Глава 3 Математика в научной деятельности А. А. Любищева

Следуя великому диалектическому закону развития науки, в этом прогрессе неоднократно придется возвращаться к великим мыслителям прошлого, начиная с мыслителей несравненной Эллады. Прошлое науки — не кладбище с надгробным,и плитами над навеки похороненными идеями, а собрание недостроенных архитектурных ансамблей, многие из которых не были закончены не из-за несовершенства замысла, а из-за технической и экономической несвоевременности.

А. А. Любищев.

Понятые сравнительной анатомии


Дух математики пронизывает всю деятельность Любищева — от практической энтомологии до обобщений философского характера. Задавшись целью проследить роль математики в его работах и показать значение, которое он придавал ей в дальнейшей разработке интересовавших его проблем, мы приняли следующий порядок расположения материала: от цели, поставленной в молодости, через биометрию, математический способ мышления к математической таксономии и математической трактовке органических форм и далее к "линии Пифагора—Платона". Передать мысли Любищева "своими словами" очень трудно. Вместо этого приводятся выдержки из дневников, заметок и писем, хранящихся в архиве, а также некоторых опубликованных статей. Выдержки расположены почти в хронологическом порядке, а купюры в цитатах отмечены отточиями.


Цель, поставленная в молодости

Защищая постулат, что в основе мироздания — не борьба, а гармония, не хаос, а космос, Любищев поставил перед собой грандиозную задачу: раскрыть законы Гармонии, Порядка и Системы в органическом мире, выразив их четким математическим языком. Дальнейшее творчество Любищева во многом определялось масштабностью этой задачи. Поиски естественной системы организмов потребовали углубления математических знаний. Вместе с тем постепенно раскрывались перспективы математизации биологии.

17 сентября 1918 г. Любищев отмечал в дневнике: "Я сейчас задаюсь целью написать со временем математическую биологию, в .которой были бы соединены все попытки приложения математики к биологии". В 1921 г. этот план наполнился содержанием и приобрел отчетливую направленность: "Три главных направления математической биологии станут ясны, если взять те три основных точки зрения, с которых можно подходить к изучению организмов: 1. Организмы или части организма можно рассматривать с точки зрения их формы. 2. Организм можно рассматривать как определенный процесс или интересоваться процессами, в нем протекающими. 3. Наконец, отдельный сложный организм может быть рассматриваем как совокупность составляющих его элементов или же собрание более или менее однородных организмов рассматривается как некоторая реальная совокупность. Последнее направление, статистическое, развилось позднее других и дало уже наиболее заметные результаты. Второе направление может быть названо физиологическим в широком смысле слова, и, наконец, первое, самое спорное и еще не завоевавшее прав гражданства, является чисто морфологическим.

... Я лишь бегло коснусь той области математической биологии, которая является, так сказать, прямым продолжением механики, физики и химии, так как, вопреки общепринятому мнению, считаю, что не учение о функциях (физиология), а учение об органических формах представляет собой вершину биологического исследования.

... Морфологическое направление находится в зависимости от общего мировоззрения ученых. В самом деле, господствующее механистическое направление считает, что в биологии нет иных проблем, кроме приложения физики, химии и механики, и самостоятельное значение формы оно безусловно отрицает: форма есть следствие процессов. А так как процессы чрезвычайно сложны, то является напрасной тратой времени изучать их конечные этапы, как нечто самодовлеющее ... Довольно распространенный взгляд, что математическая трактовка биологии мыслима только на механистической основе, является простым недоразумением.

... При общем обзоре поражает, какие обширные области чистой и прикладной математики могут быть (вернее, должны быть) использованы... Но вполне возможно, что развитие биологии потребует развития целых отделов математики или даже новых алгоритмов. Возможно также, конечно, что кое-что необходимое для биологов лежит в математических архивах.

