Примечания

1

Термин «динозавр», используемый при обсуждении в тексте, относится к «нептичьим» динозаврам – тем, что вымерли в конце мезозойской эры. Птичьи динозавры, т. е. птицы, так и называются.

2

Dodick J. and Argamon S. Rediscovering the historical methodology of the earth sciences by analyzing scientific communication styles // Manduca C. A. and Mogk D. W. (eds.). Earth and Mind: How Geologists Think and Learn about the Earth. Special Paper 413. Boulder, Colorado: Geological Society of America, 2006. p. 105.

3

Intergovernmental Panel on Climate Change. Climate change 2013: The physical science basis // Stocker T. F., Qin D., Plattner G. K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V. and Midgley P. M. (eds). Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change: Cambridge, UK and N. Y., NY: Cambridge University Press, 2013.

4

United Nations, Department of Economic and Social Affairs, Population Division. World population prospects: The 2017 revision, key findings and advance tables // Working Paper No. ESA/ P/ WP/ 248 ed.: N. Y., United Nations, 2017.

5

Archer M. O., Hietala H., Hartinger M. D., Plaschke F. and Angelopoulos V. Direct observations of a surface eigenmode of the dayside magnetopause // Nature Communications, 2019. Vol. 10. № 1. P. 1–11.

6

Schumann W. O. Über die strahlungslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionosphärenhülle umgeben ist // Zeitschrift für aturforschung A. 1952. Vol. 7. № 2. P. 149–154.

7

Soriano A., Navarro E. A., Paul D. L., Portí J. A., Morente J. A. and Craddock I. J. Finite difference time domain simulation of the Earth-ionosphere resonant cavity: Schumann resonances // IEEE Transactions on Antennas and Propagation, 2005. Vol. 53. № 4. P. 1535–1541.

8

First D. The music of the sphere: An investigation into asymptotic harmonics, brainwave entrainment and the Earth as a giant bell // Leonardo Music Journal, 2003. Vol. 13. P. 31–37.

9

Цит. по: Саган К. С. Космос: Эволюция Вселенной, жизни и цивилизации / Пер. с англ. А. Сергеева. СПб.: Амфора, 2005. С. 340.

10

Sagan C. Cosmos. N. Y.: Random House, 1980. P. 151 (Саган К. С. Космос: Эволюция Вселенной, жизни и цивилизации / Пер. с англ. А. Сергеева. СПб.: Амфора, 2005. С. 340.) 1. Становление геологии как науки: европейские корни

11

Осадки в геологии – это продукты органического или неорганического происхождения, отложившиеся в результате физических, химических и биологических процессов, но еще не превращенные дальнейшими процессами в осадочные горные породы. – Примеч. перев.

12

Leonardo da Vinci. The Notebooks of Leonardo da Vinci (translated by Richter J. P.). Milan, 1888. (Леонардо да Винчи. Избранные естественнонаучные произведения / Редакция, перевод, статья и комментарии В. П. Зубова. М.: Изд-во АН СССР, 1955).

13

Hansen J. M. On the origin of natural history: Steno’s modern, but forgotten philosophy of science // Bulletin of the Geological Society of Denmark, 2009. Vol. 203. P. 15.

14

Steno N. Elementorum Myologiae Specimen seu «Musculi Descriptio Geometrica» cui accedunt «Canis Carchariae Dissectum Caput» et «Dissectus Piscis ex Canum Genere». Florence: Stellae, 1667, 123 p.

15

Scott M. Nicolaus Steno (1638–1686): The head of a shark. Опубликовано 20 июля 2004 г. на сайте http://earthobservatory.nasa.gov/Features/Steno/steno3.php.

16

Steno N. De solido intra solidum naturaliter contento dissertationis prodromus. Florence: n. p., 1669, 78 p.

17

Hansen, 2009. P. 21.

18

Hutton J. Concerning the system of the Earth, its duration and stability, a paper read to the Royal Society of Edinburgh, on the 7th of March and 4th of April 1785. Edinburgh: Royal Society of Edinburgh, 1785.

19

Hutton J. Theory of the Earth with Proofs and Illustrations (2 volumes). Edinburgh: William Creech, 1795.

20

Hutton J. Theory of the Earth with Proofs and Illustrations (Vol. 3, edited by Sir Archibald Geikie). L.: Geological Society, 1899.

21

См. Steno N. (1669), The prodromus of Nicolaus Steno’s dissertation, concerning a solid body enclosed by process of nature within a solid (translated by John Garrett Winter, English version with an introduction and explanatory notes). L.: Macmillan, 1916. P. 173.

22

Carozzi A. V. Horace Benedict de Saussure: Geologist or educational reformer? // Journal of Geological Education. 1976. Vol. 24. № 2. P. 48. Орас де Соссюр оказал влияние на представления Абраама Вернера о геологии: Вернер утверждал, будучи сторонником нептунизма, что происхождение слоев связано с водным источником. Эта гипотеза впоследствии была опровергнута.

23

Петр Симон Паллас с 1767 по 1810 г. жил и работал в России. Паллас – академик Петербургской академии наук; до 1794 г. хранитель зоологических коллекций Кунсткамеры; с 1768 по 1774 г. возглавлял научные экспедиции в Поволжье, на Урал, в Сибирь, на Алтай, в Забайкалье, в ходе которых собрал уникальные материалы о природе и экономике территорий России. Результаты экспедиций опубликованы в трехтомном труде «Путешествие по разным провинциям Российской империи»; этнографические данные – в сочинении в трех томах «Достопримечательности мордвы, казаков, калмыков, киргизов, башкир и др.». Автор работ по флоре (Flora Rossica) и фауне (Zoographia Rosso-Asiatica) России, по ископаемым организмам Сибири, описал большое количество новых видов растений и животных // Колчинский Э. И. ПАЛЛАС // Большая Российская энциклопедия. М., 2014. Т. 25. С. 161, 162. — Примеч. перев.

24

Hutton, 1795. Vol. 1. P. 369.

25

Dean D. R. James Hutton and the History of Geology. Ithaca: Cornell University Press, 1992. P. 221.

26

Hutton, 1899.

27

Dean D. R. James Hutton on religion and geology: the unpublished preface to his Theory of the Earth (1788) // Annals of Science. 1975. Vol. 32. № 2. P. 189.

28

Ibid. P. 187.

29

Transactions of The Royal Society of Edinburgh, 1826. P. 452.

30

Playfair J. Illustrations of the Huttonian theory of Earth. Edinburgh: Neill & Co. for Caddell and Davis; L.: William Creech. 1802.

31

Playfair J. Biographical account of the late Dr. James Hutton, F. R. S. // Transactions of the Royal Society of Edinburgh, 1805. Vol. V. Part III. P. 39–99.

32

Hutton, 1788. P. 304.

33

Werner A. G. (1786). A Short Classification and Description of the Various Rocks (translated with an introduction and notes by Ospovat A. M.). N. Y.: Hafner, 1971, 194 p.

34

Memoir of Abraham Gottlob Werner, late professor of mineralogy at Freiberg // Philosophical Magazine, 1817, series 1. Vol. 50. № 233. P. 182.

35

Werner A. G. (1774). A Treatise on the External Characters of Fossils (translated by Weaver T.). Dublin: M. N. Mahon, 1805, 312 p.

36

Guntau M. The rise of geology as a science in Germany around 1800 // Lewis C. L. E. and Knell S. J. (eds.). The Making of the Geological Society of London. Geological Society of London, Special Publications, 2009. Vol. 317. № 1. P. 168 n.12.

37

Schuhert C. Correlation and chronology in geology on the basis of paleogeography // Geological Society of America Bulletin. 1916, September 1. P. 491.

38

Werner A. G. Kurze Klassifikation und Beschreibung der verschiedenen Gebirgsarten. Dresden: Waltherischen Hofbuchhandlung, 28 p.

39

Greene M. T. Geology in the Nineteenth Century: Changing Views of a Changing world (Cornell History of Science Series). Ithaca: Cornell University Press. P. 41.

40

Oldroyd D. R. The Vulcanist-Neptunist dispute reconsidered // Journal of Geological Education. 1971. Vol. 19. № 3. P. 124. Оригинал работы Лемана: Lehmann, J. G. Versuch einer Geschichte von Flötz-Gebürgen. Berlin, 1756, n. p.

41

Şengör A. M. C. On Sir Charles Lyell’s alleged distortion of Abraham Gottlob Werner in Principles of Geology and its implications for the nature of the scientific enterprise // Journal of Geology, 2002. Vol. 110. № 3. P. 361.

42

Philosophical Magazine, 1817. P. 187.

43

Werner, 1787.

44

Oldroyd. 1971. P. 125.

45

Pickford S. «I have no pleasure in collecting for myself alone»: Social authorship, networks of knowledge and Etheldred Benett’s Catalogue of the Organic Remains of the County of Wiltshire (1831) // Journal of Literature and Science. 2015. Vol. 8. № 1. P. 73.

46

Benett E. A catalogue of the organic remains of the County of Wiltshire. Warminster: Vardy, 1831, 9 p.

47

Torrens H. S., Benamy E., Daescher E. B., Spamer E. E. and Bogan A. E. Etheldred Benett of Wiltshire, England, the first lady geologist: Her fossil collection in the Academy of Natural Sciences of Philadelphia, and the rediscovery of lost specimens of Jurassic Trogoniidae (Mullusco: Bivalva) with their soft parts preserved // Proceedings of the Academy of Natural Sciences of Philadelphia, 2000, April 14. Vol. 150. P. 67.

48

Господину Этелдреду Бенетту (лат.).

49

Benett E. Letter to Samuel Woodward, dated 12 April, 1836. Woodward MSS, Norwich Museum, vol. 10. P. 52.

50

Torrens, Benamy, Daescher, Spamer, and Bogan, 2000. P. 60.

51

Spamer E. E., Brogan A. E. and Torrens H. S. Recovery of the Etheldred Benett collection of fossils mostly from the Jurassic-Cretaceous strata of Wiltshire, England, analysis of the taxonomic nomenclature of Benett (1831), and notes and figures of type specimens contained in the collection // Proceedings of the Academy of Natural Sciences of Philadelphia. 1989. Vol. 141. P. 118.

52

Torrens H. S. Rock stars: William «Strata» Smith // GSA Today, 2015, September. P. 38.

53

Карта, составленная Смитом, и история его жизни представлены в книге Саймона Уинчестера «Карта, которая изменила мир» (The Map That Changed the World. N. Y., Harper Collins, 2001).

54

Smith W. Stratigraphical system of organized fossils with reference to the specimens of the original Geologic Collection in the British Museum explaining their state of preservation and their use in identifying British strata. London, E. Williams, 1817, 118 p.

55

Woodward H. B. The History of the Geological Society of London. L.: Longmans, Green, 1908. P. vx.

56

Greenough G. B. A geological map of England and Wales. L.: Longmans, Hurst, Rees, Orme & Brown, 1820, scale 5 nautical miles to 1 inch, 4 sheets.

57

Torrens H. S. Timeless order: William Smith (1769–1839) and the search for raw materials 1800–1820 // Geological Society of London Special Publications, 2001. Vol. 190. № 1. P. 78.

58

Медаль Волластона вручается «за исследования в области минералогического строения Земли… или геологии в целом» и позволяет Совету Геологического общества награждать «исследования, выполненные отдельными учеными или группой, из любой страны, за исключением того, что ни один член Совета… не должен быть уполномочен на получение такой поддержки или награды или принимать в этом участие».

59

Buckland W. Notice on the Megalosaurus or great fossil lizard of Stones-field // Transactions of the Geological Society of London, 1824, series 2. № 1. P. 390–396.

60

Turner S., Burek C. V. and Moody R. T. J. Forgotten women in an extinct saurian (man’s) world // Moody R. T. J., Buffetetaut E., Naish D. and Martill D. M. (eds.). Dinosaurs and Other Extinct Saurians: A Historical Perspective. L.: Geological Survey, 2010. P. 111–153.

61

Owen R. Report on British Fossil Reptiles, Part II, Report of the British Association for the Advancement of Science. 11th Meeting. L.: Richard and John E. Taylor, 1841b. P. 85.

62

Buckland W. Reliquiae diluvianae; Or, Observations on the Organic Remains Contained in Caves, Fissures and Diluvial Gravel, and on Other Geological Phenomena, Attesting the Action of an Universal Deluge. L.: John Murray, 1823, 279 p.

63

Boyer P. J. William Buckland, 1784–1855: Scientific institutions, vertebrate palaeontology and Quaternary geology [Ph. D. thesis]. Leicester: University of Leicester, 1984. Vol. 1. P. 220.

64

Ibid. P. 220.

65

Lyell C. Principles of Geology (Vol. 1): L.: Murray, 1830. P. 40. (Лайель Ч. Основные начала геологии, или Новейшие изменения Земли и ее обитателей / Пер. с англ. А. Мина. М.: А. И. Глазунов, 1866.)

66

Wilson L. G. Lyell, the man and his times // Blundell D. F. and Scott A. C. (eds.). Lyell: The Past Is the Key to the Present. L.: Geological Society, 1998. P. 21–37.

67

Ibid.

68

Dott R. H. Charles Lyell’s debt to North America: His lectures and travels from 1841 to 1853 // Geological Society of London Special Publications. 1998. Vol. 143. № 1. P. 53–69.

69

Dean, 1992.

70

Conybeare W. D. Letter on Mr. Lyell’s Principles of Geology // Philosophical Magazine, 1830, new series 8. P. 215–219.

71

Дайка – пластинообразное или крутопадающее геологическое тело, ограниченное параллельными стенками и секущее вмещающие горные породы // ДАЙКА // Большая Российская энциклопедия. М., 2007. Т. 8. С. 242. — Примеч. перев.

72

Wilson, 1998.

73

Wool D. Charles Lyell – «the father of geology» – as a forerunner of modern ecology // Oikos, 2001. Vol. 94. № 3. P. 385–391.

