Участник:
Алексей Васильевич Семьянов – доктор биологических наук
Алексей Семьянов: Разум возник в результате эволюционного развития головного мозга. Другими словами, головной мозг является продуктом эволюции, который позволил человеку достигнуть определенного уровня и стать доминирующим видом на планете. В связи с этим изучение мозга является крайне важным для того, чтобы человек мог лучше понять самого себя, объяснить, почему он действует так или иначе в разных ситуациях. Существует также и медицинский аспект исследований головного мозга. Человеческий мозг возник сравнительно недавно и не так хорошо «отлажен» природой, как остальные органы нашего тела – «поломки» случаются довольно часто.
Я расскажу историю, которая со мной приключилась совсем недавно. Благотворительные фонды в Великобритании иногда собирают деньги просто на улицах. Подходят к людям и спрашивают, не могли бы они пожертвовать на развитие того или иного направления медицинских исследований. И ко мне подошли из фонда, занимающегося финансированием науки о мозге, и начали с вопроса: не знаю ли я, какой процент населения Великобритании страдает заболеваниями мозга в течение их жизни.
Александр Гордон: Нашли адресата для вопроса…
А.С. … и совершенно случайно. И выяснилось, что 25 процентов, то есть каждый четвертый. Вдумайтесь в цифры.
С чем это связано? Европейские цивилизации достигли такого уровня развития, когда они способны избежать многих заболеваний. Те заболевания, которые были летальными в какой-то исторический период, перестали наносить урон популяции. А вот проблема заболеваний мозга до сих пор остается крайне острой. Мы недостаточно знаем о мозге. В результате интенсивных исследований человечество получило большой объем информации, но так и не узнало главного – как работает система в целом…
А.Г. Но при этом (простите, что перебью вас, просто у нас неоднократно были разговоры на эту тему) вы стоите на той материалистической позиции, которая считает сознание – вы с этого начали – функцией мозга.
А.С. Да, совершенно верно. Я подхожу к пониманию сознания, как функции мозга и как результату биологической эволюции. Усложнение и совершенствование мозга привело к тому, что у человека, у единственного вида на планете, появился разум, который позволил ему выделиться из царства животных и создать собственную среду обитания. Всё, что существует вокруг нас: политика, экономика, бизнес, культура, искусства, религия – всё является продуктом нашего разума, а значит, результатом биологической эволюции.
А.Г. Еще один уточняющий вопрос. Вы считаете, что, исследуя морфологию, анатомию мозга, его функции, можно приоткрыть завесу над тем, что такое сознание и разум.
А.С. Сознание и разум – это то, как мы обрабатываем информацию, полученную из окружающего нас мира. Варианты нашего поведения в той или иной ситуации могут быть предсказаны и непосредственно зависят от функций мозга. Мы знаем, что в мозге существуют отделы, которые ответственны за речь, кратковременную память и т. д. Хотя у нас в руках пока еще «молоток», а не тонкий инструмент, мы уже можем менять работу мозга так, чтобы изменить личность человека.
А.Г. Только хотел заметить, что даже эта экспериментальная база не может доказать того, например, тезиса, что мозг в данном случае является генератором, а не приемником-передатчиком, как думают некоторые, в том числе и морфологи. Потому что, изменяя настройку, мы таким же образом можем изменить программу. Связь между мышлением, сознанием и мозгом есть вне всякого сомнения.
А.С. Я понимаю ваш аргумент. Многие пытались найти ответ на этот вопрос, исходя из доступных знаний и наблюдений.
А.Г. Я поэтому и хулиганничаю…
А.С. Он интересует всех. Если вы сюда посадите, скажем, человека, занимающегося квантовой физикой, он вам расскажет свой взгляд на работу мозга.
А.Г. Недавно у нас это и было…
А.С. Другое вы услышите от священника или представителя искусства. У всех людей есть интерес к этой проблеме. Мне хотелось рассуждать с научной точки зрения и говорить о вещах, которые мы можем или сможем проверить экспериментально. Поэтому, прежде всего, я хотел бы рассказать о методах, которые используются для изучения мозга. Их можно классифицировать в зависимости от экспериментального подхода.