... Как математическая физика при начале своего развития была точной копией своей старшей сестры — небесной механики, но затем эмансипировалась и поставила математике ряд новых задач, повлекших за собой развитие особых разделов, так и биология, развиваясь под влиянием своей старшей сестры — физики, сумеет от нее заимствовать только то, что ей нужно, а в остальном пойдет своей дорогой по пути предстоящих ей действительно великих открытий. А эти открытия не окажутся без взаимного влияния и на область чистой математики ... Может быть, развитие учения о биологических формах вызовет к жизни или к развитию новые категории соотношений между геометрическими образами".


Биометрия

Вся моя работа пропитана биометрией, без этого я работать и думать не могу и не желаю, будучи твердо убежден, что недостаточное введение биометрии в биологию приносит ежегодно многомиллионный убыток.

Из письма А. А. Передельскому, 20.8.50 г


В письме О. М. Калинину 31.8.58 г. А. А. Любищев писал: "Первоначально главной задачей я считал применение математики к морфологии организмов ... Однако поставленные задачи оказались несравненно труднее, чем я думал, и постепенно я пришел к более разработанной и более легкой области: применению математической статистики. Я вовсе не разочаровался в возможности математической морфологии, но вижу, что эта область* очевидно, мне не по плечу: тут требуется, возможно, разработка оригинальных математических подходов, а для этого нужны и большие знания, и большие математические способности, чем у меня. Кроме того, я убедился, что хотя математическая биология кажется многим не существующей или не имеющей даже права на существование, на самом деле попыток применения математики к биологии так много, что даже сейчас охватить ее одному человеку, пожалуй, не под силу... Наиболее прочное применение в биологии нашла теория вероятности и математическая статистика. Очень хорошо вошла математика в генетику, методику опытного дела и основательно подошла к теории эволюции, правда, лишь к так называемой микроэволюции. Эта область меня менее интересует, так как вся она основана на дарвинистских предпосылках" [74].

Многие биометрические работы А. А. опубликованы [4, 41—47, 49, 51, 57, 60—62, 90]. Однако наиболее полное воплощение его уникальный опыт математической обработки данных получил в рукописи, написанной в конце 30-х гг. Седьмая глава ее — "Руководство по применению в биологии дисперсионного анализа Р. Фишера", — объемом около 300 машинописных страниц, представляет особый интерес. Это не только доступное для биологов изложение методики Р. Фишера, но и самостоятельный высококачественный учебник по дисперсионному анализу, а также превосходный смысловой анализ математической статистики, увлекательный и поучительный даже для профессионалов-математиков. В этой рукописи Любищев пишет:

"Всякое исследование должно стремиться к тому, чтобы удовлетворить следующим трем требованиям:

1. Оно должно быть целеустремленным, т. е. иметь перед собой определенную, подлежащую решению задачу;

2. Оно должно быть эффективным, т. е. полученные выводы должны быть достаточно надежны, для того чтобы обладать принудительной силой, и мера надежности должна быть известна; 3. Наконец, оно должно быть экономным, т. е. должно быть осуществлено с минимальной затратой сил и средств ... Очень немногие ясно сознают, что даже при правильно организованном исследовании, достаточно гарантирующем от ошибочных выводов, число исследованных объектов и точность должны вытекать из конкретных условий исследования. Если же опыт неправильно организован, то педантичная точность и огромность материала ошибочных выводов не предотвратят. Получается, как говорит Р. Фишер, что не только начинают стрелять из пушек по воробьям, но, что еще печальнее, не попадают в воробьев.

... Без биологически направленной мысли биометрическое исследование может привести только к накоплению совершенно ненужных материалов и оказаться совершенно бесцельным. Но, с другой стороны, без математической обработки часто даже очень изощренная биологическая мысль для решения многих актуальных вопросов не в состоянии преодолеть хаос изолированных фактических данных и пробиться сквозь дебри необоснованных предположений.

...Дисперсионный анализ не представляет собой какого-то насилия над материалом, стремления путем математических выкладок "вымучить" из материала вывод, вовсе не вытекающий из него. Напротив, и этот метод, как все математические приемы, при правильном применении является методом, позволяющим получить надежный вывод и там, где на глаз мы не вполне уверены в надежности: это и есть обычный здравый смысл, только облеченный в точную форму.

