Глава 3 СВОЙСТВА ПОЧВЫ В СВЯЗИ С ПИТАНИЕМ РАСТЕНИЙ И ПРИМЕНЕНИЕМ УДОБРЕНИЙ


Физические, химические и биологические свойства почвы, обусловленные ее составом, общими и усвояемыми для растений формами питательных веществ и неодинаковой интенсивностью и направленностью процессов перехода одних форм в другие, определяют условия питания растений, потребность в удобрениях и, следовательно, рост, развитие, урожайность возделываемых культур и качество получаемой продукции.

Растения потребляют усвояемые формы питательных веществ из почвы и внесенных удобрений, потребность в которых существенно изменяется в зависимости от обеспеченности ими почвы. На разных почвах обеспеченность общими и усвояемыми формами питательных веществ неодинакова, поэтому отзывчивость растений на удобрения и, следовательно, эффективность видов, доз, сроков и способов внесения удобрений зависят не только от биологических особенностей потребления культурами различных питательных веществ, но и от состава и свойств конкретной почвы, на которой возделывается конкретный вид или сорт сельскохозяйственной культуры.

Удобрения, попав в почву, взаимодействуют с ней: обогащают питательными элементами, влияют на реакцию среды, интенсивность и направленность химических, физических, физико-химических и биологических процессов. Одновременно они подвергаются под влиянием состава и свойств почвы превращениям по растворимости и формам, следовательно, по доступности для растений содержащихся в них и почве питательных элементов. Поэтому знание состава и свойств почв позволяет определить с учетом возможных превращений виды, дозы, формы, сроки, способы и комбинации удобрений в соответствии с требованиями в питательных элементах любой культуры в конкретных почвенноклиматических условиях.

3.1. СОСТАВ ПОЧВЫ


Почва — сложная саморегулирующаяся поликомпонентная биокосная единая система, содержащая тесно взаимодействующие между собой твердую, жидкую и газовую фазы.

Газовая фазапочвенный воздух — результат взаимодействия атмосферного воздуха и образующихся в почве газов. Состав его отличается от атмосферного повышенным (на 0,3—1 %, иногда на 2— 3 % и более) содержанием диоксида углерода и несколько меньшим — кислорода. Он весьма динамичен в зависимости от интенсивности обмена с атмосферным воздухом, богатства почвы органическими веществами, колебаний погодных условий (давление, температура, влажность) и характера растительности. Объем почвенного воздуха находится в динамическом антагонистическом равновесии с жидкой фазой (больше воды — меньше воздуха и наоборот). В почве происходит постоянное потребление кислорода и выделение диоксида углерода в результате разложения органических веществ ее, дыхания корней растений, животных, насекомых, простейших и микроорганизмов, а также некоторых химических реакций. В результате газообмена надпочвенный воздух обогащается диоксидом углерода, что улучшает условия фотосинтеза и повышает продуктивность растений. Взаимодействие С02 с жидкой фазой приводит к образованию угольной кислоты, которая диссоциирует на ионы Н+ и НСО3 подкисляет жидкую фазу:

со22о^н++нсо-3.

Повышение концентрации С02 в почвенном воздухе усиливает растворимость этого газа в воде, что еще более подкисляет жидкую фазу и способствует переходу в усвояемую для растений форму некоторых веществ твердой фазы (фосфаты, карбонаты, сульфаты кальция и др.). Вместе с тем чрезмерная концентрация С02 и недостаток 02 в почвенном воздухе и жидкой фазе, наблюдающиеся при переувлажнении и переуплотнении почв, ингибируют рост и развитие микроорганизмов и растений, тормозят дыхание, рост корней растений и усвоение ими питательных элементов, усиливают восстановительные процессы в жидкой и твердой фазах почвы.

Регулирование водно-воздушного режима конкретных почв соответствующими обработками в сочетании с рациональным применением удобрений и мелиорантов улучшает корневое и воздушное питание растений, повышает их продуктивность и качество получаемой продукции, способствует развитию почвенных микроорганизмов, насекомых и животных.

Жидкая фазапочвенный раствор — образуется из воды, поступающей с осадками, из грунтовых и паводковых вод, при конденсации водяных паров и растворимых в почвенном растворе веществ твердой и газообразной фаз. Это наиболее активная фаза почвы, из которой растения непосредственно усваивают питательные элементы и одновременно через почвенный раствор происходит взаимодействие растений с удобрениями, мелиорантами, твердой и газообразной фазами почвы, а также перенос различных частиц и соединений всех этих компонентов в виде суспензий, взвесей, коллоидных и истинных растворов.

Почвенный раствор в зависимости от состава и свойств конкретной почвы содержит катионы (Са2+, Mg2+, Н+, Na+, К+, NHJ и др.),

анионы (НСО3, ОН", Cl", NO3, SO^-, Н2РС>4 и др.), водорастворимые органические соединения и растворимые С02, 02, NH3 и др. Поступление ионов в почвенный раствор происходит из твердой и газовой фаз почвы, вносимых удобрений и мелиорантов, выделений флоры и фауны, атмосферных осадков и грунтовых вод, а извлечение — потреблением растениями и биотой, переходом в твердую и газовую фазы и в результате водной эрозии. Иными словами, состав, концентрация, реакция, буферность и осмотическое давление почвенного раствора динамичны и зависят от почвенно-климатических условий и антропогенного воздействия.

Концентрация солей в почвенном растворе колеблется от тысячных до сотых долей процента (10—200 мг/л) в малоплодородных почвах до одного и более процента (> 10 000 мг/л) в очень сильнозасоленных (солончаки), а в среднеплодородных почвах составляет около 500 мг/л. Избыток солей в растворе (более 2000 мг/л) обычно вредно действует на многие сельскохозяйственные культуры, особенно в течение двух—четырех недель с момента прорастания семян. Однако с возрастом растений их устойчивость к высоким концентрациям возрастает.

Твердая фаза почвы состоит из минеральной (90—99,5 %) и органической (10—0,5%) частей, представленных полидисперс-ными частицами и агрегатами. Минеральная часть — обломки и частицы первичных пород и минералов, вторичные (вновь образованные) минералы, оксиды, соли и другие соединения, образовавшиеся в процессе выветривания и почвообразования. Органическая часть — разной степени разложения, остатки растительных и животных организмов почвы и продукты их разложения и неосинтеза, среди которых всегда преобладает собственно гумус.

Средний элементный состав твердой фазы почвы (% массы) по А. П. Виноградову характеризуется следующими данными:

Кислород49,0Барий0,05Галлийю-3
Кремний33,0Стронций0,03Оловою-3
Алюминий7,1Цирконий0,03Кобальт8 • 10-4
Железо3,7Фтор0,02Торий6 • ю-4
Углерод2,0Хром0,02Мышьяк5 • 10-4
Кальций1,3Хлор0,01Йод5 • 10-4
Калий1,3Ванадий0,01Цезий5 • 10-4
Натрий0,6Рубидий6 • ю-3Молибденз • ю-4
Магний0,6Цинк5* 10-3Уран1 • ю-4
Водород0,5Церий5 • 10-3Бериллийю-4
Титан0,46Никель4- 10-3Германийю-4
Азот0,10Литийз* ю-3Кадмий5 • 10-5
Фосфор0,08Медь2 • 10-3Селен1 • ю-6
Сера0,08Бор1 • ю-3Ртутью-6
Марганец0,08Свинец1 • ю-3Радий8 • 10-"

Кислород, кремний, алюминий и железо составляют почти 93 % твердой фазы, углерод, калий и кальций — еще 4,6 % и лишь 2,5 % приходится на все оставшиеся элементы, которые в подавляющем большинстве содержатся в минеральной части. Только некоторые элементы (углерод, кислород, водород, фосфор и сера) содержатся в минеральной и органической частях, а азот — почти целиком в органической части.

3.1.1. МИНЕРАЛЬНАЯ ЧАСТЬ ПОЧВЫ

Она представлена различными по размерам частицами пород, первичных и вторичных минералов, аморфных соединений и солей. Гранулометрический состав почвы зависит от минералогического состава, влияет на химический и определяет многие физические, физико-химические и химические ее свойства. В песчаных и супесчаных почвах преобладают первичные минералы, суглинистые состоят из смеси первичных и вторичных минералов, а глинистые — преимущественно из вторичных минералов с примесью кварца. Разделение минералов на первичные (более 0,001 мм) и вторичные (менее 0,001 мм) довольно условное, так как последние являются продуктами физико-химического выветривания первых и образования при этом гидратов полуторных оксидов кремнезема и других соединений. В процессе выветривания гидролиз, например, полевого шпата и слюды, приводит к замещению катионов в кристаллических решетках минералов на ионы водорода:

K[AlSi3Og] + пН2° >А14(ОН)8[Si40|o]+ Ортоклаз (полевой шпат) Каолинит

+SiO, «Н20+КОН;

Опал

K(Mg,Fe)3 [AlSi3O10 ](OH,Fe)2 +

Биотит(слюда)

+2о_^( KjH30)(MgFe2+ [(Al,Si)4 О,о ](ОН)2 • «Н20+ Гидробиотит

+Mg(OH)2 +Fe203 Н20+КОН.

Брусит Гётит

Физико-химическое выветривание нельзя отделить от биологического преобразования пород, минералов и других соединений под воздействием живых организмов почвы и продуктов их жизнедеятельности (кислоты, ферменты и т. п.).

По химическому строению минералы подразделяют на силикаты и алюмосиликаты. Среди силикатов во всех почвах во фракциях песка и пыли преобладает (более 60 %) кварц — Si02, обладающий крайне низкой поглотительной способностью и высокой водопроницаемостью. Алюмосиликаты представлены в почвах первичными (преимущественно полевые шпаты и слюды) во фракциях пыли и песка (более 0,001 мм) и вторичными (группы каолинита, монтмориллонита и гидрослюд) во фракциях ила и коллоидов (менее 0,001 мм) минералами. Полевые шпаты и слюды при трансформации во вторичные минералы служат источниками калия, кальция, магния, железа и других элементов питания растений.

Кристаллические вторичные минералы представлены листовыми двух-(каолиниты) и трех-(монтмориллониты) слойными решетками, состоящими из слоев кремнекислородных тетраэдров, образующих гексагоны, соединенные с алюмогидроксильными октаэдрическими слоями. Среди двухслойных минералов каоли-нитовой группы наиболее распространены каолинит — Al4(OH)8[Si4O10] и галлуазит — Al4(OH)8[Si4O10] • 4 Н20. Дисперсность их невысока, емкость поглощения не выше 25 мгэкв/100 г почвы (фракция < 0,001 мм), липкость небольшая, водопроницаемость хорошая. Среди трехслойных вторичных минералов распространены монтмориллонит, нонтронит, бейзеллит, сапонит, соко-нит. Монтмориллонит — Mg3(0H)4[Si408(0H)2] • Н20 — обладает высокой дисперсностью: 40—50 % коллоидных (<0,0001 мм) и 60—80 % илистых (< 0,001 мм) частиц. Он преобладает в черноземах. Благодаря высокой дисперсности емкость поглощения этого минерала достигает 120 мгэкв/100 г, при увлажнении он набухает. При этом в межплоскостное пространство могут проникать обменные катионы (К+, NHj, Na+, Са2+ и др.), которые при дегид-рации (подсушивании) почвы фиксируются и становятся недоступными для растений до следующего увлажнения. Гидрослюды гидромусковит (иллит) (К, Н30)А12(0Н)2[А1, Si]4 • яН20 и гидробиотит присутствуют практически во всех почвах в илистой и коллоидной фракциях. Они содержат до 5—7 % калия. Благодаря высокой дисперсности обладают большой поверхностью и поглотительной способностью.

