ГЛАВА З Релятивистская теория электрона. Антивещество

Релятивистская теория электрона, возможно, стала самым значительным открытием Дирака. Ему удалось объединить в одном уравнении главные аспекты двух великих теорий XX века — теории относительности и квантовой физики. Уравнение Дирака естественным образом включало спин электрона и его магнитный момент.

Благодаря этому уравнению было открыто существование отрицательных значений энергии. Так впервые появилось понятие антивещества.

В октябре 1927 года в Брюсселе состоялся очередной Сольвеевский конгресс, на который был приглашен и Дирак — еще одно подтверждение признания его работ. Данный конгресс знаменит жарким спором, разгоревшимся между Бором и Эйнштейном, об основах квантовой механики и принципе неопределенности Гейзенберга. Дирак присутствовал на этих заседаниях. Там он лично познакомился с Эйнштейном, но занял достаточно пассивную позицию. Вспоминая, ученый написал:

«Я слушал аргументы, но не принимал участия в дискуссии; ее предмет мало интересовал меня. [...] Я считаю, что главная работа физика-математика заключается в получении верных уравнений; интерпретация же этих уравнений имеет минимальное значение».

Во время конгресса Дирак также сообщил Бору о своей работе над релятивистским уравнением электрона. Бор заметил, что эта проблема уже была решена Клейном. Его ответ очень удивил Дирака: он не мог понять, как теория Клейна, противоречившая основным законам квантовой механики, могла устраивать значительное число физиков. Через два месяца Дирак поразит научный мир новой теорией, и Бор осознает, что его комментарий был огромной ошибкой.


ПЕРВЫЕ ПОПЫТКИ: УРАВНЕНИЕ КЛЕЙНА — ГОРДОНА

Дирак всегда был очарован теорией относительности и мечтал однажды применить ее к квантовому миру. Одну попытку он предпринял после публикации первой работы Гейзенберга, но неудачно. Несколько месяцев спустя, изучая эффект Комптона и волновую механику, он использовал релятивистскую версию уравнения Шрёдингера, которая известна под названием «уравнение Клейна — Гордона» (записываемого как уравнение КГ), по имени физиков Оскара Клейна (1894-1977) и Вальтера Гордона (1893-1939). В свое время Дирак не придавал особого значения данному уравнению, считая его просто «полезным математическим инструментом для расчета матричных элементов, которые таким образом могли быть интерпретированы в рамках матричной квантовой теории». Разработав свою теорию преобразований, Дирак заключил, что уравнение КГ было абсолютно непоследовательным, поскольку оно не соответствовало основным свойствам квантовой механики.

В чем же заключался смысл уравнения Клейна — Гордона, и почему оно было неприемлемо для Дирака? Чтобы понять это, нам надо вернуться в начало 1926 года, когда Шрёдингер занимался волновой механикой. Как и Дирак, австрийский физик осознавал важность включения релятивистской теории в свою работу. На самом деле полученное им первое волновое квантовое уравнение учитывало релятивистские эффекты и не противоречило классическому релятивистскому выражению для энергии. Однако Шрёдингер решил не публиковать это уравнение, поскольку заметил, что оно не ведет к постоянной тонкой структуры.

Эта постоянная, полученная Зоммерфельдом в 1915 году с помощью атомной теории Бора, прекрасно выражала энергетические уровни атома водорода. Таким образом, она представляла собой главный «тест» для любой квантовой теории. В марте 1926 года Шрёдингер опубликовал свое новое уравнение — то самое, которое сегодня носит его имя. Оно не только учитывало постоянную Зоммерфельда, но и полностью изменило облик квантовой механики; со временем оно стало, наряду с принципом эквивалентности массы и энергии Эйнштейна, самым знаменитым физическим уравнением. Однако уравнение Шрёдингера не включает в себя теорию относительности — оно согласовывается с классическими формулировками механики Ньютона.


