К концу одного из пятничных рабочих дней в 1993 году все остальные сотрудники уже разошлись по домам. Только мы с Джоном и Ларусом еще сидели в моем стэндфордском офисе, трепались и пили сваренный Ларусом кофе. Исландцы варят самый крепкий кофе в мире. По словам Ларуса, это как-то связано с их традицией засиживаться за выпивкой до глубокой ночи.
Ларус Торласиус, высокий исландский викинг (он говорит, что происходит не от норвежских воинов, а от ирландских рабов), был стэнфордским постдоком, только что защитившим диссертацию в Принстоне. Джон Углум, техасец и республиканец (но не религиозного толка, а либертарианец в духе Айн Рэнд[94]) был моим аспирантом. Несмотря на политические и культурные различия — сам я либеральный еврей из Южного Бронкса, — мы были приятелями с множеством чисто мужских развлечений: пить кофе (а иногда и что покрепче), спорить о политике, разговаривать о черных дырах. (Немного позже Аманда Пит, студентка из Новой Зеландии, расширит наше маленькое братство до трех братьев и сестры.)
К 1993 году черные дыры не только появились у физиков на экранах радаров, но и оказались в самом центре поля зрения. Отчасти причиной была провокационная статья, написанная примерно полутора годами ранее четырьмя известными американскими физиками-теоретиками. Курт Коллан, принстонский аристократ, ведущий ученый в области физики элементарных частиц, был с 1960-х годов влиятельным членом американского научного истеблишмента. (Он был научным руководителем диссертации Ларуса.) Энди Строминджер и Стив Гиддингс были более молодыми, напористыми профессорами Калифорнийского университета в Санта-Барбаре (UCSB). В то время я различал их по тому, что Гиддингс носил шорты, а Строминджер — подтяжки. Джефф Харви из Чикагского университета был (и остается) великим физиком, талантливым композитором (см. конец главы 24) и эстрадным комиком. Собирательно они были известны как CGHS (по инициалам), а описанную ими упрощенную версию черных дыр называли CGHS-дырами. Их совместная статья на короткое время стала сенсацией, отчасти потому авторы заявили, что наконец решили проблему потери информации при испарении черной дыры.
Что делало CGHS-теорию столь простой — оглядываясь назад, можно сказать обманчиво простой: она описывала вселенную, имеющую лишь одно измерение в пространстве. Их мир был даже проще Флэтландии, воображаемого двумерного мира Эдвина Эббота[95]. CGHS представили себе мир существ, которые живут на бесконечно тонкой линии. Эти создания были настолько простыми, насколько это возможно: не сложнее отдельных элементарных частиц. На одном конце этой одномерной вселенной находилась массивная черная дыра, достаточно тяжелая и плотная, чтобы захватывать все, что подходит к ней слишком близко.
Написанная CGHS статья содержала исключительно элегантный математический анализ хокинговского излучения, но где-то в этом анализе они ошиблись и утверждали, что квантовая механика исключает сингулярность, а с ней и горизонт. Мы с Аарусом и еще одним коллегой, Йоргом Руссо, были среди нескольких человек, указавших на ошибку. Это сделало нас экспертами по CGHS-дырам. (Была даже особая версия CGHS-теории, названная RST-моделью по инициалам Руссо, Сасскинда и Торласиуса.)
Так вот, причиной, заставившей нас с Джоном и Аарусом задержаться в пятницу после работы, была надвигающаяся конференция, специально посвященная загадками и парадоксам черных дыр. Она начиналась через две недели в Санта-Барбаре, где находился Институт теоретической физики (ITP)[96] при UCSB[97]. Как оценить ITP в качестве научного учреждения? Если коротко, то очень высоко. К 1993 году он стал активным центром исследований по черным дырам.
Джеймс Хартл был самым уважаемым специалистом по черным дырам на физическом факультете UCSB. Джеймс был заслуженным мэтром, выполнившим совместно со Стивеном Хокингом прорывные работы по квантовой гравитации задолго до того, как она стала популярной. Но на факультете было четверо более молодых ученых, которым предстояло сыграть большую роль в Битве при черной дыре. Все они разменяли четвертый десяток и были на пике научной формы. Вы уже знаете Стива Гиддингса и Энди Строминджера (G и S в CGHS). Хотя оба они были моими друзьями, чьими работами я искренне восхищался, следующие два года показали, что они могут быть совершенно несносными противниками. Часто они доводили меня до отчаяния своей упертой приверженностью ошибочным идеям. Но в конце концов это более чем оправдалось.
Гэри Хоровиц, третий из молодежной сборной UCSB, был релятивистом, то есть специалистом по теории относительности. На ней он сделал себе имя и считался блестящим ученым. Он также работал с Хокингом и знал о черных дырах больше, чем кто-либо другой. Наконец, Джо Полчински недавно перевелся в Санта-Барбару из Техасского университета. Мы с Джо вместе работали над рядом исследовательских проектов, и я его хорошо знал. К тому же я всегда считал его очень приятным человеком с замечательным чувством юмора, а также был поражен мощью, скоростью и блеском его интеллекта. С самого начала нашей дружбы — Джо тогда было около двадцати пяти, а мне сорок — у меня не было сомнений в том, что он станет величайшим физиком-теоретиком эпохи. И он меня не разочаровал.
Эти выдающиеся молодые физики тесно сотрудничали. Иногда они занимались черными дырами, иногда — теорией струн. Огромный талант этой маленькой сплоченной группы сделал ее очень влиятельной силой в теоретической физике. Он также превратил Санта-Барбару в одно из самых замечательных мест (если не самое замечательное), где мог бы оказаться физик-теоретик. Не было никаких сомнений, что конференция по черным дырам в Санта-Барбаре станет важным событием.
По-видимому, конференцию созывали для того, чтобы отметить эффект, произведенный статьей CGHS. Была надежда, что изобретенная CGHS математическая техника даст ключ к тому, что называлось тогда информационным парадоксом. Организаторы попросили меня сделать доклад о работе, которую мы с Аарусом и Йоргом выполнили в Стэнфорде, и вот под конец пятницы мы обсуждали, о чем мне рассказывать.
Возможно, всему виной повышенный уровень кофеина в кофе, или выброс тестостерона, или просто наше братство трех мушкетеров, но я сказал Джону и Ларусу: «Черт побери, я не хочу рассказывать о CGHS или RST. Это тупик[98]. Я хочу, чтобы мы сделали что-то потрясающее. Давайте подставимся и скажем что-нибудь очень смелое, такое, чтобы действительно привлечь внимание».
Уже некоторое время мы втроем искали, как обойти парадоксальный вывод Стивена, и идея начала выкристаллизовываться. Пока она была лишь смутным образом, у которого не было даже названия, но пришла пора действовать.
«Я считаю, что мы втроем должны собрать вместе разрозненные нити нашей полусырой идеи и, даже если мы не можем ее доказать, попытаться сделать ее более точной. Даже акт именования новой концепции может иногда добавить ясности. Предлагаю нам вместе написать статью о дополнительности черных дыр, а я представлю новую идею на конференции в Санта-Барбаре».
Рассказ «Не забудьте принять антигравитационные пилюли» (см. главу 13) — хорошее начало для объяснения того, что я задумал. Подобно фильму Акиры Куросавы «Ворота Расёмон», это история, увиденная глазами разных участников и приводящая к совершенно противоположным выводам. По одной из версий (императора и графа), Стив, преследуемый физик, аннигилировал в невероятно горячей среде, окружающей горизонт. Но, согласно Стиву, у истории был иной, куда более счастливый конец. Очевидно, что одна из версий ошибочна (а возможно, и обе); Стив не мог и выжить, и погибнуть у горизонта.
«Суть дополнительности черных дыр, — объяснял я коллегам, — в том, что, как бы безумно это ни звучало, обе истории в равной мере истинны».
Двое моих друзей были озадачены. Я уже не помню, что говорил им дальше, но это, вероятно было что-то в таком духе. Все, кто остаются вне черной дыры, — граф, император, его лояльные подданные — видят одно и то же[99]: Стив разогревается, испаряется и превращается в хокинговское излучение. Но что важно, все эго происходит до того, как он достигнет горизонта.
Как придать этому смысл? Единственный способ, совместимый с законами физики, — допустить, что непосредственно над горизонтом существует некий чрезвычайно горячий слой, возможно, толщиной не больше планковской длины. Я признался Джону и Ларусу, что не представляю в точности, из чего этот слой может состоять, но объяснил, что наличие энтропии у черной дыры подразумевает, что этот слой должен состоять из крошечных объектов, скорее всего, не больше планковского размера. Горячий слой будет впитывать все, что падает на горизонт, подобно тому как капля чернил растворяется в воде. Я помню, что называл неизвестные крошечные объекты атомами горизонта, но, конечно, я не имел в виду обычные атомы. Я знаю об этих атомах горизонта не больше, чем физики девятнадцатого века знали об обычных атомах: только то, что они существуют.
Этот горячий слой материи надо было как-то называть. Астрофизики уже предложили термин, на котором я в итоге остановился. Они использовали для анализа некоторых электрических свойств черных дыр идею воображаемой мембраны, окружающей черную дыру над самым горизонтом. Эту воображаемую поверхность они называли растянутым горизонтом, однако я предполагал, что на расстоянии планковской длины над горизонтом существует реальный слой материи, а не воображаемая поверхность. Более того, я утверждал, что любой эксперимент — например, опускание градусника для измерения температуры — подтвердит существование атомов горизонта[100].
Мне понравился термин «растянутый горизонт», и я приспособил его для моих собственных нужд. Сегодня растянутый горизонт — стандартное понятие в физике черных дыр. Оно означает тонкий слой горячих микроскопических «степеней свободы», расположенных на расстоянии примерно одной планковской длины над горизонтом.
Растянутый горизонт
Растянутый горизонт помогает нам понять, как испаряются черные дыры. Время от времени один из энергичных атомов горизонта получает более сильный, чем обычно, толчок и выбрасывается с поверхности в космос. Можно представлять себе растянутый горизонт как тонкий горячий слой атмосферы. В этом случае испарение черной дыры будет очень похоже на то, как земная атмосфера постепенно рассеивается в открытом космосе. Но в дополнение к тому, раз черная дыра теряет массу при испарении, она также должна уменьшаться.
Но это лишь половина истории — видимая с наблюдательного пункта вне черной дыры. Саму по себе эту половину не назовешь особенно радикальной. Вещество падает в горячий суп. Суп испаряется. Биты информации уносятся вместе с паром. Все вполне обыденно. Если бы речь шла о чем угодно, кроме черной дыры, такое объяснение казалось бы ничем не примечательным.
Но что, если посмотреть изнутри или, если точнее, с точки зрения свободно падающего наблюдателя? Будем называть это версией Стива, и она будет выглядеть противоречащей наблюдениям снаружи (версии императора и графа).
Я выдвигаю два постулата.
1. Для любого наблюдателя, остающегося вовне черной дыры, растянутый горизонт выглядит как горячий слой атомов горизонта, который поглощает, перемешивает и в конце концов испускает (в форме хокинговского излучения) каждый бит падающей в черную дыру информации.
2. Для свободно падающего наблюдателя горизонт выглядит абсолютно пустым пространством. Такие свободно падающие наблюдатели не обнаруживают на горизонте ничего особенного, хотя он и является для них точкой невозврата. С разрушительными силами они встречаются позже, когда приближаются к сингулярности.
Добавлять сюда еще и третий постулат будет некоторым перебором, но я все же это сделаю.
3. Постулаты 1 и 2 оба истинны, а кажущееся противоречие не является реальным.
Ларус отнесся к этому скептически. Как это может быть, спрашивал он, чтобы две несовместимые друг с другом истории обе были правдивыми? Имеется внутреннее противоречие в утверждении, что падающий Стив погиб на горизонте и при этом прожил еще миллион лет. Элементарная логика говорит, что утверждение и его отрицание не могут вместе быть истинными. На самом деле я и сам задавался тем же вопросом.
На втором этаже физического факультета в Стэнфорде выставлена голограмма. Свет, отражающийся от двумерной пленки с беспорядочным узором темных и светлых пятнышек, фокусируется в пространстве и создает висящее в воздухе трехмерное изображение молодой симпатичной девушки, подмигивающей вам, когда вы проходите мимо.
Можно обойти вокруг иллюзорного образа и осмотреть его с разных сторон. Мы с Ларусом и Джоном время от времени задерживались возле голограммы. Теперь я в шутку сказал Аарусу, что поверхность черной дыры — горизонт — должна быть голограммой, двумерным снимком всей трехмерной материи внутри черной дыры. Ларус на это не купился. Я тоже, по крайней мере не в тот раз. На самом деле я не понял смысла своего собственного замечания.
Но я продолжал думать об этом какое-то время и нашел более серьезный ответ. Физика — это экспериментальная и наблюдательная наука; если отбросить все умственные построения, то в остатке будет совокупность экспериментальных данных, а также математические уравнения, которые эти данные обобщают. Подлинное противоречие — это не расхождение между двумя умозрительными картинами. Такие картины больше связаны с ограничениями, наложенными нашим эволюционным прошлым, нежели с реальной действительностью, которую мы пытаемся понять. Подлинное противоречие обнаруживается лишь тогда, когда эксперименты приводят к противоречащим результатам. Например, если два одинаковых термометра, опущенных в сосуд с горячей водой, дадут разное значение температуры, мы вряд ли признаем такой результат; нам будет ясно, что с одним из термометров что-то не в порядке. Умозрительные представления важны для физики, но, если кажется, что они ведут к противоречию, когда в данных противоречия нет, значит, неверны именно представления.
Можем ли мы прийти к подлинному противоречию, если постулируем, что обе связанные с черной дырой истории — и Стива, и графа — истинны? Чтобы выявить противоречие, два наблюдателя должны встретиться после завершения эксперимента и сравнить свои записи. Но если одни наблюдения сделаны под горизонтом, а другой наблюдатель никогда его не пересекал, значит, по самому определению горизонта, они не могут встретиться, чтобы сравнить свои данные. Так что в реальности нет противоречия, есть только плохая умозрительная картина.
Джон спросил меня, что бы сказал на это Хокинг. Мой ответ оказался весьма точным: «О, Стивен бы улыбнулся».