Аморфные вещества минеральной части почвы представлены гидроксидами кремния Si02 • яН20, алюминия А1203 • яН20 и железа Fe203 • яН20, которые в коллоидной фракции в зависимости от реакции среды могут вести себя как кислоты или основания, обусловливая обменную поглотительную способность катионов и анионов. В изоэлектрических точках гидроксиды кремния, железа и алюминия выпадают в аморфные осадки, которые по мере старения кристаллизуются, образуя новые минералы:

Si02 яН20 —>SiC>2 яН20_> Si02 Si02 (аморфный) Опал Халцедон Кварц

Ре20з «Н20-^Ре20з Н20—> Fe203 —> Fe203 mH20 (аморфный) Гётит Гематит Гидрогётит

кристаллический

Чем больше окристализованность соединений кремния, железа и алюминия, тем меньше их растворимость.

В почве содержатся и непосредственные источники питания растений — минеральные соли: карбонаты, сульфаты, нитраты, хлориды, фосфаты кальция, магния, калия, натрия, железа, алюминия, марганца. Все нитраты и хлориды, а также фосфаты, сульфаты и углекислые соли калия и натрия хорошо растворимы в воде, но их в почвах (за исключением засоленных) мало. Малорастворимые соли (карбонаты кальция, магния и сульфат кальция) встречаются в некоторых почвах в составе твердой фазы в значительных количествах, а нерастворимые в воде фосфаты кальция, магния, железа и алюминия — во всех почвах.

В связи с различным минералогическим составом гранулометрические фракции почв значительно различаются по содержанию питательных элементов (табл. 33).

33. Примерный химический состав гранулометрических фракций почв
Фракция, ммСодержание, %
SiAIFeСаMgКР
1,0-0,243,40,80,80,30,30,70,02
0,2-0,0443,81,10,80,40,11,20,04
0,04-0,0141,62,71,00,60,21,90,09
0,01-0,00234,67,03,61,10,23,50,04
< 0,00224,811,69,21,10,64,10,18

С увеличением дисперсности снижается только содержание кремния и возрастает содержание всех других элементов, в том числе азота, который в составе гумуса также сосредоточен в наиболее дисперсной фракции. Следовательно, коллоидная и илистая фракции почв — основной источник питательных элементов для растений и одновременно наиболее активная часть почвы в формировании емкости катионо-анионного и молекулярного обмена, структурообразовании и буферности ее при взаимодействии с растениями, биотой, удобрениями и мелиорантами.

3.1.2. ОРГАНИЧЕСКАЯ ЧАСТЬ ПОЧВЫ

Органическая часть почвы — это комплекс разнообразных органических соединений, разделенных на две группы: 1) собственно гумус, устойчивые к разложению консервативные вещества — свободные и связанные фульвокислоты, гуминовые кислоты и гумин, и 2) негумифицированные, лабильные органические вещества (ЛОВ) — неразложившиеся остатки растений, животных (насекомых, червей и др.), микроорганизмов и промежуточные продукты их разложения (клетчатка, крахмал, белки, пептиды, органические и аминокислоты, жиры, смолы, альдегиды, поли-уроновые кислоты, полифенолы, дубильные вещества, лигнин, хитин и др.).

Гумусовые вещества (гумус). Составляют 80—90 % общего содержания органического вещества почв. С их содержанием, составом и свойствами связаны температурно-воздушный режим, водно-физические свойства, поглотительная способность, буфер-ность почв, общие и подвижные запасы питательных элементов почв и вносимых удобрений, а также превращения и передвижения всех элементов. Подвижные питательные элементы гумуса непосредственно участвуют в питании растений в меньшей степени, чем ЛОВ, так как разлагаются очень медленно, но создают для этого процесса очень благоприятную среду.

Гумус подразделяют на три группы веществ: гуминовые кислоты, фульвокислоты и гумины.

Гуминовые кислоты. Содержат 52—58 % углерода, 34— 39 кислорода, 3,3—4,8 водорода и 3,6—4,1 % азота; каждая молекула их имеет 4 карбоксильные (СООН), 3—6 фенольных (ОН), первичные и вторичные спиртовые (ОН), а также метоксильные (ОСН3) и карбонильные (СО) группы. Наличие многих функциональных групп обусловливает активное участие гуминовых кислот в процессах обменного поглощения ионов и образование соединений с солями, аморфными веществами и минералами.

Фульвокислоты. Содержат меньше углерода и азота, но больше кислорода, чем гуминовые кислоты, имеют более простое строение, но такие же функциональные группы и, следовательно, могут взаимодействовать с такими же соединениями, а также с железом, алюминием и гуминовыми кислотами. Фульвокислоты более подвижны, азотистые соединения их молекул легче подвергаются гидролизу, чем гуминовых кислот.

Г у м и н. Представляет собой комплекс сложных эфиров гуминовых и фульвокислот, прочно связанных с глинистыми минералами и другими веществами минеральной части, что и обусловливает его высокую устойчивость к химическому и микробиологическому разложению. Гумины практически не могут быть непосредственными источниками питательных элементов для растений, но благодаря наличию многих функциональных групп удерживают в усвояемой для растений форме эти элементы, поступающие из почв и удобрений. Они влияют на емкость, буферность почв, передвижение и превращение питательных элементов.

Гумусовые вещества, обладая высокой устойчивостью к минерализации, в почвах длительного сельскохозяйственного использования без удобрений и при недостаточных количествах их все же постепенно разлагаются. За 30—50 лет подобной эксплуатации содержание гумуса в почвах может снизиться на 20—25 и даже на 50 % в зависимости от исходного уровня. В пахотном слое дерново-подзолистых почв ежегодно минерализуется в среднем 0,6— 0,7, а в черноземах— до 1 т/га органического вещества. Особенно интенсивно гумус минерализуется в чистых парах (1—2 т/га), так как здесь нет возврата органического вещества в почву в виде остатков растений и может накапливаться 60—120 кг/га нитратного азота.

В почвах ежегодно протекают процессы не только распада гумуса, но и новообразований его за счет поступающих остатков растений, биоты, продуктов разложения их и «старого» гумуса. В зависимости от преобладания того или иного процесса (разложение-синтез) в почве меняется содержание органического вещества.

Подбор соответствующих видов и сортов возделываемых культур, квалифицированное применение органических и минеральных удобрений в сочетании с химическими мелиорантами и способами обработки почв обеспечивают существенное изменение продуктивности культур и, следовательно, количества и качества пожнивно-корневых остатков, других почвенных организмов, что и является практическим приемом регулирования содержания органического вещества в почвах.

Важнейшее качество гумуса — коллоидностъ. Коллоидные, поверхностно-активные вещества гумуса обладают катионо-анионными мицеллами и проявляют высокую активность даже при предельно малой толщине адсорбционных слоев. Поэтому, несмотря на небольшую долю гумуса в твердой фазе почвы (кроме торфяных почв), роль и значение его в питании растений, превращении удобрений и плодородии почв исключительно велики.

Содержание органического вещества в пахотном слое разных почв сильно колеблется — от очень низкого (менее 1,0 %) до очень высокого (более 10%) и является одним из основных критериев плодородия и экологической устойчивости их как компонентов биосферы. Компоненты органического вещества в значительной мере определяют пищевой режим почвы как непосредственные источники питания населяющих ее организмов, так и косвенно действием различных групп органических веществ на физико-химические и биологические процессы в ней и водно-физические свойства. Обогащение почвы органическим веществом снижает потери питательных элементов удобрений из нее в результате миграционных процессов и, следовательно, загрязнение сопряженных сред. Циклические процессы синтеза и трансформации органических веществ в почве — основа биогеохимических круговоротов биофильных элементов, и одновременно они играют важнейшую роль в воспроизводстве плодородия почв.

Негумифицированные вещества. Составляют 10—20% общего запаса органических веществ, но являются непосредственным ис-

точником питательных веществ для растений и биоты. Некоторые из них оказывают стимулирующее или ингибирующее действие на рост и развитие живых организмов и одновременно влияют на трансформацию питательных элементов почвы и удобрений из недоступных для растений форм в усвояемые и обратно.

Не вся масса ЛОВ полностью минерализуется — от 10 до 30 % их участвует в новообразовании собственно гумуса. Из общих количеств ЛОВ на долю растительных остатков в зависимости от вида и продуктивности культур приходится от 3—5 до 12—15 т/га, что составляет в дерново-подзолистых почвах до 10 %, а в черноземах 2—3 % общих запасов органического вещества. Масса микроорганизмов в слое почвы 0—20 см колеблется от 0,7 до 2,7 т/га (иногда до 5—7 т/га), что составляет 1—3 % общих запасов органического вещества в почвах. Недостаток ЛОВ в почвах проявляется в значительном ухудшении питательного режима всех живых организмов.

3.2. ПОГЛОТИТЕЛЬНАЯ СПОСОБНОСТЬ ПОЧВЫ


Способность почвы поглощать из окружающей среды ионы, молекулы, частицы, микроорганизмы, другие вещества и удерживать их называется поглотительной способностью.

3.2.1. БИОЛОГИЧЕСКАЯ ПОГЛОТИТЕЛЬНАЯ СПОСОБНОСТЬ

Она обусловлена наличием в почве живых организмов — растений, микроорганизмов, насекомых, червей и других, которые избирательно поглощают из почвенного раствора и воздуха питательные элементы, переводят их в различные соединения собственной массы, предотвращают потери их и обогащают почву органическим веществом.

Микроорганизмы, потребляя органические вещества в качестве пищи и энергетического материала, переводят питательные элементы в минеральную форму, но одновременно некоторое количество их потребляют сами. В этом смысле они конкурируют с растениями. Некоторая часть питательных элементов удобрений также потребляется микроорганизмами. Вместе с тем многие микроорганизмы (аммонификаторы, свободноживущие, ассоциативные и симбиотические азотфиксаторы, фосфо- и серобактерии и др.) существенно улучшают питание растений и влияют на трансформацию удобрений. Биологическое поглощение чрезвычайно важно в азотном питании растений и превращении азотных удобрений в почвах.

Азотфиксаторы переводят молекулярный азот атмосферы в усвояемые для растений формы, количество которого можно регу-

Лировать с помощью удобрений, мелиорантов, доли и вида бобовых в посевах и способами обработки почвы. Нитрификаторы окисляют аммиачный азот в нитратный, который, если не используется растениями и микроорганизмами, теряется из почвы в результате вымывания и (или) денитрификации, так как другими способами нитраты (и хлориды) почтой не поглощаются.