... По сравнению с другими методами прикладной математики дисперсионный анализ обладает одним огромным преимуществом. Лежащая в основе его теорема аддитивности, несмотря на трудность ее чисто математического доказательства, чрезвычайно проста для понимания, а главное, доступна для постоянной проверки. Вот эта-то возможность постоянно проверять себя, приспособляя метод к конкретным задачам, и делает возможным то, что разработка этого метода для решения задач новых типов может производиться и лицами, не имеющими основательной математической подготовки. Поэтому эта ветвь математической статистики помимо своей плодотворности является и более простой в своем применении, чем многие классические методы. Задачей настоящего руководства и являлось популяризацией этого метода увеличить эффективность работы биологов".

В принципе эффективности центральным пунктом является диалектика в антитезе правильность—точность, в частности противоположение систематических и случайных ошибок. Увеличивая точность, мы теряем правильность, при наращивании правильности теряется точность (см. гл. 6 этой книги). Существенное место в работе занимает также принцип итеративности, т. е. последовательное приближение к цели от ориентировочных этапов ко все более точным. С этим принципом связана идея комплексирования ряда малонадежных показаний в одно надежное. Линейные комбинации исходных признаков, обеспечивающие надежное различие объектов, как раз и являются дискриминантными функциями, используемыми в практической систематике [47]. Основным критерием истинности служит непротиворечивость результатов, согласованность этапов, интерпретируемость картины в целом. А. А. часто говорил о священном принципе: "Да будет выслушана противная сторона!"

Биометрическая деятельность А. А. протекала в трудной борьбе с противниками проникновения математики в биологию. Результаты этой деятельности имеют огромное экономическое значение. Отсылаем читателя к гл. 4 и 5 этой книги.


Математический способ мышления

Точные науки называются точными не потому, что они достоверны, а потому, что в точных науках ученые знают меру неточности своих утверждений.

А. А. Любищев.

Уроки истории науки


Роль математики в общебиологических работах Любищева не менее важна, чем в его конкретных исследованиях. Ю. А. Шрейдер (гл. 6) отмечает два аспекта математизации: четкость и глубину, сливающиеся в синтезе точности знаний и целостности видения мира. Внедрение математического стиля суждений в биологические науки — одна из главных заслуг А. А. Этот стиль был присущ ему органически. Показательны две выдержки из его переписки с Д. Д. Мордухай-Болтовским.[1 Мордухай-Болтовской Дмитрий Дмитриевич (1876—1952) — известный советский математик, геометр.]

"Я думаю постепенно приводить в порядок кое-какие накопившиеся мысли, и здесь часто имеется контакт с математикой ... Я всегда завидовал богатству воображения у математиков (многомерные и неевклидовы пространства, теория множеств, групп и т. д.), но и сам стремлюсь фантазировать в своей области, стараясь обобщать те данные, которые можно извлечь из наблюдения над существующими организмами" (6.1.47 г.).

"Вашу основную аксиоматическую точку зрения, что интерес представляет не только то, что есть и что было, но и то, что могло бы быть, я полностью разделяю, и здесь я резко расхожусь с большинством биологов, которые в дискуссии часто меня упрекают в том, что я рассуждаю как математик, а не как биолог. Почему большинство биологов не интересуется возможным, а только осуществленным? Потому что одним из ходячих биологических постулатов (хотя и не осознанных) является мнение, что строение каждого организма есть следствие ряда исторических обстоятельств, носящих в значительной мере случайный характер, и что поэтому совершенно праздной является работа по изучению мыслимого многообразия ... Даже на современном этапе и пользуясь совершенно бесспорными положениями можно наметить те ограничения, которые накладываются на эволюцию живых форм" (3.3.47 г.).