Слово «дополнительность» ввел в физику легендарный отец-основатель квантовой механики Нильс Бор. Бор и Эйнштейн были друзьями, но они постоянно спорили о парадоксах и кажущихся противоречиях этой теории. Истинным отцом квантовой механики был Эйнштейн, но он ее терпеть не мог и приложил все свои беспримерные интеллектуальные силы к тому, чтобы пробить брешь в ее логических основаниях. Раз за разом Эйнштейн думал, что нашел противоречие, и раз за разом Бор отражал его атаки своим излюбленным оружием — дополнительностью.
Я не случайно использовал дополнительность для описания того, как можно разрешить парадоксы квантовых черных дыр. В 1920-х годах квантовая механика была полна кажущихся противоречий. Одним из них была нерешенная проблема света: является он волнами или частицами? Иногда кажется, что свет ведет себя одним способом, а иногда — другим. Утверждать, что свет является и тем и другим — и волнами, и частицами, — было бессмысленно. Как узнать, когда использовать уравнения для частиц, а когда волновые уравнения?
Другая загадка. Мы считаем, что частицы — это крошечные объекты, которые занимают определенное положение в пространстве. Но частицы могут передвигаться из одной точки в другую. Описывая их движение, мы указываем, как быстро и в каком направлении они движутся. Почти по определению, частица — это вещь, обладающая положением и скоростью. Но нет! Принцип Неопределенности Гейзенерга — закон, который, кажется, бросает вызов самой логике, — утверждает, что положение и скорость не могут быть определены совместно. Еще один абсурд.
Стало происходить что-то очень странное. Казалось, здравый смысл спускают в канализацию. Конечно, реальных противоречий в экспериментальных данных не было; каждый эксперимент давал определенный результат, показания на шкалах, числа. Но в умозрительной картине что-то было глубоко ошибочно. Модель реальности, прошитая в наших мозгах, не могла охватить истинную природу света и неопределенный характер движения частиц.
Мое отношение к парадоксам черных дыр было таким же, как отношение Бора к парадоксам квантовой механики. В физике противоречие является противоречием, только если оно приводит к несовместимым экспериментальным результатам. Бор также всегда стремился к точному использованию слов. Если слова используются неточно, это иногда приводит к кажущимся противоречиям там, где их на самом деле нет.
Дополнительность касается неверного использования союза «и». «Свет — это волны, и свет — это частицы». «Частица имеет положение и скорость». Фактически Бор сказал: избавьтесь от «и», замените его на «или»: «Свет — это волны, или свет — это частицы». «Частица имеет положение или скорость».
Бор имел в виду, что в одних экспериментах свет ведет себя как совокупность частиц, а в других — как волна. Нет такого эксперимента, где бы он вел себя как то и другое одновременно. Если измерять определенные волновые характеристики, скажем значение электрического поля вдоль волны, вы получите ответ. Если измерять свойство, характеризующее частицы, например положение фотонов в световом пучке очень низкой интенсивности, вы тоже получите ответ. Но не пытайтесь измерять волновые свойства одновременно с измерением свойств частиц. Одно встанет на пути у другого. Можно измерить волновые свойства или корпускулярные свойства. Бор говорил, что ни волны, ни частицы не являются полным описанием света, но они дополняют друг друга.
В точности то же самое верно и относительно положения и скорости. Некоторые эксперименты чувствительны к положению электрона: например, выявляющие точку, которую электрон подсветил, столкнувшись с телевизионным экраном. Другие эксперименты чувствительны к его скорости, например выявляющие, насколько сильно искривляется траектория электрона при прохождении вблизи магнита. Но ни один эксперимент не может дать точное положение и скорость электрона.
Но почему мы не можем одновременно измерить положение и скорость частицы? Измерение скорости объекта — это, в действительности, просто измерение его положения в два последовательных момента времени, чтобы выяснить, насколько значительно он переместился за это время. Если можно измерить положение частицы один раз, то, естественно, это можно сделать дважды. Мысль о том, что положение и скорость нельзя измерить одновременно, кажется противоречием. Похоже на то, что Гейзенберг говорит ерунду.
Стратегия Гейзенберга была ярким примером того образа мысли, который сделает дополнительность столь убедительной. Как и Эйнштейн, он стал мысленным экспериментатором. Как, спрашивал он, можно было бы на практике попытаться измерить одновременно положение и скорость электрона?
Он начал с того, что надо измерить положение в два разных момента времени, чтобы из этих данных вывести скорость. Более того, надо измерить положение, не возмущая движение электрона, в противном случае возмущения могут исказить измерение первоначальной скорости.
Самый прямой способ измерить положение объекта — посмотреть на него. Другими словами, направить на него свет и по отраженному свету определить положение. В действительности наши глаза и мозг имеют специальную встроенную систему для определения положения объектов по их образам на сетчатке глаза. Это одна из «аппаратных» возможностей, которыми нас наделила эволюция.
Гейзенберг представил, что смотрит на электрон в микроскоп.
Идея была в том, чтобы очень аккуратно коснуться электрона световым лучом, так аккуратно, чтобы толчок не изменил его скорость, а затем сфокусировать луч и построить изображение. Но Гейзенберг обнаружил, что попался в ловушку свойств света. Прежде всего, рассеяние света одним электроном — это задача для корпускулярной теории электромагнитного излучения. Даже при самом аккуратном обращении с электроном Гейзенберг не мог попасть в него менее чем одним фотоном. Этот фотон должен быть очень слабым, то есть иметь очень низкую энергию. Столкновение с энергичным фотоном вызвало бы нежелательный сильный толчок.
Все изображения, созданные волнами, по своей природе размыты, и чем больше длина волны, тем менее резкой становится картинка. Радиоволны имеют наибольшую длину волны — от 30 сантиметров и более. Они дают замечательные изображения астрономических объектов, но если попробовать снять портрет в радиоволнах, он выйдет совсем нечетким.
Микроволны — следующие в направлении более коротких волн. Портрет, построенный сфокусированными 10-сантиметровыми микроволнами, по-прежнему был бы слишком размыт, чтобы различить на нем черты лица. Но когда длина волны уменьшается до пары сантиметров, становятся различимы нос, глаза, рот.
Простое правило: нельзя добиться фокусировки лучше, чем длина волны излучения, которое строит изображение. Размеры деталей лица — несколько сантиметров, и они становятся различимы лишь в более коротких волнах. Когда длина волны уменьшается до десятых долей сантиметра, лицо становится совершенно четким, хотя, возможно, мелкие прыщики на нем и не будут видны.
Допустим, Гейзенберг хочет получить достаточно четкое изображение электрона, чтобы увидеть его положение с точностью до микрона[101]. Для этого ему придется использовать свет с длиной волны меньше микрона.
И вот тут ловушка захлопывается. Помните, в главе 4 говорилось, что чем короче длина волны фотона, тем выше его энергия? Например, энергия одного радиоволнового фотона столь мала, что он не окажет на атом почти никакого влияния. Напротив, энергии одномикронного фотона будет достаточно, чтобы возбудить атом, забросив электрон вверх по энергетической лестнице квантовых орбит. Ультрафиолетовый фотон с длиной волны в десять раз меньше будет достаточно энергичен, чтобы вовсе вышибить электрон из атома. Так что Гейзенберг оказался в ловушке. Если он хочет определить положение электрона с высокой точностью, за это надо заплатить цену. Ему придется использовать очень энергичный фотон, который «толкнет» электрон и непредсказуемым образом изменит его движение. Если же использовать слабый фотон с небольшой энергией, то лучшее, что можно получить, это очень туманное представление о местоположении электрона. Настоящая уловка-22[102].
Возможно, у вас возникнет вопрос: а можно ли вообще измерить скорость электрона? Ответ — можно. Для этого нужно измерить его положение дважды, но с очень низкой точностью. Например, можно использовать длинноволновый фотон, чтобы получить очень размытый образ, а затем повторить эту операцию спустя очень длительное время. Измеряя два размытых образа, можно точно определить скорость, но ценой потери точности определения положения.
Что бы ни придумывал Гейзенберг, ему никак не удавалось одновременно определить положение и скорость электрона. Я представляю себе, как он и, конечно, его наставник Бор стали задумываться, есть ли вообще какой-то смысл считать, что электрон обладает одновременно положением и скоростью. Согласно философии Бора, электрон можно описать как имеющий положение, которое можно точно измерить, используя очень коротковолновый фотон, или можно описать его как имеющий скорость, измеримую с помощью длинноволновых фотонов, но не как то и другое сразу. Измерение одной характеристики препятствует измерению другой. Бор выразил это, сказав, что два типа знания — положение и скорость — это взаимно дополнительные аспекты электрона. И конечно, в рассуждениях Гейзенберга нет ничего специфичного именно для электрона; они в той же мере приложимы к протону, атому или шару для боулинга.
История про графа, императора и Стива кажется внутренне противоречивой. Но наблюдение битов информации внутри черной дыры и наблюдение их вовне горизонта несовместимы точно так же, как несовместимы друг с другом измерения положения и скорости. Никто не может быть одновременно и вне, и внутри горизонта. По крайней мере, это было утверждение, которое я собирался сделать в Санта-Барбаре.
Черные дыры реальны. Вселенная полна ими, и они относятся к числу самых впечатляющих и неистовых космических объектов. Но в 1993 году на конференции в Санта-Барбаре большинство физиков не слишком интересовались астрономическими черными дырами. Их больше заботили не телескопические наблюдения, а мысленные эксперименты. И информационный парадокс наконец привлек к себе самое серьезное внимание.
Конференция была скромной — пожалуй, не большее сотни участников. Когда я вошел в аудиторию, то увидел множество знакомых лиц. С краю сидел Стивен в своем инвалидном кресле. Якоб Бекенштейн, с которым я никогда прежде не встречался, находился в центре аудитории. Местная команда — Стив Гиддингс, Джо Полчински, Энди Строминджер и Гэри Хоровиц — вся была на виду. Им предстояло сыграть большую роль в грядущей революции, но тогда они были противниками, одураченными пехотинцами армии информационных лузеров[103]. Справа в первом ряду сидел Герард т' Хоофт, готовый к битве.
Вот что я запомнил из выступления Хокинга. Стивен сидел, неудобно развалившись в своем колесном кресле, голова его была слишком тяжела, чтобы держать ее прямо, все остальные замолкли в напряженном ожидании. Он находился на правой стороне сцены, откуда ему был виден большой проекционный экран, а сам он мог следить за аудиторией. К этому времени Стивен утратил возможность говорить собственным голосом. Его электронный голос вещал заранее записанный текст, а ассистент манипулировал со слайд-проектором, стоя позади него. Проектор был синхронизирован с записанным сообщением, и непонятно, что там вообще делал ассистент.
Несмотря на механический тембр, его голос был полон личного звучания. А улыбка Стивена демонстрировала полную уверенность и убежденность. В его выступлениях есть загадка: как присутствие неподвижного хрупкого тела вдыхает столько жизни в мероприятия, которые в ином случае казались бы скучными? Едва заметная мимика Стивена несет такой магнетизм и харизму, какие мало у кого встречаются.
Сам доклад не был особо запоминающимся, по крайней мере если говорить о его содержании. Стивен рассказывал о том, о чем и собирался и о чем я говорить не хотел, — о CGHS-теории и о том, как CGHS ее развили (он великодушно упомянул RST за найденную ошибку). Его основное сообщение состояло в том, что если корректно проделать все выкладки в CGHS, то результаты подтверждают его собственную теорию о том, что информация не может высвечиваться из черной дыры. Для Стивена урок CGHS состоял в том, что математика этой теории просто доказывала его точку зрения. Для меня урок был в том, что не только умозрительная картина дефектна, но и математические основания квантовой гравитации, по крайней мере в том виде, в каком они вошли в CGHS, внутренне противоречивы.
Самым неожиданным в докладе Стивена стал последовавший за ним период вопросов и ответов. Один из организаторов конференции поднялся на сцену и предложил аудитории задавать вопросы. Обычно вопросы бывают техническими, и порой они оказываются довольно длинными, поскольку спрашивающий хочет показать, что он понимает суть дела. Но затем в аудитории повисает мертвая тишина. Сотня поклонников превращается в молчаливых монахов в странно затихшем соборе. Стивен сочиняет ответ. Метод, которым он коммуницирует с внешним миром, удивителен. Он не может говорить или поднять руку, чтобы подать знак. Его мускулы настолько атрофированы, что вряд ли могут произвести хоть какое-то усилие. У него не хватает ни сил, ни координации, чтобы печатать на клавиатуре. Если память мне не изменяет, в то время он подавал сигналы, слегка надавливая на джойстик.
На маленьком компьютерном экране, закрепленном на подлокотнике его кресла, более или менее непрерывно бегут последовательности слов и вспыхивают буквы. Стивен выдергивает их поодиночке и сохраняет в компьютере, формируя предложение или пару. Это может занять до десяти минут. Пока оракул составляет ответ, в комнате стоит тишина, как в склепе. На фоне нарастающего ожидания и беспокойства все разговоры прерываются. Наконец, появляется ответ: это может быть не более чем «да», или «нет», возможно, фраза или пара фраз.
Я видел, как это происходит в помещении с сотней физиков, а равно на небольшом стадионе с пятью тысячами зрителей, включая южноамериканского президента, министра обороны и нескольких высших генералов. Моя реакция на эту невероятную тишину варьировалась от удивления до серьезного раздражения (почему мое время растрачивается на этот фарс?). Мне всегда хотелось пошуметь, может быть, просто поговорить с соседом, но я никогда этого не делал.
Что же в Стивене вызывает такое восхищенное внимание, какого мог бы удостоиться святой, раскрывающий глубочайшие секреты Бога и Вселенной? Хокинг высокомерный человек, самовлюбленный и предельно эгоцентричный. Впрочем, это верно в отношении половины людей, которых я знаю, включая меня самого. Я думаю, что ответ на этот вопрос отчасти связан с магией и таинственностью бестелесного интеллекта, который перемещается по Вселенной в инвалидном кресле. Но отчасти дело в том, что теоретическая Физика — это небольшой мир, состоящий из людей, знающих друг друга много лет. Для большинства из нас это продолжение семьи, и Стивен — любимый и глубоко уважаемый член этого семейства, несмотря даже на то что порой он вызывает фрустрацию и раздражение. Нас всех очень тревожит, что он не может общаться иначе, как тем скучным и долгим способом, который он использует. Поскольку мы ценим его точку зрения, то сидим и тихо ждем. Я также думаю, что степень концентрации Стивена в процессе составления ответа, вероятно, столь высока, что он даже не замечает странной тишины вокруг.