Интенсивность биологического поглощения зависит от температуры, водно-воздушного режима, реакции среды, количества и состава органического вещества в почвах. Ее можно регулировать умелым и комплексным сочетанием видов, доз и способов внесения удобрений и мелиорантов с подбором культур, сроками и способами обработки почв и другими агротехническими приемами.

3.2.2. МЕХАНИЧЕСКАЯ ПОГЛОТИТЕЛЬНАЯ СПОСОБНОСТЬ

Она обусловлена пористостью почвы, способностью задерживать твердые частицы из воздуха и фильтрующихся вод. Это несорбционный процесс; емкость такого поглощения зависит главным образом от гранулометрического состава, структуры и сложения почвы. Благодаря такому поглощению в верхних горизонтах почв сохраняются наиболее ценные коллоидные и предколлоид-ные фракции, микроорганизмы, а также тонкоразмолотые нерастворимые в воде удобрения (фосфоритная мука, преципитат, фосфат-шлаки и др.) и мелиоранты (известняковая, доломитовая мука, гипс и др.).

3.2.3. ФИЗИЧЕСКАЯ ПОГЛОТИТЕЛЬНАЯ СПОСОБНОСТЬ

Это способность почвы поглощать (положительная адсорбция) или отторгать (отрицательная) целые молекулы различных веществ поверхностью дисперсных, преимущественно коллоидных и предколлоидных частиц. Если молекулы вещества притягиваются частицами почвы сильнее, чем молекулы воды, то в пленке на поверхности частиц концентрация этого вещества повысится, а в окружающей среде снизится. Это положительное поглощение (адсорбция) типично в основном для молекул органических веществ (спирты, кислоты, основания, высокомолекулярные соединения), а из минеральных — только для щелочей. Минеральные кислоты и растворимые в воде соли физически поглощаются отрицательно, т. е. отторгаются почвой при ее увлажнении, а при избытке воды вымываются в нижележащие горизонты и грунтовые воды.

Физическое поглощение имеет большое значение для рационального применения удобрений, в составе которых содержатся растворимые нитраты и хлориды. Так как хлор в значительных количествах для многих культур токсичен, хлорсодержащие удобрения следует вносить осенью, чтобы благодаря осенне-весенним осадкам произошло вымывание его из пахотного слоя к моменту посева чувствительных к нему культур. Для нитратных удобрений такое вымывание экономически и экологически вредно, поэтому их лучше вносить весной перед посевом или в подкормки. Физическая поглотительная способность почв имеет и экологическое значение: адсорбция молекул паров, газов и пестицидов уменьшает проникновение их в сопредельные среды, включая растения.

3.2.4. ХИМИЧЕСКАЯ ПОГЛОТИТЕЛЬНАЯ СПОСОБНОСТЬ

Это поглощение — хемосорбция — преимущественно анионов в результате образования труднорастворимых соединений при взаимодействии различных компонентов жидкой, твердой и газовой фаз почвы. Химическое поглощение почвой анионов зависит от их способности образовывать труднорастворимые и нерастворимые соединения с элементами почвы. Анионы угольной (С0з“) и

серной кислот с катионами Са2+ и Mg2+, которые преобла

дают в большинстве почв, образуют труднорастворимые соединения. Анионы фосфорной кислоты (Н2РО4 ,НР04-) с кальцием и

магнием образуют двух- СаНР04 и трехзамещенные Са3(Р04)2, а с алюминием и железом — трехзамещенные труднорастворимые фосфаты (FeP04, А1Р04). Свежеосажденные трехзамещенные фосфаты железа, алюминия и кальция благодаря корневым выделениям растений могут усваиваться, но при старении осадков кристаллизуются и становятся менее растворимыми и доступными растениям. Двухзамещенный фосфат кальция (СаНР04) растворяется в слабых кислотах и поэтому благодаря кислым корневым выделениям легко усваивается растениями. От прорастания семян до появления развитых корней растения могут потреблять только водорастворимые однозамещенные фосфаты. Однако именно они очень быстро химически связываются во всех почвах, причем не только растворимыми в воде, но и находящимися в поглощенном состоянии ионами кальция, магния, железа и алюминия.

Интенсивное химическое связывание анионов фосфорной кислоты почвами обусловливает необходимость внесения и заделки фосфорных удобрений на определенную глубину вблизи поглощающих участков корней растений, так как мигрировать они не могут. Для снижения химического поглощения почвами доступных растениям форм фосфора удобрений следует уменьшить суммарную поверхность контакта их с почвой путем гранулирования порошковидных форм, а также локализации порошковидных и гранулированных форм при допосевном внесении. Из-за уменьшения поверхности контакта с почвой гранулированный суперфосфат при любых способах внесения на всех почвах обеспечивает большую прибавку урожаев культур, чем порошковидный. Локальное внесение эффективнее, чем заделка при разбросном внесении. Фосфор навоза и компостов усваивается растениями лучше, чем из минеральных удобрений.

Наряду с химическим закреплением (ретроградацией) фосфатов в почвах наблюдается и противоположный процесс — мобилизация фосфора: перевод его из недоступных в доступные для растений формы. Это происходит при подкислении почв, которое может наблюдаться при повышении концентрации угольной, азотной и органических кислот, образующихся в результате жизнедеятельности и разложения растений и биоты. Например, образующаяся в процессе нитрификации азотная кислота может превращать трехзамещенный фосфат кальция в однозамещенный:

4HN03 + Са3(Р04)2 = 2Ca(N03)2 + Са(Н2Р04)2.

В почвах с гидролитической кислотностью более 2,5 мгэкв/100 г растения могут усваивать фосфор трехзамещенных фосфатов. Причем чем кислее почва, тем интенсивнее и не хуже, чем из од-нозамещенных фосфатов.

3.2.5. ФИЗИКО-ХИМИЧЕСКАЯ (ОБМЕННАЯ) ПОГЛОТИТЕЛЬНАЯ СПОСОБНОСТЬ

Это способность поглощать ионы почвенного раствора, преимущественно катионы, путем эквивалентного обмена на одноименно заряженные ионы диффузного слоя минеральных, органических и органо-минеральных коллоидов твердой фазы почвы, совокупность которых К. К. Гедройц назвал почвенным поглощающим комплексом (ППК). Реакция обмена удобрений с ППК почвы представляет собой следующую схему:

NH4

Са NH4

[nnK]iy^+5NH4N03^[nnK]NH4+Ca(N03)2 +

NH4

+Mg( N03 )2 + HN03

Преимущественное поглощение катионов обусловлено преобладанием в ППК почв отрицательно заряженных коллоидов (аци-доидов), в диффузном слое которых находятся в качестве противоионов катионы, способные к обмену с катионами жидкой фазы почвы. В ППК сильнокислых почв (болотные, подзолистые, красноземы, желтоземы), обогащенных гидроксидами железа и алюминия, наряду с ацидоидными имеются положительно заряженные коллоиды (базоиды), содержащие в качестве противоионов анионы, способные к вытеснению другими анионами почвенного раствора по следующей схеме:

[А1(0Н)2]НР04 + (NH4),S04HA1(0H)2]S04 + (NH4)2HP04.

Все обменно-поглощенные ионы в различных почвах могут усваиваться растущими растениями.

Обменное поглощение катионов определяет реакцию, буфер-ность, структурное состояние и другие свойства почвы, что особенно важно для питания растений во взаимодействии удобрений с почвой и растениями. В нейтральных и близких к ним по реакции почвах взаимодействие преимущественно водорастворимых форм, а в кислых и щелочных почвах всех удобрений и химических мелиорантов обусловлено прежде всего обменом ионов (преимущественно катионов) между ППК и удобрениями, ППК и мелиорантами. Основную (преобладающую) часть питательных элементов растения потребляют из почвы и удобрений в виде ионов путем различных обменных реакций м^жду растением, почвой, удобрениями и мелиорантами.

Физико-химическое поглощение ионов имеет ряд закономерностей.

Реакции обмена между поглощенными ППК и ионами почвенного раствора обратимы и протекают в эквивалентных количествах и соотношениях. Обменные реакции заканчиваются установлением некоторого подвижного равновесия. Установление этого равновесия зависит от состава, концентрации и объема раствора, природы обменивающихся анионов и катионов и свойств почвы. Удобрения, мелиоранты, минерализация органического вещества почвы, увлажнение и подсыхание почвы, потребление ионов растениями смещают это равновесие, и тогда одни анионы и катионы переходят из раствора в ППК, а другие в обмен на первые наоборот — из ППК в раствор.

Количество катионов, вытесняемых из ППК в раствор, возрастает при постоянной концентрации раствора с увеличением объема, а при постоянном объеме его — с увеличением концентрации. Скорость реакций обмена катионов между ППК и раствором чрезвычайно велика — за 3—5 мин с момента внесения водорастворимых удобрений до 85 % катионов их поглощается ППК с выделением эквивалентных количеств ранее содержащихся в ППК других катионов.

Энергия обменного поглощения и закрепления катионов в ППК возрастает с увеличением их валентности, а в пределах одной валентности — с увеличением атомной массы и вместе с тем зависит от диаметра катионов в гидратированном состоянии. С ростом атомной массы возрастают размеры катионов и снижается степень их гидратации, поэтому размеры (диаметры) гидратированных катионов при этом уменьшаются. Чем меньше гидратирован катион, тем прочнее его связь с ППК и тем легче он вытесняет из ППК более гидратированные катионы. По возрастающей способности к поглощению с учетом размеров в гидратированном состоянии разновалентные катионы располагаются в следующий ряд:

7 Li+ <25 Na+ <18 N Н J <39 К+ <89 Rb+ «27 Mg2+ < 40Са2+ <

< 59Со2+ «27А13+ < 56Fe3+.

Среди одновалентных катионов в силу меньших размеров в гидратированном состоянии исключением являются аммоний и особенно водородный ион Н+ или в гидратированном состоянии Н30+ (гидроксоний), который благодаря очень малым размерам по энергии поглощения в 4 раза превосходит кальций и в 17 раз — натрий.

Обмен катионов может происходить как на внешней (экстра-мицелярно), так и на внутренней поверхности коллоидов (интра-мицелярно). Глинистые минералы группы монтмориллонита (монтмориллонит, иллит, вермикулит, мусковит) с трехслойной кристаллической решеткой, способной расширяться при увлажнении, могут поглощать катионы как экстра-, так и интрамицеляр-но. Проникшие в межпакетное пространство катионы (К+, NHJ, Rb+ и Cs+) при подсыхании почвы и сокращении этого пространства оказываются замкнутыми в гексагонах — зафиксированными и недоступными растениям, но позднее при увлажнении почвы могут выйти из этого пространства и стать доступными растениям.