74

Eiseley L. C. Darwin’s Century: Evolution and the Men Who Discovered It (Garden City, NY: Doubleday, 1958. P. 105); Coleman W. Lyell and the «reality» of species, 1830–1833 // Isis. 1962. P. 326; Bartholomew M. Lyell and evolution: An account of Lyell’s response to the prospect of an evolutionary ancestry of man // British Journal for the History of Science. 1973. Vol. 26. № 3. P. 261.

75

Dean, 1992. P. 229.

76

Cope J. C. W. Geology of the Dorset Coast (second edition, with contributions from Malcolm Butler; Geologists’ Association Guide No. 22). London, Geological Society, 2016, 222 p.

77

Owen R. A description of a specimen of the Plesiosaurus macrocephalus, Conybeare, in the collection of Viscount Cole, MP, DCL, FGS // Transactions of the Geological Society of London, 1840. Vol. 2. № 3. P. 515–535.

78

Torrens H. S. Mary Anning (1799–1847) of Lyme: «The greatest fossilist the world ever knew» // British Journal for the History of Science. 1995. Vol. 28. P. 264.

79

Ibid. См. Dorset County Council, 2000, Nomination for the Dorset and East Devon Coast for inclusion in the World Heritage List, UNESCO. P. 25–27.

80

Davis L. E. Mary Anning of Lyme Regis: 19th century pioneer in British palaeontology // Headwaters, Faculty Journal of the College of Saint Benedict and Saint John’s University, 2009. Vol. 26. P. 105–106.

81

Anning M. Note on the supposed frontal spine in the genus Hybodus // Magazine of Natural History, 1839. Vol. 12. P. 605.

82

De la Beche H. T. Obituary notes // Quarterly Journal of the Geological Society of London, 1848. P. xxi–cxx.

83

Agassiz L. and Bettannier J. Études sur les Glaciers (Studies on Glaciers). L.: Dawsons of Pall Mall, 1840.

84

Scott M. 2018. Louis Agassiz. https://www. strangescience. net/agassiz. htm

85

Taquet P. Geology beyond the channel // Lewis C. L. E. and Knell S. J. (eds.). The Making of the Geological Society of London. L.: Geological Society of London Special Publications, 2009. Vol. 317. № 1. P. 155–162.

86

Gupta S., Collier J. S., Palmer-Felgate A. and Potter G. Catastrophic flooding origins of the shelf valley system in the English Channel // Nature. 2007. Vol. 448, July 19. P. 343.

87

Cuvier G. and Brongniart A. Carte geognostique des environs de Paris, 1810, scale 1:200 000.

88

Cuvier G. and Brongniart A. Essai sur la géographie minéralogique des environs de Paris, avec une carte géognostique, et des coupes de terrain (2 volumes). Paris: Baudouin, 1811.

89

Cuvier G. Memoire sur les fossiles des environs de Paris (talk) (National

90

Institute of France, 1796); Cuvier G. Mémoire sur les espèces d’éléphans vivantes et fossils // Mémoire de l’Academie des Sciences, 1799. Vol. 2. P. 1–32.

91

Lamarck J. B. Système des animaux sans vertèbres.. Paris: Chez Deterville, 1801. 468 p.

92

Halpern J. M. Thomas Jefferson and the geological sciences // Rocks and Minerals. 1951. Vol. 74. P. 601.

93

Narendra B. L. Benjamin Silliman and the Peabody Museum // Discovery. 1979. Vol. 14. № 2. P. 1–29.

94

Frazer, 1888.

95

Agassiz L. Geological Sketches (Vol. 2). Boston: Ticknor and Fields, 1866, 311 p. (Агассис Л. Геологические очерки / Пер. с англ. В. Ковалевского. СПб.: Типография Куколь-Яснопольского, 1867.)

96

Agassiz L. [Review of] On the origin of species // American Journal of Science and Arts, 1860, series 2, July 30. P. 154.

97

Winsor M. P. Louis Agassiz and the species question // Studies in the History of Biology. 1979. Vol. 3. P. 89–117.

98

Irmscher C. Louis Agassiz: Creator of American Science. N. Y.: Houghton Mifflin Harcourt, 2013. P. 4.

99

Menand L. Morton, Agassiz, and the origins of scientific racism in the United States // Journal of Blacks in Higher Education. 2001. V. 34. P. 110–113.

100

Falcon-Lang H. J. and Calder J. H. Sir William Dawson (1820–1899): A very modern paleobotanist // Atlantic Geology. 2005. Vol. 41. P. 103–114.

101

McCulloch A. W. Sir John William Dawson: A profile of a Nova Scotian scientist // Proceedings of the Nova Scotian Institute of Science. 2010. Vol. 45. № 2. P. 3–4.

102

Eakins P. R. and Eakins J. S. Dawson, Sir John William // Dictionary of Canadian Biography (Vol. 12). Toronto: University of Toronto. 1900. P. 1892.

103

Moodie R. L. The coal measures Amphibia of North America (No. 238): Carnegie Institution of Washington. 1916. Plate 9.

104

Davis W. M. Biographical memoir of John Wesley Powell // National Academy of Sciences Biographical Memoirs. 1915. Vol. 83. P. 12.

105

Ibid. P. 14.

106

Rabbitt M. C., McKee E. D., Hunt C. B. and Leopold L. B. The Colorado River Region and John Wesley Powell (U. S. Geological Survey Professional Paper 669–A). Washington, D. C.: U. S. Government Printing Office. 1969. P. 3.

107

Brewer W. H. John Wesley Powell // American Journal of Science. 1902. V. 14. P. 381.

108

Aton J. M. John Wesley Powell (Western Writers Series 114). Boise: Boise State University Printing and Graphic Services, 1994. P. 12–13.

109

Rabbitt, McKee, Hunt and Leopold, 1969. P. 6.

110

Powell J. W. Exploration of the Colorado River in the West and Its Tributaries; Explored in 1869, 1870, 1871 and 1872, under the Direction of the Secretary of the Smithsonian Institution (Monograph). Washington, D. C.: U. S. Government Printing Office, 1875, 291 p., 2 plates.

111

Powell J. W. Report on the Geology of the Eastern Portion of the Uinta Mountains and a Region of the Country Adjacent Thereto (Monograph). Washington D. C.: U. S. Government Printing Office, 1876, 218 p., 8 atlas sheets.

112

Powell J. W. Report on the Geological and Geographical Survey of the Rocky Mountain Region (Monograph). Washington, D. C.: U. S. Government Printing Office, 1877, 19 p., 1 map.

113

Powell J. W. The Exploration of the Colorado River and Its Canyons. N. Y., Dover, 1895b, 458 p.

114

Powell J. W. Canyons of the Colorado River. Meadville: Flood & Vincent, 1895a, 127 p.

115

Aton, 1994. P. 23.

116

Aalto K. R. Rock stars: Clarence King (1842–1901): Pioneering geologist of the West // GSA Today. 2004. February. P. 18.

117

King C. Mountaineering in the Sierra Nevada (fourth edition). N. Y.: Charles Scribner’s Sons, 1874. P. 131.

118

Шесть дополнительных томов, написанных коллегами Кинга: «Отчет о геологическом исследовании 40-й параллели. Том 2. Описательная геология» (Report of the Geological Exploration of the 40th Parallel. Vol. 2, Descriptive Geology (Hague and Emmons, 1877); «Отчет о геологическом исследовании 40-й параллели. Том 3. Горная промышленность» (Vol. 3, Mining Industry (Hague, 1870); «Отчет о геологическом исследовании 40-й параллели. Том 4. Часть 1. Палеонтология; Часть 2. Палеонтология; Часть 3. Орнитология» (Vol. 4, (Meek, Hall, Whitfield and Ridgway, 1877); «Отчет о геологическом исследовании 40-й параллели. Том 5. Ботаника» (Vol. 5, Botany (Watson, 1871); «Отчет о геологическом исследовании 40-й параллели. Том 6. Микроскопическая петрография» (Vol. 6, Microscopic Petrography (Zirkel, 1876); и «Отчет о геологическом исследовании 40-й параллели. Том 6. Odontornithes» (Vol. 6, Odontornithes. (Marsh, 1880).

119

King C. Catastrophism and evolution// American Naturalist, 1877. V. 11, n. 8. P. 449–470.

120

Aalto, 2004. P. 19.

121

Sandweiss M. A. Passing Strange: A Gilded Age Tale of Love and Deception across the Color Line. N. Y.: Penguin, 2009. P. 359.

122

Arnold L. Becoming a geologist: Florence Bascom in Wisconsin, 1874–1887 // Earth Science History. 1999. V. 18. № 2. P. 159–179.

123

Schneiderman J. S. Rock stars: A life of firsts: Florence Bascom // GSA Today. 1997, July. P. 8.

124

Bascom F., Clark W. B., Darton N. H., Knapp G. N., Kuemmel H. B., Miller B. L. and Salisbury R. D. Philadelphia folio, Norristown, Germantown, Chester and Philadelphia, Pennsylvania—New Jersey—Delaware. Washington, D. C.: U. S. Geological Survey Folios of the Geologic Atlas 162. 1909.

125

Rosenberg G. D. Introduction: The revolution in geology from the Renaissance to the Enlightenment // Rosenberg G. D. (ed.). The Revolution in Geology from the Renaissance to the Enlightenment: Geological Society of America Memoir 203. 2009. P. 2. doi: 10.1130/ 2009.1203(00).

126

Dean, 1975. P. 191.

127

Cohen K. M., Finney S. C., Gibbard P. L. and Fan J.-X. The ICS International Chronostratigraphic Chart. Episodes 36: 199–204. 2013; updated 2020. http://www.stratigraphy.org/ICSchart/ChronostratChart2020–03.pdf.

128

Scott G. R. and Cobban W. A. Geologic and biostratigraphic map of the Pierre Shale between Jarre Creek and Loveland, Colorado. U. S. Geological Survey Miscellaneous Geologic Investigation Map I-439, 1965. Scale 1:48 000.

129

Gould, 1989.

130

Werner, 1787.

131

Ospovat A. Reflections on A. G. Werner’s «Kurze Klassifikation» // Schneer C. J. (ed.). Toward a History of Geology. Cambridge, Massachusetts: MIT Press, 1969. P. 251.

132

Ospovat A. Abraham Gottlob Werner and his influence on mineralogy and geology [Ph. D. thesis]. Norman: University of Oklahoma Graduate College, 1960. P. 165.

133

Greene, 1985. P. 39.

134

Walsh S. L. The Neogene: origin, adoption, evolution, and controversy // Earth-Science Reviews. 2008. V. 89. № 1–2. P. 42–72.

135

Rudwick M. J. S. Bursting the Limits of Time: The Reconstruction of Geohistory in the Age of Revolution. Chicago: University of Chicago Press, 2005. P. 93.

136

Salvador A. (ed.). International stratigraphic Guide (second edition). Boulder: International Union of Geological Sciences and Geological Society of America. 2013, ch. 10. P. 3.

137

Ibid.

138

Thackery J. C. The Murchison—Sedgwick controversy // Journal of the Geological Society. 1976. V. 132. P. 367–372.

139

Berry, 1987. P. 86.

140

Lapworth, 1879.

141

Berry, 1987. P. 97.

142

Ibid. P. 99.

143

Ross R. J. Jr. The Ordovician System, progress and problems // Annual Review of Earth and Planetary Science. 1984. V. 12. P. 309.

144

Немного об истории использования терминов, относящихся к геологическому времени. Временная шкала геологии менялась и развивалась с момента ее введения, поэтому в историческом контексте термины «нижний», «средний» и «верхний» используются при обсуждении разработки временной шкалы.

145

Murchison, 1839. P. 11.

146

Ibid. P. 579.

147

Здесь термин «верхний» относится к официальному названию подразделения горных пород, см. примечание 56.

148

Murchison, 1839. P. 605.

149

Sedgwick A. and Murchison R. I. On the classification of the older stratified rocks in Devonshire and Cornwall // London and Edinburgh Philosophical Magazine and Journal of Science. 1839, series 3. V. 14. № 89. P. 241–260.

150

Bate D. G. Sir Henry Thomas De la Beche and the founding of the British Geological Survey // Mercian Geologist. 2010. Vol. 17. № 3. P. 162.

151

De la Beche H. Report on the Geology of Cornwall, Devon, and West Somerset. L.: Longman, Orme, Brown, Green, and Longmans, 1839. P. 40.

152

Rudwick M. J. S. The Great Devonian Controversy: The Shaping of Scientific Knowledge among Gentlemanly Specialists. Chicago: University of Chicago Press, 1988. P. 280.

153

Sedgwick and Murchison, 1839. P. 254.

154

Sharpe T. and McCartney P. J. The papers of H. T. De la Beche (1796–1855), Geological Series 17 (short summary letter, not complete). National Museum of Wales, Cardiff, 1998. P. 69–70.

155

Barclay W. J. Introduction to the Old Red Sandstone of Great Britain // Barclay W. J., Browne M. A. E., McMillan A. A., Pickett E. A., Stone P. and Wilby P. R. (eds). The Old Red Sandstone of Great Britain (Geological Conservation Review Series 31). Peterborough: Joint Nature Conservation Committee, 2005, illustrations, A4. P. 11.

156

Ibid. P. 13.

157

Conybeare and Phillips, 1822. P. 233.

158

Barclay, 2005, illustrations, A4. P. 11–13.

159

Conybeare and Phillips, 1822. P. 334.

160

Williams H. S. Correlation Papers: Devonian and Carboniferous (U. S. Geological Survey Bulletin 80). Washington, D. C.: U. S. Government Printing Office, 1891. P. 136.

161

Berry, 1987. P. 101–102.

162

Murchison, 1841

163

Benton M. J., Sennikov A. G. and Newell A. J. Murchison’s first sighting of the Permian at Vzackniki in 1841 // Proceedings of the Geologists’ Association. 2010. V. 121. P. 317–318.

164

Alberti, von, 1834.

165

Smith, 1816–1819.

166

Conybeare and Phillips, 1822.

167

Phillips J. Life on Earth: Its Origin and Succession. Cambridge: Macmillan, 1860. P. 51.