Подход – «сверху вниз». Мозг рассматривается как система в целом. Всем известна электроэнцефалография, когда на голову устанавливают электроды и с их помощью записывают активность разных участков мозга. И при этом мы можем наблюдать генерацию или исчезновение ритмов в тех или иных областях мозга. И дальше вас просят сделать то или иное движение, открыть-закрыть глаза, показывают различные изображения. Описывая изменения в электроэнцефалограмме, можно предположить, что собственно происходит в мозге. Это один подход. Другой похожий метод – компьютерная томография. В этом случае мы можем видеть на экране монитора, как возникают вспышки активности в разных областях мозга на различной глубине. При этом можно получить трехмерную реконструкцию отделов мозга.
А.Г. Практически в реальном времени.
А.С. Как правило, в реальном времени.
Есть другой, более практичный подход: «мозг – черный ящик». Мозг рассматривается как система, у которой есть вход и выход. Этот подход находит применение в фармакологии. Разрабатывается какой-то химический препарат, который влияет на тот или иной клеточный рецептор. Что происходит в мозге за пределами взаимодействия лиганда с рецептором, исследователя уже не интересует. Важно определить, помогает ли это вещество вылечить то или иное заболевание, как влияет на поведение, память и обучение. Так появляются новые лекарства.
А.Г. То есть механизм неважен, важен результат.
А.С. Да, но это опасный подход. Часто клеточные механизмы действия лекарственных препаратов оказываются крайне важными. Если какая-то коммерческая компания выпустила препарат на рынок, который излечивает то или иное заболевание, а через десять лет появляется побочный эффект, который завязан на геном, то этот эффект может быть более неприятным, чем само заболевание. Поэтому опасность такого подхода очевидна, хотя и позволяет получить быстрый результат.
Третий подход – «снизу вверх». О нем я хотел бы сегодня поговорить более подробно, поскольку сам занимаюсь данного рода исследованиями. Ученые пытаются понять, как происходит передача и обработка сигнала на уровне локальных нейрональных сетей, и дальше – сделать обобщения о функциях структур мозга.
Чтобы начать говорить о том, что происходит на уровне нейронов, основных клеток мозга, я хотел бы показать несколько изображений, полученных с помощью светового микроскопа. Если мы возьмем небольшой кусочек мозга и погрузим его в физиологический раствор, то клетки будут жить достаточно долгое время. Эту ткань можно получить от экспериментальных животных или в результате хирургических операций на человеке. В последнем случае – это ткань поврежденного или больного мозга. Она несет важную информацию о причине заболевания.
Сейчас вы видите типичное изображение, полученное с участка гиппокампа морской свинки. Гиппокамп – это структура мозга, ответственная за кратковременную память и обучение. Если у человека повреждены оба гиппокампа, то он попадает в «день сурка». Он помнит всё, что происходило раньше, но не может запоминать новую информацию, и каждый день начинается с одного и того же момента.
Таким образом, исследования гиппокампа важны для понимания механизмов обучения и памяти. Если вы приглядитесь к рисунку, то можно увидеть нейроны. Они сгруппированы в слои. Эти клетки мозга связаны друг с другом и посредством этих связей получают и передают информацию. На втором изображении тоже можно обнаружить несколько нейронов. Итак, мы можем работать с живыми клетками в изолированном участке мозга.
Здесь вы видите нейрон при большем увеличении. Если изменять фокус, то можно получить представление о трехмерной структуре клетки и увидеть ее отростки. Покажите, пожалуйста, анимацию.
Теперь перед вами схематическое изображение, которое дает представление о сложности взаимодействия между нейронами. В реальных нейрональных сетях таких клеток тысячи и миллионы. Естественно, у экспериментатора, вооруженного современным микроскопом, возникает желание исследовать активность не целого мозга или его структуры, как в энцефалографии, а одного нейрона: посмотреть, как одна клетка живет, что с ней происходит. Сейчас перед вами нейрон, к которому подходит стеклянный микроэлектрод, заполненный раствором, позволяющим передавать электрический ток. В этой конфигурации мы можем записывать электрическую активность одной-единственной клетки. Вот еще одно такое изображение.
