В 1839 году Араго произнес в честь Ампера речь, в которой высказал сожаление, что столь талантливый ученый был вынужден работать на износ ради финансовой стабильности. После этого великому ученому, умершему в безвестности, были оказаны бесчисленные почести.
Хотя «Историческая хвала Амперу» Араго считается биографией ученого, первые работы о его жизни — «Великий Ампер» (1924) и «Переписка великого Ампера» (1936) — появились лишь в начале XX века, и они принадлежали геологу Луи Огюсту Альфонсу де Лоне.
Невозможно перечислить все почести, оказанные с тех пор Амперу, поэтому мы остановимся на двух событиях. Во-первых, в 1974 году французской Академией наук была учреждена премия Ампера в честь двухсотлетия со дня рождения ученого. Эта премия вручается ежегодно исследователям за работы в области математики, фундаментальной либо прикладной физики. Во-вторых, имя Ампера было включено в список наиболее выдающихся ученых, размещенный на Эйфелевой башне. Фамилии 72 ученых и инженеров выгравированы на четырех сторонах конструкции, по 18 с каждой стороны. Имя Ампера находится на 13 месте с северной стороны, напротив площади Трокадеро.
Именем Ампера названа единица измерения силы тока, связанная с омом. Это название было принято на Международном конгрессе электриков (International Electrical Congress) в Чикаго в 1893 году и подтверждено на Международной конференции в Лондоне в 1908 году. Решение Международного комитета мер и весов 1946 года гласит:
«Ампер есть сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 метра один от другого, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2 • 10 7 ньютона».
Удивительно, что это определение может быть легко выведено из математических результатов Ампера, полученных им из закона Био — Савара. Оно также связано с заключениями Ампера о притягивании и отталкивании двух прямолинейных проводников.
На схеме представлены два прямых проводника бесконечной длины, разделенные расстоянием a, по ним проходит ток одного направления, I1 и I2. Рассмотрим магнитное поле, производимое проводником 1 в сторону проводника 2, которое, согласно закону Био — Савара, описывается уравнением
B = μ0∙I1/2∙π∙a.
Благодаря выражению Ампера, которое описывает взаимодействие между двумя элементами тока, мы можем узнать, что на проводник длиной L, по которому проходит ток I2
(речь идет о законченном сегменте другого проводника), воздействует магнитное поле В первого проводника с силой
F2=B∙L∙I2.
Заменим выражение магнитного поля, а затем разделим на L для определения силы на единицу длины:
F2 = (μ0∙I1/2∙π∙a)∙L∙I2 → F/L = μ0∙I1∙I2/2∙π∙a
Если два проводника разделены расстоянием в 1 метр, они притягиваются с силой 2 • 10-7Н, а магнитная проницаемость μ0 в вакууме равна 4π10-7. Таким образом, мы получим выражение ампера, предложенное Международным комитетом мер и весов (см. рисунок на предыдущей странице). Заметим также, что ампер является основной единицей, то есть не выводится из других единиц.
В некоторых школьных учебниках можно встретить следующее математическое выражение, названное законом Ампера:
→ →
∫B∙dl=μ0∙I.
С хронологической точки зрения это выражение (в том виде, в котором оно представлено) не могло быть сформулировано Ампером, просто потому, что вектор В в электродинамике еще не использовался, а подобные интегралы в то время только начали появляться. Понятие магнитного поля было, в свою очередь, введено Фарадеем в его опубликованной в 1856 году книге «Линии силы». Сама сущность магнитного поля противоречит идеям Ампера, который опирался на ньютоновскую традицию использования силы для объяснения взаимодействий.
Закон Ампера — это математическое выражение отношения между магнитным полем и его причиной, то есть силой тока (см. рисунок). С математической точки зрения он аналогичен закону Гаусса для электрического поля. Закон Ампера позволяет рассчитать магнитное поле в случае симметричных контуров. Вернемся к случаю с прямолинейным проводником бесконечной длины. Если мы хотим знать магнитное поле в одной точке на расстоянии а от проводника, нужно будет взять интеграл от указанной линии, окружающей проводник в окружности радиуса а. С точки зрения физики вокруг проводника существует дифференциальный элемент dl. Рассчитать интеграл легко, поскольку общая длина есть длина окружности, а поле постоянное:
→ →
∫В∙dl = ∫В∙dl∙cos 0° = В∫dl = В∙2∙π∙a = μ0∙I.
Мы получили выражение, которое уже рассматривали при определении ампера:
B = μ0∙I1/2∙π∙a.
Точка указывает, что сила I направлена перпендикулярно плоскости бумаги. Магнитное поле и элементы длины параллельны, то есть образуют угол 0°.
Кроме того, Максвелл изучил и обобщил закон Ампера в своем «Трактате об электричестве и магнетизме» (1873). Вторая глава тома 2 его книги,«Взаимные действия между электрическими токами», посвящена исключительно работе Ампера. На 20 страницах Максвелл анализирует математический закон взаимодействия элементов тока своего французского коллеги. И он не называет Ампера автором этого выражения — при всем своем серьезном отношении к его работам:
«Экспериментальное исследование, благодаря которому Ампер установил законы механизмов действия между электрическими токами, является одним из самых блестящих научных трудов».