168

Stuart S. Biography Luis W. Alvarez // Nobel Lectures, Physics, 1963–1970. Amsterdam: Elsevier, 1972. P. 291–292.

169

Alvarez L. W., Alvarez W., Asaro F. and Michel H. V. Extraterrestrial cause of the Cretaceous-Tertiary extinction // Science. 1980. V. 208. № 4448. P. 1095–1108.

170

Vacarri, 2006.

171

Cuvier G. and Brongniart A. Description géologique des environs de Paris. Paris: Chez G. Dufour et E. D’Ocagne, 1822, 428 p.

172

Lyell, 1833.

173

Naumann, 1866. P. 8.

174

Hörnes, 1853. P. 808.

175

Desnoyers, 1829.

176

Reboul H. P. I. Géologie de la période Quaternaire. Paris: F. G. Levrault, 1833. P. 1–2.

177

Aubry M-P., Berggren W. A., Van Couvering J., McGowran B., Pillans B. and Hilgen F. Quaternary: Status, rank, definition, and survival // Episodes. 2005. V. 28. № 2. P. 118.

178

Schuchert C. Paleogeography of North America // Geological Survey of America Bulletin. 1910, February 5. V. 20. P. 513.

179

Phillips, 1860. P. 51.

180

Ibid. P. 66, fig. 4.

181

«Переокисленные» – устаревший термин, использовавшийся для описания глубоководных океанических осадков, которые подверглись химическим изменениям, включая кристаллизацию самых твердых минералов и восстановление металлов. См. Section E: Geology and Geography // Proceedings of the American Academy of Science. 33rd meeting, Philadelphia, September 1884. Salem, Massachusetts: Salem Press, 1885. P. 437.

182

Несколько замечаний о современном использовании терминов, относящихся к геологическому времени. Для описания событий геологической летописи, относящихся к периоду или другому подразделению времени, используются следующие геохронологические (временные) термины: «ранний», «средний» и «поздний». При обсуждении геологических комплексов, к которым относятся конкретные горные породы, комплексы горных пород или стратиграфические слои, где периоды или подразделения идентифицированы как таковые, согласно решению Международной комиссии по стратиграфии, для описания периода или другого официального хронологического подразделения используются следующие хроностратиграфические (время – горные породы) термины: «нижний», «средний» и «верхний». См. Haile N. S. Time and age in geology: the use of upper/lower, late/early in stratigraphic nomenclature // Marine and Petroleum Geology. 1987. V. 4. № 3. P. 255.

183

Williams H. S. Studies for students, the elements of the geologic time scale // Journal of Geology, 1893. V. 1. P. 294.

184

Valley J. W. et al. Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography // Nature Geoscience. 2014. V. 7. P. 219–223.

185

O’Neill J., Boyet M, Carleson R. W. and Paquette J. L. Half a billion years of reworking the Hadean mafic crust to produce the Nuvvuagittuq Eoarchean felsic crust // Earth and Planetary Science Letters. 2013. V. 379. P. 13–25.

186

Lowrie W. Fundamentals of Geophysics (third edition). L.: Cambridge University Press, 2020. P. 211.

187

Becquerel H. A. Sur les radiations émises par phosphorescence // Comptes Rendus des Séances de l’Académie des Sciences, 1896. V. 122. P. 420–421.

188

Friedlander G., Kennedy J. W. and Macias E. S. Nuclear and Radiochemistry. N. Y.: Wiley, 1981. P. 2.

189

Froman N. Marie and Pierre Curie and the discovery of polonium and radium (лекция в Королевской академии наук Швеции 28 февраля 1996 г., перевод Marshall-Lundén N.), 1996. https://www. nobelprize. org/prizes/themes/marie-and-pierre-curie-and-the-discovery-of-polonium-and-radium/

190

Цит. с дополнениями по: Кюри Е. Мария Кюри / Пер. с фр. Е. Ф. Корша // Пьер и Мария Кюри. М.: Молодая гвардия, 1959. С. 258.

191

Ibid. P. 10.

192

Soddy F. The origins of the conception of isotopes // Scientific Monthly, 1923. V. 17. № 4. P. 305–317.

193

Комитет Нобелевской премии в 1921 г. решил, что ни один из номинантов не соответствует критериям, определенным в завещании Альфреда Нобеля, поэтому в том году премии не вручались; тем не менее Содди получил свою награду в следующем году.

194

Rutherford E. and Soddy F. The cause and nature of radioactivity // London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1902. Vol. 4, 6th series. P. 370–396 (Part I), and 569–585 (Part II). (Резерфорд Э. совместно с Содди Ф. Причина и природа радиоактивности. Часть I и II // Резерфорд Э. Избранные научные труды. Радиоактивность / Отв. ред. акад. Г. И. Флеров; составитель и редактор перевода канд. физ. – мат. наук Ю. М. Ципенюк. М.: Наука, 1971. С. 202–239.)

195

Rutherford E. Radio-activity // Neville F. H. and Whetham W. C. D. (eds.). Cambridge Physical Series. L.: Cambridge University Press, 1904. P. 4.

196

Sustainability of semi-arid hydrology and riparian areas (SAHRA), University of Arizona. http://web. sahra. arizona. edu/programs/isotopes/hydrogen. html (дата обращения: 15.06.2017).

197

International Atomic Energy Agency. Statistical treatment of environmental isotope data in precipitation (revised edition), Technical Reports Series No. 331. Vienna: IAEA, 1992. P. 34.

198

Kresic N. Hydrogeology and Groundwater Modeling (second edition). Boca Raton: CRC Press, 2006. P. 393.

199

Gould S. J. Wonderful Life: The Burgess Shale and the Nature of History. N. Y.: Norton, 1989. P. 54.

200

McPhee J. Basin and Range. N. Y.: Farrar, Strauss & Giroux, 1980. P. 127.

201

Alden A. A New «Golden Spike» Monument in Colorado Marks Geologic Time // KQED, 2013. https://www. kqed. org/science/10292/a-new-golden-spike-monument-incolorado-marks-geologic-time.

202

Crutzen P. J. and Stoermer E. F. The «Anthropocene» // Global Change Newsletter. 2000. V. 41, May. P. 17–18. http://www.igbp.net/download/18.316f18321323470177580001401/1376383088452/NL41.pdf.

203

Chen A. Rocks made from plastic found on Hawaiian beach // Science. 2014. http://www. sciencemag. org/news/2014/06/rocks-made-plastic-found-hawaiian-beach.

204

Subramanian M. Anthropocene now: influential panel votes to recognize Earth’s new epoch // Nature. 2019. V. 21. P. 2019.

205

Willis B. Index to the stratigraphy of North America: U. S. Geological Survey Professional Paper No. 71. 1912, 894 p., with Map 1:5,000,000 by Willis B. and Stose G.

206

Frazer P. The American Association for the Advancement of Science, of 1890 // American Naturalist, Proceedings of Scientific Societies, 1890. V. 24. Part 2. P. 987.

207

King P. B. and Beikman H. M. Explanatory text to accompany the geologic map of the United States // U. S. Geological Survey Professional Paper 901. Washington, D. C.: U. S. Government Printing Office, 1974. P. 25, 26.

208

Frazer P. A short history of the origin and acts of the International Congress of Geologists, and of their American Committee delegation to it // American Geologist. 1888. January. V. 1. № 1. P. 8.

209

Ibid. P. 99.

210

Ibid. P. 100.

211

Frazer, 1890. P. 987.

212

Maclure W., Tanner H. S. and Lewis S. Observations on the geology of the United States, explanatory of a geological map // American Philosophical Society Transactions, 1809. V. 6, 411 p. and map.

213

King and Biekman, 1974.

214

Maclure W. Observations on the Geology of the United States of America, with some remarks on the effect produced on the nature and fertility of soils, by the decomposition of the different classes of rocks; and an application to the fertility of every State in the Union, in reference to the accompanying geologic map // American Philosophical Society Transactions, Memoire, 1817, 2 plates, 127 p.

215

Stose G. W. and Ljungstedt O. A. Geologic map of the United States. U. S. Geological Survey, 1932, scale 1:2500000.

216

King P. B., Beikman H. M. and Edmonston G. J. Geologic map of the United States (exclusive of Alaska and Hawaii): US Geological Survey. 1974, Scale 1: 2,500,000, 2 Plates: 40.75 × 52.50 inches and 40.63 × 52.49 inches; Legend.

217

Cuvier G. and Brongniart A. Essai sur la géographie minéralogique des environs de Paris, avec une carte géognostique, et des coupes de terrain (2 volumes). Paris: Baudouin, 1811, 271 Pl. I: Fig. 1 [of 11].

218

Klauk, E. Geology and physiography of the Crow Reservation, integrating research and education, impact of resource development on American Indian Lands, n. d. https://serc.carleton.edu/research_education/nativelands/crow/geology.html.

219

Gould S. J. Time’s Arrow, Time’s Cycle. Cambridge, Mass.: Harvard University Press, 1987. P. 10, 14. 5. Тектоника плит: история революции в науках о Земле

220

Popper K. R. Back to the pre-Socratics // Proceedings of the Aristotelian Society. 1959. Vol. 59. № 1. P. 8.

221

Romm J. A new forerunner for continental drift // Nature. 1994. V. 367. P. 407.

222

Lamarck J. B. Hydrogéologie ou recherches sur l’influence qu’ont les eaux sur la surface du globe terrestre; sur les causes de l’existence du bassin des mers, de son déplacement et de son transport successif sur les différens points de la surface de ce globe; enfin sur les changemens que les corps vivans exercent sur la nature et l’état de cette surface. Paris: An X, 1802, 268 p.

223

Carozzi A. V. Lamarck’s theory of the Earth // Hydrogeologie: Isis. 1964. V. 55. № 3. P. 293–307.

224

Snider-Pellegrini A. La création et ses mystères dévoilés; ouvrage où l’on expose clairement la nature de tous les ětres, les éléments dont ils sont composés et leurs rapports avec le globe et les astres, la nature et la situation du feu du soleil, l’origine de l’Amérique, et de ses habitants primitifs, la formation forcée de nouvelles planètes, l’origine des langues et les causes de la variété des physionomies, le compte courant de l’homme avec la terre, etc. Paris: A. Franck, 1858, 487 p.. Plates № 9 and 10.

225

Oreskes N. From continental drift to plate tectonics // Oreskes N. (ed.). Plate Tectonics: An Insider’s History to the Modern Theory of the Earth. Boulder: Westview Press, 2003. P. 5.

226

Suess E. Das antlitz der Erde, Bd. 1. Vienna: F. Tempsky; Leipzig: G. Freytag, 1885, 778 p.

227

Suess E. The Face of the Earth (translated by Sollas, H. B. C.). Oxford: Clarendon Press, 1909, 673 p.

228

Arber E. A. N. Catalogue of the Fossil Plants of the Glossopteris Flora in the Department of Geology, British Museum (Natural History); Being a Monograph of the Permo-Carboniferous Flora of India and the Southern Hemisphere. Hertford: Stephen Austin, 1905, 255 p.

229

Цит. по: Скотт Р. Ф. Экспедиция к Южному полюсу, 1910–1912 гг. Прощальные письма / Пер. с англ. В. А. Островского. М.: Дрофа, 2008.

230

Scott R. F. Scott’s Last Expedition (Vol. 1). N. Y.: Dodd, Mead and Co, 1913. P. 388–389. (Скотт Р. Ф. Экспедиция к Южному полюсу, 1910–1912 гг. Прощальные письма / Пер. с англ. В. А. Островского. М.: Дрофа, 2008.)

231

Stillwell J. D. and Long J. A. Frozen in Time: Prehistorical Life in Antarctica. Clayton, Australia: CSIRO, 2011, 248 p.

232

Seward A. C. Antarctic fossil plants: British Museum (Natural History) report, British Antarctic («Terra Nova») report. 1910 // Natural History Report, Geological Studies. London, Printed by order of the Trustees of the British Museum. 1914. V. 1. P. 1–49.

233

Ibid. P. 44.

234

Greene M. T. Alfred Wegener: Science, Exploration and the Theory of Continental Drift: Baltimore: Johns Hopkins University Press, 2015. P. 327.

235

Wegener A. Die Herausbildung der Grossformen der Erdrinde (Kontinente und Ozeane), auf geophysikalischer Grundlage // Petermanns Geographische Mitteilungen. 1912. V. 63. P. 185–195.

236

Oreskes N. The Rejection of Continental Drift. N. Y.: Oxford University Press, 1999, 420 p.

237

Oreskes, 2003. P. 7.

238

Геодезия – это наука, занимающаяся изучением и измерением точной геометрической формы Земли, ее ориентации в пространстве и гравитационного поля. National Oceanographic and Atmospheric Administration. https:// oceanservice. noaa. gov/ facts/ geodesy. html.

239

Green, 2015. P. 545.

240

Цит. по: Вегенер А. Происхождение континентов и океанов / Пер. с нем. П. Г. Каминского, В. З. Махлина. Л.: Наука, 1984. С. 12, 13.

241

Wegener, 1966 [1915]. (Вегенер А. Происхождение континентов и океанов / Пер. с нем. П. Г. Каминского, В. З. Махлина. Л.: Наука, 1984. С. 12, 13.)

242

Brink A. S. On the genus Lystrosaurus Cope // Transactions of the Royal Society of South Africa. 1951. V. 33. № 1. P. 107–120.

243

Williston S. W. The Osteology of the Reptiles (Society for the Study of Amphibians and Reptiles), W. K. Gregory, ed. Cambridge, Massachusetts: Harvard University Press. 1925, 324 p.

244

Seeley H. G. Researches on the structure, organization, and classification of the fossil Reptilia, Part IX, Section 5, On the skeleton in the New Cynodontia from the Karroo Rocks // Philosophical Transactions of the Royal Society of London, B186, 1895. P. 59.

245

Ibid. P. 63.