О связи математики, физики и биологии А. А. высказывался следующим образом:

"Есть прекрасное выражение: "Математика — это царица и служанка всех наук". Как царица — она всегда останется ведущей, так как только математизация науки способна поднять ее на подлинно высокий уровень. Как служанку — ее ведут другие науки, и она отвечает на запросы, которые ставятся ими. Совершенно несомненно, что ставить вопросы должны представители опытных наук, а для этого они должны тоже кое-что понимать в математике, иначе они не смогут поставить вопроса в понятной для математиков форме. Вот взаимоотношения физики и математики достигли сейчас великолепного уровня.

... Наиболее важный путь контакта между математикой и биологией: внедрение математического способа мышления в биологию. Очень важным для этого является использование эволюции понятия аксиомы и построение аксиоматики биологии. Сейчас аксиомой называют недоказуемое положение, которое хотя и не является абсолютно точной истиной, но тем не менее лежит в основе наших рассуждений и вместе с другими такими положениями образует непротиворечивую систему.

Задачей внедрения такого подхода в биологию является продумывание систем аксиом для разных дисциплин и для разных направлений биологии. Между тем огромное большинство биологов еще находится, так сказать, на Евклидовом уровне, считая многие из своих исходных положений абсолютными истинами. В геометрии, как известно, для законности системы аксиом достаточно отсутствия внутренней противоречивости в системе аксиом, для аксиоматики естественных наук необходима также эффективность системы, т. е. полезность ее для возможно полного и точного описания и прогноза явлений.

... Ведущей в собственном смысле слова можно назвать прежде всего самостоятельную науку, т. е. такую, которая имеет самостоятельные аксиомы, несводимые к аксиомам других наук, причем аксиомы других, более совершенных наук оказываются лишь частным случаем этих аксиом. Поэтому взаимоотношение физики и биологии можно мыслить трояко: а) Физика навсегда остается ведущей наукой, тогда как биология самостоятельной наукой по существу не является; б) И та и другая науки имеют конгруэнтные области, где действуют те же аксиомы, но за пределами этих областей каждая наука имеет аксиомы совершенно самостоятельные, т. е. не выводимые одна из другой; в) Наконец, третьим возможным случаем будет такой, где аксиомы более простой науки целиком выводятся из аксиом более сложной. Вот если осуществится третья возможность, тогда можно будет сказать, что биология действительно заняла ведущее положение в естествознании. Я лично намерен посвятить остаток своей жизни доказательству второй возможности, третья, конечно, мне не под силу".

"Большинство материалистов и механистов в биологии стремятся ограничить роль математики ролью служанки, да и услугами этой служанки пользуются не особенно охотно. Вспомним, что сказал Кант по поводу известного изречения "Философия есть служанка богословия". "Согласен, — сказал Кант, — но ведь служанки бывают разные: одни несут шлейф госпожи, а другие — факел, освещающий ей путь". Последняя роль совсем не унизительна" (из письма О. М. Калинину, 23.3.64 г.).

"Почему Вас так смущает "иррациональность", связанная с номогенезом и другими оппозиционными направлениями в биологии? Ведь прогресс математики был связан с освоением нуля (зачем обозначать то, что не существует), отрицательных чисел, иррациональных, трансцендентных, мнимых, комплексных чисел, кватернионов и др. Прогресс биологии тоже должен быть связан со свободным использованием таких понятий, которые наши философские предрассудки считают "недопустимыми"" (из письма С. В. Мейену, 7.8.68 г.).

Полемизируя с теми, кто остерегался математики, А. А. писал: "Представление о математике, как о каком-то яде, который можно принимать лишь в малых дозах, основано просто на невежестве. Именно "осторожность" в применении настоящей математики ... привела к деградации или косности в биологии, агрономии и других науках и принесла колоссальный материальный и моральный ущерб. Вся осторожность в применении математических методов, как и всяких других методов, заключается в хорошем знакомстве с методами, условиями их применения и постоянном контроле опытом. Никакой особой "опасности" по сравнению с другими методами математические методы в себе не заключают, но в силу своей большей точности имеют то крупное преимущество, что ошибки гораздо легче вскрываются опытом". Ошибки в применении математики в биологии А. А. проанализировал в [61, 62], где, будучи верным диалектике, рассмотрел как "ошибки от недостатка осведомленности", так и "ошибки, связанные с избытком энтузиазма".


