчаных культурах необходима чрезвычайная чистота сосудов, воды, песка и реактивов (солей) для предотвращения случайных искажений. В почвенных культурах эти предосторожности необходимы для сосудов, солей (удобрений) и воды.

Примерная схема опыта с определением потребности в элементе может быть следующей: 0; NPK (фон);фон + первая доза; фон + + вторая доза; фон + третья доза. На кислых почвах обеспеченность растений бором, марганцем, цинком и кобальтом следует изучать и на известковом фоне. Дозы микро- и макроэлементов в вегетационных опытах разных модификаций могут быть эмпирическими, рекомендуемыми или расчетными.

Для повышения точности и достоверности результатов опытов каждый вариант должен повторяться в нескольких сосудах (повторностях): в опытах с зерновыми, зернобобовыми культурами и травами не менее 3—4, с картофелем, корнеплодами, капустой, огурцом не менее 5—6 повторностей.

Техника постановки вегетационных опытов. Вегетационные сосуды для опытов бывают двух типов, различающихся по способу полива: без и с отверстием в дне. Сосуды без отверстий используют для более точных опытов, поливают их по массе и располагают в сооружениях, защищенных от осадков. Сосуды с отверстиями в дне обязательно имеют поддон для сбора избытков осадков (дождей); их помещают на стеллажах под сеткой. Сосуды могут быть пластмассовые, стеклянные и металлические.

Для защиты от света и перегревания на стеклянные (иногда и на пластмассовые) сосуды надевают чехлы из плотной двухслойной ткани или плотной бумаги. Металлические сосуды покрывают консервантами (внутри асфальтовым лаком, снаружи белой краской) или эмалируют. Наиболее распространены цилиндрические сосуды следующих размеров (см): пластмассовые и стеклянные диаметром 15—30 и высотой 20—25, металлические диаметром 20—30 и высотой 20—30.

Для разных культур нужны сосуды различных объемов: для зерновых, зернобобовых и трав 5—7 кг почвы, для картофеля, капусты 25—30 кг, для свеклы и других корнеплодов 15—25 кг. Размеры сосудов зависят не только от культур, но и от целей и задач исследований. Например, в краткосрочных опытах обычно используют широкие сосуды, не заботясь об их глубине, для песчаных культур большие сосуды применяют редко, в гидропонике вместо сосудов используют поддоны, стеллажи и т. д.

8.2.1. ПОЧВЕННЫЕ КУЛЬТУРЫ

Почвенными культурами называют опыты, в которых растения выращивают в сосудах, наполненных почвой. Это наиболее распространенная модификация вегетационного метода, постановку которой осуществляют в определенном порядке.

Подбор (взятие) и подготовка почвы. Определяются темой и задачами опыта. Почву отбирают из нужного места и горизонта весной, когда она не мажется и комки ее легко разрушаются при растирании. Привезенную почву приводят в однородное состояние (перемешивают, выбирают камни, крупные корни и пожнивные остатки), просеивают через грохот с ячейками 3 мм. Для удовлетворительной схожести результатов повторностей отбирают смешанный образец для агрохимических анализов.

Подготовка сосудов. Это подбор близких по высоте, объему и массе сосудов, а также тщательная промывка, сушка их и подбор чехлов (если нужно) для них. Для пролива воды на дно сосуда подбирают стеклянные трубки диаметром 1 —1,5 см и длиной на 2— 3 см выше стенки сосуда. На дно сосуда для дренажа помещают 200—300 г вымытого и высушенного битого стекла, с помощью которого тарируют, т. е. выравнивают, массы сосудов с трубками. Затем сдвигают дренаж к стенке горкой, накрывают кружком марли с отверстием для трубки, которую помещают в горку стекла, и расправляют марлю, накрывая ею весь дренаж и дно сосуда.

Дозы удобрений на сосуд рассчитывают по действующему веществу (табл. 144), причем там, где это не противоречит теме опыта, лучше применять не удобрения, а химически чистые соли, так как они содержат минимальные количества балласта.

144. Дозы удобрений для опытов в почвенных культурах, г д.в. на 1 кг почвы(по Журбицкому)
КультураNРА 1К,0
Зерновые0,150,100,10
Бобовые0,10-0,15 (0,02-0,04)*0,10-0,150,10-0,15
Картофель0,120,200,28
Свекла0,15-0,200,20-0,250,20-0,25
Лен0,05-0,070,10-0,120,06-0,10
Конопля0,20-0,300,20-0,300,20-0,30
Табак0,20-0,300,10-0,200,20-0,30
Капуста0,15-0,200,20-0,250,20-0,25
Томат0,10-0,150,15-0,200,20-0,30
Огурец0,15-0,200,15-0,200,20-0,25
Лук0,10-0,150,10-0,150,15-0,20
* С учетом симбиотической азотфиксации.

Если почва односторонне богата каким-то элементом, дозу его уменьшают в 2—5 раз. Удобрения (или чистые соли) вносят, перемешивая их с почвой, в виде растворов, порошков и гранул. Растворимые в воде соли удобнее вносить в виде процентных растворов определенных (1 —10 %) концентраций, отмеряя их объемы до 50 мл бюреткой (или пипеткой), а более 50 мл цилиндрами. Нерастворимые соли и удобрения вносят в сухом виде, беря навеску до 5 г на аналитических, а более 5 г на технохимических весах.