246

Piñeiro G., Ferigolo J., Menechel M. and Laurin M. The oldest known amniotic embryos suggest viviparity in mesosaurs: Historical Biology. 2012. V. 24. № 6. P. 620–630.

247

Colbert E. H. Wandering Lands and Animals. N. Y.: Dutton, 1973, 323 p.

248

Holmes A. Principles of Physical Geology. L.: Thomas Nelson, 1941. P. 505. (Холмс А. Основы физической геологии / Пер. с англ. Л. П. Васильевой и Ю. А. Козыревой; под ред. А. В. Хабакова. М.: Изд-во иностр. лит., 1949.)

249

Du Toit A. Our Wandering Continents: An Hypothesis on Continental Drifting. Edinburgh: Oliver and Boyd, 1937, 366 p.

250

Theberge A. E. The myth of the telegraphic plateau // Hydro International. 2012, May 10, 2 p. https://www. hydro-international. com/content/article/the-myth-of-thetelegraphic-plateau.

251

Wertenbaker W. Rock stars: William Maurice Ewing: Pioneer explorer of the ocean floor and architect of Lamont // GSA Today. 2000, October. P. 28–29.

252

Heezen B. C. and Tharp M. World ocean floor panorama (map, painted by Berann H.). Columbia University, Office of Naval Research, 1977.

253

Bullard E. C., Maxwell A. E and Revelle R. Heat flow through the deep ocean floor // Advances in Geophysics, 1956. V. 3. P. 153–181.

254

Von Herzen R. P. Heat-flow values from the South-Eastern Pacific // Nature, 1959. V. 183. P. 882–883.

255

Von Herzen R. P. and Uyeda S. Heat flow through the Eastern Pacific ocean floor // Journal of Geophysical Research, 1963. V. 68. № 14. P. 4219–4450.

256

Опубликована на русском языке. См. ссылку в: Кокс А., Харт Р. Тектоника плит. М.: Мир, 1989. С. 70.

257

Hess H. H. History of ocean basins // Petrologic Studies, 1962, November. P. 590–620. (Хесс Г. История океанических бассейнов // Новая глобальная тектоника. M.: Мир, 1974.)

258

Dietz R. S. Continent and ocean basin evolution by spreading of the sea floor // Nature, 1961. V. 190. P. 854–857.

259

Picard M. D. Harry Hammond Hess and the theory of sea-floor spreading // Journal of Geological Education, 1989. V. 37. P. 346–349.

260

Dietz R. S. Reply [to «Arthur Holmes: Originator of Spreading Ocean Floor Hypothesis»] // Journal of Geophysical Research. 1968. V. 73. P. 6567.

261

Menard H. W. Deformation of the northeastern Pacific Basin and the west coast of North America // Geological Society of America Bulletin. 1955. V. 66. P. 1149–1198.

262

Vine F. J. and Matthews D. H. Magnetic anomalies over oceanic ridges // Nature. 1963. V. 199. P. 947–949.

263

Mason R. G. A magnetic survey off the west coast of the United States between latitudes 32° and 36° N. and longitudes 121° and 128° W. // Geophysical Journal of the Royal Astronomical Society. 1958. V. 1. P. 320–329.

264

Runcorn S. K. Rock magnetism: The magnetization of ancient rocks bears on the questions of polar wandering and continental drift // Science. 1959. V. 129. № 3355. P. 1002–1012.

265

Wilson J. T. A new class of faults and their bearing on continental drift // Nature. 1965. V. 207. P. 343–347.

266

Wilson J. T. A possible origin of the Hawaiian Islands // Canadian Journal of Physics. 1963. Vol.41. № 6. P. 863–870.

267

Quennell A. M. The structural and geomorphic evolution of the Dead Sea Rift // Journal of the Geological Society of London. 1958. V. 114. Pp. 1–24.

268

Wilson J. T. Static or mobile earth: The current scientific revolution // Proceedings of the American Philosophical Society. 1968 Vol. 112. № 5. P. 312.

269

Bullard E., Everett J. E. and Smith A. G. The fit of the continents around the Atlantic // Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences. 1965. V. 258, no 1088. P. 41–51.

270

Bullard E. C. The emergence of plate tectonics: a personal view // Annual Review of Earth and Planetary Sciences. 1975. V. 3. № 1. P. 21.

271

Krill A. Fixists vs. mobilists in the geological contest of the century, 1844–1969. Trondheim, 2011, Fixists. com.

272

Gordon R. G. Diffuse oceanic plate boundaries: Strain rates, vertically averaged rheology, and comparison with narrow plate boundaries and stable plate interiors // Richards M., Gordon R. G. and Van Der Hilst R. D. (eds.). History and Dynamics of Global Plate Margins. Geophysical Monographs 121, American Geophysical Union. 2000. P. 143–159.

273

Forsyth D. and Uyeda S. On the relative importance of the driving forces of plate motion // Geophysical Journal International. 1975. V. 43. № 1. P. 163–200.

274

Richter C. F. An instrumental earthquake magnitude scale // Bulletin of the Seismological Society of America. 1935. V. 25. № 1. P. 1–32.

275

Hanks T. C. and Kanamori H. A moment magnitude scale // Journal of Geophysical Research, Solid Earth. 1979. V. 84. № B5. P. 2348–2350.

276

Дополнительную информацию об оценке магнитуды землетрясений по шкале моментных магнитуд см. https://sos. noaa. gov/datasets/earthquake-magnitude-perspective/.

277

https://www.usgs.gov/natural-hazards/earthquake-hazards/nationalearthquake-information-center-neic.

278

Vigil J. F. This dynamic planet: The US Geological Survey, the Smithsonian Institution, and the US Naval Research Laboratory, n. d. https://pubs.usgs.gov/gip/earthq1/plate.html.

279

Frank F. C. Curvature of island arcs // Nature. 1968. V. 220. № 5165. P. 363.

280

De Vries M. V. W., Bingham R. G. and Hein A. S. A new volcanic province: An inventory of subglacial volcanoes in West Antarctica // Geological Society of London Special Publications. 2017. V. 461. № 1. P. 231–248.

281

Jamieson A. J., Malkocs T., Piertney S. B., Fujii T. and Zhang Z. Bioaccumulation of persistent organic pollutants in the deepest ocean fauna // Nature Ecology and Evolution. 2017. V. 1, article 0051.

282

Cavallo E. A., Powell A. and Becerra O. Estimating the direct economic damage of the earthquake // Haiti, IDB Working Paper IBD-WP-163. Washington, D. C.: Inter-American Development Bank, 2010.

283

Torsvik T. H., Doubrovine P. V., Steinberger B., Gaina C., Spakman W. and Domeier M. Pacific plate motion change caused the Hawaiian-Emperor Bend // Nature Communications. 2017. V. 8. № 15660, 12 p.

284

Huang H. H., Lin F. C., Schmandt B., Farrell J., Smith R. B. and Tsai V. C. The Yellowstone magmatic system from the mantle plume to the upper crust // Science. 2015. V. 348. № 6236. P. 773–776.

285

Smith R. B., Jordan M., Steinberger B., Puskas C. M., Farrell J., Waite G. P., Husen S., Chang W. L. and O’Connell R. Geodynamics of the Yellowstone hotspot and mantle plume: Seismic and GPS imaging, kinematics, and mantle flow // Journal of Volcanology and Geothermal Research. 2009. V. 188. P. 26–56.

286

Mastin L. G., Van Eaton A. R. and Lowenstern J. B. Modeling ash fall distribution from a Yellowstone supereruption // Geochemistry, Geophysics, Geosystems. 2014. V. 15. № 8. P. 3459–3475.

287

Gordon, 2000. P 143.

288

Цит. по: Письма Плиния Младшего / Пер. М. Е. Сергеенко. М.: Наука, 1982. Кн. VI. Письмо 16. С. 105.

289

Pliny the Younger. Letters of Pliny (Bosanquet F. C. T. (ed.); Melmoth W., trans.). Project Gutenberg Ebook, 2016, Letter LXV. (Письма Плиния Младшего. М.: Наука, 1982. Кн. VI. Письмо 16.)

290

Там же.

291

Там же. Книга VI. Письмо 20. С. 108, 109.

292

Ibid., Letter LXVI. (Письма Плиния Младшего. М.: Наука, 1982. Книга VI, письмо 20.)

293

UNESCO Tsunami warning and mitigation systems to protect coastal communities, Indian Ocean Tsunami Warning and Mitigation System (IOTWS) 2005–2015, Fact Sheet, May. Paris: Intergovernmental Oceanographic Commission, 2015.

294

Breuer D. Stagnant lid convection // Gargaud M. et al. (eds.). Encyclopedia of Astrobiology. Berlin, Springer, 2011. P. 125.

295

Nagel T. J., Hoffmann J. E. and Münker C. Generation of Eoarchean tonalite-trondhjemite-granodiorite series from thickened mafic arc crust: Geology. 2012. V. 40. № 4. P. 375–378.

296

Johnson T. E., Brown M., Gardiner N. J., Kirkland C. L. and Smithies R. H. Earth’s first stable continents did not form by subduction // Nature. 2017. V. 543, March 9. P. 239–242.

297

Hatcher R. P. Jr. The Appalachian orogeny: A brief summary // Tollo R. P., Bartholomew M. J., Hibbard J. P. and Karabinos P. M. (eds.). From Rodinia to Pangea: The Lithotectonic Record of the Appalachian Region. Geological Society of America Memoire 206. 2010. P. 1–20.

298

Scotese C. R. Late Proterozoic plate tectonics and palaeogeography: A tale of two supercontinents, Rodinia and Pannotia // Geological Society of London Special Publications. 2009. V. 326. № 1. P. 67–83.

299

Raup D. M. Extinction: Bad Genes or Bad Luck? N. Y.: Norton, 1991. P. 4.

300

Tashiro T., Ishida A., Hori M., Igisu M., Koike M., Méjean P., Takahata N., Sano Y. and Komiya T. Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada // Nature. 2017. V. 549. № 7673. P. 516–518.

301

Javaux E. J. and Marshall C. P. Tracking the record of early life // Carnets de Géologie. 2005, M02, Abstract05.

302

Bowler P. J. Charles Darwin: The Man and His Influence. L.: Cambridge University Press, 2002, 264 p.

303

Darwin C. R. Letter 282, 1835. Darwin Correspondence Project. https://www. darwinproject. ac. uk/letter/DCP-LETT-282. xml, дата обращения: 25.02.2020.

304

Herbert S. Charles Darwin, Geologist. Ithaca: Cornell University Press, 2005. P. xv.

305

Eiseley L. C. Charles Lyell // Scientific American. 1959. V. 201. № 2. P. 98.

306

Wilkins J. S. Species: A History of the Idea. Berkeley: University of California Press, 2009, 320 p.

307

Gould J. Remarks on a group of ground finches from Mr. Darwin’s collection, with characters of the new species // Proceedings of the Zoological Society of London, 1837. V. 5. P. 4–7.

308

Darwin C. R. On the Origin of Species by Means of Natural Selection, or, the Preservation of Favoured Races in the Struggle for Life. L.: John Murray, 1859, 564 p. (Первое издание «Происхождения видов» на русском языке вышло в 1864 г. в переводе С. А. Рачинского. – Примеч. перев.).

309

Darwin C. R. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. N. Y.: Appleton, 1860, 474 p.

310

Penny D. Darwin’s theory of descent with modification, versus the biblical tree of life // PLOS Biology. 2011. V. 9. № 7. P. 1.

311

Darwin, 1860. P. 119. (Дарвин Ч. Происхождение видов путем естественного отбора. Л.: Наука, 1991. С. 117.)

312

Lovejoy A. O. The Great Chain of Being: A Study of the History of an Idea. Abingdon: Routledge, 2001. P. 21. (Лавджой А. Великая цепь бытия: История идеи / Пер. с англ. В. Софронова-Атомони. М.: Дом интеллектуальной книги, 2001.)

313

Lombardo P. A. The great chain of being and the limits to the Machiavellian cosmos // Journal of Thought. 1982. V. 17. № 1. P. 39.

314

Switek B. Written in Stone. L.: Icon Books, 2011. P. 20.

315

Matthews W. H. III. The Geologic Story of the Palo Duro Canyon. Austin: Bureau of Economic Geology, 1969. https://www.gutenberg.org/files/52179/52179-h/52179-h.htm#fig6, figure 6.

316

Mayr E. Darwin and natural selection: How Darwin may have discovered his highly unconventional theory //American Scientist. 1977. V. 65. № 3. P. 321.

317

Prothero D. R. Bringing Fossils to Life: An Introduction to Paleobiology. N. Y.: Columbia University Press, 2013. P. 7.

318

Leidy J. Cretaceous Reptiles of the United States (Smithsonian Contributions to Knowledge 192). N. Y.: Appleton, 1865. P. 76–77.

319

Everhart M. The tale of a tail: Or how easy it was to put the head on the wrong end of Elasmosaurus platyurus Cope 1868. 2002. http://oceansofkansas. com/tale-tail. html, дата обращения: 29.03.2020.

320

Leidy J. Remarks on Elasmosaurus platyurus // Proceedings of the Academy of Natural Sciences of Philadelphia, 1870. V. 22. P. 9–10.

321

Davidson J. P. Bonehead mistakes: The background in scientific literature and illustrations for Edward Drinker Cope’s first restoration of Elasmosaurus platyurus // Proceedings of the Academy of Natural Sciences of Philadelphia, 2002. V. 152. № 1. P. 215–240.

322

Huntington T. The great feud // American History. 1998. V. 33. № 3. P. 17–18.

323

Marsh O. C. Odontornithes, or birds with teeth // American Naturalist. 1875. V. 9. № 12. P. 625–631.

324

Marsh O. C. Birds with Teeth, 3rd Annual Report of the Secretary of the Interior. Washington, D. C.: U. S. Government Printing Office, 1883. V. 3. P. 43–88.

325

Miko I. Gregor Mendel and the principles of inheritance // Nature Education. 2008. V. 1. № 1. P. 134–137.

326

Johannsen W. Elemente der exakten Erblichkeitslehre [Elements of the Exact Theory of Inheritance]. Jena: Gustav Fischer, 1909.