А.Г. Размер нейрона какой в данном случае?
А.С. Сома данных нейронов – порядка 20-30 микрометров. Вообще размеры различаются у разных видов. Это морская свинка. Если мы посмотрим у крысы, нейроны будут мельче. У обезьяны или человека будут выглядеть совершенно по-другому. Тем не менее, данные, которые мы получаем на животных, могут быть в некоторой степени приложимы и к человеку. Несмотря на качественное различие в работе мозга человека, мы изучаем базовые механизмы для человека и животных. В чем качественное отличие мозга человека и в чем секрет сознания, говорить еще рано. В данном случае, необходимо двигаться от простого к сложному.
А.Г. То есть вы исследуете механизмы, которые в принципе должны быть одинаковыми у человека и у морской свинки.
А.С. Совершенно верно, в большинстве случаев это именно так, хотя, разумеется, бывают отличия. Тем не менее, эти знания позволяют разрабатывать новые лекарства и размышлять о механизмах работы человеческого мозга. До определенного, конечно, предела.
Теперь перед вами находится схема реального научного эксперимента. На переднем плане вы видите схематическое изображение среза гиппокампа. На нем также указаны позиции электродов – стимулирующего и регистрирующих. Чтобы отвести электрический сигнал от нейронов, необходимо возбудить нервную ткань с помощью электрической стимуляции. Далее, необходимо выбрать тип клеток, в данном случае, это либо пирамидная клетка, либо интернейрон, и регистрировать в них синаптические токи. Синаптические токи показаны на данном рисунке справа. По изменениям в синаптической активности мы можем оценить, что происходит в нейрональной сети, тестировать лекарства, и судить о механизмах действия этих лекарств.
Прежде чем перейти к дальнейшим рассуждениям, давайте посмотрим на общую схему нейрона. По своей сути, нейрон – это такая же клетка, как и все остальные клетки в нашем организме. Однако нейрон специализирован для того, чтобы получать и передавать электрический сигнал. Он состоит из трех основных отделов или компартментов. Все клетки имеют одну сому (тело), но могут различаться по числу и морфологии дендритов и аксонов в зависимости от типа нейрона. В соме нейрона находится ядро и протекают основные метаболические процессы, связанные с поддержанием жизнедеятельности клетки. На соме и на дендритах располагаются окончания других нейронов. Эти окончания образуют синапсы, которые могут быть как возбуждающими (увеличивающими вероятность генерации разряда нейрона), так и тормозными (снижающими вероятность). Обратите внимание на анимацию: синим цветом показаны сигналы, приходящие в нейрон. При достижении определенного порога, возбуждающие синаптические токи приводят к генерации собственного электрического «потенциала действия», распространяющегося по аксону. В аксоне потенциал действия достигает синаптических терминалей, через которые данный нейрон связан с соседними. Так от нейрона к нейрону сигнал передается в нейрональной сети.
Изображения, которые вы сейчас видели, получены с помощью светового микроскопа. Эта техника позволяет работать с живой тканью, но мы не можем видеть детально дендриты и аксон нейронов без специальных методов окраски, которые применяются, как правило, в фиксированной ткани. Любопытно, что большинство клеток мозга были описаны более ста лет назад в работах Рамона-и-Кахаля.
В недавнем прошлом для изучения детальной морфологии нейрональных компартментов использовалась электронная микроскопия. Для своего времени это был достаточно мощный метод, который позволил получить очень важную информацию о числе контактов между нейронами и их пластичности. Главным недостатком электронной микроскопии является то, что работа ведется с фиксированной тканью. То, что мы видим в электронном микроскопе, это не живые клетки, а краситель, распределенный в ткани, «посмертная маска». Изображения нейронов под электронным микроскопом, таким образом, отражают не только физиологические процессы нейрональной ткани, но также реакцию клеток на фиксацию и окраску. А ведь самое интересно – это посмотреть, что происходит в живой клетке. Но наука, конечно, не стоит на месте, и технологии развиваются.