Набивка сосудов почвой. Ее начинают с пробной набивки одного сосуда для определения массы почвы для всех сосудов: на дно сосуда на марлю слоем 1,5—2,0 см укладывают увлажненный до 60 % от влагоемкости (15 мл воды на 100 г песка) кварцевый песок, которым прижимают края марли к стенке сосуда. Затем совком или руками переносят почву в сосуд, равномерно уплотняя ее, особенно у стенок и трубки, которая должна стоять вертикально в 1,5—2,0 см от стенки сосуда. Уровень почвы в сосуде должен быть на 2—2,5 см ниже верхнего края сосуда. К установленной навеске почвы добавляют навески сухих удобрений (солей) и тщательно перемешивают все в тазу, затем добавляют растворы удобрений и вновь перемешивают.

Если почва недостаточно влажная, добавляют дистиллированную воду до оптимального увлажнения, когда почва при сжимании в руке образует ком, распадающийся при выпадении из нее. Количество воды и растворов удобрений (солей) в сумме должно быть одинаковым во всех сосудах. Набивать сосуды, начиная с вариантов без удобрений, должен один человек: это обеспечит одинаковое уплотнение почвы во всех сосудах. Все работы следует проводить по заранее заготовленной в журнале опыта ведомости, в которой указывают дату закладки, схему опыта, название, влажность и навеску почвы в сосуде, массу тарированного сосуда, массу его для полива, культуру, номера сосудов по каждому варианту и соответствующие им навески удобрений или количества растворов. В день набивки сосудов определяют влажность и влагоем-кость почвы, на основании которых рассчитывают норму полива и массу абсолютно сухой почвы в сосуде.

Семена для посева. Могут быть сухими, намоченными или пророщенными, но чистыми в сортовом отношении и протравленными в 1%-ном растворе формалина. Наклюнувшиеся семена высевают по шаблону на глубину 0,5—2,0—5,0 см в зависимости от культуры и размера семян и засыпают поверхность почвы тонким слоем кварцевого песка. При посеве сухими семенами проверяют их всхожесть, которая должна быть близка к 100%. Окончив посев, сосуды накрывают бумагой (или поддонами) и ежедневно увлажняют верхний слой почвы; при появлении всходов бумагу убирают.

Уход за растениями. Состоит из прореживания, поливов и перестановки сосудов. Прореживание — доведение числа растений до заданного количества. Его проводят, когда растения достаточно разовьются, при этом удаляют поврежденные, слабо и чрезмерно развитые растения и оставляют наиболее выровненные в каждом сосуде. В сосудах среднего размера после прореживания оставляют зерновых 20—25 растений, бобовых 10—15, гречихи 12—15, льна 35—40 растений. Пропашные культуры выращивают в больших сосудах и до уборки оставляют по одному растению в сосуде, а для повышения точности опыта увеличивают число повторений.

Для предотвращения полегания растений сосуды укрепляют металлическим или деревянным каркасом одинаковой массы.

Полив растений в сосудах в зависимости от программы опыта проводят водопроводной или дистиллированной водой заранее установленной нормой (60—80 % полной влагоемкости). Подают воду сверху и снизу через трубку, причем в жаркую погоду поливают дважды: по объему воды и по массе сосуда, определяя объем по взвешиванию 3—4 сосудов разных вариантов. При поливах проводят перестановку сосудов, меняя сосуды крайних и средних рядов, чтобы выровнять условия освещения и предохранить крайние сосуды от перегрева.

Сосуды с отверстиями в дне поливают до появления воды в поддоне.

В течение вегетации ведут наблюдения и учет роста и развития растений, результаты которых записывают в журнал. В зависимости от целей и задач исследований растения убирают в разные периоды вегетации, но чаще в фазе полной спелости. При учетах подсчитывают число растений (стеблей), колосьев (стручков), высоту (длину) тех и других, укладывают в пакеты с указанием номера сосуда (иногда предварительно взвесив), высушивают до постоянной массы, взвешивают, обмолачивают зерно. Все результаты записывают в журнал, а образцы сохраняют для анализов.

При необходимости учитывают массу корней, промывая их с применением сит диаметром ячеек 0,5 мм, высушивая и взвешивая с точностью 0,01 г, и сохраняют, если нужно, для анализов.

При уборке корнеплодов (клубнеплодов) учет их и ботвы проводят раздельно, взвешивая после очистки (если нужно, после промывки и просушки) с точностью до 0,1 г, а образцы сохраняют для анализов.

Все полученные результаты учетов после приведения к стандартной влажности подвергают статистической обработке для установления степени достоверности и точности (ошибки) опыта.

8.2.2. ПЕСЧАНЫЕ КУЛЬТУРЫ

В песчаных культурах при выращивании растений в сосудах с чистым кварцевым песком, обогащенным питательными смесями (солями), изучают роль отдельных элементов, их концентраций и соотношений в питании растений, взаимодействия между элементами, соединениями их, корневыми выделениями и другими разнообразными факторами жизни растений в зависимости от цели и задач исследований. Здесь, как и в почвенных культурах, можно выращивать все без исключения растения.

При постановке опытов в песчаных культурах проводят операции, аналогичные таковым в почвенных культурах.

В зависимости от цели опыта чистый кварцевый песок, просеянный через сита с ячейкой 0,5 мм, используют для набивки сосудов сразу или после промывки водопроводной, а затем дистиллированной водой и последующей просушки. Если нужен особо чистый песок, его промывают сначала крепкой соляной кислотой, затем водопроводной и дистиллированной водой до полного удаления хлора, высушивают и используют для набивки сосудов.

Питательные смеси (их состав и концентрация) должны удовлетворять потребностям возделываемых культур, быть физиологически уравновешенными и иметь оптимальную реакцию (pH) в течение всего периода вегетации, так как от этого в значительной, если не в решающей, степени зависят результаты опыта.