МАТЕМАТИЧЕСКАЯ ФОРМУЛИРОВКА УРАВНЕНИЯ КЛЕЙНА — ГОРДОНА

В релятивистской механике масса зависит от инерциальной системы отсчета. Обозначим собственную массу частицы, то есть массу частицы в ее собственной инерциальной системе отсчета, как m. Представим, что эта частица перемещается со скоростью ṽ. Для простоты допустим, что речь идет о свободной частице — не взаимодействующей с другими телами. В этой ситуации общая энергия и кинетический момент выражаются уравнениями


в которые вводится фактор Лоренца γ, описанный в главе 1. Соединяя выражения энергии и момента, получаем следующее уравнение:


Для частиц в состоянии покоя общая энергия равна Е=mc2, а для частиц без массы (таких, как фотон) энергия задана как Е=ср. Можно вывести волновое квантовое уравнение через предыдущее выражение энергии, заменив классические переменные соответствующими квантовыми операторами (принцип соответствия):


Используя данный принцип, получаем в итоге следующее релятивистское квантовое уравнение:


Это и есть уравнение Клейна — Гордона, которое обычно записывается в более точном виде с использованием оператора Д’Аламбера:

Предыдущее выражение называется «ковариантной формой» уравнения КГ. Оператор остается неизменным при преобразованиях Лоренца, и отсюда следует, что волновая функция ф(ṽ,t) не должна зависеть от инерциальной системы отсчета.



Как правило, автор новой теории не является самым подходящим человеком для ее развития. Страх того, что что-нибудь не сработает, слишком силен и мешает ему найти в себе достаточную смелость для того, чтобы развить теорию или идею до ее последнего предела.

Поль Дирак


Весной 1926 года Оскар Клейн, работавший независимо от Шрёдингера, опубликовал первое релятивистское квантовое уравнение. Оно согласовывалось с тем уравнением, которое раньше получил австрийский физик. В последующие месяцы разные ученые — Владимир Фок, Гордон, де Бройль и сам Шрёдингер — работали над этим уравнением, анализировали его и интерпретировали его решения. То, что Шрёдингер не решился опубликовать свое первое релятивистское уравнение, поскольку оно противоречило экспериментальным данным, Дирак прокомментировал так:

«Это был пример того, как ученые, которые встают на правильный путь, не решаются идти по нему, боясь ошибиться».

Согласно Дираку, тот факт, что уравнение не согласовывается с опытом, не должен был беспокоить Шрёдингера. Уравнение Клейна — Гордона является дифференциальным уравнением с пространственными и временными переменными. Его решение задано волновой функцией, которая содержит всю физическую информацию об анализируемой системе. В отличие от уравнения Шрёдингера уравнение КГ согласуется с релятивистским выражением для энергии. Кроме того, оно соответствует теории относительности: не меняется при использовании преобразований Лоренца. Другими словами, уравнение остается релевантным вне зависимости от рассматриваемой инерциальной системы отсчета. Уравнение КГ является дифференциальным уравнением второго порядка одновременно по пространственным переменным (как и уравнение Шрёдингера) и по временной переменной. Данный факт, напрямую связанный с релятивистским выражением энергии, стал причиной постоянных проблем интерпретации результатов уравнения, поэтому оно было забыто на многие годы.

Волновая механика позволяет одновременно решить волновое уравнение, определив волновую функцию, и ввести плотность вероятности и плотность тока вероятности, которые должны удовлетворять «уравнению непрерывности» или «уравнению сохранения». Это случай уравнения КГ, где определена плотность тока, удовлетворяющая теории относительности. Однако главная проблема уравнения Клейна — Гордона возникает, когда необходимо вычислить плотность вероятности. В уравнении Шрёдингера плотность вероятности, согласно интерпретации Борна, задана квадратом волновой функции; таким образом, она определена как величина, имеющая положительное значение. Зато из уравнения КГ следует, что плотность вероятности может быть не только положительной, но и отрицательной, и нулевой. Это вытекает из его частной формулировки, включающей производную второго порядка по времени, и означает, что для того чтобы узнать волновую функцию в определенный момент, нужно знать не только волновую функцию в предыдущий момент, но и ее производную. Другими словами, из того, что уравнение КГ является уравнением второго порядка по времени, вытекает: для полного определения волновой функции должны быть известны два независимых условия. Следствием данного результата является то, что плотность вероятности может быть отрицательной. Но как объяснить, что вероятность обнаружения частицы в определенном месте может быть отрицательной? Для Дирака этот результат был отражением непоследовательности уравнения Клейна — Гордона, которое не удовлетворяло основным свойствам квантовой теории, сформулированным в его теории преобразований.