Фиксация калийных и аммонийных катионов соответствующих удобрений возрастает с увеличением среди минералов монт-мориллонитовой группы, особенно в коллоидной и предколлоид-ной фракциях гранулометрического состава почвы. Внесение аммиачных и калийных удобрений глубже, в слои почвы с устойчивой влажностью, позволяет заметно снизить необменное поглощение (фиксацию) вносимых катионов и сохранить их в усвояемой для растений форме.

Почва как исключительно сложный полифункциональный сорбент поглощает ионы, молекулы и частицы питательных веществ удобрений и мелиорантов нередко одновременно по нескольким типам взаимодействия. Знание этих взаимодействий позволяет профессионально регулировать с помощью имеющихся природно-экономических ресурсов продуктивность культур, плодородие почв и качество получаемой продукции.

3.2.6. ЕМКОСТЬ ПОГЛОЩЕНИЯ И СОСТАВ ПОГЛОЩЕННЫХ КАТИОНОВ ПОЧВ

Максимальное содержание обменно-поглощенных катионов в почве называют емкостью катионного обмена (ЕКО) или емкостью поглощения; она выражается в миллиграмм-эквивалентах на 100 г почвы. Если в 100 г почвы содержится в обменно-поглощенном состоянии 160 мг кальция, 24 магния и 3 мг водорода, ЕКО (Т) будет равна:

Т=1^+—+-=13,0мгэкв/100г,

20 12 1 '

где 20 — эквивалентная масса Са, 12 — Mg и 1—Н.

ЕКО возрастает с увеличением в почве органического вещества, дисперсности гранулометрического состава от песчаных, супесчаных к суглинистым и глинистым (особенно с увеличением доли коллоидной и предколлоидной фракций) и с возрастанием минералов монтмориллонитовой группы. ЕКО органического вещества твердой фазы почвы в 10—30 раз выше минеральной части этой фазы, и при содержании гумуса 5—6 % на его долю приходится более 50 % общей емкости катионного обмена. ЕКО разных почв сильно колеблется — от 5—10 мгэкв/100 г в легких дерново-подзолистых разностях до 20—70 мг экв/100 г в черноземах. При подкислении почвы и увеличении содержания амфотерных коллоидов (амфолитоидов) в ней ЕКО снижается.

Разные почвы наряду с ЕКО различаются и по составу поглощенных катионов. Все почвы в обменно-поглощенном состоянии содержат кальций и магний, причем в выщелоченных, обыкновенных и мощных черноземах доля этих катионов достигает 80— 90%, и небольшое количество катионов водорода и алюминия. В южных черноземах, каштановых почвах и сероземах в ЕКО преобладают кальций и магний, имеется немного натрия и нет водорода. В солонцах и солончаках в обменно-поглощенном состоянии наряду с кальцием и магнием много натрия. В красноземах, желтоземах, подзолистых и дерново-подзолистых почвах в составе поглощенных катионов наряду с кальцием и магнием много или очень много (до 50 % ЕКО и более) алюминия, водорода и железа. Катионы калия и аммония в небольших количествах в обменнопоглощенном состоянии встречаются во всех почвах. Следует подчеркнуть, что в почве имеются практически все необходимые растениям катионы, но содержание их очень мало.

ЕКО и состав поглощенных катионов играют огромную, если не решающую, роль в питании растений и превращении удобрений, определяют реакцию и буферные свойства твердой и жидкой фаз ее, а также катионо-анионный состав и концентрацию почвенного раствора и, следовательно, обусловливают выбор вида, дозы, формы, срока и способа внесения удобрений и мелиорантов для возделываемых культур на каждой конкретной почве. Чем выше ЕКО почвы, тем экономически выгоднее и экологически безопаснее разовое (запасное, периодическое) внесение больших доз удобрений и мелиорантов под культуры. Чем ниже ЕКО, тем острее необходимость дробного внесения небольших доз удобрений и мелиорантов под те же культуры.

Состав и количество поглощенных катионов влияют на дисперсность ППК и, следовательно, на свойства почвы, питание растений и трансформацию удобрений и мелиорантов. Катионы осаждают (коагулируют) отрицательно заряженные коллоиды почвы, причем с увеличением валентности и атомной массы более энергично в следующей последовательности:

Li+ + <К+ «Mg2+ <Са2++ « Al3+ 3+.

При подкислении почвы коагулирующее действие катионов усиливается, при подщелачивании — ослабевает, а одновалентные катионы в щелочной среде не вызывают коагуляции коллоидов. Катионы кальция осаждают коллоиды даже в щелочной среде, а магния занимают промежуточное положение между одновалентными и кальцием.

Преобладающий в составе поглощенных катион кальция при взаимодействии с удобрениями переходит в раствор, осаждает в нем органические и минеральные коллоиды, т. е. накапливает и сохраняет их в твердой фазе, что способствует увеличению ЕКО.

Содержание в ППК одновалентных щелочных катионов калия, и особенно натрия, более 3—5 % ЕКО и увеличение количества их сильно диспергируют коллоидную и предколлоидную фракции, резко ухудшают свойства щелочных почв и, следовательно, питание растений. При взаимодействии с удобрениями, мелиорантами и солями почвенного раствора поглощенный натрий переходит в раствор, образуя гидролитически щелочные соли, отрицательно влияющие (из-за щелочности) на рост и развитие многих растений:

IXcl ^

[nnK]Na+Ca(HC03)2^[nnK]^+2NaHC03;

NaHC03 + Н20 = NaOH + Н20 + С02.

Значительное содержание в ППК обменно-поглощенных катионов водорода, алюминия, железа и марганца (подзолистые и болотные почвы, желтоземы, красноземы) также ухудшает многие свойства кислых почв. Поглощенный катион водорода постепенно разрушает минералы ППК, что приводит к ухудшению структуры почвы, обеднению ее коллоидной фракцией и, следовательно, снижению ЕКО. Вместе с тем вытесненные в почвенный раствор (под влиянием удобрений, мелиорантов, корневых выделений растений) катионы водорода, алюминия, железа и марганца отрицательно влияют на рост, развитие и урожайность большинства возделываемых культур.

Соотношения и состав обменно-поглощенных катионов разных почв сравнительно легко регулируются удобрениями и особенно мелиорантами. На кислых почвах катионы водорода, алюминия, железа и марганца вытесняются из ППК внесением известковых, а на щелочных — катионы натрия — внесением гипсосодержащих материалов. Во всех случаях отрицательно влияющие на культуры катионы в ППК замещаются кальцием, что и позволяет считать кальций стражем почвенного плодородия.

Чем выше ЕКО почвы, тем большее количество и разнообразие необходимых растениям катионов (Са2+, Mg2+, К+, NHJ и др.) она способна сохранить от вымывания и, следовательно, обеспечить лучшие условия питания, роста и развития растений как без удобрений, так и при внесении любых (вплоть до максимальных) количеств их любого качества. Устойчивость почв к антропогенным воздействиям, в частности к химическому загрязнению, возрастает с повышением их емкости поглощения.

3.3. ВИДЫ ПОЧВЕННОЙ кислотности И ЩЕЛОЧНОСТИ


Реакция почвенного раствора (почвы) обусловлена соотношением ионов водорода (Н+) и гидроксида (ОН-), причем концентрацию первых обычно выражают символом pH, являющимся отрицательным логарифмом концентрации этих ионов (Н+).

Реакция почвы оказывает большое разностороннее влияние на усвоение питательных элементов, рост, развитие и урожайность растений, деятельность почвенных микроорганизмов, трансформацию разных форм питательных элементов удобрений и почвы, физические, химические, физико-химические и биологические свойства почв. Удобрения, и особенно мелиоранты, позволяют регулировать реакцию почв в желаемом для возделываемых культур направлении.

По реакции (pH) различают почвы: очень сильнокислые — < 4,0 (рНС01), сильнокислые — 4,1—4,5, среднекислые — 4,6—5,0, слабокислые — 5,1 —6,0, нейтральные — 6,1 —7,4, слабощелочные—7,5—8,5 (рНвод)5 сильнощелочные — 8,6—10,0, резкощелочные — > 10,0.

Для большинства возделываемых в России сельскохозяйственных культур наиболее благоприятны почвы с нейтральной и близкой к ней реакцией, однако значительные площади сельскохозяйственных угодий приходятся на почвы с неблагоприятной реакцией. Поэтому выяснение природы почвенной кислотности и щелочности и разработка приемов их устранения с помощью соответствующих агротехники, удобрений и мелиорантов чрезвычайно важны для повышения продуктивности возделываемых культур, эффективности удобрений и мелиорантов и качества регулирования агрохимических показателей плодородия почв.

В кислых почвах различают актуальную (активную) и потенциальную (пассивную) кислотность.

Актуальная кислотность. Обусловлена наличием и концентрацией ионов водорода в почвенном растворе (суспензии) при обработке почвы водой. Разложение органического вещества почвы и органических удобрений приводит к постоянному образованию органических и аминокислот, диоксида углерода и воды. Органические и аминокислоты являются продуктами корневых выделений растений и почвенных микроорганизмов, а при дыхании все живые организмы выделяют С02. Диоксид углерода, взаимодействуя с водой, образует угольную кислоту.

Угольная, органические и аминокислоты, да еще гидролитически кислые удобрения (NH4C1; (NH4)2 S04) и азотная кислота, образующаяся в процессе нитрификации аммиачного азота удобрений и почвы, являются основными источниками ионов водорода почвенного раствора, обусловливающими актуальную кислотность почв.

Потенциальная кислотность. Обусловлена обменно-поглощенными ППК ионами водорода, алюминия, железа и марганца. В зависимости от способности к обменному вытеснению из ППК этих ионов другими потенциальную кислотность разделяют на обменную и гидролитическую.

Обменная кислотность. Обусловлена наличием в ППК тех ионов водорода, алюминия, железа и марганца, которые могут быть вытеснены в раствор катионами нейтральных солей, в том числе и удобрений (КС1, KN03, K,S04 и др.). Схематически это можно представить в следующем виде:

НН НК

[ППК] AlAl+wKCl—>[ППК]А13К+НС1+А1С13 +

FeFe Fe3K

+FeCl3 +(w-7)KCl;

А1С13 + ЗН20 -э А1(ОН)3 + ЗНС1;

FeCl3 + 3H20 -э Fe(OH)3 + ЗНС1.

В слабокислых почвах обменная кислотность незначительная, а в щелочных — вообще отсутствует. Обменная кислотность кислых почв легко переходит в актуальную при взаимодействии твердой фазы почвы с водорастворимыми солями удобрений, мелиорантов и жидкой фазы почвы, что усиливает отрицательное влияние на чувствительные к кислотности растения и микроорганизмы. Особенно токсичны для многих живых организмов подвижные алюминий и марганец, поэтому дозы извести должны нейтрализовать не только актуальную, но и обменную формы кислотности известкуемых почв. Обменная кислотность (рНС0Л) — важный показатель нуждаемости почв в известковании.

Величину обменной кислотности выражают в pH солевой вытяжки (1 н. КС1) или в миллиграмм-эквивалентах на 100 г почвы. При обработке почвы раствором нейтральной соли в почвенной суспензии или растворе наряду с имевшимися ранее (обусловливающими актуальную кислотность) появляю^я и вытесненные из ППК (обусловливающие обменную кислотность) катионы, поэтому величина обменной кислотности всегда больше (а pH меньше), чем актуальной.