Полный перечень питательных смесей приводить нет смысла из-за их обилия и возможностей непрерывного появления новых, различающихся по набору и соотношениям питательных элементов и солей, по реакции и концентрации их в течение вегетационного периода.

В песчаных и водных культурах нередко применяют классические питательные смеси (табл. 145), в которые добавляют водорастворимые соли микроэлементов в два-три приема: по 0,25— 0,50 мг марганца и бора и по 0,1 мг молибдена, цинка и меди на 1 кг песка или 1 л раствора.

145. Состав питательных смесей, г на 1 кг песка или 1 л раствора
Соль, реакция, элементГельригеляКнопа1 Прянишникова
Ca(N03)2 безводная0,4921,0_
NH4NO3 безводная0,24
КН2Р040,1360,25
СаНР04200,172
MgS04 безводная0,060,250,06
КС10,0750,120,16
CaS04200,344
pH в начале опыта3,65,56,5
pH в конце опыта7,07,25,8
Дозы действующих веществ, мг/кг или мг/л
N689468
РА717671
к2о9416094

Существуют более концентрированные, чем классические, питательные смеси для разных культур, созданные с различными целями и соотношениями азота, фосфора, калия, кальция, магния, серы и других элементов, с неодинаково расширенным набором микроэлементов. В качестве примера приведем некоторые из обобщения 3. И. Журбицкого с указанием авторов и доз соответственно азота, фосфора и калия (мг/л раствора): Белоусов — 155, 362, 358; Цинцадзе — 140, 320, 436; Тоттингем — 327, 922, 614; Итон—137, 213, 42; Арнон, Хогланд—184, 143, 472; Хьюит-140, 95, 156; Уоллес - 148, 143, 236; Гейслер- 122, 135, 362; Чесноков, Базырина — 140, 88, 230; Гуминская — 229, 198, 278.

Хьюит, обобщив имеющуюся литературу, рекомендует следующие дозы микроэлементов для испытаний в опытах (мг/л): железо 2,0, марганец и бор по 0,5, цинк 0,05, медь и молибден по 0,02.

Хогланд и Снайдер рекомендуют максимально широкий набор микроэлементов, приготавливаемый в двух растворах — А и В. На 1 л питательной смеси рекомендуется вносить по 1 мл каждого раствора. Для приготовления раствора А на 18 л берут следующие количества солей (г): Ab(S04)3, ТЮ2, ZnS04 • 7Н,0, CuS04 • 5Н,0, NiS04 • 6Н20, Co(N03)220 — по 1,0; KJ, KBr, SnCl 2НА LiCl — по 0,5; МпС12 4Н,0 — 7,0; Н3В03 — 11,0. Для приготовления раствора В на 18 л вносят: As203, Bi(N03)2, Rb2S04, KF, РЬС12, HgCb, H,Si04, VC13 — no 0,1; Bad,, K,Cr04, Mo02, SrS04 — no 0,5; CdClj — 1,0.

Набор необходимых микроэлементов и их дозировки для разных культур до сих пор нельзя считать окончательно решенными. Чем чище техника проведения опытов и выше урожайность возделываемых культур, тем ббльшие количества и ассортимент разнообразных элементов могут оказаться необходимыми.

Растворы (и сухие навески) каждой соли нужно вносить отдельно и последовательно с обязательным перемешиванием с песком, так как предварительное смешивание различных растворов может привести к образованию осадков.

Техника набивки сосудов песком, подготовка и посев семян, уход за растениями во время вегетации, наблюдения и учет урожая такие же, как в опытах с почвенными культурами. Отмывать корни от песка легче, чем от почвы.

8.2.3. ВОДНЫЕ КУЛЬТУРЫ

Выращивание растений в сосудах на водном растворе питательных элементов (водные культуры) — наиболее трудоемкая модификация вегетационного метода. Ее применяют при необходимости полной или частичной смены питательного раствора в течение вегетации, при проведении опыта на особо чистой воде (бидистилляте) с макро- и микроэлементами, при изучении периодичности питания растений, развития корневых систем, влияния буферное™ и реакции питательной среды и т. д. Водные культуры обеспечивают наиболее однородное распределение внесенных элементов, в них быстрее восстанавливаются одинаковая реакция и концентрация среды при взаимодействии с растениями.

Опыты в водных культурах проводят в стеклянных или пластмассовых сосудах емкостью 3—8 л с деревянными кружками-крышками толщиной 1,5—2,0 см, у которых нижний диаметр равен внутреннему, а верхний — наружному диаметру сосуда. В крышках по числу растений есть отверстия диаметром 1—2 см и более и еще 2 — для продувания воздуха и крепления каркаса. В отверстие для продувания воздуха вставляют стеклянную трубку с загнутым концом, не доходящую до дна сосуда на 2—3 см.

На сосуды надевают двойные чехлы с вставленной тесемкой, которой поверх крышки привязывают чехол; пробка при этом плотно прилегает к сосуду и служит устойчивой опорой для растений и поддерживающего их каркаса. Сосуды на 70 % заполняют дистиллированной водой, затем последовательно в соответствии со схемой добавляют необходимые объемы нужных питательных растворов и в заключение—дистиллированную воду до нужного объема, причем уровень ее не должен достигать нижнего края крышки на 1,0—1,5 см. По мере потребления воды растениями ее доливают до прежнего уровня.

После протравливания проращивают семена в кюветах, чтобы корни их достигли 2—3 см. Затем семена пересаживают на специальные сетки для доращивания. Сетки помещают на кристаллизаторы с водопроводной водой, которую ежедневно меняют. Через 8—12 дней корни растений достигают 5—7 см и растение можно пересаживать в сосуды на питательные смеси.