Как я уже сказал, доклад был незапоминающимся. Стивен сделал свои обычные заявления: информация уходит в черную дыру и никогда не возвращается. К тому времени, когда черная дыра испаряется, она полностью пропадает.
Сразу вслед за Хокингом выступал Герард т' Хоофт. Он тоже очень харизматичный человек, вызывающий всеобщее восхищение физического сообщества. Выступления Герарда производят колоссальный эффект и заслужили ему огромное уважение. Хотя его не всегда легко понять, с ним не связано такой «тайны оракула», как с Хокингом. Он довольно прямолинейный и вполне ощутимый датчанин.
Презентации Герарда всегда забавны. Он любит использовать свое тело, иллюстрируя разные моменты, и умеет готовить впечатляющую графику. Спустя много лет я помню видео, которое он подготовил для иллюстрации горизонта черной дыры. Сфера была случайным образом заполнена черными и белыми пикселами. По ходу видео пикселы начали мигать, переходя из черных в белые и обратно. Картинка выглядела как белый шум на неисправном телевизоре. Было совершенно очевидно, что идеи 'т Хоофта похожи на мои собственные в том, что касается существования активного слоя быстро меняющихся атомов горизонта, порождающих энтропию черной дыры. (Я уже опасался, что он перехватит мои аплодисменты, предложив собственную версию дополнительности черныхдыр» но если он об этом и думал, то не сказал.)
т' Хоофт — чрезвычайно глубокий и оригинальный мыслительно, как и очень многие оригиналы, он часто остается недопонятым. После его доклада о черных дырах стало ясно, что он утратил контакт с аудиторией. Не то чтобы слушающим стало скучно — вовсе нет, — но они не понимали его логики. Напомню: горизонт черной дыры считался пустым пространством, а не дефектным телеэкраном.
В общем, я сомневаюсь, что хоть один человек изменил свое мнение относительно судьбы информации в черной дыре. Никто не опрашивал аудиторию, но я бы оценил, что к этому моменту счет был где-то 2:1 в пользу Хокинга.
Что показалось мне удивительным в течение всей остальной части конференции, так это упорный отказ рассматривать верное решение парадокса. Большинство докладчиков упоминали о трех возможных решениях.
1. Информация уходит с хокинговским излучением.
2. Информация пропадает.
3. Информация в итоге удерживается в особом крошечном остатке черной дыры, который сохраняется после испарения. (Обычно остаток был не больше планковского размера и не тяжелее планковской массы.)
Один за другим докладчики повторяли эти три возможности и сразу отбрасывали первую из них. Среди выступающих сложился консенсус: информация или теряется, как настаивал Хокинг, или скрывается в некоем крошечном остатке, способном поглотить неограниченное количество информации. Возможно, были и отдельные защитники теории дочерних вселенных, но я этого не помню. Почти никто, за исключением 'т Хоофта и еще пары человек, не выражал уверенности в обычных законах информации и энтропии.
Дон Пейдж ближе всех подошел к выражению такой уверенности. Пейдж — дружелюбный человек-медведь с Аляски, обладающий колоссальным аппетитом. Очень подвижный, шумный, поклонник всякого экстрима, Дон — это ходячее противоречие, по крайней мере на мой вкус. Он выдающийся физик и глубокий мыслитель. У него очень впечатляющий уровень понимания квантовой теории Ноля, теории вероятности, информации, черных дыр и общих основ Научного метода познания. Он также евангельский христианин. Однажды он потратил больше часа, объясняя мне с применением тематических выкладок, почему вероятность того, что Иисус — Сын Божий, превышает 96 процентов. Но его физика и математика не идеологизированы и блестящи. Его работы оказали глубокое влияние не только на мои представления о черных дырах, но и на всю эту область знания.
В своем выступлении Дон повторил мантру о трех возможностях, но он, похоже, куда менее других был склонен отбрасывать первый вариант. Мне казалось, он действительно верил, что черные дыры должны уважать обычные законы природы, требующие, чтобы информация утекала при испарении. Но он тоже не видел, как примирить это с принципом эквивалентности. Просто поразительно, насколько невосприимчивы были тогда физики к возможности утечки информации с хокинговским излучением наподобие того, как она улетучивается с выкипающей из чайника водой.
Битва при черной дыре достигла мертвой точки. Ни одна из сторон, похоже, не могла повлиять на другую. На самом деле, дым над полем битвы стоял такой плотный, что трудно было различить сражающиеся стороны. Если не считать Хокинга и 'т Хоофта, остальные, по сложившемуся у меня впечатлению, представляли собой множество шатающихся контуженых солдат, пребывающих в полной дезориентации.
Мой доклад был назначен на следующий день. Я чувствовал себя во многом как Шерлок Холмс, говорящий Ватсону: «Когда вы исключили все невозможное, то, что осталось, даже самое невероятное, и есть истина». Поднимаясь для выступления, я чувствовал, что все исключено, кроме одной возможности — возможности, которая, похоже, звучит столь невероятно, что кажется нелепостью. Тем не менее, несмотря на всю абсурдность дополнительности черных дыр, эта идея верна. Все альтернативы относятся к разряду невозможного.
«Меня не беспокоит, согласитесь ли вы с тем, что я скажу. Я только хочу, чтобы вы запомнили сказанное», — этими двумя фразами я начал выступление; четырнадцать лет спустя[104] я все еще их помню.
Тогда, используя физическую терминологию, я обрисовал два несовместимых исхода, содержащихся в истории про Стива. «Очевидно, что по крайней мере один из финалов должен быть ошибочным, поскольку в них утверждаются противоположные вещи», — в зале согласно закивали. Но дальше я произнес: «Тем не менее я пришел сказать вам невозможное: ни одна из историй не ложная. Они обе истинные — дополнительным образом».
Объяснив, каким образом Бор использовал термин дополнительность, я показал, что в случае черной дыры экспериментатор стоит перед выбором: остаться вне черной дыры и регистрировать данные на безопасном расстоянии от горизонта или прыгнуть в черную дыру и наблюдать все изнутри. «Вы не можете сделать то и другое», — подчеркнул я[105].
Представьте, что к вашему дому доставили пакет. Ваша подруга, проходя мимо, видит, что почтальон не смог его вручить и отнес обратно в машину. В это же время вы, находясь дома, открываете дверь и забираете пакет из рук почтальона. Я думаю, все согласятся, что оба этих наблюдения не могут быть истинными. Кто-то ошибается.
Почему с черными дырами должно быть иначе? Я предложил проследить историю с пакетом немного дальше. В переводе с технического жаргона и математических символов эта история продолжается примерно так. Вечером в тот же день вы покидаете дом и встречаетесь со своей подругой в кафе. Она говорит: «Я шла днем мимо твоего дома и видела, что почтальон пытался доставить пакет. Но никто ему не открыл, так что он отнес пакет обратно в машину». — «Нет, ты ошибаешься, — отвечаете вы. — Он доставил пакет. Это было новое платье, которое я заказал по каталогу». Очевидно, что противоречие стало явным. Оба наблюдателя знают, что имеет место несовместимость. На самом деле вам даже не обязательно выходить из дома, чтобы обнаружить противоречие. Разбор по телефону тоже его выявил бы.
Но горизонт черной дыры принципиально отличается от входа в ваш дом. Образно говоря, это однонаправленная дверь: можно войти, но нельзя выйти. По самому определению горизонта, никакое сообщение не может вырваться изнутри горизонта наружу. Наблюдатель вне горизонта навсегда отрезан от всего и всех внутри, причем не толстыми стенами, а фундаментальными законами физики. Самое последнее звено в цепочке, приводящей к противоречию, — сведение двух якобы несовместимых версий в единое наблюдение — физически неосуществимо.
Я бы хотел добавить к этому кое-какие философские ремарки о том, как эволюция привела нас к той умозрительной картине, которая руководит нашими действиями, когда мы входим в пещеры, палатки, дома и двери, но вводит в заблуждение, когда применяется к черным дырам и горизонтам. Однако такие ремарки были бы проигнорированы. Физики хотят фактов, уравнений и данных, а не философии и научно-популярной эволюционной психологии.
Стивен улыбался по ходу моего сообщения, но я сильно сомневался, что он со мной согласен.
Затем я использовал аналогию с каплей чернил, падающей в сосуд с водой, чтобы проиллюстрировать, как растянутый горизонт может поглотить информацию, затем перемешать ее и, наконец, подобно тому как вода испаряется из сосуда, информация может быть унесена хокинговским излучением. Для всякого, кто находится вне черной дыры, это все довольно обыденно — черные дыры и ванны не так уж сильно различаются, сказал я.
Аудитория была в беспокойстве; несколько рук неуверенно поднялись для протеста. Все знали, как информация испаряется из ванны, но что-то было упущено: что будет с тем, кто падает в черную дыру? Промокнет ли он внезапно, достигнув растянутого горизонта? Нет ли тут нарушения принципа эквивалентности?
Так что я перешел к другой части истории: «Для всякого, кто падает в черную дыру, горизонт выглядит совершенно обычным пространством. Нет растянутого горизонта, нет невероятно горячих микроскопических объектов, нет кипящего варева — ничего необычного: просто пустое пространство». Далее я объяснил, почему никогда не будет зарегистрировано никакого противоречия.
Я не знаю, продолжал Стивен улыбаться или нет. И, как я узнал позже, большинство релятивистов в аудитории подумало, что у меня не все дома.
Даже во время доклада было видно, что я ухватил внимание публики. Герард с его колючим характером сидел в первом ряду, покачивая головой и хмурясь. Я знал, что из всех присутствующих он лучше всех понимает, о чем я говорю. Я также знал, что он согласен со мной. Но ему бы хотелось, чтобы все это было подано его способом.
Больше всего меня интересовала реакция людей из Санта-Барбары — Гиддингса, Хоровица, Строминджера и особенно Полчински. Я не смог ее уловить, пока был на сцене, но позднее выяснил, что мои аргументы ни в малейшей степени на них не повлияли.
Но нашлось и двое симпатизировавших мне слушателей. В кафетерии, на ланче после моего выступления Джон Прескилл и Дон Пейдж подошли и сели со мной. Гиперактивный Дон принес поднос с огромной горой еды, включая три огромных десерта. (Было ясно, откуда берется вся его энергия.) Дон может говорить громко и фанатично, но он также очень хороший слушатель, и тогда он находился именно в этом режиме. Я уже знал, что ему понравилась моя идея о том, что черные дыры — более или менее обычные объекты, когда дело доходит до информации. Он открыто говорил об этом в своем собственном энергичном выступлении.
Рядом с ним Джон Прескилл выглядел более сдержанным, хотя ни в коем случае не отстраненным. Худощавый человек с ироничным чувством юмора, Джон был примерно в том же возрасте, что и Джо Полчински, и занимал тогда место профессора в Калифорнийском технологическом институте. Калтех был домом двух величайших физиков столетия — Мюррея Гелл-Манна и Дика Фейнмана. Сам Джон былхорошо известным физиком с репутацией исключительно точного стрелка. Подобно Сиднею Коулмену, Джон — один из тех людей, чья ясность мысли наделяет их особым моральным авторитетом. Для меня беседы с Джоном всегда были очень полезны. Разговор, который состоялся в тот день, стал буквально откровением. Но прежде, чем перейти к объяснению, я должен немного подробнее рассказать о дополнительности черных дыр.
Одинокий атом водорода падает в черную дыру. Первая наивная кар. тина: крошечный атом следуетпо траектории, пересекающей горизонт, совершенно без помех. В классической физике атом пересечет горизонт в строго определенном месте — в точке, размером не больше самого атома. Это кажется верным, поскольку, согласно принципу эквивалентности, в момент, когда частица водорода пересекает точку невозврата, не должно случиться ничего катастрофического.
Но это слишком наивно. Согласно дополнительности черных дыр, наблюдатель, следящий за процессом извне, увидит, как атом входит в очень горячий слой (растянутый горизонт), подобно частице, влетающей в сосуд с горячей водой. Упав в слой горячего вещества, атом со всех сторон бомбардируется неистовыми энергетическими степенями свободы. Сначала он получает удар слева, потом сверху, потом снова слева, затем справа. Атом шатается, как пьяный матрос. Броуновское движение очень метко называют случайным блужданием.
Броуновское движение
Можно ожидать, что с атомом произойдет то же самое, когда он упадет в слой горячих степеней свободы, из которых состоит растянутый горизонт, — он станет шататься по всему горизонту.
Но даже эти — слишком упрощенная картина. Растянутый горизонт столь горяч, что атом будет разорван на части — ионизирован, если пользоваться научной терминологией, — и электрон с протоном станут независимо шататься по горизонту. Даже электроны и кварки могут быть разорваны на более фундаментальные составляющие. Заметьте, что всё это считается происходящим до того, как атом пересечет горизонт. Кажется, это Дон, приканчивая третий десерт, язвительно спросил: не представляет ли это затруднений для дополнительности? Похоже, что у атома должно быть два описания даже до того, как он пересечет горизонт. В одном атом ионизирован и шатается по всему горизонту. А в другом атом попадает в совершенно невозмущенном виде прямо в нужную точку горизонта. Почему кто-то не может извне понаблюдать за атомом и увидеть, что ничего катастрофического с ним не происходит? Это раз и навсегда опровергло бы дополнительность черных дыр.
Когда я начал объяснять, вскоре стало ясно, что Джон Прескилл обдумал этот вопрос и пришел к тому же выводу, что и я. Мы оба начали с того, что атом не может быть ионизирован, пока не достигнет точки, где температура вблизи горизонта поднимается примерно до 100 000 градусов. Это случается очень близко к горизонту, примерно в миллионной доле сантиметра от него. Именно там мы должны наблюдать электрон. Это не выглядит большой проблемой; миллионная доля сантиметра — не такая ужасно малая величина.
Что бы тут сделал Гейзенберг? Ответ, конечно, состоит в том, что он достал бы свой микроскоп и подсветил бы атом светом подходящей длины волны. В данном случае, чтобы увидеть атом, когда он находится в миллионной доле сантиметра от горизонта, он должен использовать фотоны с длиной волны 10-6 сантиметра. А теперь мы попадаем в привычную ловушку: фотон со столь малой длиной волны несет большую энергию; в действительности у него такая энергия, что при попадании в атом последний будет ионизирован. Другими словами, любая попытка доказать, что атом не был ионизирован горячим растянутым горизонтом, сама обернется ионизацией атома. Пойдя еще дальше, мы обнаружим, что любая попытка увидеть, действительно ли электрон и протон совершают случайное блуждание по горизонту, приведет к выбросу частиц, которые будут разбросаны по всему горизонту.