Так появился лазерный конфокальный сканирующий микроскоп. То, что вы сейчас видите на экране, – фотография, полученная с помощью такого микроскопа в Neuroimaging laboratory в Лондоне, которой руководит Дмитрий Русаков. С помощью такой техники мы можем не только видеть живые нейроны и их компартменты с высоким разрешением, но также наблюдать процессы, происходящие в этих клетках.
Обратите внимание, как отличается фотография нейрона, полученная с помощью конфокального микроскопа, от той, которая получена с помощью светового микроскопа. Яркая полоса – это электрод, который мы используем для того, чтобы подсоединиться к нейрону и заполнить его красителем. Такой краситель не убивает клетку, а распространяется по ее отросткам. Теперь мы хорошо видим сому, дендриты и аксон клетки.
На данной анимации вы видите изображения нейрона, полученные при различном фокусе с шагом 2 микрометра. Теперь, если собрать отдельные изображения, то можно сделать трехмерную реконструкцию нейрона.
Сейчас перед вами участок дендрита нейрона, который наполнен кальциевым красителем, и по цветовой кодировке вы видите различные уровни кальция. Красный цвет означает низкий уровень, желтый – более высокий и так далее. Если активировать нейрон, то можно увидеть значительное увеличение кальция в этом дендрите. Кальций является важным ионом в жизнедеятельности клетки и принимает участие во многих физиологических процессах. Он может запускать как процессы, связанные с пластичностью, так и вызвать гибель клетки. Наши нейроны живут по определенной программе, которая управляется различными внешними и внутренними сигналами, и кальций – один из них.
На данном изображении мы видим различные морфологические детали, которые не видны при использовании светового микроскопа, например, дендритные шипики. Мы можем посмотреть, как в них изменяется кальций в реальном масштабе времени, и потом сделать трехмерную реконструкцию изображения.
А.Г. Насколько я помню из предыдущей передачи, которая у нас была, именно через дендритные шипики и передается информация к другим клеткам. Они как бы стоят на границе…
А.С. Да, дендритные шипики – это одна из составных частей возбуждающего синапса. Поскольку синапс – это контакт между нейронами, то и шипики принимают важное участие в передаче сигнала от клетки к клетке. Однако есть синапсы, которые не имеют шипиков. Разговор о них зашел, чтобы показать достоинства нового метода. Например, чтобы узнать, что происходит в мозге в различных условиях с использованием электронного микроскопа, мы должны взять ткань у двух различных животных: контрольного и после воздействия. Но это не совсем правильно, поскольку нужно видеть изменения в одной и той же клетке, что стало возможным с применением лазерной сканирующей микроскопии.
Поскольку речь зашла о синаптической передаче, давайте определим, какую она играет роль в нашем мозге. Итак, нейрон способен генерировать электрический потенциал действия, который, распространяясь по аксону, достигает пресинаптических терминалий. Терминали, или варикозные расширения, содержат везикулы, маленькие пузырьки с нейропередатчиком, который высвобождается в синаптическую щель. Синаптические рецепторы на соседней клетке активируются и приводят к генерации тока в этой клетке. Так нейроны могут передавать сигнал между собой. Таким образом, в данной системе существуют как минимум два типа передачи сигнала – электрический по клеточной мембране, и химический между клетками.
Примерно в конце 60-х годов был описан феномен долговременной потенциации синаптической передачи. Затем была открыта долговременная депрессия синаптической передачи. Ученые ликовали: «Поскольку мозг построен на основе синаптических связей между нейронами, то длительные изменения эффективности синаптической передачи должны являться механизмом обучения и памяти». Так возникла теория синаптической пластичности. Эта теория значительно усилила свои позиции со времени пионерских работ. До сих пор не ослабел поток работ, посвященных открытию новых рецепторов, ферментов, молекул-передатчиков, вовлекаемых в процессы синаптической пластичности. Однако уже более тридцати лет так и не удалось получить доказательства, что именно таким образом хранится память у нас в мозге. Вероятно, мозг организован гораздо сложнее, чем совокупность синапсов, и существуют другие, внесинаптические механизмы обработки информации.