Гидролитическая кислотность. Обусловлена той частью катионов ППК потенциальной кислотности, которые могут быть вытеснены при обработке почвы 1 н. раствором гидролитически щелочной соли (CH3COONa):

CH3COONa + Н20 <=*СН3СООН + Na+ + ОН".

Щелочная реакция водного раствора этой соли позволяет более полно, чем нейтральная соль (КС1), вытеснить из ППК все ионы водорода, алюминия, железа и марганца по следующей схеме:

НН 2Na

[ППК] А1 AJ+14CH3C00Na+12H20-^[nnK]6Na+14CH3C00H+ FeFe 6Na

+2А1(ОН)3 +2Fe(OH)3.

Гидролитическая кислотность (Нг) определяется как общая кислотность почвы, включающая в себя актуальную, обменную и «собственно» гидролитическую виды ее. Она значительно больше обменной и выражается в миллиграмм-эквивалентах на 100 г почвы.

В отсутствие актуальной и обменной видов «собственно» гидролитическая кислотность не вредна для растений и микроорганизмов. Это наблюдается во всех черноземах, кроме южных, но знание ее в этих случаях необходимо для определения степени насыщенности почв основаниями (Г) и для обоснования возможностей замены суперфосфатов фосфоритной мукой (фосфоритова-ние).

Для кислых почв (болотные, подзолы, дерново-подзолистые, серые лесные, красноземы, желтоземы) наряду с определением степени насыщенности основаниями и возможностями фосфори-тования величина гидролитической кислотности позволяет определять оптимальную дозу извести для желаемой нейтрализации тех или иных видов кислотности.

В щелочных почвах (южные черноземы, каштановые и солонцовые почвы) различают актуальную и потенциальную щелочность.

Актуальная щелочность. Обусловлена наличием в почвенном растворе гидролитически щелочных солей, при диссоциации которых преобладают гидроксильные ионы (Na,C03, K2C03, NaHC03, KHC03, Mg(HC03)2, Ca(HC03)2, MgC03). Актуальная щелочность определяется при обработке почвы водой и выражается в мг-экв/100 г почвы или в виде pHB0J, а полученные результаты обосновывают степень нуждаемости возделываемых культур в нейтрализации (гипсование, кислование) почв.

Потенциальная щелочность. Проявляется у почв, в ПП К которых в обменно-поглощенном состоянии содержится натрий, способный при вытеснении в раствор усиливать щелочность почвенного раствора:

[nnK]Na+Ca(HC03)2^[nnK]g+2NaHC03.

По доли натрия в ППК почвы определяют степень нуждаемости возделываемых культур в нейтрализации и дозы гипсосодержащих материалов или технических кислот для каждого конкретного случая.

3.4. СТЕПЕНЬ НАСЫЩЕННОСТИ ОСНОВАНИЯМИ И БУФЕРНОСТЬ ПОЧВЫ


Реакция почвенного раствора наряду с величинами обменной и гидролитической кислотности (Нг) зависит от емкости поглощения (7) и степени насыщенности почвы основаниями (У). Если

сумму поглощенных катионов Са2+, Mg2+, К+, Na+, NH4 и других оснований (S) сложить с катионами Н+, Al3+, Fe3+, Мп2+, обусловливающими гидролитическую кислотность (Нг), то можно определить (в мг-экв/100 г почвы) ЕКО (7): Т = S + Нг. Сумму поглощенных оснований, выраженную в процентах от ЕКО (7), называют степенью насыщенности почвы основаниями (У):

К=- 100.

Т

Степень насыщенности почвы основаниями — второй важный показатель нуждаемости почв в известковании. Чем он ниже, тем выше нуждаемость и наоборот. Если гидролитическая кислотность (Нг) двух почв одинакова и составляет 5 мг • экв/100 г почвы, но ЕКО (7) первой равна 10, а второй 20 мг • экв/100 г, то степень насыщенности основаниями (V) первой почвы составит 50, а второй — 75 %. При равной величине гидролитической кислотности первая почва гораздо кислее, так как 50 % ЕКО у нее занято подкисляющими катионами и она в большей степени, чем вторая, нуждается в их замене на основания (в известковании). При равной же ЕКО в первую очередь в известковании будет нуждаться почва с большей гидролитической кислотностью, причем для нейтрализации ее потребуется и больше извести.

Буферностъ почвы — способность противостоять изменению реакции среды — обусловлена прежде всего величиной ЕКО (7) и составом поглощенных катионов, а также катионо-анионным составом почвенного раствора. Буферность почв чрезвычайно важна для обоснования оптимальных доз, форм, сроков и способов внесения удобрений и мелиорантов под конкретные сельскохозяйственные культуры. Чем больше ЕКО, тем выше буферность почвы. Буферные свойства против подкисления возрастают с ростом насыщенности почв основаниями (Са, Mg, Na, К и др.) и с переходом от нейтральных к щелочным почвам. Если в такой почве появляется кислота (например, HN03 в результате нитрификации или физиологической кислотности NH4NO3), то ионы водорода кислоты обмениваются с катионами ППК. В результате образуется нейтральная соль и реакция раствора не изменяется:

[imK]Mg+2HN03 ^[ППК]Щ+Са(ГМ03 )2.

Буферные свойства против подщелачивания возрастают на нейтральных почвах с ростом гидролитической кислотности, со снижением степени насыщенности основаниями и с переходом от нейтральных к кислым почвам. Если в такой почве появляется щелочь [например, Са(ОН)2 в результате физиологической щелоч-. ности Ca(N03)2], то катион ее вытесняет из ППК эквивалентное количество ионов водорода, в результате чего образуется вода и реакция раствора не изменяется:

Гя

[ППК]^+Са(ОН)2 ^[ППКЙ+2Н20.

Почвенный раствор подкисляется под влиянием диоксида углерода, образующегося в результате разложения органического вещества почвы, органических удобрений, дыхания корней, кислых выделений растений и микроорганизмов, образования азотной кислоты при нитрификации аммиачных форм удобрений и почвы, при внесении физиологически кислых удобрений (NH4C1;

(NH4)2S04 и др.), а на кислых почвах — и под влиянием физиологически нейтральных удобрений.

Подщелачивание или нейтрализация кислого почвенного раствора происходит при внесении физиологически щелочных удобрений [NaN03, Ca(N03)2], а на щелочных почвах — и под влиянием нейтральных удобрений.

Под действием подкисляющих и подщелачивающих факторов реакция почвенного раствора может колебаться, однако скорость возможных изменений в почвах с низкой ЕКО (песчаные, супесчаные подзолы) гораздо выше, чем в высокоемких (суглинистые черноземы).

Концентрация, катионо-анионный и вещественный состав почвенного раствора зависят и определяются ЕКО и составом поглощенных катионов и могут изменяться под влиянием удобрений и мелиорантов. Поэтому буферные свойства почв проявляются через реакции, происходящие в почвенном растворе.

В почвенном растворе буферность создается находящимися в нем слабыми органическими (например, уксусная) и минеральными (например, угольная) кислотами и их солями:

(СН3СОО)2Са + 2HN03 = 2СН3СООН + Ca(N03)2; Са(НС03)2 + 2HN03 = 2Н2С03 + Ca(N03)2;

2СН3СООН + Са(ОН)2 = (СН3СОО)2Са + 2Н30;

Са(НС03)2 + Са(ОН)2 = 2СаСОэ + 2Н20.

Образующиеся в результате этих реакций нейтральные соли и. вода не могут изменить реакцию почвенного раствора.

Буферность почв проявляется и в устойчивости к временному повышению концентрации почвенного раствора, вызванному недостатком влаги, неравномерным и периодическим внесением удобрений и мелиорантов. Высокобуферные почвы с высокой ЕКО и разнообразным составом поглощенных ионов относительно легко удерживают в поглощенном состоянии максимально допустимые с экологической и экономической точек зрения разовые дозы не только мелиорантов и органических удобрений, но и водорастворимых минеральных удобрений без значительного повышения концентрации почвенного раствора.

Малобуферные, малоемкие почвы не могут без повышения концентрации почвенного раствора и увеличения потерь элементов за счет вымывания усваивать большие разовые дозы мелиорантов и удобрений и требуют дробного внесения водорастворимых форм минеральных удобрений.

Таким образом, системное применение органических и минеральных удобрений в сочетании с периодическим внесением химических мелиорантов позволяет повышать ЕКО, регулировать состав поглощенных катионов, повышать буферность почв и, следовательно, регулировать продуктивность культур и плодородие почв в каждом конкретном случае с учетом экономических возможностей и экологических ограничений.

3.5. СОДЕРЖАНИЕ И ФОРМЫ ПИТАТЕЛЬНЫХ ЭЛЕМЕНТОВ В ПОЧВЕ, ИХ ДОСТУПНОСТЬ РАСТЕНИЯМ


Все необходимые растениям питательные элементы, за исключением азота, в естественных почвах без удобрений происходят из материнских пород. Накопление азота в почвах осуществляется в органической форме в результате жизнедеятельности симбиотических, свободноживущих и ассоциативных азотфиксаторов молекулярного азота (N2) атмосферы, так как материнские породы могут удерживать в кристаллических решетках только небольшое количество необменно-поглощенных ионов аммония. Фосфор, калий, кальций и все другие макро- и микроэлементы первоначально имеются только в минеральных формах, но в процессе почвообразования та или иная часть некоторых из этих элементов в почвах может содержаться и в органических формах. Из общих (валовых) запасов в почвах всех элементов и каждого в отдельности для питания растениям доступна (усвояема) обычно очень незначительная часть их (1 — 10%). Напомним, что усвояемые формы питательных элементов — это растворимые в воде и (или) слабых кислотах главным образом минеральные соли необходимых макро- и микроэлементов. Интенсивность и направленность трансформации валовых запасов питательных элементов в усвояемые для растений формы и обратно осуществляются и регулируются всем комплексом природно-экономических условий конкретных экосистем, в том числе в агроценозах: структурой посевов, удобрениями, химическими и гидротехническими мелиорациями и другими агроприемами.

Комплекс всех процессов поступления, трансформации и расходования питательных элементов обусловливает в почвах определенное количественное и качественное состояние их и определяет пищевой режим почвы в целом и каждого элемента в отдельности.

3.5.1. СОДЕРЖАНИЕ И ДИНАМИКА СОЕДИНЕНИЙ АЗОТА

В пахотном слое (0—25 см) разных почв общее (валовое) содержание азота изменяется от 0,02—0,05 % в дерново-подзолистых почвах до 0,2—0,5 % в черноземах, т. е. даже в пределах одного типа изменяется более чем в 2 раза, а для разных типов — в 10 раз. Так как не менее 95 % общего азота содержится в органическом веществе почвы и только около 1 % в легкоусвояемых для растений минеральных формах (NO3 и NH4), то обеспеченность этим элементом любой почвы определяется содержанием в ней органического вещества (гумуса) и скоростью его минерализации (разложения). Разложение органических азотистых веществ можно представить следующей схемой: гумусовые вещества, белки ^аминокислоты, амиды -> аммиак -> нитриты -> нитраты.