Я не очень хорошо помню эту дискуссию, но припоминаю, что Дон очень оживился и произнес своим самым уверенным тоном, что я не шутил, когда называл это дополнительностью. Это в точности та самая вещь, о которой говорили Бор и Гейзенберг. На самом деле попытки экспериментально опровергнуть дополнительность черных дыр очень похожи на попытки опровержения принципа неопределенности — сам эксперимент порождает ту неопределенность, которую призван устранить.
Мы обсудили, что случится, когда атом еще более приблизится к горизонту. Гейзенберговский микроскоп должен будет использовать еще более энергичные кванты. В конце концов, чтобы следить за атомом на расстоянии планковской длины от горизонта, нам понадобится обстреливать его фотонами с энергией даже больше планковской. О том, что собой представляют такие столкновения, никто ничего не знает. Ни один ускоритель в мире никогда не разгонял частицы до энергии сколько-нибудь близкой к планковской. Джон Уилер сформулировал эту идею как принцип:
Любое теоретическое доказательство того, что дополнительность черных дыр ведет к наблюдаемым противоречиям, непременно строится на произвольных допущениях о «физике за пределами планковского масштаба», или, иными словами, на допущениях о природе вещей, лежащих далеко за пределами нашего опыта.
Тогда Прескилл поднял вопрос, который меня взволновал. Допустим, в черную дыру сбросили бит информации. Согласно моей точке зрения, некто снаружи может собрать хокинговское излучение и в конце концов восстановить этот бит. Но, предположим, что, получив этот бит, он сам прыгнет в черную дыру, неся бит с собой. Окажется ли внутри две копии этого бита? Это как если бы после получения пакета от почтальона вы остались дома, а ваша подруга пришла к вам. Не возникнет ли противоречия, когда наблюдатели встретятся и сравнят свои записи внутри черной дыры?
Вопрос Джона меня потряс. Я не задумывался о такой возможности. Если кто-то внутри обнаружит две копии одного и того же бита, это будет нарушением принципа квантовой нексерокопируемости. Это был наиболее серьезный вызов дополнительности черных дыр, с которым мне пришлось столкнуться. Ответ, хотя я несколько недель этого не понимал, был отчасти дан самим Прескиллом. Он предположил, что две копии, возможно, не сумеют встретиться прежде, чем столкнутся с сингулярностью. Физика окрестностей сингулярности — это глубоко загадочная терра инкогнита квантовой гравитации. Это позволило бы нам уйти от проблемы. Если так, то идеи Дона Пейджа играли бы центральную роль в обезвреживании первоначальной бомбы Прескилла.
Что происходит с информацией, упавшей в черную дыру?
a) Она пропадает
b) Она выходит с хокинговским излучением
c) Она остается (доступна) в остатках черных дыр (включая остатки, которые распадаются в масштабах времени больших сравнительно с хокинговским излучением)
d) Нечто иное
Наша дискуссия неожиданно оборвалась, когда кто-то объявил, что вот-вот начнется следующий доклад. Думаю, это могла быть последняя лекция на конференции, и я не знал, о чем она и кто ее читает. Я был слишком обеспокоен вопросом Джона, чтобы сконцентрироваться. Но прежде чем конференция окончательно завершилась, один из организаторов прервал мои размышления. Джо Полчински поднялся и сказал, что хотел бы провести опрос: «Считаете ли вы, что информация теряется, когда черные дыры испаряются, как полагает Хокинг, или вы думаете, что она возвращается обратно, как утверждают 'т Хоофт и Сасскинд?» Я думал, что перед началом конференции голоса распределились бы со значительным перевесом в пользу Хокинга. Мне было крайне интересно узнать, склонны ли люди на конференции хотя бы колебаться по этому вопросу.
Участников попросили проголосовать за один из трех привычных вариантов плюс еще один. Вот описание предложенных вариантов.
1. Версия Хокинга: информация, которая падает в черную дыру, необратимо теряется.
2. Версия 'т Хоофта и Сасскинда: информация утекает назад вместе с фотонами и другими частицами хокинговского излучения.
3. Информация оказывается захваченной в крошечных остатках планковских размеров.
4. Нечто иное.
После каждого варианта Джо подсчитывал поднятые руки и записывал результаты на белой доске у входа в аудиторию. Кто-то потом сфотографировал эту доску. И благодаря Джо эти итоги сохранились.
Окончательные результаты:
♦ 25 голосов за потерю информации;
♦ 39 голосов за информацию, уходящую с хокинговским излучением;
♦ 7 голосов за остатки;
♦ 6 голосов за нечто иное.
Победа с минимальным перевесом — 39 голосов за то, что, по сути, было принципом дополнительности черных дыр, против 38 за все остальные варианты вместе взятые — это было не столь радостно, как может показаться. Что считать настоящей победой? 45 к32? 60 к 17? Имеет ли вообще значение, что думает большинство? Наука, в отличие от политики, как считается, не должна подчиняться общепринятым мнениям.
Незадолго до конференции в Санта-Барбаре я прочел книгу Томаса Куна «Структура научных революций»[106]. Вообще-то, как и большинство физиков, я не очень интересуюсь философией, но идеи Куна, похоже, пришлись точно в цель; они помогли сфокусировать мои собственные рассеянные мысли о путях развития физики в прошлом и, что более важно, о моих надеждах на ее развитие в 1993 году. Кун считал, что нормальное развитие науки — сбор экспериментальных данных и их интерпретация с помощью теоретических моделей и решения уравнений — иногда прерывается крупными сдвигами парадигмы. Сдвиг парадигмы — это не что иное, как замена одной картины мира другой. Место прежней концептуальной схемы занимает новый целостный способ думать о возникающих задачах. Дарвиновский принцип естественного отбора был сдвигом парадигмы; переход от пространства и времени к пространству-времени и далее к гибкому, эластичному пространству-времени — тоже; и, конечно, замена классического детерминизма логикой квантовой механики.
Научные сдвиги парадигм отличаются от тех, что бывают в искусстве и политике, где смена мнения, по сути, и есть лишь смена мнения. В противоположность этому никогда не случится поворота от законов движения Ньютона к механике Аристотеля. Я очень сильно сомневаюсь, что мы можем перестать признавать преимущество общей теории относительности над ньютоновской теорией гравитации, при том что первая дает точные предсказания движений в Солнечной системе. Прогресс — последовательная смена парадигм — это реальное развитие науки.
Конечно, наука — это человеческое предприятие, и в ходе мучительной борьбы за новые парадигмы мнения и эмоции могут быть столь же изменчивыми, как и в любом другом занятии. Но каким-то образом, когда все радикальные мнения отфильтрованы научным методом, остаются небольшие зерна истины. Они могут совершенствоваться, но, как правило, отката назад уже не бывает.
Я чувствовал, что Битва при черной дыре была классической борьбой за новую парадигму. Тот факт, что дополнительность черных дыр победила в опросе, не был доказательством какой-то реальной победы. Ведь те люди, на которых я больше всего хотел повлиять, — Джо Полчински, Гэри Хоровиц, Энди Строминджер и, самое главное, Стивен — проголосовали на стороне оппозиции.
В течение следующих недель мы с Ларусом Торласиусом совместно придумали и сформулировали ответ на вопрос Джона Прескилла Это заняло у нас некоторое время, но я уверен, что, если бы мой разговор с Прескиллом и Пейджем продлился еще полчаса, мы решили бы эту проблему еще тогда. Я считаю, что Джон фактически сам дал половину ответа Просто учтите, что биту информации требуется некоторое время на то, чтобы быть излученным из черной дыры. Джон предположил, что к тому времени, когда внешний наблюдатель восстановит этот бит и прыгнет в черную дыру, исходный бит уже давно будет в сингулярности. Единственный вопрос, который оставался: сколько времени понадобится, чтобы восстановить бит по испаряющемуся хокинговскому излучению.
Забавно, что ответ уже был дан в выдающейся статье, которая вышла за месяц до конференции в Санта-Барбаре. Из статьи вытекало, хотя это и не говорилось явно, что для восстановления одного бита информации нужно подождать, пока будет излучена половина хокинговских фотонов. При известном очень низком темпе испускания фотонов черными дырами на это понадобилось бы в случае Черной дыры звездной массы около 1068 лет — время, неизмеримо большее возраста Вселенной. Но достаточно лишь доли секунды Аля того, чтобы исходный бит был уничтожен в сингулярности. Очевидно, что нет никакой возможности извлечь бит из хокинговcкого излучения, затем прыгнуть с ним в черную дыру и там сравнить его с первым битом. Дополнительность черных дыр была спасена. Кто был автором блестящей статьи? Дон Пейдж.
Однажды в 1960-х годах я пошел на спектакль небольшого авангардного театра в Гринвич-Виллидж. Важным элементом представления — грубоватым юмором, как оказалось, — было то, что публику между актами вовлекали в работу по замене декораций вместо технического персонала.
Одной женщине предложили передвинуть кресло в глубь сцены, но только она к нему притронулась, оно превратилось в груду щепок. Кто-то схватил за ручку чемодан, но тот не сдвинулся с места. Мне поручили поднять и подать кому-то на невысоком балконе двухметровый валун. Ради сохранения общего настроения я обхватил его руками и сделал вид, что поднимаю на пределе своих сил. Мгновение настоящего когнитивного диссонанса наступило, когда камень легко взлетел в воздух, как будто он почти ничего не весил. Это была пустая оболочка из окрашенной бальзы.
Заложенная в наших головах связь между размером объекта и его весом должна быть одним из жестко прошитых инстинктов — частью нашего автоматического чувства физики. Соответственно, неправильная его работа должна бы означать серьезное повреждение мозга — если только человек не является квантовым физиком.
Одна из величайших работ по перепрошивке наших понятий, последовавшая за эйнштейновскими открытиями 1905 года, требовала отказа от инстинкта «большое — тяжелое, маленькое — легкое» и замены его прямо противоположным: «большое — легкое, маленькое — тяжелое». Как и во многих других случаях, Эйнштейн первым заподозрил эту зазеркальную инверсию логики. Что он тогда курил? Скорее всего, только свою трубку. Как всегда, далеко идущие выводы Эйнштейна вытекали из простейшего воображаемого эксперимента, который он поставил у себя в голове.
Данный мысленный эксперимент начинается с регулируемой коробки — пустой, за исключением нескольких фотонов, — которую можно по желанию делать больше или меньше. Ее внутренние стенки сделаны из идеально отражающих зеркал, так что фотоны, пойманные в коробку, носятся вперед-назад между зеркальными поверхностями и не могут выйти наружу.
Волна, заключенная в замкнутой области пространства, не может иметь длину больше размеров этой области. Попробуйте изобразить десятиметровую волну внутри метровой коробки.
Получается бессмыслица. Однако сантиметровая волна легко поместится в коробку.
Эйнштейн представил, что коробка делается все меньше и меньше, а фотоны при этом остаются внутри нее. При сжатии коробки фотоны не могут сохраняться неизменными. Единственная возможность состоит в том, что длина волны каждого фотона должна сокращаться вместе с коробкой. В конце концов окажется, что микроскопическая коробка заполнена очень высокоэнергичными фотонами — высокая энергия соответствует их очень малой длине волны. Дальнейшее сжатие коробки еще более повысит их энергию.
Но вспомним самую знаменитую формулу Эйнштейна Е = тс2. Если энергия внутри коробки растет, значит, увеличивается и ее масса. Так что чем меньше она становится, тем больше возрастет ее масса. Опять все происходит вопреки наивной интуиции. Физикам приходится переучиваться: малое — тяжелое, большое — легкое.
Связь между размером и массой проявляется и иным образом. Природа, похоже, построена иерархически, и на каждом следующем уровне она состоит из объектов все меньшего размера. Так, молекулы состоят из атомов; атомы — из электронов, протонов и нейтронов; протоны и нейтроны — из кварков. Эти уровни строения материи открыты учеными, которые сталкивали атомы-мишени с частицами и смотрели, что получится. Принципиально это не так уж сильно отличается от обычных наблюдений, когда свет (фотоны) отражается от объектов и затем фокусируется на фотопленке или на сетчатке глаза. Но, как мы видели, чтобы исследовать очень малые размеры, нам нужны очень энергичные фотоны (или другие частицы). Очевидно, что в момент, когда атом подвергается воздействию очень энергичного фотона, большая масса (по крайней мере, по меркам физики элементарных частиц) должна быть сконцентрирована в небольшом объеме.
Нарисуем график, показывающий соотношение между размером и массой/энергией. По вертикальной оси отложим величину того масштаба, которые пытаемся исследовать. По горизонтальной — массу/энергию фотона, которая нужна, чтобы различить объект.
Принцип ясен: чем меньше объект, тем большая масса/энергия нужна, чтобы его увидеть. На протяжении большей части XX века каждому студенту-физику приходилось прошивать у себя в голове эту обратную зависимость между размером и массой/энергией.
Эйнштейновская коробка с фотонами не была аномалией. Представление о том, что меньшее означает более массивное, пронизывает всю современную физику элементарных частиц. Но, по иронии судьбы, XXI век обещает отменить эту прошивку.
Чтобы понять почему, представьте, что мы хотим определить, что происходит (если происходит) в масштабе, в миллион раз меньшем планковской длины. Возможно, иерархическая структура природы продолжается и на такой глубине. Стандартной стратегией XX века было бы нащупать какой-нибудь объект фотоном с энергией в миллион раз больше планковской. Но эта стратегия дала бы обратный эффект.
Что я хочу этим сказать? Хотя мы, вероятно, никогда не сможем разогнать частицы до планковской энергии, нам известно, что бы случилось, окажись одна из них в миллион раз энергичнее. Когда столь большая масса сосредоточена в таком маленьком объеме, там образуется черная дыра. Мы будем разочарованы, поскольку внутри горизонта этой черной дыры скроется все, что мы собирались разглядеть. По мере того как мы заглядываем во все меньшие и меньшие масштабы, наращивая энергию фотонов, горизонт будет становиться все шире и шире, скрывая все больше и больше, — еще одна уловка-22.