К концу 1926 года большинство физиков осознали слабые места уравнения КГ. Было не только трудно допустить существование отрицательной плотности вероятности, но также казалось невозможным включить в уравнение новое квантовое понятие — спин. Многие физики изучали проблему и пытались найти «улучшенную» версию уравнения КГ, введя в него эффекты спина в рамках теории Шрёдингера. Дирак поставил вопрос оригинальнее: исходя из основополагающих принципов, он разработал уравнение, в котором спин появлялся как естественное следствие теории относительности.

Стоит заметить, что уравнение Клейна — Гордона было пересмотрено в 1934 году Паули и Вайскопфом, которые переформулировали плотность вероятности в плотность заряда. Так сегодня уравнение Клейна — Гордона известно как «релятивистское квантовое уравнение для частицы с нулевым спином» и используется для описания поведения частиц без спина, таких как пионы (или пи-мезоны). Они имеют три разных состояния электрического заряда — положительное, отрицательное и нейтральное, — отражая значение, которое может принимать плотность заряда, определяемая уравнением.


СПИН ЭЛЕКТРОНА

Понятие спина было введено вследствие некоторых экспериментов, результаты которых не смогли объяснить существующие теории. Речь идет об эффекте Зеемана и опыте Штерна — Герлаха. В обоих случаях надо было ввести новое квантовое число, чтобы описать распределение электронов в атоме. В 1924 году Паули ввел четыре квантовых числа для описания состояний электрона: первые три определяли пространственное положение (n, l, ml,), а четвертое, обозначенное ms, физический смысл которого был еще не известен, могло принимать только два значения. В следующем году Паули представил свой знаменитый принцип запрета, позволявший понять, как распределяются электроны в разных атомах (расположение электронов).

Спустя несколько месяцев два молодых студента Лейденского университета (Нидерланды), Сэмюэл А. Гаудсмит (1902-1978) и Джордж Ю. Уленбек (1900-1988), присвоили новое квантовое число кинетическому моменту, соответствующему круговому движению электрона вокруг самого себя. Объяснение Гаудсмита и Уленбека было поставлено под сомнение из-за вытекавших из него последствий. Прежде всего, электрон должен был иметь конечный размер, чтобы вращение вокруг собственной оси имело смысл; то есть электрон не мог быть элементарной или точечной частицей. Впрочем, расчеты Лоренца показывали: угловая скорость на поверхности электрона должна значительно превосходить скорость света, что противоречило теории относительности. Эти результаты выглядели нелепо. Гаудсмит и Уленбек попросили своего руководителя Эренфеста не публиковать работу. И ответ последнего вошел в историю квантовой теории:

«Вашу статью я давно отослал. Не беспокойтесь, вы достаточно молоды и можете себе позволить некоторые глупости».

Спин является основным свойством, позволяющим понять поведение субатомного мира. У него нет эквивалента в классическом мире, это чисто квантовое явление. Следовательно, его нельзя интерпретировать как вращение электрона вокруг собственной оси в пространственных координатах; спин не зависит от уровней пространственной свободы; другими словами, он не зависит ни от координат, ни от моментов.

Уравнение Шрёдингера определяется исключительно в пространстве координат. Таким образом, волновая функция зависит только от пространственных и временных координат: Ψ(ṝ,t). Спин должен быть добавлен как новый уровень свободы. Он является единственным способом объяснить аномальный эффект Зеемана (расщепление спектральных линий) и результаты опыта Штерна — Герлаха, то есть разделение пучка на две симметричные части (см. рисунок).