Для пересаживания в сосуды отбирают растения, одинаковые по длине корней, стебля и листьев и по числу листьев и корней. У отобранных растений семена обертывают ватой, погружают корни в дистиллированную воду и затем помещают в сосуды и закрепляют растения в отверстиях крышек сосудов. Для высокостебельных культур в отверстии пробки закрепляют каркас для поддержания растений.

Важным является продувание воздухом питательных растворов в сосудах, которое должно быть периодическим: по 1—3 ч с перерывами в 3—5 ч в сутки, со скоростью 2—3 пузырька в секунду в каждом сосуде. Для этого нужны компрессор и резервуар со сжатым воздухом с автоматаческим в зависимости от давления переключением и временным реле для подачи напряжения через заданные промежутки времени. Стеклянные трубки сосудов соединяют между собой шлангами (трубками) и резервуаром воздуха, а для регулировки подачи воздуха в сосуды на шланги надевают винтовые зажимы. Эти работы следует проводить до высадки растений в сосуды.

В течение вегетации 2—4 раза меняют питательные растворы и еженедельно 2—3 раза проверяют реакцию (pH) растворов и в случае необходимости, если это не противоречит задачам опыта, регулируют ее с помощью соответствующих кислот и щелочей.

В водных культурах вместо минеральных солей железа в питательных смесях лучше применять хелаты его в виде комплексов с этилендиаминтетрауксусной (ЭДТА) или гидроксиэтилендиамин-тетрауксусной (НЭДТА) кислотами, в которых железо доступно растениям независимо от реакции и окислительно-восстановительного потенциала питательного раствора.

Наблюдения, уход, уборку и учет урожая в водных культурах проводят так же, как в почвенных, но здесь обязательно наряду с надземными органами учитывают и корни. Результаты учета подвергают статистической обработке, а отдельные части растений — анализам по интересующим показателям.

Гидропоника — выращивание растений на питательных растворах в специальных сооружениях на твердых субстратах, в водных и воздушных (аэропоника) культурах. Широко используется в исследовательских целях и в производственной деятельности и является модификацией вегетационного метода.

Подробная методика гидропонного выращивания растений в различных модификациях изложена в предыдущей главе.

8.3. ЛИЗИМЕТРИЧЕСКИЕ ИССЛЕДОВАНИЯ


Изучение выщелачивания органических и минеральных соединений из почвы и внесенных удобрений, контроль за динамикой влажности, просачиванием атмосферных осадков и поливных вод и вымыванием с ними питательных элементов с помощью специальных устройств — лизиметров — называют лизиметрическими исследованиями (опытами). В таких опытах изучают потери элементов в зависимости от видов, доз, форм, сроков и способов внесения удобрений под посевами и без растений для обоснования баланса питательных элементов в почве.

Существует несколько конструкций лизиметров, отличающихся размерами, формой, материалами и приспособлениями для сбора просачивающихся вод и растворенных веществ. Лизиметры могут быть в виде цилиндров, кубов, параллелепипедов или конусов-воронок. Стенки и дно их должны быть влагонепроницаемы (бетон, металл, кирпич, пластмассы) и устойчивы к коррозии. Для стока просачивающейся жидкости дно лизиметра делают с уклоном в сторону отверстия с трубкой для сбора фильтрата и по дну укладывают дренирующий слой из гравия, песка или щебня.

Различают лизиметры с насыпной почвой и с почвой естественного сложения. В первом случае почву набивают послойно с сохранением естественного размещения генетических горизонтов и уплотнением до естественного объема.

Для сравнительных исследований лизиметры размещают группами по 10 и более штук в 2 или более четных ряда на определенном расстоянии друг от друга. Вкапывают их так, чтобы уровень почвы внутри них и снаружи был одинаковым.

Приемники для сбора фильтрующих вод помещают в подземные сооружения (коридоры, траншеи, ямы), хорошо защищенные от атмосферных осадков и резких перепадов температур.

Устанавливают лизиметры (особенно стационарные) вблизи лабораторий, а пространственно размещают так, чтобы обеспечить нормальное освещение и защиту от птиц и животных, ограждая их сеткой со всех сторон или по периметру.

Для длительных исследований насыпные лизиметры изготавливают из бетона или кирпича с площадью поверхности каждого 1—4 м2 и более и глубиной обычно 1 м. Между рядами делают подземный коридор, в который входят трубки из разных слоев каждого из лизиметра со сменными приемниками фильтратов.

Металлические и пластмассовые насыпные лизиметры можно закапывать непосредственно в грунт или в сосуд большего объема, предварительно вкопанный для укрепления стенок ямы и удержания в нем плотно вставляемого лизиметра с приемником. Съемные лизиметры очень удобны при необходимости (в соответствии с программой опыта) периодического взвешивания их в течение вегетационного периода.

Для заполнения почвой без нарушения естественного сложения ее применяют лизиметры с отделяющимся дном, нижние стенки которых заострены. Такой цилиндр или прямоугольник врезают в почву полностью, затем осторожно выкапывают его вместе с почвой. Дно воронкообразной формы, заполненное дренажем, с отверстием для сбора фильтрата плотно прикрепляют к выкопанному с почвой лизиметру. Переносят готовый лизиметр на заранее подготовленное место, соединяют его с приемником и помещают (включая сменный вариант) на одном уровне с окружающей почвой.

Следует подчеркнуть, что при взятии почвы в естественном состоянии применяют небольшие лизиметры—диаметром 10— 20 см и глубиной (длиной) 20—30 см, так как с большими объемами качественно выполнять такую работу чрезвычайно трудно.