Так что же получится в результате столкновения? Хокинговское излучение, и больше ничего. Но по мере увеличения размеров черной дыры длина волны хокинговских фотонов будет расти. Вместо четкого изображения крошечного субпланковского объекта будет получаться все более размытое изображение, сформированное длинноволновыми фотонами. Поэтому максимум, на что можно рассчитывать при увеличении энергии столкновений, — это переоткрытие свойств природы в больших Масштабах. Таким образом, истинный вид графика «размеры — энергия» примерно такой.
Нижний предел размеров достигается на планковском масштабе, ничего меньше обнаружить невозможно, а дальше новая прошивка совпадает с доиндустриальной: большое = тяжелое. Таким образом, победный марш редукционизма — идеи о том, что все вещи сделаны из меньших вещей, — должен закончиться на планковском масштабе.
Термины ультрафиолетовый (УФ) и инфракрасный (ИК) стали использоваться в физике расширительно, по отношению к своему исходному значению коротко- и длинноволнового света. Ввиду характерной для XX века связи между размерами и энергией физики часто используют эти слова для обозначения высоких (УФ) и низких (ИК) энергий. Однако новая прошивка все перемешала: за пределами планковской массы высокая энергия означает бóльшие размеры, а низкая — меньшие. Эта путаница нашла отражение в терминологии: новый тренд, состоящий в том, чтобы приравнивать большие размеры и большие энергии, стали бестолково называть инфракрасно-ультрафиолетовым соединением[107].
Отчасти это было от недостатка понимания инфракрасно-ультрафиолетового соединения, которое дезориентировало физиков относительно природы падения информации на горизонт. В главе 15 мы воображали применение микроскопа Гейзенберга для наблюдения за атомом, падающим в направлении черной дыры. По мере приближения атома к горизонту для того, чтобы его различить, требуются фотоны все большей энергии. В конце концов эта энергия станет настолько большой, что столкновение фотона с атомом приведет к образованию большой черной дыры. Тогда изображение можно будет сформировать, собрав длинноволновое хокинговское излучение. В итоге, вместо того чтобы стать более четким, изображение атома будет все сильнее размываться вплоть до того, что атом будет казаться размазанным по всему горизонту. Извне это будет выглядеть, как будто — используем уже знакомую аналогию — капля чернил растворяется в ванне с горячей водой.
Идея дополнительности черных дыр, даже если она и выглядит возмутительной, по-видимому, внутренне непротиворечива. К 1994 году я захотел пошатнуть уверенность Хокинга и сказать ему: «Смотри, Стивен, похоже, вся твоя работа лишается основания!» Я вскоре попытался это сделать, но безуспешно. В продлившейся месяц осаде хватало юмора и пафоса. Отвлечемся ненадолго от физики, и я расскажу о моем тогдашнем разочаровании.
Крошечная белая точка разрослась настолько, что заслонила мне весь мир. Но в отличие от наваждения Ахава мое не было стотонным китом; это был стофунтовый физик-теоретик в кресле с моторчиком. Мои мысли редко удалялись от Стивена Хокинга с его ошибочными идеями о разрушении информации внутри черных дыр. Для моего разума больше не существовало сомнений относительно истины, но я был поглощен необходимостью заставить Стивена это увидеть. У меня не было желания загарпунить или даже унизить его; я хотел только, чтобы он увидел факты так, как видел их я. Хотелось, чтобы он узрел глубокие следствия, вытекающие из его собственного парадокса.
Больше всего меня беспокоило то, что многие эксперты — в сущности, все или почти все релятивисты — принимали выводы Стивена. Мне было непонятно! как он и все остальные могут быть настолько самодовольными. Утверждение Стивена о наличии парадокса и о том, что он может предвещать революцию, были верны. Но почему тогда он и все остальные просто проходят мимо?
Хуже того, я чувствовал, что Хокинг и релятивисты беспечно отбрасывали одну из опор науки, ничего не предлагая взамен. Стивен сделал попытку со своей доллар-матрицей, но потерпел неудачу — ее последовательное применение вело к катастрофическому нарушению закона сохранения энергии, — а все остальные его последователи удовлетворенно говорили: «Ну да, информация пропадает при испарении черных дыр» и оставляли все как есть. Меня раздражало то, что казалось интеллектуальной ленью и отречением от научного любопытства.
Единственным облегчением в моей одержимости были занятия бегом, иногда я пробегал километров двадцать пять или больше по холмам за Пало-Альто. Часто очистить сознание позволяла мне концентрация на том, кто бежал в нескольких метрах впереди, пока я его не обгонял. Тогда передо мной вновь появлялся Стивен.
Он заполнил и мои сны. Однажды ночью в Техасе мне приснилось, что мы со Стивеном оба сидим в механизированных креслах. Всеми силами я старался выбить его из седла. Но Стивен Могучий был невероятно силен. Он схватил меня за горло и держал, не позволяя дышать. Мы боролись, пока я не проснулся в холодном поту.
Как мне было излечиться от этой одержимости? Подобно Ахаву, я мог отправиться к своему врагу и охотиться на него там, где он скрывался. Так что в начале 1994 года я принял приглашение посетить только что открывшийся в Кембриджском университете Ньютоновский институт. В июне Стивен собирал у себя группу физиков, большинство из которых я знал, но не числил среди своих сторонников: Гэри Хоровица, Гэри Гиббонса, Энди Строминджера, Джеффа Харвея, Стива Гиддингса, Роджера Пенроуза, Шинтана Яу и других тяжеловесов. Моим союзником был только Герард [108]т Хоофт, который приезжать не собирался.
Я не был обеспокоен визитом в Кембридж. Двадцать три года назад пара эпизодов оставила у меня чувство обиды и раздражения. Я тогда был молодым, никому не известным и еще не ощущал себя в безопасности, будучи ученым рабочего происхождения. Приглашение к профессорскому столу на обеде в кембриджском Тринити-колледже не слишком помогло заглушить эти переживания.
Я до сих пор не очень понимаю смысл приглашения к профессорскому столу. Не знаю, была ли это честь, и если да, то кого или что чествовали. Или это просто было место для ланча? Как бы то ни было, принимавший меня профессор Джон Полкингхорн провел меня в средневековый зал, увешанный портретами Исаака Ньютона и других гигантов. Студенты сидели на самом нижнем уровне. Преподавательский состав прошествовал к профессорскому столу, стоящему на приподнятой сцене в конце зала. Еду подавали официанты, одетые гораздо лучше, чем я, а с обеих сторон от меня сидели ученые джентльмены, которые что-то бормотали на языке, который я с трудом разбирал. Слева сидел престарелый член совета колледжа, который вскоре захрапел над своим супом. Справа заслуженный преподаватель рассказывал историю об американском госте, который когда-то здесь побывал. Кажется, этот американец оказался по кембриджским меркам недостаточно утонченным, сделав до смешного неуместный выбор вина.
Как ценитель вина, я более или менее уверен, что даже с закрытыми глазами смогу отличить красное от белого. Еще более надежно я отличу вино от пива. Но вот дальше вкус меня подведет. Меня не очень радовало оказаться в роли персонажа рассказанной истории. Остальной разговор касался сугубо кембриджских вопросов и прошел мимо меня. Так что оставалось лишь наслаждаться безвкусной пищей (вареной рыбой, покрытой белым клейстером), будучи совершенно отрезанным от дискуссии.
В другой раз Полкингхорн взял меня на прогулку вокруг Тринити-колледжа. Обширный, прекрасно ухоженный газон занимал почетное место перед главным входом в одно из зданий. Но никто не шел по траве. Дорожка вокруг лужайки была единственным дозволенным маршрутом. Поэтому я удивился, когда профессор Полкингхорн взял меня за руку и повел напрямик — по диагонали. Что бы это значило? Вторглись ли мы на священную землю? Ответ оказался прост: профессора, которых в британских университетах значительно меньше, чем в американских, издавна пользуются привилегией ходить по траве. Никому больше или, по крайней мере, никому ниже рангом это не позволено.
На следующий день я шел из колледжа в отель без сопровождения. В 31 год я был молод для профессора, но я был им. Естественно, я предположил, что это дает мне право пройти по лужайке. Но когда я достиг середины пути, из соседнего здания появился невысокий коренастый джентльмен, одетый во что-то вроде смокинга и котелка, и потребовал немедленно сойти с газона. Я возразил, сказав, что я американский профессор. Однако это не возымело действия.
Спустя двадцать три года, отпустив бороду, постарев и, возможно, приобретя немного более грозный вид, я попробовал повторить этот подвиг. На этот раз никаких проблем не возникло. Кембридж изменился? Я не знаю. Я изменился? Да. Вещи, которые пару десятилетий назад тревожили мой классовый снобизм, — профессорский стол, особые газонные привилегии, — теперь казались не более чем приятной гостеприимностью и, возможно, отчасти проявлением британской эксцентричности. Кое-что при возвращении в Кембридж меня удивило. Помимо того что моя неприязнь к местным университетским особенностям сменилась чем-то вроде удовольствия, печально знаменитая британская еда значительно улучшилась. Я обнаружил, что мне определенно нравится Кембридж.
В первый день я проснулся очень рано и решил побродить по городку, постепенно выйдя к цели — Ньютоновскому институту. Оставив жену Энн в апартаментах на Честертон-роуд, я пошел на реку Кем, потом мимо эллингов с лодками для соревнований по гребле и далее через парк Джезус-Грин. (В свой первый визит я был озадачен и даже раздражен, что столь многое в кембриджской культуре имеет религиозные корни.)
Я шел про Бридж-стрит и пересек реку Кем. Кем? Бридж? Кембридж?[109] Находился ли я на месте первоначального моста, по которому назван великий университет? Вероятно, нет, но было забавно об этом поразмышлять.
На парковой скамейке сидел пожилой, но элегантный джентльмен «ученого» вида с длинными, закрученными вверх усами. Бог мой! Этот человек так походил на Резерфорда, первооткрывателя атомного ядра. Я подсел к нему и начал разговор. Ясно, что это не был Резерфорд, если только он не восстал из могилы, где покоился уже почти шестьдесят лет. Но, может быть, это сын Резерфорда?
Как оказалось, мой сосед по скамейке знал имя Эрнеста Резерфорда и то, что этот новозеландец открыл ядерную энергию. Но, несмотря на сильное внешнее сходство, он не был Резерфордом. Скорее он мог бы быть моим родственником — он оказался отставным еврейским почтальоном с любительским интересом к науке. Его фамилия была Гудфренд и, вероятно, еще в прошлом поколении звучала как Гутефройнд[110].
Ранняя прогулка вывела меня на Силвер-стрит, где в старинном здании когда-то размещался факультет прикладной математики и теоретической физики. В этом здании меня принимал Джон Полкинхорн. Но даже в Кембридже все меняется. Математические науки («maths» — в британской научной терминологии) теперь переехали на новое место рядом с Ньютоновским институтом.
Затем я увидел вдали возвышающиеся башни. Они нависали. Они парили. Они возносились. Капелла Королевского колледжа — кембриджская обитель Бога. Она возвышается над многими научными зданиями Кембриджа.
Сколько поколений студентов, осваивающих науку, молились или хотя бы делали вид, что молятся в этом соборе? Из любопытства я вошел в священное место. В этой обстановке даже я, ученый без единой капли религиозности, ощутил некоторую сомнительность моей веры в то, что не существует ничего, кроме электронов, протонов и нейтронов, что эволюция жизни — не более чем соревнование, как в компьютерной игре, между эгоистичными генами. «Кафедральность» вызывает трепет за счет искусного сочетания каменных колонн и цветных витражей: я к этому почти невосприимчив, но все же не совсем.
Все это напоминает о странной смеси религиозной и научной традиций, которая долго озадачивала меня в британской академической среде. Основанные в двенадцатом столетии духовными лицами, Кембридж и Оксфорд равно тесно связаны с сообществами, которые мы в Соединенных Штатах условно называем религиозным и реалистичным[111]. Еще более странно, что при этом проявляется загадочная для меня уникальная интеллектуальная толерантность. Взять, к примеру, названия девяти самых знаменитых Кембриджских колледжей: Колледж Иисуса, Колледж Христа, Корпус-Кристи-Колледж, Колледж Магдалены, Петерхауз, Колледж Св. Екатерины, Колледж Св. Эдмунда, Колледж Св. Иоанна и Тринити-колледж (Колледж Св. Троицы). Но в то же время есть Колледж Вальфсона, названный в честь Исаака Вольфсона, светского еврея. Еще более сильный пример — Колледж Дарвина, названный в честь того самого Дарвина, который мастерски изгнал Бога из сферы наук о живом.
История [этого сосуществования] долгая и красочная. Исаак Ньютон сделал для избавления от верований в сверхъестественное больше, чем кто-либо другой до него. Инерция (масса), ускорение и закон всемирного тяготения пришли на смену божественной деснице, которой больше не требовалось направлять движение планет. Однако историки, изучающие науку семнадцатого столетия, никогда не устают напоминать, что Ньютон был христианином и, более того, истово верующим. Он потратил больше времени, энергии и чернил на христианскую теологию, чем на физику.
Для Ньютона и его коллег существование разумного Создателя было интеллектуальной необходимостью: как еще объяснить существование человека? Ничто в мировоззрении Ньютона не могло объяснить создание из безжизненной материи столь сложных объектов, как наделенные чувствами человеческие существа. У Ньютона было более чем достаточно причин верить в божественное творение.
Но там, где не преуспел Ньютон, двумя столетиями позднее окончательный подрыв устоев совершил (сам того не желая) Чарлз Дарвин (тоже кембриджский человек). Дарвиновская идея естественного отбора в сочетании с двойной спиралью Уотсона и Крика (открыта в Кембридже) заменила магическое творение законами вероятности и химии.
Был ли Дарвин врагом религии? Вовсе нет. Хотя он утратил веру в христианские догматы и считал себя агностиком, он активно поддерживал свою местную приходскую церковь, а также своего близкого друга викария — его преподобие Джона Иннеса.
Конечно, не всегда все шло вполне полюбовно. В истории дебатов (об эволюции) Томаса Гекели с епископом Сэмюэлем Уилберфорсом («Мыльным Сэмом») были весьма грубые повороты. Епископ спрашивал: кто именно был обезьяной — бабушка или дедушка Гекели? Гекели возвращал комплимент, говоря, что Уилберфорс проституирует истину. И все же никого не убили, не ранили, даже не ударили. Все делалось в рамках цивилизованных традиций британского академического взаимодействия.