Математическая таксономия

Что касается теоретической систематики, то это моя первая и последняя любовь.

Из письма О. М. Калинину.

15.9.61 г.


Мысли А. А. Любищева о систематике, по-видимому, являются стержнем, основой большинства его теоретических построений. Несомненно, они заслуживают специального исследования. Триада "форма — система — эволюция" уже рассмотрена в гл. 1. Опубликованные работы [5, 50, 52, 55, 58, 59, 64, 65, 67, 69, 76, 81, 90] и рукописные материалы дают богатую пищу для размышлений и в других направлениях. Не касаясь здесь практической систематики, ограничимся минимумом высказываний А. А. по теоретической и общей систематике (системологии), имеющих отношение к математике.

"Систематика — альфа и омега каждой науки. Вспомним периодическую систему Д. И. Менделеева, кристаллографическую систематику Е. С. Федорова, классификацию звезд, систематику геометрий и пр. — все эти построения относятся к высшим достижениям точных наук... Систематизация в истинном смысле слова есть нахождение такой системы многообразия, которая допускает возможно полное, краткое и точное математическое описание многообразия с возможностью прогноза" [58].

"Мы выдвигаем задачу построения рациональной системы организмов, т. е. такой, форма и структура которой вытекала бы из некоторых общих принципов, как это делается в системе математических кривых, форм симметрии в кристаллографии, периодической системы в химии, системы органических соединений и т. д... Мы имеем право различать по крайней мере три основные формы системы: иерархическую, комбинативную и коррелятивную (параметрическую). Примером комбинативной системы может быть многообразная комбинация различных независимых генов при наследовании по Менделю, примером коррелятивной — периодическая система элементов".

"Комбинативный подход к классификации любого рода явлений в любой области является тем первичным и основным, с которого надо начинать при попытках систематизации любого многообразия. Иерархия может быть вырождением комбинативной системы в силу запрещения большого числа комбинаций ... Но ни иерархический, ни комбинативный принцип не могут рассматриваться как высшие принципы систематизации. Комбинативную систему можно тоже рассматривать как выродившуюся форму параметрической системы. Для конструкции высших, параметрических систем мы должны пользоваться какими-то более или менее априорными постулатами ... Путь к определению параметров в значительной степени связан с "нащупыванием", многочисленными эмпирическими попытками построения систем ... Важным этапом является комплексирование единичных признаков в более сложные... Из общего целостного принципа могут быть выведены все особенности элементов системы. К такому идеалу стремятся все великие философские системы. На принципе единства, целостности и красоты Космоса строились космологические системы, начиная от Пифагора и вплоть до Кеплера" [69].

"Сейчас уже не приходится защищать положение, что развитие всякой прогрессивной науки тесно связано с внедрением математических методов. Сейчас достаточно широко внедряются методы, связанные с теорией вероятности и математической статистикой: дисперсионный, дискриминантный, канонический и факторный анализы. Положено начало внедрению математической логики в систематику, но эти попытки, как правило, не выходят из рамок иерархического понимания системы... Весьма возможно, что для построения филогении пригодятся математические аппараты совершенно иного характера: топология, теория графов и пр., и, вероятно, потребуется развить совершенно новые математические дисциплины. Здесь потребуется тесное содружество математиков и биологов... Пока же биологи, стремящиеся продвинуть математику в систематику, недостаточно квалифицированы математически, квалифицированные же математики не вполне понимают всю сущность систематических и биологических проблем. Было бы очень полезно, если бы квалифицированные математики, заинтересованные в применении математики к систематике, занялись конкретной систематикой какой-либо группы организмов, хотя бы в порядке хобби... Было бы желательно более тесное взаимное проникновение у одного лица его математической и систематической квалификации" [65].