Сейчас вы видите схему синапса. Нейропередатчик высвобождается из везикул, находящихся в варикозном расширении аксона, попадает в синаптическую щель и активирует постсинаптические рецепторы. Классическая схема нейропередачи. Традиционно считалось, что нейропередатчик высвобождается в синаптическую щель, активирует рецепторы и тут же захватывается назад в клетки. Но оказалось, что он может диффундировать и за пределы синаптической щели и активировать рецепторы, расположенные на внесинаптической мембране постсинаптической клетки или даже соседних клеток. Таким образом, если синапс передает сигнал от одного нейрона к другому…
А.Г. Идет утечка информации.
А.С. Можно сказать и так. На самом деле, диффузный нейропередатчик также играет важную роль в передаче информации. Давайте представим, что синапсы работают не в одиночку. В нейрональной сети всегда есть вероятность одновременной активации нескольких соседних синапсов. В таком случае нейропередатчик, покидающий синапсы, может существенно менять свою локальную внесинаптическую концентрацию. Другими словами, нейроны находятся не в вакууме, а пространство между ними заполнено различными веществами, в том числе нейропередатчиками. Эти нейропередатчики могут изменять различные свойства нейронов, их возбудимость, выходную функцию.
А.Г. И в зависимости от идущих сигналов концентрация нейропередатчика может повышаться или понижаться в общей средовой культуре?
А.С. В окрестностях синаптических терминалей концентрация внесинаптического нейропередатчика может меняться в зависимости от активности. Причем, источником нейропередатчика могут быть не только синапсы. Он может высвобождаться глиальными клетками. Вообще говоря, глиальные клетки играют важную роль в нейрональной сети, но это предмет для отдельного разговора.
Таким образом, совокупная синаптическая активность и несинаптическое высвобождение нейропередатчика приводят к тому, что концентрация нейропередатчика постоянно варьируется во внеклеточном пространстве. Возникают локальные флуктуации концентрации нейропередатчика, которые влияют на внесинаптические рецепторы и меняют свойства мембраны нейрональных компартментов. Эти изменения могут играть важную роль и определять механизмы обработки и хранения информации в мозге при неизменной эффективности отдельных синапсов. Давайте представим, что нет пластичности в синапсах, а есть только вот эти внеклеточные флуктуации нейропередатчика, которые активируют внесинаптические рецепторы и изменяют свойства нейрональной мембраны – проводимость, возбудимость, ионные градиенты.
Изменение биофизических свойств мембраны нейрона или его отдельных компартментов (сомы, ответвлений дендритов) при активации внесинаптических рецепторов диффузный нейропередатчик может изменять характеристики входящих синаптических токов (подавление, усиление, укорачивание, удлинение). Причем, эти изменения происходят благодаря свойствам мембраны нейронов, лежащей за пределами синапсов. Так, можно представить, что в условиях неизменной эффективности синаптической передачи, синаптические токи могут быть подавлены или усилены в зависимости от компартмента нейрона посредством внеклеточного нейропередатчика.
Если нейрональная обработка синаптического сигнала будет изменять свои параметры во времени, то этот процесс будет называться «нейрональной пластичностью». Такие изменения могут носить как кратковременный, так и долговременный характер.
Приведу конкретный пример. Внесинаптические рецепторы гамма-аминомасляной кислоты (ГАМК) способны поддерживать постоянный тонический ток. В нашей лаборатории удалось показать, что условия возникновения тонического тока различаются в различных типах нейронов. В возбуждающих нейронах при нормальных условиях ГАМКергический тонический ток отсутствовал, но регистрировался в тормозных. Мы предположили, что это связано с различием в локальной концентрации внеклеточной ГАМК. При эпилептических судорогах у животных этот тонический ток появлялся в обоих типах клеток. Это служит примером долговременного изменения нейрональной обработки сигнала и указывает на роль нейрональной пластичности в патологических состояниях мозга.
А.Г. То есть, это тоже структура, и достаточно устойчивая.
А.С. Если говорить о том, что тонический ток есть в одном типе клеток и отсутствует в другом, то можно провести аналогию с синаптической передачей. Есть активные синапсы, а есть «молчащие». Важно, что ситуация с «тонически молчащими» нейронами может изменяться, как мы это показали при эпилептической активности.