Разложение органических веществ почвы до аммиака, называемое аммонификацией, происходит при помощи разных обширных групп аэробных и анаэробных микроорганизмов. Образующийся аммиак, взаимодействуя с другими продуктами минерализации (угольная, муравьиная, уксусная, азотная и др. кислоты), дает соли, например

NH3 + H2C03-^NH4HC03,

а при диссоциации ион аммония может обменно поглотиться:

Са 2NH4

[nnK]Ca+2NH4HC03 <=^[ППК] Са +Са(НС03)2.

В анаэробных условиях процесс разложения на этом останавливается, а в аэробных — соли аммония окисляются до нитратов (нитрификация). Скорость аммонификации зависит от температуры, влажности, реакции и других условий, а в анаэробных условиях в сильнокислых (торфяники) и сильнощелочных (солонцы) почвах этот процесс резко замедляется.

Нитрификация осуществляется группой аэробных бактерий (Nitrosomonas, Nitrosocystis, Nitrosospira и Nitrobakter), для которых этот процесс является источником энергии. Окисление аммиачного азота происходит через ряд промежуточных продуктов (гидроксиламин, азотистая и азотная кислоты), причем в окислении до азотистой кислоты участвуют из указанных ранее первые три группы бактерий, а четвертая далее до азотной кислоты — по следующей схеме:

nh3-*nh4oh-> nh2oh ^hno-*hno2-*hno3.

Г идроксиламин

Образующаяся азотная кислота нейтрализуется растворимыми и (или) обменно-поглощенными катионами кальция и других оснований:

2HN03 + Са(НС03)2 = Ca(N03), + 2Н,С03;

Са 2Н

2HN03+[nrTK]Ca=Ca(N03 )2+[ПГЖ]Са.

Влажность почвы 60—70 % капиллярной влагоемкости, температура 25—32 °С и pH 6,2—8,2 — оптимальные условия для нитрификации, при которых процесс протекает максимально быстро, и при достаточных запасах аммиачных форм почвенного азота за один вегетационный период может образоваться до 300 кг/га азота в виде азотной кислоты.

Интенсивность и объемы процессов аммонификации и, следовательно, нитрификации зависят от общего количества и качества органического вещества и особенно лабильной части его (ЛОВ), водно-воздушного и теплового режимов и реакции среды. Поэтому с помощью мелиорантов, органических и минеральных удобрений, способов обработки почвы, структуры посевных площадей можно в той или иной степени практически воздействовать на эти процессы и одновременно учитывать их для повышения эффективности и экологической безопасности применения удобрений в конкретных условиях.

Методы определения нитрифицирующей способности почв, легкогидролизуемого азота, а также аммиачных и нитратных форм его в почвах широко используют в почвенной диагностике азотного питания растений для оптимизации доз азотных удобрений, получения максимальной продуктивности культур и предотвращения загрязнений нитратами продукции, грунтовых, хозяйственных и питьевых вод.

Нитрификация наряду с положительной играет и отрицательную роль, так как избыток нитратов может загрязнять продукцию, вымываться с осадками и оросительными водами в грунтовые воды вплоть до питьевых, а также подвергаться денитрификации с образованием выделяющихся из почвы газообразных потерь в виде NO, N20 и N2.

Денитрификация — восстановление нитратного азота до указанных газообразных соединений в анаэробных условиях осуществляется обширной группой бактерий — денитрификаторов (deni-trificans, stutzeri, fluorescens, puocyaneum и др.). Процесс идет через ряд промежуточных этапов по следующей схеме:

HN03 -> HN02 -> (HNO)2 -> n2o -> n2.

Гипонитрит

Продукты биологической денитрификации (N20 и N2) являются одними из основных газообразных потерь азота почвы. Между денитрификацией и нитрификацией существует тесная связь. Интенсивная нитрификация в аэробных микрозонах вызывает обеднение их кислородом, они становятся анаэробными. Кроме этого даже при хорошей структуре и оптимальной влажности почвы внутри отдельных микроагрегатов могут также существовать анаэробные микрозоны, создаются благоприятные условия для денитрификации.

Наряду с биологической денитрификацией в почвах возможно восстановление нитратов и в результате химических реакций (хемодинитрификация) между соединениями, образующимися при аммонификации, нитрификации и денитрификации. Например, при взаимодействии азотной кислоты с аминокислотами:

HN03 + CH2NH2COOH -»CHjCOOH + Н20 + N,0 Т, или с гидроксиламином:

HN03 + 3NH2OH -> 5Н,0 + 2N, Т.

В кислой среде (pH < 5) азотистая кислота легко разлагается с образованием газообразного оксида азота:

3HN0, -э HN03 + Н,0 + 2N0 Т.

Наряду с минерализацией органического азота в результате изложенных ранее процессов в почвах одновременно происходят и процессы вторичного синтеза — из образовавшихся минеральных форм и внесенных удобрений микроорганизмы строят белки собственных тел. Азот при этом не теряется из почвы, а переходит в недоступные для питания растений формы — иммобилизуется, хотя при отмирании микроорганизмов он вновь минерализуется и может стать доступным растениям. Процессы мобилизации (минерализации) и иммобилизации протекают в почвах одновременно, а интенсивность каждого и соотношение между ними очень динамичны и в значительной степени определяют условия азотного питания растений. Именно поэтому для уточнения доз внесения азотных удобрений под различные культуры и на любых почвах чрезвычайно важна почвенная диагностика азотного питания.

3.5.2. СОДЕРЖАНИЕ И ДИНАМИКА СОЕДИНЕНИЙ ФОСФОРА

Фосфор по среднему содержанию в земной коре среди всех элементов занимает 13-е место (0,12%), причем в верхнем слое почвы его значительно больше, чем в нижележащих и в материнской породе благодаря постоянному извлечению корнями растений из более значительного объема почвы и подпочвы, чем тот, в котором корни и надземные органы растений отмирают. Валовые запасы фосфора в пахотном слое различных почв зависят от гранулометрического и минералогического состава и содержания органического вещества и колеблются от 0,03—0,12 % в дерново-подзолистых почвах до 0,10—0,30 % в черноземах.

Минеральные фосфаты. Как правило, преобладают над органическими во всех почвах. Доля органических фосфатов наиболее высока в пахотном слое серых лесных почв и мощных черноземов (до 35—45 %), но к югу и северу она уменьшается, а минеральных возрастает: в среднеоподзоленных до 69 %, в сильнооподзоленных до 73, в каштановых почвах до 75 и в сероземах до 86 %. Чем больше в почве органического вещества, тем выше доля органических и валовых фосфатов.

Органические фосфаты. Содержатся в гумусе, неразложившихся остатках живых организмов и фитатах. Кальциевые и магниевые соли фитина (фитаты) преобладают в нейтральных, а алюминия и железа — в кислых почвах. Фитаты составляют наибольшую часть (до 50 %) органических фосфатов. Органические фосфаты минерализуются различными микроорганизмами, причем часть фосфора (до 24 кг/га), как и азота, находится в массе их тел, а оставшаяся может быть усвоена растениями и (или) поглощена почвой.

Минеральные фосфорнокислые соли одновалентных катионов любой степени замещения, а также однозамещенные фосфаты кальция и магния растворимы в воде и легко усваиваются всеми культурами. Однако из-за быстрого химического и физико-химического поглощения почвой водорастворимых соединений фосфора в почвах очень мало — редко более 1 мг/кг почвы.

Растения благодаря корневым выделениям способны усваивать и растворимые в слабых кислотах (угольная, уксусная, лимонная, щавелевая и др.) фосфорнокислые соли. В еще больших количествах слабые и более сильные кислоты выделяются микроорганизмами (азотная при нитрификации, серная при окислении серосодержащих белков и аминокислот, фосфорная при минерализации фос-форорганических веществ, угольная и органические при дыхании и брожении).

В слабых кислотах (или слабых растворах сильных кислот) хорошо растворимы двухзамещенные фосфаты двухвалентных катионов и малорастворимые трехзамещенные фосфаты двух- и трехвалентных катионов. Минимальная растворимость фосфатов железа и алюминия наблюдается при pH соответственно 2,2 и 3,7, а трехзамещенных фосфатов кальция и магния — при pH 6,5 и 10. Неудивительно, что слабокислая реакция (pH 6) наиболее благоприятна для питания растений фосфором.

В почвах под влиянием естественных и антропогенных, химических, биологических, физических, физико-химических и других воздействий одновременно происходят сопряженные процессы перехода форм фосфора из доступных в недоступные растениям и обратно. Поэтому для определения степени обеспеченности различных культур фосфором большое значение имеют слабокислотные вытяжки из разных почв: 1—2%-ная лимонная; 2 — 3%-ная уксусная, 0,2 н. соляная, 0,002 н. серная (с добавлением (NH4)2S04 для поддержания pH 3) и дистиллированная вода, насыщенная С02.

Наряду с разными методами определения усвояемых (подвижных) фосфатов существуют и методы определения фосфатного потенциала почв (Карпинского и Замятиной, Скофилда), позволяющие контролировать уровень его в зависимости от применяемых удобрений, мелиорантов или других факторов.

Методы определения усвояемых растениями фосфатов почв в сочетании с полевыми опытами широко используют (в виде картограмм, паспортов полей, рекомендаций по применению удобрений) агрохимическая служба страны и специалисты хозяйств для определения и коррекции доз фосфорных удобрений под возделываемые культуры и в целях регулирования фосфатного режима почв в конкретных природно-экономических условиях.

Динамика усвояемых фосфатов зависит от почвенно-климатических условий возделываемых культур (и сортов), количества и качества применяемых удобрений и мелиорантов и в целом от уровня интенсификации сельскохозяйственного производства. Поэтому повторные обследования почв для этих целей проводят через разные промежутки времени: от 1—2 лет в интенсивных (орошаемых, овощных) до 10 и более лет в экстенсивных неудоб-ряемых агроэкосистемах.

3.5.3. СОДЕРЖАНИЕ И ДИНАМИКА СОЕДИНЕНИЙ КАЛИЯ

Валовое содержание калия в почвах (в среднем 2,14%) почти всегда выше, чем азота и фосфора, вместе взятых, причем с увеличением глинистых частиц в гранулометрическом составе оно может достигать 3,0%. Гораздо меньше калия в супесчаных (до 2,0%), песчаных (до 1,5%) и особенно торфяных (менее 1,0%) почвах, причем в подпахотных слоях дерново-подзолистых и серых лесных почв валовое содержание его выше, чем в пахотных.

Калий почв на 99,9 % представлен минеральными соединениями, поэтому обеспеченность этим элементом растений зависит от гранулометрического и минералогического состава почвы. Общий (валовой) калий содержится: в составе кристаллических решеток первичных и вторичных минералов (не менее 91 % от общего), в обменно- (0,5—2,0 %) и необменно-поглощенном (до 9,0 %) состояниях, в виде солей (карбонатов, нитратов, хлоридов и др.) почвенного раствора (0,05—0,2 %) и в составе пожнивно-корневых остатков, микроорганизмов (до 0,05 %).