Для работы с почвами естественного сложения наиболее удобны лизиметрические воронки, так как они не имеют боковых стенок. Схема устройства и размещения лизиметрических воронок Эмбермайера приведена на рисунке 25. Цинковые воронки диаметром 25—50 см имеют глубину 5 см; края их загнуты вверх на 0,5 см и заострены; выходное отверстие прикрыто цинковым кружком с отверстием 2 мм; вся воронка заполнена дренажем.

Для установки воронок роют траншею глубиной на 50 см больше желаемого размещения каждой воронки; на вертикальной стене ее делают ниши на той глубине, на которой нужно разместить каждую воронку. В ниши вводят воронки, которые врезают острыми краями в потолки. Воронки соединяют трубками с приемниками, размещенными в наиболее глубокой части траншеи. Пустоты в нишах, а также мелкую часть траншеи засыпают почвой. Стенки и верх глубокой части траншеи закрепляют досками, оставляя люк с крышкой для проникновения к приемникам. Сверху траншею накрывают изолирующим материалом и засыпают почвой. Распо-

Рис. 25. Лизиметрические воронки Эбермайера:

А — план; В — разрез одного лизиметра воронки; С—схема расположения воронок на различной глубине

лагают воронки обычно на расстоянии 30—100 см друг от друга вдоль траншеи. При размещении воронок на неодинаково удобренных участках расстояния между ними должны быть более 2 м, чтобы предотвратить оттекание или затекание влаги с соседних участков.

Следует иметь в виду, что в естественных условиях, как правило, 20—25 % воды (осадков) стекает с поверхности по уклонам микрорельефа, поэтому в лизиметры со стенками осадков попадает больше, чем в лизиметрические воронки.

Дно лизиметров прерывает слои почвы и приводит к появлению воздушной подушки (прослойки), мешающей свободному движению гравитационной воды вниз. Поэтому влажность в лизиметрах несколько больше, чем в таком же слое естественной почвы. Просачивание воды в лизиметрах зависит от их глубины — в более глубоких оно относительно выше, чем в мелких. Поэтому при равном количестве осадков испарение происходит более интенсивно из мелких, чем из глубоких лизиметров, а из любых из них — более интенсивно, чем с такой же площади в естественных условиях.

Следовательно, абсолютные значения динамики влажности почвы в лизиметрических опытах отличаются от аналогичных, полученных в естественных условиях. Вместе с тем проведение опытов в лизиметрах одинаковой конструкции по конкретной схеме (с фактором единственного различия) обеспечивает получение сравнимых относительных результатов в пределах испытываемой схемы.

Несмотря на относительность сравнения с естественной почвой, лизиметрические исследования позволяют изучать передвижение воды и растворенных в ней веществ и, следовательно, количественно определять одну из расходных статей баланса элементов, гумуса и влаги в почвах в зависимости от изучаемых условий и факторов жизни растений.

8.4. СТАТИСТИЧЕСКАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ ОПЫТА


В любом опыте неизбежны ошибки, которые обычно разделяют на три группы: грубые, систематические и случайные.

Грубые ошибки обусловлены невнимательностью и неумением исполнителей качественно проводить работы при закладке и проведении опыта, например внесение удобрений дважды на одну делянку (в сосуд), применение вместо одного вида удобрений (соли, раствора) другого, ошибки в размещении этикеток с названиями или результатами разных вариантов и повторностей и т. д.

Строгое соблюдение всех требований методики и техники закладки и проведения опыта и тщательная организация всех работ при этом позволяют избежать грубых ошибок. Если же в опыте обнаружена грубая ошибка, то все результаты на испорченных делянках (сосудах) выбраковывают.

Систематические ошибки всегда однонаправленны: или завышают, или занижают результаты, причем могут быть обусловлены одной или несколькими причинами, действующими в определенном направлении. Эти ошибки классифицируют в три группы:

сплошная систематическая ошибка, охватывающая все варианты и повторности опыта. Так как она одинаково изменяет все данные, то не влияет на сравнимость разных вариантов. Если эта ошибка определена, она может быть введена как поправка к результату;

систематическая ошибка, охватывающая все варианты одной или нескольких повторностей опыта, обусловлена неодинаковым плодородием почвы (субстрата) разных повторностей. Если она определена, ее можно исключить из общего варьирования при обработке данных методом дисперсионного анализа;

систематическая ошибка, охватывающая лишь некоторые варианты и повторности опыта, обусловлена также неодинаковым плодородием почвы (субстрата) этих вариантов (повторностей) с остальными. Эта ошибка наиболее опасна, так как нарушает сравнимость результатов с другими вариантами, искажает оценку изучаемых факторов и снижает точность опыта.

Случайные ошибки обусловлены обычно неизвестными причинами. Они возникают в связи с пестротой почвенного плодородия участка (сосудов) и посевного материала, неоднородностью выполнения работ и ошибками измерений при закладке, проведении и обобщении результатов опыта (при разбивке участка, определении площадей делянок, взвешивании удобрений, урожая и т. д.).

Случайные ошибки неизбежны в любом опыте; избавиться от них невозможно, но при строгом и тщательном соблюдении методики и техники закладки и проведения опыта их можно максимально уменьшить.

Для обоснования правильных выводов по результатам каждого опыта проводят агрономический и статистический (математический) анализы (обработку) полученных в нем результатов.

Агрономический анализ — это критическое сопоставление данных урожая с результатами фенологических и метеорологических наблюдений и учета засоренности, поражений растений болезнями и вредителями и т. д., позволяющее найти объяснение того или иного эффекта, полученного в опыте. При этом проводят оценку методики и техники проведения всех работ, соответствия их поставленным задачам опыта, проверяют правильность первичных записей в дневнике и журнале опыта.