А как теперь? Даже сегодня сохраняется благородное сосуществование науки и религии. Джон Полкинхорн, который вел меня через лужайку, уже не является профессором физики. В 1979 году он подал в отставку с профессорской должности, чтобы учиться на англиканского священника. Полкинхорн — один из главных поборников популярной идеи о том, что наука и религия входят в период замечательной конвергенции и что божественный план выражен в изумительном дизайне законов природы. Эти законы не только совершенно невероятны, но также в точности таковы, чтобы гарантировать существование разумной жизни — жизни, которая, к слову сказать, может по достоинству оценить Бога и его законы[112]. Сегодня Полкинхорн — один из самых знаменитых церковных деятелей в Великобритании. Однако я не знаю, позволяют ли ему по-прежнему ходить по газонам.
Между тем прославленный оксфордский эволюционист Ричард Докинз возглавляет атаку на воображаемую конвергенцию науки и религии. Согласно Докинзу, жизнь, любовь и мораль играют важную роль в смертельной конкуренции не между людьми, но между эгоистичными генами. Британское интеллектуальное сообщество, похоже, достаточно обширно, чтобы вмещать и Докинза, и Полкинхорна.
Но вернемся к капелле Королевского колледжа. Трудно мыслить в чисто оптических категориях об утреннем свете, когда он фильтруется через цветное стекло. Так что с легким чувством «кафедральности» я присел на скамью, оглядывая впечатляющий интерьер.
Мое сознание обратилось к черным дырам: не к техническим вопросам, а к тонкости законов природы, приводящих к парадоксам, обсуждать которые я приехал в Кембридж.
Вскоре ко мне присоединился серьезного вида человек — высокий, крупный, но не толстый, вид которого показался мне отчетливо не британским. Его рубашка из грубого белого хлопка была вроде тех, что я носил в юности в качестве рабочей одежды. Коричневые вельветовые штаны держались на паре широких подтяжек, придавая ему сходство с обитателями американского Запада девятнадцатого века. В итоге я оказался недалек от истины. Его акцент принадлежал западной Монтане, а не Восточной Англии.
Когда мы выяснили наше общее американское происхождение, разговор повернул к религии. Нет, объясняли, сюда я пришел не для молитвы. На самом деле я не христианин, а потомок Авраама, восхищенный архитектурой. Он оказался строительным подрядчиком и зашел в капеллу Королевского колледжа посмотреть каменную кладку. Причем, будучи человеком глубоких религиозных убеждений, он сомневался, уместно ли молиться в этой церкви. Сам он принадлежал к Церкви Христа святых последних дней. Англиканская церковь вызывала у него подозрение. Что до меня, то я не видел причин смущать его моим глубоким скептицизмом — полным отвержением религиозности, которую я понимаю как глубокую веру в сверхъестественные силы.
Я почти ничего не знал о мормонах. Единственным моим соприкосновением с этой религией было то, что однажды я жил по соседству с очень приятным мормонским семейством. Мне лишь было известно, что у мормонов очень строгие правила, запрещающие пить кофе, чай и кока-колу. Я предполагал, что мормонская вера была типичным ответвлением северноевропейского протестантизма. Так что я был удивлен, когда мой знакомый сказал, что у мормонов много общего с евреями. Не имея земли, которую могли бы назвать своим домом, они следовали за своим Моисеем через пустыню, смело встречая все мыслимые опасности и лишения, пока наконец не нашли свою страну с молочными реками и кисельными берегами в районе Большого Соленого озера в Юте.
Мой знакомый сидел склонившись, положив руки на расставленные колени и свесив свои большие ладони между ними. То, что он рассказывал, было не туманной древностью, а историей из американской жизни, начавшейся где-то в 1820-х годах. Я полагал, что должен был ее знать, но это оказалось не так. Вот приблизительный пересказ того, что я услышал, дополненный историческими данными, которые я разыскал позже.
Джозеф Смит родился в 1805 году у матери, страдавшей эпилепсией и яркими религиозными видениями. Однажды ангел Мороний явился ему и прошептал секрет спрятанных древних пластин из чистого золота, на которых начертаны слова Бога. Эти слова предназначались только для Смита, но была одна уловка: письмена были на языке, который никто из живущих не мог расшифровать.
Но Мороний велел Джозефу не беспокоиться. Он снабдит Джозефа парой магических прозрачных камней — сверхъестественными очками. Камни назывались Урим и Туммим. Мороний наказал Джозефу закрепить Урим и Туммим на шляпе, и тогда с ее помощью он мог видеть содержание надписей на чистом английском языке.
Слушая эту историю, я сидел тихо, словно бы глубоко задумавшись. Я полагал, что человек может быть либо верующим, либо нет, и если нет, то история с золотыми пластинами, рассматриваемыми через магические очки, закрепленные на шляпе, должна казаться ему очень забавной. Но, смешная она или нет, несколько тысяч верующих последовали за Джозефом Смитом, а потом, когда он погиб насильственной смертью в возрасте тридцати восьми лет, они прошли вслед за его преемником Бригамом Янгом через душераздирающие опасности и мучения. Сегодня религиозные последователи этих уверовавших исчисляются десятками миллионов.
Вы можете спросить, что случилось с золотыми пластинами, которые Джозеф расшифровал с помощью Урима и Туммима? Ответ: после перевода на английский он их потерял.
Джозеф Смит был крайне харизматичным человеком, весьма любвеобильным и привлекательным для противоположного пола. Это должно было входить в божественный план. Бог приказал Джозефу жениться на как можно большем числе молодых девушек и оплодотворить их. Он также велел собрать множество последователей и вести к первой версии земли обетованной — месту под названием Наву в Иллинойсе. Когда Джозеф прибыл туда со своими последователями, то вскоре объявил, что будет бороться за пост американского президента. Однако славные люди в Наву были добрыми христианами, обычными христианами, и им не нравились идеи Смита о полигамии. Так что они его застрелили.
Подобно тому как мантия Моисея досталась Иисусу Навину, власть Смита перешла к Бригаму Янгу, другому человеку с множеством жен и детей. Исход мормонов начался с очень быстрого покидания Наву. А в итоге, после долгого и опасного путешествия по пустыне, Янг привел их в Юту.
Я был восхищен и продолжаю восхищаться этой историей. Уверен, что в то время она повлияла — несомненно, совершенно безосновательно — на мои чувства в отношении Стивена и его мощного харизматического влияния на многих физиков. Поглощенный своей собственной фрустрацией, я представлял его Крысоловом, завлекающим в ложный крестовый поход против квантовой механики.
Но в то утро меня не занимали ни Стивен, ни черные дыры. Капелла Королевского колледжа преподнесла новый захвативший меня научный парадокс. Он не имел никакого отношения к физике, разве что самое косвенное. Это был парадокс, связанный с дарвиновской эволюцией. Как это возможно, чтобы у человеческих существ развился столь мощный стимул к созданию иррациональных систем верований и крепкая приверженность им? Может показаться, что дарвиновский отбор должен усиливать склонность к рациональности и отбраковывать любые генетические предрасположенности к суевериям и системам, основанным на вере. В конце концов, иррациональные верования могут довести и до смерти, как это случилось с Джозефом Смитом. Несомненно, что они погубили биллионы людей. Казалось бы, эволюция должна избавлять от склонности на религиозной почве следовать за безрассудными лидерами. Но похоже, что все обстоит прямо противоположным образом. Этот Научный парадокс впервые возбудил мое любопытство в Кембридже. С тех пор он так увлек меня, что я потратил массу времени на то, чтобы в нем разобраться.
За несколько недель, проведенных в Кембридже, я, казалось, очень сильно уклонился от темы, которая меня туда привела, — квантового поведения черных дыр. Но это не совсем так. Где-то на задворках сознания меня продолжал донимать вопрос о том, могут ли такие ученые, как Хокинг, 'т Хоофт, я сам и все остальные участники Битвы при черной дыре, быть жертвами собственных, основанных на вере, иллюзий.
Те недели в Кембридже были тревожными и полными мелодраматических размышлений. История Ахава и кита весьма неоднозначна: бешеный ли кит увлек на дно моря Ахава или свихнувшийся Ахав утянул за собой в ад слабого Старбака?[113] Если ближе к делу, то я ли, подобно Ахаву, следую за дурацким наваждением или Стивен соблазняет остальных ложной идеей?
Сегодня я должен признаться, что представлять себе Стивена Крысолова, или Стивена Пустынника (в честь французского крестоносца Петра Пустынника[114]), ведущего своих очарованных поклонников к интеллектуальному разрушению, было очень весело. Очевидно, одержимость — очень сильный галлюциноген.
Я бы не хотел, чтобы у вас создалось впечатление, что я бесцельно потратил несколько недель, слоняясь по улицам Кембриджа и пребывая в плену собственных темных мыслей. Мне предстояло сделать в Ньютоновском институте несколько докладов по дополнительности черных дыр. Я потратил много времени в институте, готовясь к этим выступлениям и доказывая различные тезисы своим скептически настроенным коллегам.
Было уже около 10 утра, когда я покинул капеллу Королевского колледжа и вышел на улицу, залитую июньским солнцем. Дарвиновская загадка иррациональной веры проникла в мое сознание, но в данный момент более насущная техническая проблема требовала немедленного решения: мне предстояло найти Ньютоновский институт.
Моя неплохо зарекомендовавшая себя карта указывала место вне центра старого Кембриджа в жилом районе современного вида. Это шло вразрез с моей романтической сентиментальностью, и я надеялся, что тут какая-то ошибка. Увидев знак «Уилберфорс-роуд», я подумал: не тот ли это Уилберфорс, которого прозвали Мыльным Сэмом и который интересовался у Гекели, кто из его бабушек и дедушек был обезьяной? Возможно, романтика истории еще не полностью утрачена.
Правда, однако, оказалась еще лучше. Уилберфорс-роуд названа в честь родного отца Сэмюэля, преподобного Уильяма Уилберфорса. Уильям сыграл удивительную роль в британской истории, будучи одним из лидеров аболиционистского движения за искоренение рабства в Британской империи.
Наконец, я свернул с Уилберфорс-роуд на Кларскон-роуд. Первое впечатление от увиденного Ньютоновского института вновь было разочаровывающим. Это современное строение — не уродливое, но построенное на нынешний манер из стекла, кирпича и стали.
Растерянность, однако, сменилась изумлением, как только я вошел в здание. Архитектура оказалась идеальной для его назначения: обмена идеями — старыми, новыми и непроверенными — и их активного обсуждения, зарубания ошибочных теорий и, как я надеялся, встреч с идейными противниками и нанесения им поражений. Здесь было большое, очень хорошо освещенное пространство с множеством комфортных кресел и письменных столов и с досками на большинстве стен. Несколько групп расположилось вокруг кофейных столиков, заваленных листками, на которых физики вечно что-то прикидывают.
Я собирался присоединиться к Гэри Хоровицу, Джеффу Харвею и еще паре друзей за столиком, но прежде, чем я успел это сделать, кое-что иное привлекло мое внимание. Я услышал разговор другого рода и не смог устоять перед искушением подслушать его. В углу зала король собрал поклонников: Стивен сидел в центре, слегка приподнятый на своем механическом троне, и услаждал британских журналистов. Интервью, очевидно, касалось не физики, а самого Стивена. Когда я подошел, он рассказывал о своей личной истории и изнурительном заболевании. Рассказ должен был быть записан заранее, но, как всегда, некий невыразимый аромат, характерный для его личности, перекрывал монотонность роботизированного голоса.
Журналисты были заворожены — каждый следил за малейшими движениями лица Стивена, пока тот рассказывал о своих ранних годах, до того, как ему диагностировали болезнь Лу Герига. Согласно его показаниям, в те ранние годы у него преобладало чувство скуки — скуки молодого человека, который, похоже, сам не знает, чем бы заняться. В двадцать четыре года он был обычным выпускником-физиком, не добившимся каких-то особых результатов, — слегка ленивым и без особых амбиций. А потом, как бой часов в полночь, последовал страшный диагноз, неотвратимый смертный приговор. Все мы, живые, приговорены к смерти, но в случае Стивена сроки, казалось, были сочтены — год, быть может, два. Недостаточно даже для подготовки диссертации.
Поначалу Стивен испугался и впал в депрессию. По некоторым сведениям, он начал пить больше, чем следует. Его мучили кошмары, в которых его казнили. Но затем случилось нечто непредвиденное. Каким-то образом мысль о неизбежной смерти была вытеснена перспективами нескольких лет отсрочки. Результатом стало появление неожиданно мощной жажды жизни. Скуку сменило неистовое желание оставить свой след в физике, жениться, иметь детей и узнать мир — и все это за то время, которое ему осталось. Стивен сказал репортерам нечто столь удивительное и незабываемое, что я бы отверг это как бред собачий, исходи оно от кого-нибудь другого. Он сказал, что именно заболевание — парализующее заболевание — было лучшим, что могло с ним случиться.
Я не склонен героизировать людей. Я преклоняюсь перед некоторыми учеными и литераторами за ясность и глубину их идей, но не называю их героическими личностями. До того дня единственным гигантом в моем пантеоне героев был великий Нельсон Мандела. Но, подслушивая в Ньютоновском институте, я неожиданно увидел, что Стивен — поистине героическая фигура: человек, достойный сидеть за одним столом с Моби Диком (если киты сидят за столами).
Но я также видел — или думал, что видел, — насколько легко для человека, подобного Стивену, стать Крысоловом. Вспомните о потрясающей, как в соборе, тишине, которая наполняет большие лекционные залы, пока Стивен сочиняет ответ на вопрос.
Такое отношение Стивен вызывал далеко не только в научных кругах. Однажды я ужинал со Стивеном, его женой Элейн и одним из его чрезвычайно успешных прошлых учеников Рафаэлем Буссо. Дело было в центральном Техасе, в обычном придорожном ресторане, каких множество по всей Америке. Мы уже приступили к трапезе, — я беседовал с Элейн и Рафаэлем, Стивен в основном слушал, — когда его узнал официант, оказавшийся его большим поклонником. Он приблизился с трепетом, почтением, страхом и смущением, словно набожный католик, неожиданно встретивший за ужином папу римского. Он едва не бросился в ноги Стивену, Умоляя о благословении, и говорил о глубокой духовной близости, которую он всегда ощущал с великим физиком.
Стивену, конечно, нравится быть суперзнаменитым; для него это одна из немногих возможностей поддерживать связь с миром.