327

Dahm R. Discovering DNA: Friedrich Miescher and the early years of nucleic acid research // Human Genetics. 2008. V. 122. P. 565–581. doi: 10.1007/s00439–007–0433–0.

328

Avery O. T., MacLeod C. M. and McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III // Journal of Experimental Medicine. 1944. V. 79. № 2. P. 137–158.

329

Watson J. D. and Crick F. H. C. The structure of DNA // Cold Spring Harbor Symposia on Quantitative Biology, 1953b. V. 18. P. 123–131.

330

Цит. по: Уотсон Дж. Д. Двойная спираль / Пер. с англ. М. Брухнова и А. Иорданского. М.: Мир, 1969.

331

Watson J. D. and Crick F. H. C. Molecular structure of nucleic acids // Nature. 1953a. V. 171. № 4356. P. 737–738.

332

National Academy of Sciences. Science and Creationism: A View from the National Academy of Sciences (second edition). Washington, D. C.: National Academy Press, 1999. P. 17–18.

333

International Human Genome Sequencing Consortium, Initial sequencing and analysis of the human genome // Nature. 2001. V. 409, February 15. P. 860–921. doi: 10.1038/35057062.

334

Morlon H., Parsons T. L. and Plotkin J. B. Reconciling molecular phylogenies with the fossil record // Proceedings of the National Academy of Sciences. 2011. V. 108. № 39. P. 16327–16332. https://doi. org/10.1073/pnas.1102543108.

335

Hunter P. Molecular fossils probe life’s origins // European Molecular Biology Organization Reports. 2013. V. 14. № 11. P. 964–967. https://dx. doi. org/10.1038 %2Fembor.2013.162.

336

Singh V. and Singh K. Modern synthesis // Vonk J. and Shackelford T. K. (eds.). Encyclopedia of Animal Cognition and Behavior: N. Y., Springer, 2018. P. 1–5.

337

Huxley J. Evolution: The Modern Synthesis. L.: George Allen & Unwin, 1942, 645 p.

338

Simpson G. G. Tempo and Mode in Evolution. N. Y.: Columbia University Press, 1944, 237 p. (Симпсон Дж. Г. Темпы и формы эволюции / Пер. с англ. М. Л. Бельговского и В. В. Хвостовой; вступ. статья А. А. Парамонова. М.: Изд. и тип. Гос. изд. иностр. лит-ры, 1948.)

339

Olson E. C. George Gaylord Simpson: June 16, 1902–October 6, 1984 // National Academy of Sciences Biographical Memoirs. 1991. V. 60. P. 332. https://doi. org/10.17226/6061.

340

Pigliucci M. and Muller G. Evolution: The Extended Synthesis. Cambridge: Massachusetts, MIT Press, 2010. 504 p.

341

Eldredge N. and Gould S. J. Punctuated equilibria: An alternative to phyletic gradualism // Schopf T. J. M. (ed.). Models in Paleobiology. San Francisco // Freeman Cooper, 1972. P. 82–115.

342

Gould S. J. and Eldredge N. Punctuated equilibria: The tempo and mode of evolution reconsidered // Paleobiology. 1977. V. 3. № 2. P. 115–151.

343

Gould S. J. and Eldredge N. Punctuated equilibrium comes of age: Nature. 1993. V. 366. № 6452. P. 223–227.

344

Saitta D. Stephen Jay Gould: In memoriam // Rethinking Marxism. 2003. V. 15. № 4. P. 445–449.

345

Yoon C. K. Stephen Jay Gould, evolution theorist, dies at 60 // New York Times. 2002.

346

May 21. https://www. nytimes. com/2002/05/21/us/stephen-jay-gould-60-is-deadenlivened-evolutionary-theory. html.

347

MacFadden B. J. Fossil horses: Evidence for evolution // Science. 2005. V. 308. P. 1728–1730.

348

Cuvier G. Sur les espèces d’animaux dont proviennent les os fossils // Annales du Muséum Nationale d’Histoire Naturelle (Paris), 1804, tome troisième. P. 276.

349

Owen R. Description of the fossil remains of a mammal (Hyracotherium leporinum) and of a bird (Lithornis vulturinus) from the London Clay // Transactions of the Geological Society of London, 1841a. V. 2. № 1. P. 203–208.

350

Leidy J. On the fossil horse of America // Proceedings of the Academy of Natural Sciences of Philadelphia, 1847. V. 3. P. 262–266.

351

Mitchill S. L. Catalogue of Organic Remains Presented to the New York Lyceum of Natural History. N. Y.: Seymour, 1826. P. 7.

352

Guthrie R. D. Rapid body size decline in Alaskan Pleistocene horses before extinction // Nature. 2003. V. 426. № 6963. P. 169–171.

353

Leidy J. and Gibbes R. W. On the fossil horse of America: Description of new species of Squalides from the Tertiary Beds of South Carolina // Proceedings of the Academy of Natural Sciences of Philadelphia, 1847. V. 3. № 11. P. 263.

354

Glassman S., Bolt E. A. Jr. and Spamer E. E. Joseph Leidy and the «Great Inventory of Nature» // Proceedings of the Academy of Natural Sciences of Philadelphia. 1993. V. 144. P. 1–19.

355

Prothero D. R. The Princeton Field Guide to Prehistoric Mammals (Vol. 112). Princeton: Princeton University Press, 2016. P. 187.

356

Marsh O. C. Notice of new Tertiary mammals, V // American Journal of Science. 1876. V. 71. P. 401–404.

357

MacFadden, 2005

358

MacFadden B. J., Oviedo L. H., Seymour G. M. and Ellis S. Fossil horses, orthogenesis, and communicating evolution in museums // Evolution, Education and Outreach. 2012. V. 5. P. 30. doi: 10.1007/s12052–012–0394–1.

359

Broo J. and Mahoney J. Chewing on Change: Exploring the Evolution of Horses in Response to Climate Change. Gainesville: University of Florida, 2015. P. 4.

360

Millar C. D. and Lambert D. M. Ancient DNA: Towards a million-year-old genome // Nature. 2013. V. 499. № 7456. P. 34, 35. doi: 10.1038/nature12263.

361

Cappellini E. et al. Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny: Nature. 2019. V. 574. № 7776. P. 103–107.

362

Kettlewell H. B. D. Selection experiments on industrial melanism in the Lepidoptera // Heredity. 1955. V. 9. P. 323–342.

363

Majerus M. E. N. Melanism: Evolution in Action. Oxford: Oxford University Press, 1998, 364 p.

364

Shubin N. H., Daeschler E. B. and Jenkins F. A. The pectoral fin of Tiktaalik roseae and the origin of the tetrapod limb // Nature. 2006. V. 440. № 7085. P. 764–771.

365

Cloutier R. Clement A. M., Lee M. S., Noël R., Béchard I., Roy V. and Long J. A. Elpistostege and the origin of the vertebrate hand // Nature. 2020. V. 579. P. 549–554.

366

Cuvier G. Essay on the theory of the Earth. N. Y.: Kirk & Mercein, 1818, 431 p. (Кювье Ж. Рассуждение о переворотах на поверхности земного шара / Пер. с фр. Д. Е. Жуковского, М.: Биомедгиз, 1937).

367

Twitchett R. J. The palaeoclimatology, palaeoecology and palaeoenvironmental analysis of mass extinction events // Palaeogeography, Palaeoclimatology, Palaeoecology. 2006. V. 232. № 2–4. P. 190.

368

Burgess S. D., Muirhead J. D. and Bowring S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction // Nature Communications. 2017. V. 8. № 1. P. 1.

369

Kielan-Jaworowska Z., Hurum J. H. and Lopatin A. V. Skull structure in Catopsbaatar and the zygomatic ridges in multituberculate mammals // Acta Palaeontologica Polonica. 2005. V. 50. № 3. P. 492; Kielan-Jaworowska Z. and Hurum J. H. Limb posture in early mammals: Sprawling or parasagittal // Acta Palaeontologica Polonica. 2006. V. 51. № 3. P. 397.

370

Van Valen L. and Sloan R. E. The extinction of the multituberculates // Systematic Zoology. 1966. V. 15. № 4. P. 261–278.

371

Hodgskiss M. S., Crockford P. W, Peng Y., Wing B. A. and Horner T. J. A productivity collapse to end Earth’s great oxidation // Proceedings of the National Academy of Sciences. 2019. Vol.116. № 35. P. 17207.

372

Darroch S. A., Boag T. H., Racicot R. A., Tweedt S., Mason S. J., Erwin D. H. and Laflamme M. A mixed Ediacaran-metazoan assemblage from the Zaris Sub-basin, Namibia // Palaeogeography, Palaeoclimatology, Palaeoecology. 2016. V. 459. P. 198–208.

373

Stanley S. M. Estimates of the magnitudes of major marine mass extinctions in earth history // Proceedings of the National Academy of Sciences. 2016. V. 113. № 42. P. E6325–E6334.

374

Kennett J. P. and Stott L. D. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene // Nature. 1991. V. 353. № 6341. P. 225–229.

375

Röhl U., Westerhold T., Bralower T. J. and Zachos J. C. On the duration of the Paleocene—Eocene thermal maximum (PETM): Geochemistry, Geophysics, Geosystems. 2007. V. 8. № 12. P. 1–13.

376

Gingerich P. D. Environment and evolution through the Paleocene—Eocene thermal maximum // Trends in Ecology & Evolution. 2006. V. 21. № 5. P. 246–253.

377

Barnosky A. D., Carrasco M. A. and Davis E. B. The impact of the species-area relationship on estimates of paleodiversity // PLOS Biology. 2005. V. 3. № 8. P. E266.

378

Bokulich A. Using models to correct data: Paleodiversity and the fossil record // Synthese. 2018. P. 1–22.

379

Sepkoski J. J. A kinetic model of Phanerozoic taxonomic diversity, III, Post-Paleozoic families and mass extinctions // Paleobiology. 1984. V. 10. № 2. P. 246–267.

380

Sepkoski J. J. A compendium of fossil marine animal families // Contributions in Biology and Geology. 1992. V. 83. P. 1–156.

381

Benton M. J. Mass extinction among non-marine tetrapods // Nature. 1985. V. 316. № 6031. P. 811–814; Padian K., Clemens W. A. and Valentine J. W. Terrestrial vertebrate diversity: Episodes and insights // Valentine J. W. (ed.). Phanerozoic Diversity Patterns: Profiles in Macroevolution: Princeton, Princeton University Press. 1985. P. 41–96.

382

Knoll A. H., Niklas K. J. and Tiffney B. H. Phanerozoic land-plant diversity in North America // Science. 1979. V. 206. № 4425. P. 1400–1402.

383

Rohde R. A. and Muller R. A. Cycles in fossil diversity: Nature. 2005. V. 434. № 7030, p. 209. Рисунок адаптирован таким образом, чтобы направление геологического времени было показано от древнейших периодов фанерозойского эона до самых молодых (слева направо).

384

Ссылки на даты, связанные с геологическим временем, в этом разделе и далее приводятся в соответствии с руководствами Международной комиссии по стратиграфии. См. https://stratigraphy.org/ICSchart/ChronostratChart2020-03.pdf.

385

Plumb K. A. New Precambrian time scale // Episodes. 1991. V. 14. № 2. P. 139, 140.

386

Гадес, Аид – бог в греческой мифологии, владыка царства мертвых, а также само царство // Мифы народов мира. Энциклопедия: В 2 т. М.: Советская Энциклопедия, 1980. Т. 1. С. 51. — Примеч. перев.

387

Valley J. W., Peck W. H., King E. M. and Wilde S. A. A cool early Earth // Geology. 2002. V. 30. № 4. P. 351–354; Charnay B., Le Hir G., Fluteau F., Forget F. and Catling D. C. A warm or a cold early Earth? New insights from a 3-D climatecarbon model // Earth and Planetary Science Letters. 2017. V. 474. P. 97–109.

388

Bottke W. F. and Norman M. D. The Late Heavy Bombardment // Annual Review of Earth and Planetary Sciences. 2017. V. 45. P. 619–647.

389

Compston W. and Pidgeon R. T. Jack Hills, evidence of more very old detrital zircons in Western Australia // Nature. 1986. V. 321. № 6072. P. 766.

390

Bowring S. A., Williams I. S. and Compston W., Northwest Territories, Canada // Geology. 1989. V. 17. № 11. P. 971–975.

391

Kerr R. A. Making the moon from a big splash // Science. 1984. V. 226. P. 1060–1062.

392

Lock S. J. and Stewart S. T. The structure of terrestrial bodies: Impact heating, corotation limits, and synestias // Journal of Geophysical Research: Planets. 2017. V. 122. № 5. P. 950–982.

393

Lock S. J., Stewart S. T., Petaev M. I., Leinhardt Z., Mace M. T., Jacobsen S. B. and Cuk M. The origin of the moon within a terrestrial synestia // Journal of Geophysical Research: Planets. 2018. V. 123. № 4. P. 910–951.

394

Tarduno J. A., Cottrell R. D., Davis W. J., Nimmo F. and Bono R. K. A Hadean to Paleoarchean geodynamo recorded by single zircon crystals // Science. 2015. V. 349. № 6247. P. 521–524.

395

Singer B. S., Jicha B. R., Mochizuki N. and Coe R. S. Synchronizing volcanic, sedimentary, and ice core records of Earth’s last magnetic polarity reversal // Science Advances. 2019. V. 5. № 8. P. eaaw4621.

396

NASA. Magnetic pole reversal happens all the (geologic) time. 2012. November 30, https://www. nasa. gov/topics/earth/features/2012-poleReversal. html

397

Piper J. D. A planetary perspective on Earth evolution; lid tectonics before plate tectonics // Tectonophysics. 2013. Vol. 589 (C). P. 44–56.

398

O’Neill C. and Debaille V. The evolution of Hadean—Eoarchaean geodynamics // Earth and Planetary Science Letters. 2014. V. 406. P. 49–58.