При обнаружении нарушений в методике и технике закладки и проведения опыта или грубых ошибок, искажающих сущность изучаемого приема, опыт бракуют.

При положительном агрономическом анализе результатов опыта проводят статистическую (математическую) обработку его данных, на основании которой устанавливают при принятых уровнях вероятности достоверную научную и практическую ценность изучаемых приемов и факторов.

Статистическая (математическая) обработка результатов опыта позволяет определить границы различных колебаний полученных данных, т. е. установить точность (ошибку) опыта, а также достоверность (существенность) различий по средним урожаям между вариантами опыта. Существуют разные методы статистической обработки и оценки результатов опытов; наиболее широко используют метод дисперсионного анализа. В основе его лежит предположение о том, что если колебания (вариации) в урожаях по делянкам, вызванные изучаемым в опыте фактором (по вариантам), превышают таковые, вызванные случайными факторами (по повторностям), то опыт считается достоверным. Дисперсионный метод позволяет дать одновременно оценку существенности различий нескольких средних, например общую ошибку урожаев (т, %) в среднем для всего опыта и общую ошибку разности двух урожаев л) для любой пары сравниваемых вариантов опыта.

Принцип дисперсионного метода заключается в разложении общей вариации (рассеяния) на составные части: по вариантам, повторностям и остаточная вариация. Этот метод при введении в общую вариацию вариации по повторностям позволяет учитывать имеющуюся в опыте систематическую ошибку и тем самым уменьшает остаточную вариацию, зависящую от случайных ошибок опыта. В этом методе используют понятие «число степеней свободы»; оно всегда на единицу меньше, чем количество варьирующих величин, по которым исчисляется средняя. Например, для общего варьирования число степеней равно числу всех поделя-ночных урожаев минус единица, для варьирования по вариантам — число вариантов минус единица, для рассеивания (варьирования) по повторностям — число повторностей минус единица, для остаточной вариации — разница между числом степеней свободы общего варьирования и суммой чисел степеней свободы вариантов и повторностей.

Для установления достоверности действия изучаемых в опыте факторов в среднем по опыту находят специальный критерий существенности F (Фишера). Различают F-фактический и F-табличный. F-фактический равен отношению среднего квадратичного отклонения вариантов (дисперсия вариантов) к среднему квадратичному отклонению остатка (дисперсия остаточная):

^факт -

Дисперсия вариантов Дисперсия остаточная

Если F-фактический больше табличного, то опыт достоверный и следует находить достоверность различий между отдельными вариантами.

Для лучшего методического понимания дисперсионного метода рассмотрим конкретный пример статистической обработки урожайных данных полевого опыта с ячменем. Поделяночные урожаи по вариантам опыта записывают в таблицу (табл. 146) с точностью до 0,01 т, причем для любой культуры цифры должны быть трехзначными.

146. Урожайность ячменя, т/га
Вариант опытаПовторностьСуммаурожаев(S)Средняяурожайность
123-я4-я5-я6
1 Контроль1,901,701,952,162,342,1712,222,04
2 РК2,101,951,852,262,432,3012,892,15
3NK1,902,232,131,962,422,1812,872,15
4NP2,152,002,472,242,562,4313,852,31
5 NPK2,302,552,602,702,652,9015,702,62
6NP2K2,402,702,542,852,463,0015,952,66
7N2PK2,702,903,053,403,103,5018,65з,п
8 2NPK3,753,403,023,653,653,3020,773,46
Сумма урожаев (Р) 19,2019,4019,6621,2221,6121,78 Q= 122,90 М= 2,56

Вычисляют суммы по вариантам опыта (,5), по повторностям (Р) и общую (Q): Q = ££ = ЕД Определяют среднюю урожайность по вариантам делением суммы по вариантам (S) на число повторений (п) и среднюю урожайность по опыту \М) делением общей суммы (Q) на общее число наблюдений (N), равное числу делянок (nl): М= 122,9: 48 = 2,56 т/га.

Наблюдаемые значения урожайностей по делянкам выражают в отклонениях от условного начала Х — А = у, т. е. из каждого наблюдения вычитают величину А (произвольное или условное начало), которая должна быть числом, близким к средней урожайности по всему опыту. В данном случае она принята равной 2,5, так как средняя урожайность опыта М= 2,56 т/га. Результаты записывают в таблицу (табл. 147).

147. Отклонение (±) от условного (произвольного) начала
ВариантопытаПОВТОРНОСТЬ (у)Сумма (ivj
1-я2-я3-я4-я5-я6-я
1 Контроль-0,60-0,80-0,55-0,34-0,16-0,33-2,78
2 РК-0,40-0,55-0,65-0,24-0,07-0,20-2,11
3NK-0,60-0,27-0,32-0,54-0,08-0,32-2,13
4NP-0,35-0,50-0,03-0,26+0,06-0,07-1,15
5 NPK-0,20+0,05+0,10+0,20+0,15+0,40+0,70
6NP2K-0,10+0,20+0,04+0,35-0,04+0,50+0,95
7N2PK+0,20+0,40+0,55+0,90+0,60+ 1,00+3,65
8 2NPK+ 1,25+0,90+0,52+ 1,15+ 1,15+0,80+5,77
Сумма Iуп-0,80-0,57-0,34+ 1,22+ 1,61+ 1,78Iук = +2,90

Затем подсчитывают суммы отклонений от условного начала по строкам Еус, графам Еу„ и общую Еу = +2,90. Чтобы убедиться в правильности вычислений, приведенных в таблице 147, следует сделать проверку. Сумма урожайности по делянкам (Q) равна сумме отклонений от условного начала (Ly) плюс произведение числа делянок на условное начало (пА): Q = Еу + пА = 2,9 + 48 • 2,5 = = 122,9 (в табл. 146 Q= 122,9).