"Что математика совмещает в себе и высокую науку и высокое искусство — это, конечно, бесспорно, но Вы не правы, что это единственная наука, ставящая условием красоту, изящество и т. д. Эстетические эмоции играют огромную роль и, например, в систематике насекомых... Разница только в том, что у математиков их эстетические эмоции находятся в полной гармонии с их рациональными ощущениями, а у биологов принято отрицать объективную красоту, все сводить на полезностей потом) систематики, будучи эстетами от природы, обычно стесняются в этом признаваться" (из письма Д. Д. Мордухай-Болтовскому, 24.8.51 г.).


Математическая трактовка органических форм

В 1910 г. у меня возникло предположение, что математическая морфология вполне возможна.

А. А. Любищев.

Воспоминание об А. Г. Гурвиче


Проблема формы в работах А. А. Любищева рассматривается С. В. Мейеном в гл. 1, и мы ограничимся здесь лишь несколькими выдержками, непосредственно связанными с математикой.

"Учение о естественной системе возникло как ответ на необходимость навести порядок в огромном разнообразии окружающих нас органических форм... Широкое понимание симметрии и вообще правильности строения организма естественно приводит к математической трактовке органических форм... Для того чтобы получить представление о многочисленных попытках математической морфологии, следует познакомиться с замечательной книгой Д’Арси Томпсона "0 росте и форме".[2 Thompson D’Arcy W. On growth and form. Cambridge, 1942.] Автор пишет, что книга не нуждается в предисловии, так как сама является предисловием от начала до конца. Да, предисловием к новой великой книге о математической трактовке органических форм. Одни биологи, даже с редкой среди биологов склонностью к математике, без помощи высокообразованных математиков ее написать не смогут... Математика начинает проникать разными путями. Открываются перспективы к тому, чтобы сравнительная анатомия заняла почетное место в ряду точных наук. Возможно и внедрение эксперимента, но это уже не так существенно. Ведь образец точной науки — небесная механика — до самых последних лет обходилась без эксперимента, а морфология животных и растений еще ждет своих Коперника, Галилея, Кеплера и Ньютона.

Но раз уже мы наблюдаем проникновение в сравнительную анатомию строгих и точных методов, то открывается и перспектива возможности управления явлениями. Многие выдающиеся представители точных наук полагают, что именно в биологии суждено состояться самым крупным открытиям ближайших десятилетий. Этот путь, как правило, мыслится через внедрение физики и химии, через дальнейшее развитие блестящих достижений современной генетики. Невозможно отрицать перспективность этого направления, но одним путем нельзя постигнуть столь великую тайну, как тайна многообразия организмов... Помимо пути "снизу" законен и другой путь — "сверху", от целого организма... Ренессанс наук, подобных сравнительной анатомии, которые некоторыми чрезмерными почитателями всякого "эксперимента" презрительно называются "описательными", может быть,будет не менее плодотворным, чем внедрение в биологию физики и химии. Но оба направления будут, конечно, широко использовать математику, царицу и служанку всех наук" [48].


Линия Пифагора—Платона

Моя философская система должна дать синтез тех антиномий, которые волновали эллинскую культуру. Она должна заключаться в следующем: пробабилизм против аподиктизма, — и в своем построении должна исходить из определенного, небольшого числа аксиом или постулатов, но этим постулатам не приписывается аподиктическое значение, а придается лишь смысл догадок. (On. 1, ед. хр. 50).

Я склонен считать и философию, и чистую математику совершенно самостоятельными не науками, а метанауками.

Из письма Р. Г. Баранцеву 30.1.66 г.