399

Lammer H. et al. Origin and evolution of the atmospheres of early Venus, Earth and Mars // Astronomy and Astrophysics Review. 2018. V. 26. № 1. P. 1–72.

400

Bell E. A., Boehnke P., Harrison T. M. and Mao W. L. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon // Proceedings of the National Academy of Sciences. 2015. V. 112. № 47. P. 14518–14521.

401

House C. H. Penciling in details of the Hadean // Proceedings of the National Academy of Sciences. 2015. V. 112. № 47. P. 14410–14411.

402

Robb L. J., Knoll A. H., Plumb K. A., Shields G. A., Strauss H. and Veizer J. The Precambrian: The Archean and Proterozoic Eons // Gradstein F. M. and Ogg J. G. (eds.). A Geologic Time Scale: Cambridge, Cambridge University Press, 2004. P. 131.

403

Gomes R., Levison H. F., Tsiganis K. and Morbidelli A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets: Nature. 2005. V. 435. № 7041. P. 466.

404

Mikhail S. and Sverjensky D. A. Nitrogen speciation in upper mantle fluids and the origin of Earth’s nitrogen-rich atmosphere: Nature Geoscience. 2014. V. 7. № 11. P. 816–819.

405

Robert F. The origin of water on Earth // Science. 2001. V. 293. № 5532. P. 1056–1058.

406

Sarafian A. R., Nielsen S. G., Marschall H. R., McCubbin F. M. and Monteleone B. D. Early accretion of water in the inner solar system from a carbonaceous chondrite-like source: Science. 2014. V. 346. № 6209. P. 623–626.

407

NASA. Why do we have oceans? https://oceanservice.noaa.gov/facts/why_oceans.html

408

Rosing M. T. 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland // Science. 1999. V. 283. № 5402. P. 674–676.

409

Nutman A. P., Bennett V. C., Friend C. R., Van Kranendonk M. J. and Chivas A. R. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures // Nature. 2016. V. 537. № 7621. P. 535.

410

Messing C. G., Neumann A. C. and Lang J. C. Biozonation of deep-water lithoherms and associated hardgrounds in the northeastern Straits of Florida // Palaios. 1990. V. 5. № 1. P. 15–33.

411

Gauger T., Konhauser K. and Kappler A. Protection of phototrophic iron(II)-oxidizing bacteria from UV irradiation by biogenic iron(III) minerals: Implications for early Archean banded iron formation // Geology. 2015. V. 43. № 12. P. 1067–1070.

412

Campbell I. H. and Allen C. M. Formation of supercontinents linked to increases in atmospheric oxygen // Nature Geoscience. 2008. V. 1. № 8. P. 554.

413

Ibid.

414

Robb, Knoll, Plumb, Shields, Strauss, and Veizer, 2004. P. 132.

415

Næraa T., Scherstén A., Rosing M. T., Kemp A. I. S., Hoffmann J. E., Kokfelt T. F. and Whitehouse M. J. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago // Nature. 2012. V. 485. № 7400. P. 627.

416

Evans D. A. D. and Pisarevsky S. A. Plate tectonics on early Earth? Weighing the paleomagnetic evidence // Condie K. C. and Pease V. (eds.) When Did Plate Tectonics Begin on Planet Earth? // Geological Society of America Special Paper 440. 2008. P. 249–263.

417

Адиро́ндак – горный массив в системе Аппалачей в США между впадинами озеро Шамплейн – река Гудзон на востоке, рекой Мохок на юге и рекой Св. Лаврентия на северо-западе, был открыт в 1609 г. французским исследователем С. Шамплейном. // АДИРОНДАК // Большая Российская энциклопедия. М., 2005. Т. 1. С. 230. — Примеч. перев.

418

McLelland J., Daly J. S. and McLelland J. M. The Grenville orogenic cycle (ca. 1350–1000 Ma): An Adirondack perspective // Tectonophysics. 1996. V. 265. № 1–2. P. 1–28.

419

Mosher S. Tectonic evolution of the southern Laurentian Grenville orogenic belt // Geological Society of America Bulletin. 1998. V. 110. № 11. P. 1357–1375.

420

Scotese, 2009.

421

Gumsley A. P., Chamberlain K. R., Bleeker W., Söderlund U., de Kock M. O., Larsson E. R. and Bekker A. Timing and tempo of the Great Oxidation Event // Proceedings of the National Academy of Sciences. 2017. V. 114. № 8. P. 1811–1816.

422

Ogg, Ogg and Gradstein, 2016. P. 23.

423

Ibid. P. 30.

424

Hoffman P. F. et al. Snowball Earth climate dynamics and Cryogenian geology-geobiology // Science Advances. 2017. V. 3. № 11. P. e1600983.

425

Sohl L. E., Chandler M. A., Jonas J. and Rind D. H. Energy and heat transport constraints on tropical climates of the Sturtian Snowball Earth // AGU Fall Meeting Abstracts. 2014, PP43C-1487.

426

Narbonne G. M. and Gehling J. G. Life after snowball; the oldest complex Ediacaran fossils: Geology. 2003. V. 31. № 1. P. 27–30.

427

Matthews S. C. and Missarzhevsky V. Small shelly fossils of late Precambrian and early Cambrian age; a review of recent work // Journal of the Geological Society of London. 1975. V. 131. P. 289–304. 9. Биография Земли: палеозойская эра

428

McKerrow W. S., Mac Niocaill C. and Dewey J. F. The Caledonian orogeny redefined // Journal of the Geological Society of London. 2000. V. 157. P. 1151.

429

Подразделения кембрийского периода отличаются в международной и российской шкале: в российской выделяют три эпохи – ранний, средний и поздний кембрий, – соответствующие нижнему, среднему и верхнему отделу кембрийской системы // Розанов А. Ю. КЕМБРИЙСКАЯ СИСТЕМА (ПЕРИОД) // Большая Российская энциклопедия. М., 2009. Т. 13. С. 542. — Примеч. перев.

430

Beasecker J., Chamberlin Z., Lane N., Reynolds K., Stack J., Wahrer K., Wolff A., Devilbiss J., Wahr C., Durbin D. and Garneau H. It’s time to defuse the Cambrian «explosion» // GSA Today. 2020. V. 30. № 12. P. 27.

431

Fox D. What sparked the Cambrian explosion? // Nature. 2016. V. 530. № 7590. P. 268–270.

432

Yochelson E. L. Discovery, collection, and description of the Middle Cambrian Burgess Shale biota by Charles Doolittle Walcott // Proceedings of the American Philosophical Society. 1996. V. 140. № 4. P. 469.

433

Gould, 1989. P. 13.

434

Yochelson, 1996. P. 469.

435

Simonetta A. M. The Cambrian non trilobite arthropods from the Burgess Shale of British Columbia: A study of their comparative morphology taxonomy and evolutionary significance // Palaeontographia Italica. 1975. V. 69, tabs. I–LXI. P. 1–37.

436

Gould, 1989. P. 14.

437

Whittington H. B. and Briggs D. E. G. The largest Cambrian animal, Anomalocaris, Burgess Shale, British Columbia: // Philosophical Transactions of the Royal Society of London B, Biological Sciences. 1985. V. 309. № 1141. P. 571.

438

Aitken J. D. and McIlreath I. A. The Cathedral Reef Escarpment, a Cambrian great wall with humble origins (British Columbia, Canada) // Geos. 1984. V. 13. № 1. P. 17–19.

439

Morris S. C. and Whittington H. B. Fossils of the Burgess Shale: A national treasure in Yoho National Park, British Columbia (Vol. 43) // Natural Resources Canada. 1985. P. 21.

440

Gould, 1989.

441

Hennig W. Phylogenetic Systematics. Urbana: University of Illinois Press, 1966, 263 p.

442

McKerrow, Mac Niocaill, and Dewey, 2000.

443

Oldroyd D. R. and McKenna G. A note on Andrew Ramsay’s unpublished report on the St. David’s area, recently discovered // Annals of Science. 1995. Vol. 52. № 2. P. 196.

444

Zalasiewicz J. A., Taylor L., Rushton A. W. A., Loydell D. K., Rickards R. B. and Williams M. Graptolites in British stratigraphy // Geological Magazine. 2009. V. 146. № 6. P. 785.

445

Szaniawski H. The earliest known venomous animals recognized among conodonts // Acta Palaeontologica Polonica. 2009. V. 54. № 4. P. 669–676.

446

Pander C. H. Monographie der fossilen Fische des Silurischen Systems der russisch-baltischen Gouvernements: St. Petersburg, Akademie der Wissenschaften, 1856, 91 p.

447

Ulrich E. O. and Bassler R. S. A classification of the toothlike fossils, conodonts, with descriptions of American Devonian and Mississippian species // U. S. National Museum Proceedings. 1926. V. 68. № 2613, article 12. P. 63, 11 plates.

448

Ogg, Ogg, and Gradstein, 2016. P. 59; Beasecker et al., 2020.

449

Murchison, 1839. P. 11.

450

Lapworth C., 1879.

451

McKerrow, Mac Niocaill and Dewey, 2000.

452

Barclay W. J. Introduction to the Old Red Sandstone of Great Britain // Barclay W. J., Browne M. A. E., McMillan A. A., Pickett E. A., Stone P. and Wilby P. R. (eds.). The Old Red Sandstone of Great Britain (Geological Conservation Review Series 31). Peterborough: Joint Nature Conservation Committee, 2005. P. 14–15.

453

Murchison, 1839. P. 587 and plate I.

454

Raup, 1991. P. 29; Gould, 1989.

455

House M. R. Strength, timing, setting and cause of mid-Palaeozoic extinctions // Palaeogeography, Palaeoclimatology, Palaeoecology. 2002. V. 181. P. 21.

456

В российской геохронологической шкале каменноугольный период подразделяют на три эпохи – раннюю, среднюю и позднюю (соответствующие нижнему, среднему и верхнему отделам каменноугольной системы); ранняя эпоха подразделяется на три века, средняя и поздняя – на два каждая // Алексеев А. С. КАМЕННОУГОЛЬНАЯ СИСТЕМА (ПЕРИОД) // Большая Российская энциклопедия. М., 2008. Т. 12. С. 605. — Примеч. перев.

457

Glasspool I. J. and Scott A. C. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal // Nature Geoscience. 2010. V. 3. P. 628.

458

Ogg, Ogg, and Gradstein, 2016. P. 104.

459

Anderson J. S., Smithson T., Mansky C. F., Meyer T. and Clack J. A diverse tetrapod fauna at the base of «Romer’s Gap» // PLOS ONE. 2015. V. 10. № 4. p. 23–24.

460

Merck J. The reptilian stem: Sauropsida, Eureptilia, Diapsida. 2019. https://www.geol.umd.edu/~jmerck/geol431/lectures/17sauropsida.html, дата обращения: 30.05.2020.

461

Arber, 1905. P. xix.

462

Seward, 1914. P. 26–28.

463

В российской геохронологической шкале пермский период подразделяется на приуральскую, биармийскую и татарскую эпохи (соответствующие отделам пермской системы) // Леонова Т. Б. ПЕРМСКАЯ СИСТЕМА (ПЕРИОД) // Большая Российская энциклопедия. М., 2014. Т. 25. С. 707–710. — Примеч. перев.

464

Ogg, Ogg, and Gradstein, 2016. P. 121.

465

Lozovsky V. R. Olson’s Gap or Olson’s Bridge, that is the question // Lucas S. G. and Zeigler K. E. (eds.). The Nonmarine Permian // New Mexico Museum of Natural History and Science Bulletin. 2005. № 30. P. 179–184; Lucas S. G. Olsen’s Gap or Olsen’s Bridge, an answer // Lucas S. G. and Zeigler K. E. (eds.). The Nonmarine Permian // New Mexico Museum of Natural History and Science Bulletin. 2005. № 30. P. 185–186; Benton M. J. No gap in the Middle Permian record of terrestrial vertebrates // Geology. 2012. V. 40. P. 339–342.

466

Lucas S. G. No gap in the Middle Permian record of terrestrial vertebrates (forum comment) // Geological Society of America. 2013, September. P. e293.

467

Ogg, Ogg, and Gradstein, 2016. P. 121.

468

Sánchez-Villagra M. R. Developmental palaeontology in synapsids: The fossil record of ontogeny in mammals and their closest relatives // Proceedings of the Royal Society of Britain. 2010. V. 277. № 1685. P. 1139.

469

Shen S. Z. and Bowring S. A. The end-Permian mass extinction: A still-unexplained catastrophe // National Science Review. 2014. V. 1. № 4. P. 492.

470

Reichow M. K. et al. The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis // Earth and Planetary Science Letters. 2009. V. 277, № 1–2. P. 9; Renne P. and Basu A. R. Rapid eruption of the Siberian Traps flood basalts at the Permo-Triassic boundary // Science. 1991. V. 253. № 5016. P. 176–179.

471

Burgess S. D., Muirhead J. D. and Bowring S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction // Nature Communications. 2017. V. 8. № 1. P. 1–6.

472

Сентрейлия – шахтерский город в штате Пенсильвания. В 1962 г. на мусорной свалке начался пожар, в результате которого огонь распространился по лабиринту тоннелей шахты и привел к возгоранию угольных пластов. Горение подземных угольных пластов продолжается по сей день // DeKok D. Fire Underground: The Ongoing Tragedy of the Centralia Mine Fire. Globe Pequot, 2009. — Примеч. перев.

473

Shen S. Z. and Bowring S. A. The end-Permian mass extinction: A still unexplained catastrophe // National Science Review. 2014. V. 1. № 4. P. 494.

474

Rothman D. H., Fourier G. P., French K. L., Alm E. J., Boyle E. A., Cao C. and Summons R. E. Methanogenic burst in the end-Permian Carbon Cycle // Proceedings of the National Academy of Sciences. 2014. V. 111. № 15. P. 5462.