Далее все величины — отклонения от условного начала у и суммы отклонений Еус и Еу/7 — возводят в квадрат (табл. 148).

148. Квадраты отклонений от условного начала
Вариант опытПовторностьСуммаквадратов (Iу*)Квадрат суммы(i>;)2
а1-я2-я3-я4-я5-я6-я
1 Контроль0,360,640,300,110,030,110,957,73
2 РК0,160,300,420,060,000,040,984,45
3NK0,360,070,100,290,010,100,934,54
4NP0,120,250,000,070,000,000,441,32
5 NPK0,040,000,010,040,020,160,270,49
6NP2K0,010,040,000,120,000,250,420,90
7N2PK0,040,160,300,810,361,002,6713,22
Вариант опытаПовторностьСуммаКвадрат суммы (ВД2
1| 2-я| 3-я4-я |5-я |6квадратов ('Ey-)
8 2NPK16,50,810,271,321,320,645,9232,23
Сумма квадратов(?уя2)2,652,271,402,821,742,3012,58 = 1у264,88 = 1(1yj2
Квадрат суммы0,640,320,121,492,593,178,33 = кад28,41 = (1у)2
(iy,2)2

Причем сначала возводят в квадрат отклонения от условного нача-ла по делянкам у2, подсчитывают их суммы по строкам Ху2, гра-

'J

фам Ъуп и общую сумму ly2 = 12,58. Затем возводят в квадрат суммы отклонений (Еус)2 и (Еуп)2 и также подсчитывают их суммы: по графам 1(1ус)2 = 64,88 и строкам 1(1уп)2 = 8,33. На пересечении последней строки и графы записывают квадрат общей суммы отклонений от условного начала (1у)2 = +2,92 = 8,41.

Далее определяют суммы квадратов отклонений.

Общая сумма квадратов отклонений

Кт=хУ2

(Ху)2 8,41

-.12,58- —

12,38,

где Л^ —общее число наблюдений опыта (nl).

Сумма квадратов отклонений средних по вариантам от общей средней

(Еу)2 _ 64,88 8,41 _ N ~ 6 48 "

Ч^УсГ

IV

гг вар

где п — число повторений по каждому варианту. 1(1ус)2 делят на п, так как квадрат итога по каждому варианту представляет сумму по шести повторностям.

Сумма квадратов отклонений средних по повторностям от обшей средней

Х(Ху„)2 (Ху)2 8,33 8,41

повт / N 8 48 ’ ’

где / — число вариантов. 1(1уп)2 делят на /, так как квадрат итога каждой повторности представляет сумму по восьми вариантам.

Сумму квадратов остаточных отклонений (W0CT) определяют по разнице: W0CT= Ж0бш- Жвар- Wnom = 12,38 - 10,83 - 0,84 = 0,71.

Для определения дисперсий надо подсчитать число степеней свободы, соответствующее каждой из рассчитанных сумм квадратов: общее N— 1 = 48 — 1 = 47; вариантов / —1 = 8—1=7; повтор-

ностей я—1=6—1 = 5; остаточное (N— 1) — (/— 1) — (л — 1) = = 47-7-5 = 35.

Далее составляют таблицу анализа дисперсий (табл. 149) и вносят в первые три графы рассчитанные величины.

Дисперсии (средние квадраты) находят по формулам:

W

"вар

Тл 1

SL.= ^ = ^1 = 1.52:

'вар

у2

-шовт

_ ^повт _0»84 л-1 5

W

= 0,17;

0,71

с2 __

ост (А^ -1) - (/ -1) - (л -1) 35

= 0,02.

149. Анализ дисперсий
ВариацияСуммаквадратовотклоненийWСтепеньсвободыДисперсия (средний квадрат) S2ОтношениедисперсийF,„,KTFrau! при вероятности 0,95
Общая12,3847
Вариантов10,6171,5276,02,30
Повторностей0,8450,178,52,49
Остаточная (ошибка)0,71350,021

Далее дисперсии вариантов (5^) и повторностей (5п0ВТ) сопоставляют с остаточной дисперсией (SqCT) — ошибкой, т. е. определяют фактическое отношение дисперсий в опыте (Рфакт):

^факт.вар

_ ^вар _

'ост

1,52

0,02

= 76,0;

^факт.повт -

JnoBT

с2

°ост

0,17

0Д2

= 8,5.

Табличные значения F находят при вероятности 95 % (табл. 150) на пересечении графы и строки, соответствующих числу степеней свободы сравниваемых дисперсий. Дисперсии вариантов соответствует 7 степеней свободы (7-я графа), остаточной дисперсии — 35 степеней свободы (35-я строка). Пересечению 7-й графы и 35-й строки в таблице 150 соответствует значение 2 34 + 2 25

Ртабл = -;-"ч’ =2,295.

150. Величины F для вероятности 95 % и различных значений числа степеней свободы большего (F,) и меньшего (К) квадратов рассеяния
1234567810122040оо

Для дисперсии повторностей

F , _ 2153 + 2Д5 49

1 табл “ л —

Так как Рфакт больше FTa6n, то различия между средними урожаями по вариантам и по повторностям (влияние неодинакового почвенного плодородия) достоверны, существенны и можно проводить оценку частных различий.