В 1958 г. А. А. Любищев начал большой труд "Проблема многообразия органических форм", рассчитанный на 7—8 лет. Философское предисловие к нему вылилось в самостоятельное произведение "Линии Демокрита и Платона в истории культуры", работа над которым стала основной темой до конца жизни, но так и осталась незаконченной. Во введении к "Линиям" читаем:

"Эта книга — главное сочинение моей жизни, резюмирующее все те мысли, которые накопились за несколько десятилетий достаточно напряженной работы... Начав работу как узкий специалист, дарвинист и сознательный нигилист типа Базарова, я постепенно расширял круг своих интересов и начинал сознавать необходимость пересмотра самых разнообразных и часто противоречивых постулатов, которые выдвигались как непреложные истины представителями разнообразных направлений, господствующих в тех или иных областях знаний... Первый набросок, зародыш настоящего сочинения, был составлен мной для себя в 1917 г.

Моя работа имеет некоторое сходство по замыслу с известной книгой Бернала "Наука в истории общества" и в значительной мере является антагонистом этой содержательной и интересной книги. Для биологии, сейчас вступающей в новый период своего развития, такой процесс осмысления имеет еще большее значение, чем для неорганических наук, и вместе с тем биология гораздо теснее связана с политическими проблемами, чем физика и другие точные науки; закрывать глаза на это — значит уподобляться страусу.

За всю жизнь я много читал и думал по общебиологическим и философским вопросам; в этом отношении я квалифицирован больше, чем огромное большинство специалистов-биологов. Мой интерес к математике заставил меня познакомиться с рядом разделов этой замечательной науки, и поэтому я легче разбираюсь в философии точных наук, чем биологи, морфологи и систематики, не сведующие, как правило, в математике... С другой стороны, математики и физики, выступающие с общефилософскими работами, как правило, не понимают всей огромной сложности биологических проблем и противоречивости взглядов умных биологов. Все эти соображения давали мне всю жизнь уверенность в разумности предпринятого мной дела, и я имею право утверждать, что если моя книга будет недостаточно убедительна, то во всяком случае обвинить меня в недостатке обдуманности невозможно.

Изложение проблем мной в значительной степени ведется в историческом аспекте, и этот аспект доминирует в первой части, посвященной неорганическим наукам. Моя попытка стремится ... установить, на основе каких философских и общеметодологических представлений достигнуты представителями физики в самом широком смысле слова (т. е. всей наукой о неорганическом мире) их поразительные успехи и какие уроки может извлечь биология из истории философских направлений в физике".

В главе, посвященной математике, А. А. пишет:

"Подлинный прогресс в математике связан с пифагорейской школой. Здесь вполне определился характер математики, как чистой науки, которой интересуются независимо от ее приложений; поэтому многие ученые считают Пифагора родоначальником чистой математики.

Пифагор впервые поднял знамя сплошной математизации наших знаний... Школа, носившая имя Пифагора, сделала великие открытия в области математики... По-видимому, уже пифагорейцам принадлежит открытие правильных многогранников, теория которых была окончательно развита в школе Платона, отчего они и называются до сих пор Платоновыми телами. В платоновской Академии были заложены основы всех тех отраслей математики, которые получили затем пышное развитие в Александрии. Главнейшими фигурами александрийской школы являются Евклид, Архимед, Эратосфен, Аполлоний и Диофант... Длительный процесс создания исчисления бесконечно малых ведет от Евдокса, Архимеда к Ньютону и Лейбницу. Вся эта линия связана с платоновско-пифагорейским направлением... Последователи Платона в современной математике: теоретико-множественный идеализм Г. Кантора, формализм Д. Гильберта, интуиционизм..."

В главе об астрономии читаем:

"Известно, какое первенствующее значение имеет астрономия в истории человеческой культуры. Здесь мы имеем и первое грандиозное проникновение математики в истолкование внешнего мира, исключительной широты синтез в теории всемирного тяготения и, наконец, огромное влияние на формирование мировоззрения.

... Характерные черты пифагореизма: мистика чисел, математизация науки, первичность Космоса... Космос — вовсе не синоним Вселенной. Первоначальный смысл слова "космос" — украшение, красота. Отсюда — косметика, искусство украшения (подобно тому, как кибернетика — искусство управления). Отсюда — родственные понятия порядка, гармонии, симметрии... Философские постулаты пифагореизма заключаются в признании гармоничности, космичности, а не хаотичности Вселенной, в признании существования сравнительно простых, доступных математической формулировке законов. Только такое сочетание гармонического понимания и математической трактовки может называться подлинно пифагорейско-платоновским направлением.