475

Shen S. Z. et al. Calibrating the end-Permian mass extinction: Science. 2011. V. 334. № 6061. P. 1367–1372. 10. Биография Земли: мезозойская эра

476

Lucas S. G. The Triassic time scale: An introduction // Lucas S. G. (ed.) The Triassic Time Scale. Geological Society of London Special Publications. 2010. V. 334. P. 2

477

Ibid. P. 9.

478

Currie B. S., Colombi C. E., Tabor N. J., Shipman T. C. and Montañez I. P. Stratigraphy and architecture of the Upper Triassic Ischigualasto Formation, Ischigualasto Provincial Park, San Juan, Argentina // Journal of South American Earth Sciences. 2009. V. 27. P. 74–87.

479

Seeley H. G. On a sacrum apparently indicating a new type of bird, Ornithodesmus cluniculus Seeley: Quarterly Journal of the Geological Society of London, 1887. V. 43. P. 206–211; Seeley H. G. On Thecospondylus daviesi (Seeley), with some remarks on the classification of the Dinosauria // Quarterly Journal of the Geological Society of London, 1888. Vol. 44. P. 79–87.

480

Marsh O. C. Principal characters of American Jurassic dinosaurs, Part V // American Journal of Science. 1881, series 3. V. 21, May. P. 417–423.

481

Baron M. G., Norman D. B. and Barrett P. M. A new hypothesis of dinosaur relationships and early dinosaur evolution: Nature. 2017. V. 543. № 7646. P. 501–506.

482

Brusatte S. L., O’Connor J. K. and Jarvis E. D. The origin and diversification of birds // Current Biology. 2015. V. 25. № 19. P. R888.

483

Sereno P. C. Basal sauropodomorphs and the vertebrate fossil record of the Ischigualasto Formation (Late Triassic: Carnian-Norian) of Argentina // Journal of Vertebrate Paleontology. 2013. V. 32. № sup1: Memoir 12: p. 1–9.

484

Sereno P. C., Forster C. A., Rogers R. R. and Monetta A. M. Primitive dinosaur skeleton from Argentina and the early evolution of Dinosauria // Nature. 1993. V. 361. № 6407. P. 64–66.

485

Sues H. D., Nesbitt S. J., Berman D. S. and Henrici A. C. A late-surviving basal theropod dinosaur from the latest Triassic of North America // Proceedings of the Royal Society. 2011. V. B278. № 1723. P. 3459.

486

Ibid. P. 3463.

487

Jiang D. Y. et al. A large aberrant stem ichthysauriform indicating early rise and demise of ichthysauromorphs in the wake of the end-Permian extinction // Scientific Reports. 2016. V. 6. № 26232. P. 1.

488

Ogg, Ogg, and Gradstein, 2016. P. 151.

489

Ward P. D., Garrison G. H., Haggart J. W., Kring D. A. and Beattie M. J. Isotopic evidence bearing on the late Triassic extinction events, Queen Charlotte Islands, British Columbia, and implications for the duration and cause of the Triassic—Jurassic mass extinction // Earth and Planetary Science Letters. 2004. V. 224. P. 599.

490

Woodford A. O. Catastrophism and evolution // Journal of Geological Education. 1971. V. 19. № 5. P. 229.

491

D’Orbigny A. Cours élémentaire de paléontologic et de Géologie Stratigraphies (2 volumes). Paris: Masson, 1849–1852, 1146 p.

492

Oppel A. Die Juraformation Englands, Frankreichs und das Südwestlichen Deutschlands. Stuttgart: Ebner & Serebert, 1856–1858, 857 p.

493

Ogg, Ogg, and Gradstein, 2016. P. 156.

494

Martill D. M., Vidovic S. U., Howells C. and Nudds J. R. The oldest Jurassic dinosaur: A basal neotheropod from the Hettangian of Great Britain // PLOS One. 2016. V. 11. № 1. P. e0154352.

495

Conybeare W. D. Additional notices on the fossil genera Ichthyosaurus and Plesiosaurus // Transactions of the Geological Society of London, 1822, series 2. V. 1. P. 103–123.

496

Barthel K. W., Swinburne N. H. M. and Morris S. C. Solnhofen: A Study of Mesozoic Palaeontology. Cambridge, Cambridge University Press, 1990. P. 197.

497

Van Valen and Sloan, 1966. P. 261.

498

Ogg, Ogg, and Gradstein, 2016. P. 167.

499

Hickey L. J. and Doyle J. A. Early Cretaceous fossil evidence for angiosperm evolution // Botanical Review. 1977. V. 43. № 1. P. 3–4.

500

Xing Xu, Zhonghe Zhou and Xiaolin Wang. The smallest known non-avian theropod dinosaur // Nature. 2000. V. 408. № 7. P. 705–708.

501

Lawson D. A. Pterosaur from the latest Cretaceous of West Texas: Discovery of the largest flying creature // Science. 1975. V. 187. № 4180. P. 947.

502

Frey E. and Martill D. M. A reappraisal of Arambourgiania (Pterosauria, Pterodactyloidea): One of the world’s largest flying animals // Neues Jahrbuch für Geologie und Paläontologie– Abhandlungen. 1996. P. 221–247.

503

Harrell T. L. Jr., Gibson M. A. and Langston W. Jr. A cervical vertebra of Arambourgiania philadelphiae (Pterosauria, Azhdarchidae) from the late Campanian micaceous facies of the Coon Creek Formation in McNairy County, Tennessee, USA // Bulletin of the Alabama Museum of Natural History. 2016. V. 33. № 2. P. 94–103.

504

Krause D. W. et al. Skeleton of a Cretaceous mammal from Madagascar reflects long-term insularity // Nature. 2020. V. 581. P. 1–7.

505

Sloan R. E. and Van Valen L. Cretaceous mammals from Montana // Science. 1965. V. 148. № 3667. P. 220–227.

506

Alvarez L. W., Alvarez W., Asaro F. and Michel H. V. Extraterrestrial cause of the Cretaceous—Tertiary extinction // Science. 1980. V. 208. № 4448. P. 1095–1108.

507

Hildebrand A. R., Penfield G. T., Kring D. A., Pilkingotn M., Camargo Z. A., Jacobsen S. B. and Boynton W. V. Chicxulub Crater: A possible Cretaceous/Tertiary impact crater in the Yucatán Peninsula, Mexico // Geology. 1991. V. 19. P. 867–871.

508

Sanford J. C., Snedden J. W. and Gulich S. P. S. The Cretaceous—Paleogene boundary deposit in the Gulf of Mexico: Large scale oceanic basin response to the Chicxulub impact // Journal of Geophysical Research, Solid Earth. 2016. V. 121. № 3. P. 1240–1261.

509

Ibid. P. 1257.

510

Morgan J. V. et al. The formation of peak rings in large impact craters // Science. 2016. V. 354. № 6314. P. 878–882.

511

Artemieva N., Morgan J. and the Expedition 364 Science Party. Quantifying the release of climate-active gases by large meteorite impacts with a case study of Chicxulub // Geophysical Research Letters. 2017. V. 44. № 20. P. 10, 180.

512

Kunio K. and Oshima N. Site of asteroid impact changed the history of life on Earth: The low probability of mass extinction // Scientific Reports. 2017. V. 7. № 1. P. 14855.

513

Jolley D., Gilmour I., Gurov E., Kelley S. and Watson J. Two large meteorite impacts at the Cretaceous—Paleogene Boundary // Geology. 2010. V. 38. № 9. P. 835–838.

514

Keller G., Adatte T., Pardo J. A. and Lopez-Oliva J. G. New evidence concerning the age and biotic effects of the Chicxulub impact in NE Mexico // Journal of the Geological Society of London. 2009. V. 166. № 3. P. 393–411.

515

Schoene B., Eddy M. P., Samperton K. M., Keller C. B., Keller G., Adatte T. and Khadri S. F. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction // Science. 2014. V. 363. № 6429. P. 862–866.

516

Schulte P. et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous—Paleogene boundary // Science. 2010. V. 327. № 5970. P. 1214–1218.

517

Cohen K. M., Finney S. C., Gibbard P. L. and Fan J. X. The ICS international chronostratigraphic chart // Episodes. 2013 (updated 2020). V. 36. P. 199–204.

518

U. S. Geological Survey Geologic Names Committee. Divisions of geologic time – major chronostratigraphic and geochronologic units. U. S. Geological Survey Fact Sheet, 2018. № 2018–3054. 2 p.

519

Walker J. D., Geissman J. W., Bowring S. A. and Babcock L. E. The Geological Society of America geologic time scale // GSA Bulletin. 2013. V. 125. № 3–4. Р. 259–272.

520

U. S. Geological Survey Geologic Names Committee, 2018.

521

Fuentes A. J., Clyde W. C., Weissenburger K., Bercovici A., Lyson T. R., Miller I. M., Ramezani J., Isakson V., Schmitz M. D. and Johnson K. R. Constructing a time scale of biotic recovery across the Cretaceous—Paleogene boundary, Corral Bluffs, Denver Basin, Colorado, USA // Rocky Mountain Geology. 2019. V. 54. № 2. P. 133–153.

522

Gazin C. L. Paleocene mammals from the Denver Basin, Colorado // Journal of the Washington Academy of Sciences. 1941. V. 31. № 7. P. 289–295.

523

Grand Junction Daily Sentinel. Moment of extinction: How a Grand Junction geologist got a closer look at the K-T boundary. 2019. November 18. https://www.gjsentinel.com/news/western_colorado/moment-of-extinction-how-a-grandjunction-geologist-got-a/article_c5620344-09c3-11ea-bf09-20677ce07cb4.html.

524

Fuentes, Clyde, Weissenburger, Bercovici, Lyson, Miller, Ramezani, Isakson, Schmitz, and Johnson, 2019.

525

Denver Museum of Nature and Science, 2019. The mammals. https://coloradosprings. dmns. org/the-mammals/.

526

Harlan R. Notice of fossil bones found in the Tertiary in the State of Louisiana // Transactions of the American Philosophical Society, 1834. V. 4. P. 397–403.

527

Gingerich P. D., Arif M., Bhatti M. A., Anwar M. and Sanders W. J. Basilosaurus drazindai and Basiloterus hussaini, new Archaeoceti (Mammalia, Cetacea) from the middle Eocene Drazinda Formation, with a revised interpretation of ages of whale-bearing strata in the Kirthar Group of the Sulaiman Range, Punjab (Pakistan) // Contributions from the Museum of Paleontology, University of Michigan. 1997. V. 30. № 2, October 1. P. 55–81.

528

Gingerich P. D. Evolution of whales from land to sea // Proceedings of the American Philosophical Society. 2012. V. 156, September 3. P. 312.

529

Sarich V. M. Molecular clocks and eutherian phylogeny (paper) // Fourth International Theriological Congress, Edmonton. 1985, August 13–20.

530

De Muizon C. Walking with whales // Nature. 2001. V. 413. № 6853. P. 259–260.

531

Lihoreau F., Boisserie J. R., Manthi F. K. and Ducrocq S. Hippos stem from the longest sequence of terrestrial cetartiodactyl evolution in Africa // Nature Communications. 2015. V. 6. № 1. P. 1–8.

532

Gingerich, 2012. P. 315.

533

Meyer H. W. The Fossils of Florissant. Washington, D. C.: Smithsonian Books, 2003, 258 p.

534

McInerney F. A. and Wing S. L. The Paleocene—Eocene thermal maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future // Annual Review of Earth and Planetary Sciences. 2011. V. 9, May. P. 489–516.

535

Foster G. L., Lear C. H. and Rae J. B. W. The evolution of pCO2, ice volume and climate during the middle Miocene // Earth and Planetary Science Letters. 2012. V. 311–344, August. P. 243–254.

536

Böhme M. The Miocene Climatic Optimum: Evidence from ectothermic vertebrates of Central Europe // Palaeogeography, Palaeoclimatology, Palaeoecology. 2003. V. 195. P. 389–401.

537

Hsu K. J., Montadert L., Bernoulli D., Cita M. B., Erikson A., Garrison R. E., Kidd R. B., Meliêres F., Müller C. and Wright R. History of the Mediterranean salinity crisis // Nature. 1977. V. 267. P. 399.

538

Ryan W. B. F. Decoding the Mediterranean salinity crisis // Sedimentology. 2009. V. 56. P. 95–136.

539

Hsu, Montadert, Bernoulli, Cita, Erikson, Garrison, Kidd, Meliêres, Müller and Wright, 1977. P. 402.

540

Krijgsman W., Hilgen F. J., Raffi I., Sierro F. J. and Wilson D. S. Chronology, causes and progression of the Messinian salinity crisis // Nature. 1999. V. 400, August 12. P. 652–655.

541

Garcia-Castellanos D., Estrada F., Jiménez-Munt I., Gorinin C., Fernàndez M., Vergés J. and De Vincente R. Catastrophic flood of the Mediterranean after the Messinian salinity crisis // Nature. 2009. V. 462. P. 778–782, and supplement. P. 4.

542

Clavel J. and Morlon H. Accelerated body size evolution during cold climatic periods in the Cenozoic // Proceedings of the National Academy of Sciences. 2017. V. 114. № 16. P. 4183–4188.

543

Bergmann C. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Größe (About the relationships between heat conservation and body size of animals) // Gottinger Studien, 1847. V. 1. P. 595–708.

544

Ashton K. G., Tracy M. C. and Queiroz A. D. Is Bergmann’s rule valid for mammals? // American Naturalist. 2000. V. 156. № 4. P. 390–415.

545

Fedorov A. V., Brierley C. M., Lawrence K., Liu Z., Dekens P. S. and Ravelo A. C. Patterns and mechanisms of early Pliocene warmth: Nature. 2013. V. 496. № 7443. P. 43–49.

546

Gibbons A. In search of the first hominids // Science. 2002. V. 295. № 5558. P. 1214–1219.

547

Johanson D. C. and White T. D. A systematic assessment of early African hominids // Science. 1979. V. 203. № 4378. P. 321–329.

548

Leakey M. D. and Hay R. L. Pliocene footprints in the Laetolil Beds at Laetoli, northern Tanzania // Nature. 1979. V. 278. P. 323.