Для характеристики точности опыта делают следующие вычисления.

1. Определяют среднее квадратичное остаточное отклонение:

S=J&=J0M = 0,2 т/га — характеристика ошибки урожая с единичной делянки в среднем по всему опыту.

2. Вычисляют среднюю ошибку средних урожаев по всему опыту:

т = ^ = V0,0067 = 0,08 т/га.

218,5119,0019,1619,2519,3019,33
310,139,949,289,129,018,94
47,179,556,596,396,266,16
56,615,795,415,195,054,95
65,995,144,764,534,394,28
75,594,744,354,123,973,87
85,324,464,073,843,693,58
95,124,263,863,633,483,37
104,964,103,713,48з,зз3,22
114,843,983,593,363,203,09
124,753,883,493,26з,п3,00
134,673,803,413,183,022,92
144,603,743,34з,п2,962,85
164,493,633,243,012,852,74
184,413,553,162,932,772,66
204,353,493,102,872,712,60
224,303,443,052,822,662,55
244,263,403,012,782,622,51
264,223,372,982,742,592,47
284,203,342,952,712,562,44
304,173,322,922,692,532,42
404,083,322,842,612,452,34
604,003,152,762,522,372,25
1003,943,092,702,462,302,19
сю3,842,992,602,372,212,09
19,3619,3719,3919,4119,4419,4719,50
8,888,845,968,748,668,608,53
6,096,045,985,915,805,715,63
4,884,824,744,684,564,464,36
4,214,154,064,003,873,773,67
3,793,733,633,573,443,343,23
3,503,443,343,283,153,052,93
3,293,233,133,072,932,822,71
3,143,072,972,912,772,672,54
3,012,952,862,792,652,532,40
2,922,852,762,692,542,422,30
2,842,772,672,602,462,342,21
2,772,702,602,532,392,272,13
2,662,592,492,422,282,162,01
2,582,512,372,342,192,071,92
2,522,452,352,282,121,991,84
2,472,402,302,232,071,931,78
2,432,362,262,182,021,891,73
2,392,322,222,151,991,851,69
2,362,292,192,121,961,811,65
2,342,272,162,091,931,791,62
2,252,182,072,001,841,691,51
2,172,101,991,921,751,591,39
2,102,031,921,851,681,511,28
2,011,941,831,751,571,401,00

та):

го% = — 100 = М

0,08 100 2,56

= 3,1%.

Для определения достоверных различий между средними урожаями различных вариантов опыта вычисляют: среднюю ошибку разности средних

тв=^?=пф=0,08-1,414=0,113т/га;

наименьшую существенную разницу — НСР, которая в зависимости от принятого уровня вероятности (95 %) обозначается НСР

НСР0 9j = tmD, где t — критерий достоверности (Стьюдента), значения которого находят по таблице 151 в зависимости от числа степеней свободы для остаточной вариации (в нашем примере 35) и принятого уровня вероятности суждений (у нас 95 %):

НСР0 95 = 2-0,113 = 0,226 = ± 0,23 т/га.

151. Стандартные значения критерия достоверности (критерия Стьюдента)
ЧислостепенейсвободыУровень вероятности РЧислостепенейсвободыУровень вероятности Р
0,950,990,950,99
24,39,911-122,23,1
33,25,8132,23,0
42,84,614-152,13,0
52,44,016-202,12,8
62,43,721-282,12,9
72,43,529-302,02,7
82,33,431-622,02,8
92,33,3>622,02,6
102,23,2

Следовательно, все различия между средними урожаями по вариантам опыта существенны (достоверны) с вероятностью 95 %, если они равны или больше 0,23 т/га, и недостоверны, лежат в пределах ошибки опыта, если они меньше этой величины (НСР0,95).

При выбраковке отдельных делянок пустые клетки таблицы поделяночных урожаев заполняют средними величинами в скобках, вычисленными по остальным повторностям данного варианта. Дальнейшую статистическую обработку проводят, как принято, но в таблице анализа дисперсий общее число степеней свобо-

ды уменьшают на число выбракованных делянок, естественно, и остаточное число степеней свободы уменьшится на такую же величину.

Контрольные вопросы и задания

1. Что такое полевой опыт и для чего он нужен? 2. Какова роль опытов в научных исследованиях и в производстве? 3. Что необходимо для планирования и проведения опытов? 4. Что такое программа и схема опыта? 5. Каковы принципы разработки схем опытов? 6. В чем различия схем опытов по дозам и срокам внесения удобрений? 7. Каковы различия схем по видам и формам удобрений? 8. Как составить схему опыта по способам внесения и заделки удобрений? 9. Как выбрать участок для полевого опыта? 10. Что такое уравнительные и рекогносцировочные посевы? 11. Расскажите о формах и размерах делянок, размещении их. 12. Как размещают варианты и повторности по делянкам? 13. Что вы знаете о наблюдениях и методах учета урожая в полевом опыте? 14. Чем отличаются производственные опыты? 15. Расскажите о вегетационных опытах, их классификации. 16. Какие исследования можно проводить в водных культурах? 17. Какова техника проведения работ в почвенных культурах? 18. В чем особенности опытов с песчаными культурами? 19. Что такое гидропоника, каковы ее модификации? 20. Что вы знаете о питательных смесях для вегетационных опытов? 21. Что такое лизиметрические исследования? 22. Что вы знаете о конструкциях лизиметров? 23. Что вы знаете о методе дисперсионного анализа статистической обработки результатов опытов? 24. В чем заключается принцип дисперсионного метода? 25. Что такое критерий существенности (F) и критерий достоверности (/)?

Загрузка...