Но нравится ли ему это почти религиозное преклонение, поощряет ли он его? Нелегко сказать, что он думает, но я провел с ним достаточно времени, чтобы в какой-то мере научиться читать выражение его лица. Слабый сигнал, появившийся в техасском ресторане, указывал скорее на раздражение, а не на удовольствие.
Вернемся теперь к первоначальной цели моей поездки в Англию: попытке убедить Стивена в том, что его вера в потерю информации ошибочна. К сожалению, прямая дискуссия со Стивеном для меня почти невозможна. Мне не хватает спокойствия, чтобы несколько минут ждать ответа всего из нескольких слов. Но были другие люди, такие как Дон Пейдж, Гэри Хоровиц и Энди Строминджер, которые тратили на взаимодействие и сотрудничество со Стивеном массу времени. Они научились общаться с ним гораздо эффективнее меня.
В основе моей стратегии было два козыря. Во-первых, то, что физики любят поговорить, а я очень хорошо умею поддерживать разговор. Настолько хорошо на самом деле, что физики, даже когда они не согласны со мной, собираются толпой на начатые мной дискуссии. Когда бы я ни появился на любом физическом-факультете, даже в самом тихом месте вдруг возникают мини-семинары. Поэтому я знал, что будет нетрудно собрать нескольких наших со Стивеном взаимных друзей (они были друзьями, несмотря на то что я видел в них противников по Битве при черной дыре) и затеять спор. Я также был уверен, что Стивен будет втянут в дискуссию: для него держаться в стороне от физической полемики не легче — чем коту проигнорировать кошачью мяту, так что вскоре мы сойдемся с ним в энергичной схватке, пока один из нас не признает поражение.
Также моя стратегия опиралась на силу моих аргументов и слабость тех, что были у другой стороны. У меня не было сомнений в конечной победе.
Все это блестяще сработало, за исключением одной детали: Стивен так и не присоединился. Это оказался период, когда он чувствовал себя особенно плохо, и мы его почти не видели. В результате бои были точно такими же, как и те, что я уже несколько лет вел в Соединенных Штатах. Кит ускользнул, не дав мне выстрелить в него.
За день или два до моего отъезда из Кембриджа я должен был провести для всего института семинар, посвященный дополнительности черных дыр. Это был последний шанс для столкновения со Стивеном. Лекционный зал был заполнен. Стивен прибыл, чуть запоздав к началу, и сидел сзади. Обычно он сидит впереди рядом с доской, но в этот раз он был не один, а с медсестрой и еще одним ассистентом на случай, если ему понадобится медицинская помощь. Видимо, проблемы действительно возникли, поскольку в середине семинара он покинул помещение. Так-то вот. Ахав упустил свой шанс.
Семинар закончился около пяти часов, и к тому времени я уже был сыт по горло Ньютоновским институтом. Мне хотелось выбраться из Кембриджа. Энн отправилась к приятельнице и оставила мне арендованный автомобиль. Вместо того чтобы вернуться в наши апартаменты, я поехал в соседнюю деревушку Милтон и засел в пабе. Я не большой выпивоха, и пить в одиночку определенно не в моих привычках, но в этот раз я действительно хотел просто посидеть и попить пива. Я хотел не одиночества, а просто чтобы не было физиков.
Это был типичный деревенский паб, с барменшей средних лет и несколькими местными посетителями за стойкой. Один из клиентов лет восьмидесяти, одетый в коричневый костюм с галстуком-бабочкой, опирался на трость. Не думаю, что он был ирландцем, но он сильно напоминал актера Барри Фитцджеральда, который играл с Бингом Кросби в фильме «Иди своим путем». (Герой Фитцджеральда там — раздражительный, но добросердечный ирландский священник.) Посетитель о чем-то добродушно спорил с барменшей, которая называла его Лу.
Будучи совершенно уверен, что он не физик, я подошел к стойке рядом с ним и заказал себе пива. Не помню точно, как начался наш разговор, но он рассказал, что у него была короткая военная карьера, прервавшаяся после потери ноги на войне, как я понял, на Второй мировой. Но отсутствие ноги, похоже, не мешало ему стоять возле стойки.
Разговор неминуемо повернул к вопросу, кто я такой и что делаю в Милтоне. Я был не в настроении рассказывать о физике, но не хотел обманывать старого джентльмена и ответил, что был в Кембридже на конференции по черным дырам. Он сразу сказал, что является большим экспертом по этому вопросу и может рассказать мне много такого, чего я не знаю. Разговор стал приобретать странный поворот. Он заявил, что, согласно семейной легенде, один из его предков побывал в черной дыре, но в последний момент сумел выбраться.
О какой черной дыре он говорил? Чудаки, помешанные на черных дырах, идут по дюжине за пятак и, как правило, очень скучны, но этот человек не был похож на обычного психа. Сделав глоток пива, он стал рассказывать о том, что Черная дыра Калькутты — это ужасное, проклятое, совершенно отвратительное место.
Черная дыра Калькутты! Очевидно, он подумал, что я был в Кембридже на какой-то конференции по англо-индийской истории. Я слышал о Черной дыре Калькутты, но понятия не имел, что это такое. По моим очень туманным представлениям, это был бордель, где грабили и убивали беспечных британских солдат.
Я решил не прояснять ситуацию, а вместо этого побольше узнать о настоящей Черной дыре. История сомнительная, но, похоже, это был подвал или даже подземелье в британском форте, захваченном вражескими силами в 1756 году. Большое число британских солдат оказалось заперто в подвале на ночь, и, возможно по недоразумению, они задохнулись. По семейной легенде, которая передавалась семь поколений, одному из предков Лу едва удалось ускользнуть и не оказаться в числе мертвецов.
Так я обнаружил случай выхода информации из черной дыры. Если бы только Стивен был тогда рядом, чтобы это услышать.
Опрокиньте доминирующую парадигму.
Покидая Кембридж, я уже понимал, что проблема связана не со Стивеном или релятивистами. Часы, проведенные в дискуссиях, особенно с Гэри Хоровицем (Н из CGHS), ярко выраженным релятивистом, убедили меня в обратном. Будучи настоящим волшебником в области уравнений общей теории относительности, Гэри еще и глубокий мыслитель, который любит во всем дойти до самой сути. Потратив немало часов на обдумывание парадокса Стивена, он ясно понимал опасность потери информации, но все же заключил, что Стивен прав, — он не видел, как избежать вывода о том, что информация должна пропадать при испарении черной дыры. Когда я объяснил Гэри дополнительность черных дыр (не в первый раз), он очень хорошо понял суть дела, но счел этот шаг слишком радикальным. Ему казалось неестественным утверждение о том, что квантово-механическая неопределенность может сказываться на таких больших масштабах, как огромная черная дыра. Это определенно не было связно с интеллектуальной леностью. Все сводилось к одному вопросу: каким принципам вы доверяете?
В самолете по пути из Кембриджа я понял, что настоящей проблемой было отсутствие у дополнительности черных дыр надежного математического фундамента. Даже Эйнштейн долго не мог Убедить большинство других физиков в том, что его теория света корректна. Прошло около двадцати лет, был поставлен решающий эксперимент и созданы абстрактные математические теории Гейзенберга и Дирака, прежде чем вопрос был закрыт. Очевидно, предположил я, поставить эксперимент для проверки дополнительности черных дыр никогда не удастся. (Тут я ошибался.) Но, вероятно, более строгую теоретическую базу создать можно.
По дороге из Англии я еще не знал, что менее чем через пять лет математическая физика взлелеет одну из самых тревожных философских идей всех времен: в некотором смысле, основательный трехмерный мир нашего опыта — не более чем иллюзия. И я не представлял, как этот радикальный прорыв изменит ход Битвы при черной дыре.
До свидания, старая добрая Англия. Привет, ветряные мельницы и высоченные голландцы. Я пересек Северное море, чтобы навестить своего друга Герарда 'т Хоофта. После короткого перелета в Амстердам мы с Энн поехали в Утрехт, еще один город с каналами и узкими домиками, где Герард был профессором физики (или Профессором физики, как подчеркивают некоторые). В 1994 году он еще не получил Нобелевскую премию, но никто не сомневался, что она не за горами.
Среди физиков имя 'т Хоофта — синоним научного величия, а в Голландии, стране, где число великих физиков в расчете на душу населения больше, чем где бы то ни было, он является национальным достоянием. Так что, прибыв в Утрехтский университет, я был удивлен скромным кабинетом, который занимал Герард. В то лето Европа походила на влажную теплицу, и Голландия, несмотря на свою репутацию прохладного сырого места, была непереносима. Тесный кабинет 'т Хоофта был таким же, как и у других, — даже без кондиционера. Как я помню, он находился на солнечной стороне здания, и я удивлялся, каким чудом в этой смертельной жаре выживают его большие зеленые экзотические растения. Как гостя, меня усадили за углом в тенистом офисе, но и здесь было слишком жарко, чтобы работать или даже просто обсуждать нашу общую страсть — черные дыры.
В выходные мы с Энн и Герардом отправились на его машине в поездку по небольшим городкам в окрестностях Утрехта, где воздух был чуть прохладнее. Как и многим великим ученым, 'т Хоофту присуще громадное любопытство в отношении окружающего мира — по части не только физики, но и всей природы. Его интерес к вопросу о том, как животные могут измениться в мире, полном городских загрязнений, привел к появлению целого бестиария футуристичных созданий. Вот одно из его творений. Другие можно найти на его домашней странице: http://www.staff.science.uu. nl/ ~hooftl01/evolve.html.
Het Wijndiefje (винный вор) Bacchus dellriosus. Этого паразита можно встретить вблизи пабов. Он полностью приспособлен для открывания бутылок и банок всех типов. Будет очень неприятно, если он проникнет в ваш винный погреб.
’т Хоофт еще и живописец-любитель, и музыкант. Энн тоже пишет картины и играет на фортепьяно, так что в машине и за ланчем в местной деревушке — голландские оладьи, холодная минералка и огромное количество мороженого — мы разговаривали обо всем: от формы морских раковин и будущей эволюции жизни на загрязненной планете до голландских живописцев и фортепьянной техники. Но только не о черных дырах.
В течение рабочей недели мы мало говорили о физике. Герард— противник, который любит поспорить, и наши диалоги часто протекали примерно так: «Герард, — начинал я, — я совершенно согласен с тобой». — «Да, — отвечал он, — но я с тобой совершенно не согласен».
Был один конкретный вопрос, который я хотел обсудить. Эта вещь, о которой я размышлял почти двадцать пять лет, относилась к теории струн. Но Герард не любил теорию струн, и убедить его в ней копаться было непростым делом. Вопрос, который я хотел обсудить, касался местоположения отдельных битов информации. В 1969 году я впервые обнаружил в теории струн нечто потрясающее и в то же время столь сумасбродное, что струнные теоретики не хотят даже думать об этом.
Теория струн утверждает, что все в мире состоит из микроскопических одномерных эластичных струн. Элементарные частицы вроде протонов и электронов — это чрезвычайно маленькие закольцованные струны, каждая по величине не больше планковского масштаба. (Не тревожьтесь, если вам не все понятно. В следующей части я поясню основные идеи. А пока просто примите сказанное в качестве отправной точки.)
Принцип неопределенности даже в отсутствие дополнительной энергии заставляет эти струны вибрировать и флуктуировать за счет нулевых колебаний (см. главу 4). Различные части одной струны находятся в непрерывном движении друг относительно друга, отчего их крошечные части растягиваются и раздвигаются на некоторое расстояние. Само по себе это раздвижение не представляет проблемы; электроны в атомах распределены по значительно большему объему, чем ядро, и причина этого тоже в нулевых колебаниях. Все физики принимают как данность то, что элементарные частицы — это не бесконечно малые точки в пространстве. Все мы ожидаем, что электроны, протоны и другие элементарные частицы по крайней мере не меньше планковского размера, а возможно, и крупнее. Проблема в том, что математика теории струн приводит к абсурдно сильной квантовой дрожи, при которой флуктуации столь свирепы, что кусочки электрона разнесло бы на самые края Вселенной. Большинству физиков, включая струнных теоретиков, это кажется сумасшедшим до немыслимости.
Как это возможно, чтобы электрон был столь велик, как Вселенная, а мы этого не замечали? Вы можете спросить, что удерживает струны вашего тела от столкновений и запутывания со струнами моего тела, даже если мы разделены сотнями миль. Ответ не так прост. Во-первых, эти флуктуации невероятно быстры даже в сравнении с неизмеримо малым планковским временем. Но вдобавок они еще и так тонко настроены, что флуктуации одной струны в точности соответствуют флуктуациям другой и как раз так, что все нехорошие эффекты гасятся. Тем не менее если бы удалось пронаблюдать самые быстрые внутренние нулевые колебания элементарной частицы, то можно было бы обнаружить, что ее части колеблются от края до края Вселенной. Так, по крайней мере, говорит теория струн.
Это дико странное поведение напомнило мне шутку Ааруса Торласиуса (см. с. 238) о том, что мир внутри черной дыры может быть подобен голограмме, причем реальная информация находится далеко на горизонте. Теория струн, если относиться к ней серьезно, идет еще дальше. Она помещает каждый бит информации — будь он в черной дыре или в черной краске на газетном листе — на внешнюю границу Вселенной или на «бесконечность», если у Вселенной нет конца.
Каждый раз, когда я затевал разговор с 'т Хоофтом об этой идее, обсуждение сразу стопорилось. Но незадолго до моего возвращения из Утрехта домой Герард сообщил мне нечто поразительное. А именно, что если рассмотреть в планковском масштабе стены его офиса, то, в принципе, они бы содержали все биты информации о том, что находится внутри комнаты. Я не упоминал при нем слово «голограмма», но он, очевидно, думал о том же, о чем и я: каким-то непонятным образом каждый бит информации в мире записан очень далеко на самых отдаленных границах космоса. Фактически он меня опередил: он сослался на свою статью, вышедшую несколькими месяцами ранее, в которой рассуждал об этой идее.
На этом замечании наш диалог прервался, и в оставшиеся два Аня моего пребывания в Голландии мы больше не говорили о черных дырах. Но, вернувшись в тот вечер в отель, я подробно проработал Доказательство следующего утверждения: максимальное количество Информации, которое может содержаться в любой области пространства, не превышает того, что можно записать на границе области, сохраняя не более четверти бита в одной планковской площади.