Таким образом, мы приходим к заключению, что в мозге, кроме синаптической нейропередачи, есть диффузная нейропередача, которая обеспечивает нейрональную обработку информации.
А.Г. В другой контур происходит передача информации.
А.С. Можно сказать и так. Существует одна нейрональная сеть, но два параллельных пути передачи информации: синаптический и внесинаптический. Они взаимодействуют между собой, что принципиально важно.
А.Г. Это принципиально важно, поскольку умножает количество вариантов передаваемых сигналов в геометрической прогрессии и делает систему, по сути дела, открытой.
А.С. В принципе, любая биологическая система открытая: будь то синаптическая, внесинаптическая или их комбинация. Важно то, что мы начинаем больше узнавать о мозге. Еще шесть лет назад я сам думал, что обработка информации в мозге происходит благодаря только синаптической передаче и пластичности.
Если мыслить более широко и представить, что синаптическая и диффузная нейропередачи не являются единственными двумя способами передачи информации и что нейроны могут передавать сигнал посредством электрического поля или других неизвестных еще путей, то наш мозг может оказаться намного более сложно устроенным. В связи с этим разумными кажутся не только научная разработка известных направлений, но и поиск новых механизмов работы мозга. Только в этом направление возможен прогресс в объяснении существования разума.
Помимо прочего существует практический аспект данного вопроса. Некоторые лекарства, как мы уже обсуждали, разрабатываются с применением подхода «мозг – черный ящик». Представим, что стал известен эффект этого препарата на синаптическую передачу. На самом деле, это вещество может…
А.Г. Одновременно может вызывать целый ряд изменений и внесинаптической системы…
А.С. Совершенно верно.
Например, известно, что некоторые препараты, которые используются как антиэпилептические, обладают нежелательными побочными эффектами. Мы обнаружили, что эффект таких лекарств на синаптическую передачу делает нейрональную сеть менее возбудимой, а их действие на диффузную нейропередачу оказывается совсем противоположным. Кроме того, дозы лекарств, которые не действуют на синаптическую передачу, назовем их «сверхмалыми», вполне могут оказывать эффект на более «чувствительные» внесинаптические рецепторы.
Важно отметить, что синаптическая и диффузная нейропередачи развиваются по-разному в постэмбриональном периоде. Это не только дает нам новый взгляд на развитие мозга, но и объясняет, почему действия лекарств могут различаться в разные периоды жизни.
А.Г. Скорость передачи информации в диффузной системе меньше, чем в синаптической…
А.С. В зависимости от того, что подразумевается под передачей информации.
А.Г. Сигнал.
А.С. В синапсе информация передается от точки к точке. Синапс соединяет между собой две клетки, и сигнал мгновенно передается от одной из них к другой. Диффузный сигнал может передаваться сразу нескольким клеткам, но ограничен скоростью диффузии. Как посчитать скорость передачи информации? Если мы поделим число клеток, на которые передался сигнал, на время передачи, то может получиться, что диффузная система более эффективна. С другой стороны, информация, переносимая в синаптической и диффузной нейропередаче, качественно отлична. Это два принципиально отличных пути передачи сигнала в мозге.
А.Г. А что входит в круг интересов вашей лаборатории в ближайшее время? Кроме выполнения практических задач по разработке лекарств.
А.С. Мы не занимаемся разработкой лекарств. Наша лаборатория проводит фундаментальные исследования. Есть еще много вопросов, которые предстоит решить на пути понимания механизмов обработки информации мозгом. Было бы интересно, используя парадигму различных систем передачи и обработки информации мозгом, помочь ученым переосмыслить и объяснить непонятные результаты, которые время от времени появляются и обычно кладутся в стол…
А.Г. Поскольку не соответствуют…
А.С. Потому что не укладываются в современную систему знаний и наводят на мысли о сверхъестественном. Если представленную сегодня парадигму суметь донести до ученых и подвести под нее достаточную экспериментальную базу, то это будет уже достижением, которое можно считать законченным.
А.Г. Что я могу сказать – удачи.
А.С. Спасибо.