Элемента'рные дели'тели квадратной матрицы А = ||aiK ||1 n , степени двучленов
(l — l1 ) p 1 , (l — l2 ) p 2 ,..., (l — ls ) ps ,
которые получаются из характеристического уравнения
следующим образом. Миноры k-го порядка определителя D(l) (для k £ п ) представляют собой многочлены относительно l. Пусть Dk (l) (k = 1, 2,..., n ) - наибольший общий делитель всех этих многочленов, Dn (l) = D(l). В ряду каждый многочлен делится на предыдущий без остатка. Если разложить соответствующие частные на линейные множители в поле комплексных чисел:
.............................……………………………..,
то степени ,..., ,... и образуют полную систему Э. д. матрицы А (при этом степени с нулевыми показателями не принимаются во внимание). Произведение всех Э. д. равно характеристическому многочлену. Э. д. определяют нормальную (жорданову) форму матрицы А.
ТЕЛЕГРАМКанал с обзорами, анонсами новинок и книжными подборками
Книжный Вестник
Бот для удобного поиска книг (если не нашлось на сайте)
Поиск книг
Свежие любовные романы в удобных форматах
Любовные романы
Детективы и триллеры, все новинки
Детективы
Фантастика и фэнтези, все новинки
Фантастика
Отборные классические книги
Классика
Библиотека с любовными романами, которая наверняка придётся по вкусу женской части аудитории
Любовные романы
Библиотека с фантастикой и фэнтези, а также смежных жанров
Фантастика
Самые популярные книги в формате фб2
Топ фб2
книги