...Надо говорить не о двух линиях — Платона и Демокрита, а по крайней мере о трех. Третья линия, возникшая з лоне платонизма, но потом выступившая в качестве главного оппонента линии Платона, — линия Аристотеля, которую, строго говоря, нельзя отнести ни к чистому идеализму, ни к чистому материализму. Линия Аристотеля утратила веру в возможность точного математического описания Вселенной, она довольствовалась приблизительным описанием, но, потеряв стремление к точности, она усугубила требовательность к доступности в объяснении явлений. В этом и было основание ее успехов в естественных науках, недоступных в то время математическому описанию. Идеалистический же характер философии Аристотеля ясен в первенствующем значении в этой философии телеологического подхода, не чуждого и платонизму, но играющему там второстепенную, а не ведущую роль. Линия Платона дала блестящее развитие космологии, да и не только космологии. Линия Аристотеля склонна к консерватизму и временами приводит к полному застою, но, вообще говоря, она отнюдь не бесплодна, в особенности в биологии и многих других науках. Линия Демокрита привела к полной утрате научной космологии".

Приведем еще две выдержки из "осколков" этой незавершенной работы:

"В области чистой морфологии пифагореизм и платонизм также стучатся в биологию. Это нашло свое выражение в великолепной книге Д’Арси Томпсона "Рост и Форма". Автор — широко образованный человек, в общем держащийся материалистических взглядов, но он не может не признать вторжения пифагореизма в биологию. В Эпилоге мы находим такие слова: "Гармония природы является в Форме и Числе; и сердце, и душа всей поэзии Натурфилософии воплощена в понятии математической красоты... Не только движения небесных тел определяются наблюдением и разъясняются математикой, но и все остальное может быть выражено числом и определено естественными законами. Это — учение Платона и Пифагора и завещание человечеству Греческой мудрости"".

"Титаны науки — Коперник, Кеплер, Галилей и Ньютон — представляют математическую линию, связанную с именами Пифагора и Платона. Биология сейчас выходит на эту линию. Но даже крупнейшего представителя этого жанра — Менделя — можно сравнить с одним из математиков Платоновской школы: Эвдоксом, Менехмом или Теэтетом. До Коперника, не говоря уже о Ньютоне, биологам еще очень далеко" [67].

За 4 месяца до своей смерти в эскизе доклада на биометрическом семинаре ЛГУ А. А. писал:

"Общее развитие наук: Гейзенберг — от Демокрита к Платону; Вейль — Вселенная не Хаос, а Космос; Эйнштейн — пифагорейские воззрения, связанные с взмахом исследований по симметрии; понятие организмов различных уровней вплоть до Геомериды,[3 Геомерида — комплекс биоценозов всего живого, населяющего Землю, рассматриваемая как уникальный организм. См.: Беклемишее В. Н. Биоценологические основы сравнительной паразитологии. М., 1970 (с. 41).] Эддингтон и современники с отысканием общих априорных законов".

* * *

Ознакомившись с математической стороной деятельности А. А. Любищева, можно с уверенностью сказать, что математика была для него не только методом установления количественных закономерностей, а прежде всего образцом для построения рассуждений во всех науках, т. е. имела гносеологическое значение. Будущее биологии и других наук он видел в свете аналогий из истории математики.

Решение математических задач было одним из самых любимых занятий А. А. Однако, имея громадный опыт вычислительной работы, он называл математику "не наукой производить вычисления, а искусством избегать вычислений". Пристрастие к математике было связано с такими чертами мировоззрения А. А., как рационализ.м и пифагореизм. Будучи рационалистом, он считал, что все прекрасное может быть подвергнуто математической обработке. Будучи продолжателем линии Пифагора, он любил и ценил математику за свободу абстрагирующего ума.


Загрузка...