Легче всего растения усваивают водорастворимый калий (почвенного раствора), хорошо — разложившихся остатков живых организмов и обменно-поглощенный. Все эти формы подвижны, доступны для растений. Ближайшим резервом питания являются необменно-поглощенный (фиксированный) калий, гидрослюды, вермикулиты, вторичные хлориты и малорастворимые соли. Потенциальный резерв — полевые шпаты, слюды, пироксены и первичные хлориты.

Между различными формами калия в почвах существует динамичное (подвижное) равновесие и, если, например, растения смогут потребить водорастворимые формы, количества их пополнятся за счет обменно-поглощенных, уменьшение которых через какое-то время может быть возмещено за счет необменной, фиксированной формы. Следует иметь в виду, что при внесении водорастворимых калийных удобрений трансформация их может протекать в противоположном направлении.

Для определения степени обеспеченности растений калием и фосфором в России существуют стандартные методы определения подвижных форм его в разных почвах: Кирсанова (почвы Нечерноземной зоны), Чирикова (некарбонатные черноземы), Мачиги-на (карбонатные черноземы, каштановые и бурые почвы), Ониани (красноземы, желтоземы) и др.

Проектно-изыскательские центры и станции химизации Агрохимслужбы по результатам анализов почв составляют картограммы обеспеченности агроландшафтов подвижным калием, фосфором, иногда легкогидролизуемым азотом и микроэлементами, а также по уровню реакции почв (рНС0Л).

Характеристика калийного режима предусматривает не только содержание подвижных форм, но и степень их подвижности, т. е. доступности растениям. На основе физико-химической взаимосвязи между катионами калия, кальция и магния в системе почва — почвенный раствор разработан метод определения калийного потенциала, рассматриваемого как «фактор интенсивности» почвенного калия. Калийный потенциал почвы показывает возможность перехода поглощенного ею калия в раствор с учетом конкуренции сопровождающих катионов кальция и магния. Чем выше величина калийного потенциала, тем ниже способность катиона калия к переходу в раствор и, следовательно, доступность растениям. В соответствии с принятой градацией калийный потенциал в пределах 2,5—2,9 свидетельствует о недостатке калия для нормального развития растений, 1,8—2,2 — об оптимальном уровне обеспеченности, менее 1,5 — избытке калия.

Способность почвы поддерживать калийный потенциал на определенном уровне при изменении под влиянием удобрений и растений содержания подвижного калия называют потенциальной калийной буферной способностью. Она является отношением фактора емкости (количество калия, извлекаемое из почвы 0,002 М раствором СаС12) к фактору интенсивности (равновесной активности К+ в почвенном растворе).

Показатели степени обеспеченности почв подвижным калием и калийного потенциала в сочетании с данными полевых опытов широко используют в практике для определения и коррекции доз калийных удобрений и в целях регулирования калийного режима почв под возделываемыми культурами в конкретных природноэкономических агроэколандшафтах.

3.5.4. СОДЕРЖАНИЕ И ДОСТУПНОСТЬ РАСТЕНИЯМ МИКРОЭЛЕМЕНТОВ

О степени обеспеченности растений микроэлементами судят по общему количеству (потенциальные запасы) и содержанию подвижных форм их (эффективные запасы) в почвах, причем последнее в определенной степени отражает и усвояемость их растениями. Доля подвижных форм чаще всего составляет для меди, молибдена, кобальта и цинка 10—15 %, а для бора 2—4 % общего (валового) содержания их в разных почвах.

Валовые запасы микроэлементов в почвах определяются содержанием их в материнских породах, а доля подвижных зависит от многих свойств конкретной почвы, количества и качества применяемых удобрений и мелиорантов, характера растительности и других факторов, причем влияние каждого из них довольно специфично для разных микроэлементов. Например, подкисление среды увеличивает подвижность и, следовательно, усвояемость для растений марганца, меди, бора, цинка, железа и других элементов, а молибдена — значительно снижает. Под термином «подвижность микроэлементов» обычно подразумевают все формы их, извлекаемые разными вытяжками: водной, солевой, слабыми органическими и разбавленными минеральными кислотами, щелочами и другими растворами, при этом часто без указания различий между подвижными и усвояемыми для растений формами. Недостаток специальных для конкретных почв и растений градаций обеспеченности микроэлементами обусловливает необходимость использования для этих целей всех имеющихся материалов.

На кафедре агрохимии МСХА (Ягодин, Верниченко) обобщены литературные материалы полевых и вегетационных опытов, анализов почв и растений по обеспеченности почв основных био-геохимических зон страны подвижными формами микроэлементов (табл. 34).

34. Градации обеспеченности почв России подвижными формами микроэлементов
икро-ементБиогео-ПочвеннаявытяжкаОбеспеченность почв, мг/кг почвы
химичес-кая зонаоченьбеднаябеднаясредняябогатаяоченьбогатая
ВТаежноН200,20,2-0,40,4-0,70,7-1,11,1
Силесная1,0 н. НС10,90,9-2,12,1-4,04,0-6,66,6
МоОксалатнаявытяжка0,080,08-0,140,14-0,300,30-0,460,46
Мп0,1 н. H2S041,01,0-2525-6060-100100
Со1,0 н. HN030,40,4-1,01,0-2,32,3-5,05,0
Zn1,0 н. КС10,20,2-0,80,8-2,02,0-4,04,0
ВЛесоН200,20,2-0,40,4-0,80,8-1,21,2
Систепная1,0 н. НС11,41,4-3,03,0-4,44,4-5,65,6
Мои степнаяОксалатнаявытяжка0,100,10-0,230,23-0,380,38-0,550,55
Мп0,1 н. H2S042525-5555-9090-170170
IKPO-ментБиогео-ПочвеннаявытяжкаОбеспеченность почв, мг/кг почвы
химическая зонаоченьбеднаябеднаясредняябогатаяоченьбогатая
Со1,0 н. HNO,1,01,0-1,81,8-2,92,9-3,63,6
Zn1,0 н. КС1 Ацетатноаммонийная0,154,00,15-0,30 4,0-6,00,3-1,0 6,0-8,81,0-2,0 8,82,0
ВСухо1,0 н. KNO,0,40,4-1,21,2-1,71,7-4,54,5
Систепная и полу-степнаяHN03 (по Гюльахме-дову)1,01,0-1,81,8-3,03,0-6,06,0
МоТо же0,050,05-0,150,15-0,50,5-1,21,2
Мп»6,66,6-12,012-3030-9090
Со»0,60,6-1,31,3-2,42,4
Zn»0,30,3-1,31,3-4,04,0-16,416,4

Следует подчеркнуть, что растения обычно усваивают только до 1 % микроэлементов, извлекаемых агрессивными вытяжками (НС1, HN03, H2S04) из почвы. Для надежной оценки степени нуждаемости растений в микроэлементах необходимо наряду с почвенной (анализы почв) использовать результаты растительной диагностики.

3.5.5. КЛАССИФИКАЦИЯ ПОЧВ ПО ОБЕСПЕЧЕННОСТИ ПИТАТЕЛЬНЫМИ ЭЛЕМЕНТАМИ

По существующей в России классификации все почвы по степени обеспеченности питательными элементами и реакции группируют в 6 классов (табл. 35). Эту классификацию используют при агрохимических обследованиях почв, составлении агрохимических карт (картограмм) и паспортов полей и для разработок рекомендаций по определению оптимальных доз удобрений и мелиорантов под возделываемые культуры в конкретных природно-экономических условиях.

Для отдельных регионов страны уровни градаций обеспеченности растений питательными элементами, безусловно, необходимо уточнять на основании местных данных полевых опытов, видового и сортового разнообразия культур и конкретных почвенно-климатических условий. При этом следует помнить, что средние (оптимальные) уровни обеспеченности почв питательными элементами неодинаковы для разных групп и отдельных культур. Для зерновых, зернобобовых и трав это третий класс, для пропашных — четвертый, а для овощных — пятый класс. Для более оперативного регулирования доз удобрений, мелиорантов и пищевых режимов под отдельными культурами существует почвенная диагностика питания растений.

КлассРАN (по Тюрину и Кононовой)Н итри-фи пирующая способностьРНЙ11
ПОКирсановупоЧириковупоМачи-гинупоАррениусу,ОнианиПОКирсановупоЧириковупоМачигинупоМасловойpH <5pH 5-6pH > 6,0
1<25<20< 10<80<40<20< 100<50<40<30<30<5<4,5
225-5020-5010-1580-15040-8020-40100-20050-10041-5031-4031-405-84,5
3151-10051-10015-30151-30081-12041-80201-300101-15051-7041-6041-508-154,6-5,0
42101-150101-15031-45301-450121-17081-120301-400151-20071-10061-8051-7015-30 5,1-5,5
53151-250151-20046-60451-600 171-250121-180 401-600201-300101-140 81-12071-10031-60 5,6-6,0
6>250>200>60>600>250> 180>600>300> 140> 120> 100>60>6,0

3.6. ПОЧВЕННАЯ ДИАГНОСТИКА ПИТАНИЯ РАСТЕНИЙ


Минеральное питание — наиболее доступный фактор регулирования роста, развития растений и качества получаемой продукции с помощью удобрений, мелиорантов с учетом уровня обеспеченности почвы теми или иными элементами и реакции ее.

Гранулометрический состав, содержание гумуса, валовое содержание питательных элементов, емкость поглощения (ЕКО) и другие свойства почвы, установленные при почвенном обследовании, изменяются медленно и длительно служат характеристикой конкретной почвенной разности.

Содержание подвижных (усвояемых растениями) форм питательных элементов, реакция почвы, состав поглощенных катионов, степень насыщенности основаниями изменяются гораздо быстрее, особенно под влиянием мелиорантов и удобрений. Поэтому агрохимические обследования почв по этим показателям необходимо проводить через определенные периоды (1, 3, 5, 7 лет или более), которые тем короче, чем выше насыщенность посевов минеральными и органическими удобрениями и мелиорантами. Результаты таких обследований представляют в виде агрохимических карт, паспортов полей (картограмм) и используют для определения оптимальных доз, форм, сроков и способов внесения удобрений, а также степени нуждаемости и доз химических мелиорантов.

Систематическое (через определенные промежутки времени) определение относительно быстро меняющихся агрохимических показателей почв — основа почвенной диагностики. Результаты этих обследований позволяют специалистам наиболее рационально, с учетом изменяющихся уровней обеспеченности почвы усвояемыми формами питательных элементов, реакции среды и других показателей, наиболее рационально приобретать и применять удобрения и мелиоранты, максимально повышать их агротехническую и экономическую эффективность и экологическую безопасность и, следовательно, обеспечивать максимальные урожаи культур наилучшего качества с минимальными затратами.