Позвольте теперь мне дать пояснение относительно вездесущей, постоянно повторяющейся одной четверти. Почему четверть бита на планковскую площадь, а не один бит на планковскую площадь? Ответ тривиален. Исторически планковская-единица была плохо определена. На самом деле физикам следовало бы вернуться и переопределить планковскую единицу так, чтобы четыре планковские площади стали одной. И я возглавлю это движение; отныне закон будет звучать так:
Максимальная энтропия в области пространства составляет один бит на планковскую площадь.
Вернемся к Птолемею, с которым мы встретились в главе 7. Там мы предположили, что он так боялся заговора, что разрешил хранить в библиотеке лишь ту информацию, которая видна снаружи. Поэтому она была записана только на внешних стенах. При плотности записи один бит на планковскую площадь Птолемей мог бы хранить максимум 1074 битов. Это колоссальное количество информации, много больше, чем может вмещать любая реальная библиотека, но тем не менее оно меньше 10109 битов планковского размера, которые можно затолкать внутрь библиотеки. О чем догадывался 'т Хоофт и что я доказал, сидя в номере отеля, — это то, что воображаемый закон Птолемея соответствует истинному физическому ограничению на количество информации, которое может содержаться в области пространства.
Современной цифровой камере не нужна пленка. У нее есть двумерная «сетчатка», заполненная микроскопическими светочувствительными клетками-ячейками, которые называются пикселами. Все изображения, сделаны ли они современным цифровым фотографом или древним живописцем на холсте, — это иллюзии; они вводят нас в заблуждение, заставляя видеть то, чего нет, — порождают трехмерные образы, хотя сами содержат лишь двумерную информацию. На картине «Урок анатомии» Рембрандт обманывает нас, заставляя видеть тело, разрезы и глубину, хотя в действительности есть лишь тонкий слой краски на двумерном холсте.
Почему эта хитрость срабатывает? Все происходит в мозгу, где специальные цепи создают иллюзию, основываясь на прежнем опыте: вы видите то, что ваш мозг натренирован видеть. В действительности ли на холсте недостаточно информации для того, чтобы определить, действительно ноги мертвеца находятся ближе к вам или они просто слишком велики по отношению к остальному телу. Укорочено ли его тело перспективой или оно в самом деле очень короткое? Органы, кровь и кишки под его кожей — все это в вашей голове. Возможно, этот человек — вовсе не человек, а гипсовый манекен или даже двумерная картина. Хотите увидеть, что написано на свитке за головой самого высокого врача? Попробуйте обойти вокруг картины, чтобы найти более удобный ракурс Увы, этой информации здесь просто нет. Изображение на пиксельном экране вашей камеры тоже не сохраняет реальную трехмерную информацию; оно тоже является иллюзией.
Можно ли построить электронную систему для сохранения истинно трехмерной информации? Конечно, можно. Вместо того чтобы заполнять поверхность двумерными пикселами, представьте себе заполнение пространства микроскопическими трехмерными Клеточками, или, как их иногда называют, вокселами[115]. Поскольку массив вокселов истинно трехмерен, нетрудно понять, что закодированная информация может точно воспроизводить определенный кусок трехмерного мира. Так и подмывает выдвинуть гипотезу: двумерная информация может сохраняться в двумерных массивах пикселов, а трехмерная информация — только в трехмерных массивах вокселов. Дадим этой гипотезе какое-нибудь условное название, например инвариантность размерности.
Кажущаяся правильность этой гипотезы как раз и делает голограммы такими удивительными. Голограмма — это двумерный лист пленки или двумерный массив пикселов, способный сохранить все детали трехмерной сцены. Это не иллюзия, созданная мозгом. Информация действительно присутствует на пленке.
Принцип обычной голограммы первым открыл в 1947 году венгерский физик Деннис Габор. Голограммы — это необычные фотографии, состоящие из беспорядочно пересекающихся полосатых интерференционных узоров, подобных тому, что создает свет, когда проходит через две щели. В голограмме узор создается не щелями, а светом, рассеивающимся от разных частей снимаемых объектов. Фотографическая пленка заполнена информацией в виде микроскопических темных и светлых пятнышек. Внешне они не имеют ничего общего с реальным трехмерным объектом; под микроскопом вы увидите лишь беспорядочный оптический шум[116] примерно такого вида.
Трехмерные объекты разнимаются и складываются во внешне безнадежно перемешанное двумерное изображение. И только за счет такого перемешивания частей трехмерный мир можно точно представить на двумерной поверхности.
Это перемешивание можно обратить, но только если знать как. Информация находится на пленке, и она может быть воспроизведена. Свет, падающий на этот перемешанный узор, рассеиваясь, будет восстанавливать плывущее в воздухе реалистичное трехмерное изображение.
Голографическое изображение, при всей его призрачной реальности, можно рассматривать со всех сторон, и оно выглядит убедительно. Обладая подходящей технологией, Птолемей мог бы покрыть стены своей библиотеки пикселами, содержащими перемешанное голографическое изображение тысяч свитков. И тогда, при правильном освещении, эти свитки появлялись бы как трехмерные изображения внутри библиотеки.
Возможно, вы заметили, что я завел вас на довольно странную территорию, но все это часть того процесса интеллектуальной перепрошивки, который в очередной раз происходит с физикой. Вот заключение, к которому мы с 'т Хоофтом пришли: трехмерный мир нашего обыденного опыта — Вселенная, заполненная галактиками, звездами, планетами, домами, камнями и людьми, — это голограмма, образ реальности, закодированной на далекой двумерной поверхности. Этот новый закон физики, называемый голографическим принципом, утверждает, что всё находящееся внутри некоторой области пространства можно описать посредством битов информации, расположенных на ее границе.
Рассмотрим для определенности кабинет, в котором я работаю. Я в кресле, компьютер передо мной, беспорядочные горы статей, возвышающиеся на столе, которые я опасаюсь выкинуть, — вся эта информация в деталях закодирована планковскими битами, слишком малыми, чтобы их увидеть, но плотно покрывающими стены комнаты. Или рассмотрим все, что находится в пределах миллиона световых лет от Солнца. У этой области есть граница — не физическая стена, а воображаемая математическая оболочка, — и она содержит все, что заключено внутри нее: межзвездный газ, звезды, планеты, людей и все остальное. Как и прежде, всё находящееся внутри такой гигантской оболочки — это образ, созданный микроскопическими битами, распределенными по оболочке. И к тому же битов потребуется не более чем по одному на каждую планковскую площадь. Все так, как если бы граница — стены офиса или математическая оболочка — была сделана из крошечных пикселов, занимающих по одной квадратной планковской длине каждый, и все, что происходит внутри области, было голографическим изображением, создаваемым этой пикселизированной границей. Но, как и в случае обычной голограммы, информация, закодированная на далекой границе, — это очень сильно перемешанное представление трехмерного оригинала.
Голографический принцип поразительно отличается от всего, что встречалось нам прежде. То, что информация распределена в объеме пространства, кажется столь интуитивным, что трудно поверить в ошибочность этого представления. Но мир не вокселизирован; он пикселизирован, и вся информация сохраняется на границе пространства. Но что такое граница и что такое пространство?
В главе 7 я поставил вопрос: где находится информация о том, что Грант похоронен в мавзолее Гранта? Отвергнув несколько ложных ответов, я пришел к выводу, что эта информация находится в мавзолее Гранта. Но действительно ли это так? Начнем с области пространства, ограниченной гробом Гранта. Согласно голографическому принципу, останки Гранта — это голографическая иллюзия, образ, восстановленный по информации, записанной на стенках его гроба. Кроме того, останки и сам гроб находятся в стенах огромного монумента, называемого мавзолеем Гранта.
Так что останки Гранта, его жены Джулии, их гробы и туристы, пришедшие на них посмотреть, — все это образы информации, записанной на стенах мавзолея.
Но почему надо на этом останавливаться? Представьте огромную сферу, заключающую в себе всю Солнечную систему. Грант, Джулия, гробы, туристы, мавзолей, Земля, Солнце и остальные восемь планет (Плутон все-таки планета!) — всё это закодировано информацией на огромной сфере. И так можно продолжать, пока мы не достигнем границ Вселенной или бесконечности.
Очевидно, что вопрос о том, где находится конкретный бит информации, не имеет однозначного ответа. Обычная квантовая механика вносит некоторую неопределенность в такие вопросы. Пока кто-то не посмотрит на частицу или, в нашем случае, на любой объект, имеет место квантовая неопределенность его положения. Но как только объект подвергся наблюдению, все придут к согласию о том, где он находится. Если объектом окажется атом тела Гранта, обычная квантовая механика делает его положение немного неопределенным, но она не поместит его за границами пространства или даже за стенками гроба. Однако если спрашивать о том, где находится бит информации, неправильно, то как надо ставить этот вопрос?
Пытаясь достичь все большей и большей точности, особенно при одновременном учете гравитации и квантовой механики, мы приходим к математическим представлениям, включающим узоры из пикселов, танцующих на далеком двумерном экране, и о секретном коде, преобразующем перемешанные узоры в целостные трехмерные образы. Но, конечно, не существует экрана, покрытого пикселами и окружающего все области пространства. Гроб Гранта — это часть мавзолея Гранта, который является частью Солнечной системы, содержащейся в галактической сфере, охватывающей Млечный Путь… и так, пока не будет охвачена вся Вселенная. На каждом уровне все, что мы охватили, может быть описано как голографический образ, но когда мы ищем саму голограмму, она всегда оказывается на следующем уровне[117].
При всей своей странности — а он очень странный — голографический принцип уже стал частью общепринятой теоретической физики. Это больше не догадка из области квантовой гравитации; он стал повседневным рабочим инструментом, отвечающим на вопросы не только о квантовой гравитации, но и о таких прозаических вещах, как атомные ядра (см. главу 23).
Хотя голографический принцип радикально перестраивает законы физики, его доказательство не требует изощренной математики. Все начинается со сферической области пространства, которая выделена воображаемой математической границей. Эта область содержит всевозможные «вещи»: водород в виде газа, фотоны, сыр, вино — все что угодно, лишь бы оно не переливалось за границу. Я буду называть все это вещами.
Самая массивная вещь, которую можно запихнуть в нашу область, — это черная дыра, горизонт которой совпадает с границей. Вещи не должны быть массивнее ее, в противном случае они не поместятся внутри границы, но существует ли какой-то предел, ограничивающий число битов информации в этих вещах? Нас интересует определение максимального числа битов, которое можно запихнуть внутрь сферы.
Теперь представьте себе материальную сферическую оболочку— Уже не воображаемую границу, а сделанную из настоящего вещества, — окружающую всю рассматриваемую систему. Эта оболочка, будучи сделанной из реальной материи, имеет собственную массу. Из чего бы она ни состояла, ее можно сжимать внешним давлением Или гравитационным притяжением находящегося внутри вещества, Пока она идеально не совпадет с границей области.
Подбирая массу оболочки, можно создать горизонт, который совпадет с границей области
Исходные вещи, которые были у нас с самого начала, содержат некоторое количество энтропии — скрытой информации, — значение которой мы уточнять не будем. Однако нет сомнений в том, что окончательная энтропия — это энтропия черной дыры, то есть ее площадь, выраженная в планковских единицах.
Для завершения доказательства остается лишь напомнить, что второе начало термодинамики требует, чтобы энтропия всегда возрастала. Поэтому энтропия черной дыры должна быть больше, чем у любых исходных вещей. Сводя всё воедино, получаем доказательство удивительного факта: максимальное число битов информации, которое может при каких угодно условиях поместиться в области пространства, равно числу планковских пикселов, которые можно уместить на площади ее границы. Неявно это означает, что существует «граничное описание» всего, что происходит внутри области пространства; поверхность границы — это двумерная голограмма трехмерной внутренней области. Для меня это самый лучший тип доказательства: пара фундаментальных принципов, мысленный эксперимент и далеко идущие выводы.
Существует другой способ описания голографического принципа. Если граничная сфера очень велика, любая небольшая ее часть будет очень похожа на плоскость. В прошлом люди заблуждались, считая Землю плоской, из-за большого ее размера. Пусть наша сфера во много раз больше, скажем, миллиард световых лет в диаметре. При взгляде из точки, находящейся внутри такой сферы, но всего в нескольких световых годах от границы, сферическая поверхность будет казаться плоской. Это означает, что обо всем происходящем в пределах нескольких световых лет от границы можно думать как о голограмме плоского листа пикселов.
Конечно, не надо думать, будто я имею в виду обычную голограмму. Нечего и говорить о том, что зернистость обычного листа фотографической пленки намного больше, чем у листа из пикселов планковского размера. Более того, этот новый тип голограммы может с течением времени меняться; это голографическое кино.
Но самое большое отличие состоит в том, что эта голограмма квантово-механическая. Она мерцает и колеблется из-за неопределенности квантовых систем так, чтобы трехмерные образы испытывали квантовую дрожь. Мы все состоим из битов, включенных в сложные квантовые движения, но если приглядеться к этим битам поближе, то обнаруживается, что они находятся на самых дальних рубежах космоса. Я не знаю в мире ничего менее интуитивного, чем это. Добиться общего понимания голографического принципа — это, вероятно, самый большой вызов физикам со времен создания квантовой механики.
Каким-то образом статья 'т Хоофта, опередившая мою на несколько месяцев, прошла в основном незамеченной. Отчасти это связано с ее названием: «Размерная редукция в квантовой гравитации». Выражение «размерная редукция» оказалось узкоспециальным термином, которое физики применяют в совершенно ином смысле, нежели вкладывал в него 'т Хоофт. Я постарался, чтобы мою статью не постигла та же судьба, и назвал ее «Мир как голограмма».
По дороге из Голландии домой я начал все это записывать. Меня очень взбудоражил голографический принцип, но я также знал, что будет очень трудно убедить в нем кого-либо еще. Мир как голограмма? Я почти явственно слышал скептическую реакцию: «Он был хорошим физиком, но совершенно спятил».
Дополнительность черных дыр и голографический принцип могут относиться к той категории идей вроде представления о существовании атомов, которые обосновываются физиками и философами на протяжении сотен лет. Создать и изучить черную дыру в лаборатории — дело для нас столь же трудное, как для древних греков — увидеть атомы. Но на деле понадобилось менее пяти лет, чтобы сформировался консенсус Как случился это сдвиг парадигмы? Оружием, которое привело к окончанию битвы, стала в основном строгая математика теории струн.