549

Denton W. On the asphalt bed near Los Angeles, California // Proceedings of the Boston Society of Natural History, 1875. V. 18. P. 185–186.

550

Orcutt M. L. The discovery in 1901 of the La Brea Fossil Beds // Historical Society of Southern California Quarterly. 1954. V. 36. № 4. P. 338–341.

551

Holden A. R., Koch J. B., Griswold T., Erwin D. M. and Hall J. Leafcutter bee nests and pupae from the Rancho La Brea Tar Pits of southern California: Implications for understanding the paleoenvironment of the late Pleistocene // PLOS One. 2014. V. 9. № 4. P. e94724.

552

Broecker W. S., Andree M., Wolfli W., Oeschger H., Bonani G., Kennett J. and Peteet D. The chronology of the last deglaciation: Implications to the cause of the Younger Dryas event // Paleoceanography. 1988. V. 3. № 1. P. 1–19.

553

Lea D. W., Pak D. K., Peterson L. C. and Hughen K. A. Synchroneity of tropical and high-latitude Atlantic temperatures over the last glacial termination // Science. 2003. V. 301. № 5638. P. 1361–1364.

554

Firestone R. B. et al. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling // Proceedings of the National Academy of Sciences. 2007. V. 104. № 41. P. 16016–16021.

555

Pino M. et al. Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka // Scientific Reports. 2019. V. 9. № 1. P. 1–27.

556

Sandoval-Castellanos E., Wutke S., Gonzalez-Salazar C. and Ludwig A. Coat colour adaptation of post-glacial horses to increasing forest vegetation // Nature Ecology & Evolution. 2017. V. 1. P. 1816–1819.

557

Цит. по: Юм Д. Исследование о человеческом познании / Пер. с англ. С. И. Церетели // Соч.: В 2 т. М.: Мысль, 1996. Т. 2. С. 32.

558

Hume D. An Enquiry Concerning Human Understanding // Philosophical Essays Concerning Human Understanding. L.: A. Millan, 1848 [1777]. P. 36–37; Hume D. An Enquiry Concerning Human Understanding: A Critical Edition (Vol. 3). Oxford: Oxford University Press, 2000 [1777], 139 p. (Юм Д. Исследование о человеческом познании / Пер. с англ. С. И. Церетели // Соч.: В 2 т. М.: Мысль, 1996. Т. 2.)

559

Santayana G. Life of Reason. Amherst, N. Y.: Prometheus Books, 2013. P. 82.

560

Hoegh-Guldberg O. et al. Impacts of 1.5 °C global warming on natural and human systems // Masson-Delmotte V. et al. (eds.). Global Warming of 1.5 °C: An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. 2018. P. 262.

561

Цит. по: Гладуэлл М. Переломный момент: Как незначительные изменения приводят к глобальным переменам / Пер. с англ. В. Н. Логвиновой. М.: Альпина Паблишер, 2010. С. 19.

562

Gladwell M. The tipping point // New Yorker Magazine. 1996. June 3. https://www. newyorker. com/magazine/1996/06/03/the-tipping-point.

563

Lorenz E. The butterfly effect // World Scientific Series on Nonlinear Science. Series A, 2000. V. 39. P. 91.

564

Hoegh-Guldberg O. D. et al., 2018. P. 257.

565

United Nations, Department of Economic and Social Affairs. World Population Projected to Reach 9.7 Billion by 2050. 2015, July 29. http://www. un. org/en/development/desa/news/population/2015-report. html, дата обращения: 25.02.2017.

566

U. S. Census Bureau. U. S. and world population clock. 2017, February 24. https://www. census. gov/popclock/

567

Zahid H. T., Robinson E. and Kelly R. L. Agriculture, population growth, and statistical analysis of the radiocarbon record // Proceedings of the National Academy of Sciences. 2016. V. 114. № 4. P. 931–935; National Academy of Sciences. Correction for Zahid et al. Agriculture, population growth, and statistical analysis of the radiocarbon record // Proceedings of the National Academy of Sciences. 2016. V. 113. № 8. P. E2546.

568

Pingali P. L. Green revolution: Impacts, limits and the path ahead // Proceedings of the National Academy of Sciences. 2012. V. 109. № 31. P. 12302–12308.

569

Warren S. G. Can human population be stabilized? // Earth’s Future. 2015. V. 3. P. 82–94.

570

Venter O. et al. Sixteen years of change in the global terrestrial footprint and implications for biodiversity conservation // Nature Communications. 2016. V. 7. № 1. P. 1–11.

571

Thomas L. Coal Geology. Hoboken, New Jersey: Wiley-Blackwell, 2013. P. 54.

572

Heath R. C. Basic ground-water hydrology: Water Supply Paper 2220. U. S. Department of the Interior, USGS. 1998, 86 p.

573

Gornitz V., Rosenzweig C. and Hillel D. Effects of anthropogenic intervention in the land hydrologic cycle on global sea level rise: Global and Planetary Change. 1997. V. 14, № 3–4. P. 147–161.

574

United Nations. World Water Development Report 2019: «Leaving no one behind», https://www. unwater. org/world-water-development-report-2019 leaving-noone-behind/, дата обращения: 20.05.2020.

575

U. S. Geological Survey. Ground water quality. https://www.usgs.gov/specialtopic/water-science-school/science/groundwater-quality?qt-science_center_objects=0#qt-science_center_objects, дата обращения: 20.05.2020.

576

U. S. Geological Survey. Contamination of ground water. https://www.usgs.gov/special-topic/water-science-school/science/contamination-groundwater?qtscience_center_objects=0#qt-science_center_objects, дата обращения: 20.05.2020.

577

Hertel T. W. and Liu J. Implications of water scarcity for economic growth // OECD Environment Working Papers 109, Paris, 2016.

578

Heath, 1998.

579

Barlow P. M. Ground water in freshwater-saltwater environments of the Atlantic coast (Vol. 1262)/ U. S. Geological Survey, 2003. P. 5.

580

Balog J. TED Talk, 2009. https://www.ted.com/talks/james_balog_time_lapse_proof_of_extreme_ice_loss#t-319446.

581

Blunden J. and Arndt D. State of the climate in 2018 // Bulletin of the American Meteorological Society, 2019. V. 100. № 9. P. S55.

582

Parnreiter C. Megacities in the geography of global economic governance // Die Erde. 2009. V. 140. № 4. P. 371.

583

Leakey R. E. and Lewin R. The Sixth Extinction: Patterns of Life and the Future of Humankind. N. Y.: Anchor, 1996.

584

Menne M. J., Williams C. N. Jr. and Vose R. S. The U. S. historical climatology network monthly temperature data, version 2: New bias adjustments reduce uncertainty in temperature trends for the United States // Bulletin of the American Meteorology Society. 2009. V. 90. № 7. P. 993–1007.

585

Camuffo D. and Bertolin C. The earliest temperature observations in the world: The Medici Network // Climatic Change. 2012. V. 111. № 2. P. 335–363.

586

Mann M. E., Bradley R. S. and Hughes M. K. Global-scale temperature patterns and climate forcing over the past six centuries // Nature. 1998. V. 392. № 6678. P. 779–787.

587

Folland C. K., Karl T. R., Christy J. R., Clarke R. A., Gruza G. V., Jouzel J., Mann M. E., Oerlemans J., Salinger M. J. and Wang S. W. Observed climate variability and change // Houghton J. T., Ding Y. Griggs D. J., Noguer M., van der Linden P. J., Dai X., Maskell K. and Johnson C. A. (eds.). Climate Change 2001: The Scientific Basis. Cambridge: Cambridge University Press, 2001. P. 134.

588

Ibid.; Mann M. E., Bradley R. S. and Hughes M. K. Northern hemisphere temperatures during the last millennium: Inferences, uncertainties, and limitations // Geophysical Research Letters. 1999. V. 26. P. 759–762.

589

Briffa K. R. Annual climate variability in the Holocene: Interpreting the message of ancient trees // Quaternary Science Reviews. 2000. V. 19. P. 87–105; Briffa K. R., Jones P. D., Schweingruber F. H., Shiyatov S. G. and Cook E. R. Unusual twentieth-century summer warmth in a 1,000-year temperature record from Siberia // Nature. 2002. V. 376. № 6536. P. 156–159; Jones P. D., Briffa K. R., Barnett T. P. and Tett S. F. B. High-resolution paleoclimate records for the last millennium: Interpretation, integration and comparison with general circulation model control-run temperatures // Holocene. 1998. V. 8. P. 455–471.

590

Worster D. The Dust Bowl: The Southern Plains in the 1930s. N. Y.: Oxford University Press, 1979, 304 p.

591

Donarummo J. Jr., Ram M. and Stoermer E. F. Possible deposit of soil dust from the 1930’s U. S. Dust Bowl identified in Greenland ice // Geophysical Research Letters. 2003. V. 30. № 6, 4 p.

592

Trenbreth K. Can climate change explain odd weather // National Public Radio (interview by Ira Flatow). 2007, January 19. http://www. npr. org/templates/story/story. php?storyId=6921972.

593

Bush E. and Lemmen D. S. (eds.). Canada’s changing climate report. Government of Canada, Ottawa, 2019, 444 p.

594

NOAA National Centers for Environmental Information. Climate at a Glance: Global Time Series, 2020. https://www. ncdc. noaa. gov/cag/, дата обращения: 30.05.2020.

595

NASA. 2019 was the second warmest year on record. 2020. https://earthobservatory. nasa. gov/images/146154/2019-was-the-second-warmest-year-on-record, дата обращения: 12.04.2020.

596

Intergovernmental Panel on Climate Change. Climate change 2014 synthesis report // Pachauri R. K. et al. (eds.). Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: Geneva, IPCC, 2015, 151 p.

597

NASA. Milankovitch (orbital) cycles and their role in Earth’s climate, 2020. https://climate. nasa. gov/news/2948/milankovitch-orbital-cycles-and-their-role-in-earthsclimate/, дата обращения: 25.05.2020.

598

Milankovitch M. Mathematische Klimalehre und astronomische Theorie der Klimaschwankungen: Handbuch der Klimatologie 1. Berlin: Borntraeger, 1930, 176 p.

599

Buis A. Why Milankovitch (orbital) cycles can’t explain Earth’s current warming., NASA Jet Propulsion Lab Blog, 2020, February 27. https://climate. nasa. gov/blog/2949/why-milankovitch-orbital-cycles-cant-explain-earths-current-warming/, Дата обращения 26.05.2020.

600

NOAA. Carbon dioxide levels in atmosphere hit record high in May: Monthly average surpassed 414 ppm at NOAA’s Mauna Loa Observatory in Hawaii // ScienceDaily. 2019. June 4, www. sciencedaily. com/releases/2019/06/190604140109. htm, дата обращения: 18.05.2020.

601

NOAA, 2020. Monthly Average Mauna Loa CO2. https://www.esrl.noaa.gov/gmd/ccgg/trends/, дата обращения: 18.05.2020.

602

Le Quéré C. et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement // Nature Climate Change. 2020. V. 10. P. 1.

603

NOAA exploring impact of COVID-19 response on the environment, May 6, 2020. https://research. noaa. gov/article/ ArtMID/ 587/ ArticleID/ 2617/ NOAAexploring-impact-of-coronavirus-response-on-the-environment, дата обращения: 25.05.2020.

604

Scripps Institution for Oceanography, 2020. https://scripps. ucsd. edu/programs/keelingcurve/.

605

Monroe R. What does it take for the coronavirus (or other major economic events) to affect global carbon dioxide readings? 2020. https://scripps. ucsd. edu/programs/keelingcurve/2020/03/11/what-does-it-take-for-the-coronavirus-or-other-majoreconomic-events-to-affect-global-carbon-dioxide-readings/, дата обращения: 05.06.2020.

606

Zemp M. et al. Historically unprecedented global glacial decline in the early 21st century // Journal of Glaciology. 2015. V. 61. № 228. P. 745–762.

607

Field C. B. et al. (eds.). Climate change 2014: Impacts, adaptation, and vulnerability, Part A, Global and sectoral aspects, in Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press, 2014, 1150 p. www. cambridge. org/9781107641655. В 2022 г. IPCC опубликовала уже шестой отчет об оценке изменений климата: Pörtner H.-O., Roberts D. C., Tignor M., Poloczanska E. S., Mintenbeck K., Alegría A., Craig M., Langsdorf S., Löschke S., Möller V., Okem A., Rama B. (eds.). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change]. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, 2022, 3056 pp. https://www.ipcc.ch/report/ar6/wg2/.

608

Trenberth K. E. Changes in precipitation with climate change // Climate Research. 2011. V. 47. № 1–2. P. 123–138.

609

Herring S. C., Hoell A., Hoerling M. P., Kossin J. P., Schreck C. J. III and Stott P. A. (eds.). Explaining extreme events of 2015 from a climate perspective // Bulletin of the American Meteorological Society. 2016. V. 97. № 12. P. S1–S145.

610

Yochum S. E. Colorado Front Range flood of 2013: Peak flows and flood frequencies // Proceedings of the 3rd Joint Federal Interagency Conference on Sedimentation and Hydrologic Modeling, April 19–23. Reno. 2015. P. 537–548.

611

Colorado Water Conservation Board. CDOT/ CWCB hydrology investigation phase one, 2013 peak flow determinations. State of Colorado Technical Memorandum, Denver, 2014, 8 p.

612

CIRES. Severe flooding on the Colorado Front Range, September 2013, preliminary assessment. University of Colorado, 2013. 4 p.

613

Westerling A. L., Hidalgo H. G., Cayan D. R. and Swetnam T. W. Warming and earlier spring increase western U. S. forest wildfire activity // Science. 2006, August 18. P. 940–943.

614

Evans D. et al. Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry // Proceedings of the National Academy of Sciences. 2018. V. 115. № 6. P. 1174–1179.

615

Steele A. Looking backwards, looking forwards: A consideration of the foibles of action research within teacher work // The Canadian Journal of Action Research. 2012. V. 13. № 2. P. 17.

Загрузка...