Крупномасштабные агрохимические обследования и картографирование почв осуществляют имеющиеся в каждой области, крае и округе РФ проектно-изыскательские центры и станции химизации Агрохимслужбы по заявкам хозяйств, фермеров и других землепользователей. Наряду с агрохимическими картами (паспортами) результатов очередных обследований землепользователи получают и рекомендации по рациональному применению удобрений и мелиорантов под возделываемые культуры, разработанные специалистами центров и станций по результатам последнего обследования. Полученные землепользователем из центров и станций рекомендации по применению удобрений должны обязательно уточняться с учетом конкретных условий каждого поля, вида и урожайности предшественников, конкретных агротехнических приемов, сорта культуры, метеорологических условий года, экономических возможностей и конъюнктуры рынка.

Из всех агрохимических показателей, определяемых при почвенной диагностике, наиболее неустойчивым и быстроменяю-щимся даже в течение нескольких дней является содержание минеральных форм азота. Поэтому этот показатель при составлении агрохимических карт, картограмм, паспортов полей не используют. Однако для экономичного и экологически безопасного применения минеральных азотных удобрений необходимы ежегодные данные о запасах минеральных форм азота в почвах. Следовательно, надо обязательно проводить оперативную почвенную диагностику азотного питания растений.

Для регионов достаточного и избыточного увлажнения эту диагностику лучше проводить весной перед внесением азотных удобрений, а в зонах недостаточной влажности и засушливого земледелия и перед внесением осенью. В зависимости от глубины проникновения корней и водно-воздушного режима почв в течение вегетации содержание минеральных форм азота следует определять во всех слоях почвы до 100, 150, 180 см. Экспериментально установлено, что в большинстве сельскохозяйственных зон страны 60—80 % минерального азота слоя почвы 0—180 см содержится в слое 0—60 см. Для конкретных регионов разработаны соответствующие коэффициенты пересчета запасов минерального азота из слоев 0—40, 0—60 см в слои 0—100, 0—150 см и др.

Существует несколько модификаций коррекции или расчетов доз азотных удобрений по результатам диагностики минерального азотного питания. Во всех них запасы аммиачного и нитратного азота в том или ином слое почвы пересчитывают в кг/га и с учетом возможных коэффициентов использования азота почвы конкретными культурами полученную величину вычитают из величины общей потребности культур в этом элементе.

Сотрудником кафедры агрохимии МСХА Ю. П. Жуковым предложена более простая модификация коррекции доз азотных удобрений. Минеральный азот определяют перед внесением азотных удобрений в пахотном слое почвы (0—20, 0—30 см), полученный результат пересчитывают в кг/га и вычитают из ранее установленной дозы или общей потребности культуры в азоте без всяких коэффициентов, так как минеральный азот почвы ничем не отличается от минерального азота удобрений. Анализировать более глубокие слои почвы (20—40, 40—60 см и глубже) — более трудоемкая и длительная работа, а перед посевом «день год кормит». Кроме того, неизвестно какая будет погода и как при этом поведут себя нитраты и аммиачный азот более глубоких слоев: ведь за первый месяц после посева корни вряд ли сумеют проникнуть глубже пахотного горизонта. Такой подход позволяет ежегодно экономить в среднем до 30 кг/га азота минеральных удобрений при разовом их внесении в Нечерноземье, а при дробном внесении удобрений с учетом растительной диагностики эта модификация за счет быстроты и простоты применения может быть еще более эффективной.

3.7. АГРОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА ОСНОВНЫХ ТИПОВ ПОЧВ РОССИИ


Подробная агрохимическая характеристика всех типов почв бывш. СССР изложена в многотомном издании «Агрохимическая характеристика почв СССР» (М.: Наука, 1962—1976). В настоящем разделе очень сжато излагаются только основные агрохимические показатели преобладающих типов почв РФ.

Дерново-подзолистые почвы. Имеют кислую реакцию (pH 4—5), значительную обменную (1—2 мг • экв/100 г, 80—90 % которой приходится на алюминий) и гидролитическую (3—6 мг • экв/100 г) кислотность, низкие ЕКО (5—15 мг • экв/100 г) и степень насыщенности основаниями (30—70 %). Поэтому в большинстве своем эти почвы нуждаются в известковании.

Агрохимические показатели этих почв зависят от гранулометрического состава и степени окультуренности. Песчаные и супесчаные почвы наиболее бедны гумусом (до 0,5—1,0 %), азотом (до 0,003—0,08 %), фосфором (0,03—0,6%), калием (0,5—1,0%), а также кальцием, магнием и другими макро- и микроэлементами. Суглинистые и глинистые разности гораздо богаче по содержанию гумуса (2—4%), азота (0,1—0,2), фосфора (0,07—0,12), калия (более 1,5 %), а также других макро- и микроэлементов.

Большинство этих почв бедны подвижными (минеральными) формами азота, фосфора, а легкие — калия. При высокой окультуренности кислотность их снижается до pH 5,1—6,0 и резко возрастают содержание гумуса (2,5—4,0 %), подвижных форм фосфора (до 150—200 мг/кг), калия (200—300 мг/кг), а также ЕКО, степень насыщенности основаниями и обеспеченность другими питательными элементами.

Эти почвы распространены в зоне достаточного увлажнения, и применение удобрений и известкование здесь высокоэффективны. Из отдельных элементов в первом минимуме здесь, как правило, азот, а на слабоокультуренных почвах и фосфор. На легких почвах этой зоны высокоэффективно наряду с азотно-фосфорными удобрениями применение калийных, особенно магнийсодержащих форм.

Серые лесные почвы. По мощности гумусового горизонта, содержанию гумуса и степени оподзоленности характеризуются неодинаковыми агрохимическими показателями. В светло-серой почве pH 4,8—5,4, содержание гумуса 1,6—3,4%, Нг и S соответственно 2,3—3,8 и 10—18 мг • экв/100 г, К 72—82 %, содержание подвижных форм фосфора и калия в пределах 3-го класса (табл. 35). В серых лесных все показатели улучшаются и достигают максимума в темно-серых лесных: pH 5,5—6,0, гумус 3,5—7,0 %, Нг и S соответственно 2,3—5,4 и 20—36 мг • экв/100 г, V 80—86 %, обеспеченность подвижными фосфором и калием соответствует 4-му классу.

В первом минимуме на светло-серых и серых лесных почвах находится азот, во втором — фосфор, а на темно-серых почвах возможна обратная зависимость. Потребность во внесении калийных удобрений на этих почвах появляется при возделывании калиелюбивых культур (картофель, свекла и др.).

В зависимости от уровня интенсификации земледелия легкоизменяемые агрохимические показатели (pH, обеспеченность подвижными формами элементов и др.) могут существенно изменяться, причем не только в сторону улучшения, но и в противоположную.

Черноземы. Это наиболее плодородные почвы. Они содержат в пахотном горизонте много гумуса (4—12 %), общих запасов азота (0,2—0,5 %), фосфора (0,1—0,3 %) и калия (2,5—3,0 %). Реакция от нейтральной в типичном черноземе подкисляется до слабокислой при переходе через выщелочные к оподзоленным подтипам, соответственно возрастает (от 0,5—3,0 до 5—7 мг • экв/100 г) гидролитическая кислотность, а при переходе к югу через обыкновенный к южному подтипу подщелачивается до pH 7—8, а гидролитическая кислотность исчезает. Максимальные ЕКО (50—60 мг • экв/100 г), гумусированность (8—12 %), общие запасы азота (0,4—0,5 %) и фосфора (0,25—0,35 %) в типичном черноземе снижаются при переходе к северным и особенно южным подтипам.

Несмотря на высокое потенциальное плодородие, обеспеченность старопахотных и слабоудобрявшихся или неудобрявшихся почв подвижными формами фосфора и азота заметно уменьшается и нередко не превышает 2—4-го класса. Поэтому на таких почвах наиболее эффективны фосфорные, а при благоприятных условиях увлажнения и азотные удобрения. На старопахотных и малоудобрявшихся почвах под калиелюбивые культуры наряду с форсфорно-азотными могут быть эффективны и калийные удобрения. В более увлажненных западных районах Черноземной зоны эффективность удобрений выше, а при продвижении на восток она снижается в зависимости от увеличения засушливости климата.

Каштановые почвы. При переходе с севера на юг они подразделяются на подтипы: от темно- до светло-каштановых. Плодородие их при этом снижается. Содержание гумуса уменьшается с 4—5 до

2—3%, общего азота —с 0,2—0,3 до 0,10—0,15%, фосфора —с 0,1—0,2 до 0,08—0,15%, ЕКО —с 30—35 до 12—15 мг • экв/100 г, возрастает щелочность (рНС0Л) с 7,0—7,2 до 7,4—8,0, а среди поглощенных катионов — удельный вес натрия. Каштановые почвы богаты калием, но часто имеют низкую обеспеченность усвояемыми формами азота и фосфора. Из-за недостатка влаги эффективность фосфорных и азотных удобрений низкая. В богарных условиях на этих почвах рекомендуют только минимальные дозы (10—15 кг/га) фосфорных удобрений, которые вносят при посеве. При орошении резко возрастает эффективность азотных и фосфорных удобрений, а калийные в большинстве случаев неэффективны.

Среди каштановых и особенно светло-каштановых почв с увеличением доли натрия в ППК и щелочности реакции встречается много разностей различной степени солонцеватости, для повышения плодородия которых необходима прежде всего нейтрализация актуальной и обменной щелочности путем гипсования или кислования их.

Контрольные вопросы и задания

1. Что такое потенциальный и эффективный запасы элементов в почвах, зачем они нужны? 2. Как влияют на растения почвенный воздух и почвенный раствор без удобрений и при их внесении? 3. Какова роль органической и минеральной частей почвы в питании растений и применении удобрений? 4. Как и какие виды поглощения почв влияют на азотное питание и трансформацию азотных удобрений? 5. Какие виды поглощения важны для фосфорного режима питания растения? 6. Как регулируется с помощью почвы, растений и удобрений калийный режим в почвах? 7. Что такое емкость поглощения (ЕКО), ее роль в применении удобрений? 8. Когда и как нужно регулировать состав поглощенных катионов в ППК? 9. Какова роль разных видов кислотности почв в питании растений?

10. Для чего нужно знать виды кислотности и сумму поглощенных оснований?

11. Что такое буферность почв и какова ее роль в питании растений и применении удобрений? 12. Каковы трансформация азотных соединений в почвах и доступность их растениям? 13. Назовите содержание и формы разных по доступности фосфорных соединений. 14. Какова динамика калийных соединений и степень их усвояемости? 15. Назовите содержание и формы доступных растениям микроэлементов в почвах. 16. Как классифицируют почвы по обеспеченности питательными элементами и зачем это нужно? 17. Что такое почвенная диагностика питания и зачем она нужна? 18. Какие из агрохимических показателей почв относительно легко регулируются удобрениями и мелиорантами? 19. Чем отличается агрохимическая характеристика подтипов чернозема? 20. В чем различия агрохимической характеристики кислых и щелочных почв?

Загрузка...