К середине 1926 года большинство физиков считали, что наличие спина является прямым следствием приложения теории относительности к квантовому миру. Это объясняет, почему в уравнении Шрёдингера (которое соответствует классической теории) не содержится никакой информации о спине. Проблема, однако, была двоякой.

1. Как ввести спин в уравнение Шрёдингера?

2. Если существование спина вытекает из теории относительности, почему его нет в уравнении КГ, которое соответствует релятивистскому выражению энергии?

В мае 1927 года Паули нашел ответ на первый вопрос, развив свою теорию спина и включив его в уравнение Шрёдингера. Так родилось •«уравнение Паули». Но для того чтобы ответить на второй вопрос, надо было дождаться появления квантового релятивистского уравнения электрона — уравнения Дирака.

Опыт Штерна — Герлаха. Пучок выпускаемых из одного источника частиц разделяется на две отдельные части, проходя через неоднородное магнитное поле. Этот опыт подтвердил существование магнитного момента у частиц и доказал постулаты квантовой теории.


УРАВНЕНИЕ ПАУЛИ

Теория Паули известна сегодня как «нерелятивистская теория спина». Согласно Паули, спин электрона следует интерпретировать как его собственный кинетический момент. Поэтому он ввел три оператора для трех пространственных составляющих, соблюдающих общие отношения коммутативности квантовых операторов. Формулировка была аналогичной той, которая соответствовала операторам орбитального движения электрона. Паули также ввел в теорию Шрёдингера соответствующее спину квантовое число ms, которое может принимать только два значения. Паули предложил волновую функцию из двух составляющих, каждая из которых связана с возможным значением квантового числа ms. Таким образом, квантовые операторы спина должны описываться как матрицы 2x2. Паули вывел следующую формулу:

Si = ħ/2 σi

где показатель i относится к любой из трех составляющих х, у, z, а σi представляет собой «матрицы Паули»:


Два возможных значения числа

ms:±ħ/2.

Следующий этап после определения операторов спина был относительно простым для Паули. Электрон на орбите имеет орбитальный кинетический момент и также собственный момент импульса, связанный со спином. Этот момент импульса может приспосабливаться к любому внешнему магнитному полю. Паули приложил свою модель к атому водорода, установив, что наличие спина в гамильтониане приводит к взаимодействию с орбитальным кинетическим моментом электрона.

Теорию Паули ждал большой успех, поскольку она объясняла многие явления, среди которых — аномальный эффект Зеемана и опыт Штерна — Герлаха. Однако сам Паули осознавал слабые места своей теории. Он ввел спин в изначальное уравнение Шрёдингера как простую релятивистскую поправку. Кстати, теория Паули может воспроизвести лишь приближенное выражение (первого порядка) постоянной тонкой структуры Зоммерфельда. Кроме того, уравнение Паули противоречило принципу относительности. Он сам признавал, что «мы вправе требовать от окончательной теории, чтобы она была сформулирована в инвариантной релятивистской форме и позволяла делать расчеты более высокого порядка». Этой дорогой пошел Дирак: он хотел сформулировать уравнение, исходя из основополагающих принципов двух теорий — теории относительности и квантовой теории.


ВОЛЬФГАНГ Э. ПАУЛИ

Вольфганг Эрнст Паули (1900-1958) родился в Вене. В 1918 году он поступил в университет Мюнхена (Германия), где учился под руководством Зоммерфельда. Через два месяца после защиты диссертации Паули опубликовал монографию об общей теории относительности, которую сам Эйнштейн назвал прекрасной.

В 1921 году ученый перебрался в университет Геттингена, где ассистировал Борну. Там он познакомился с Гейзенбергом, с которым после этого у него возникли дружеские отношения на всю жизнь. Через год его пригласили на работу в Институт теоретической физики в Копенгагене, где Паули познакомился с Нильсом Бором. Между 1923 и 1928 годами он преподавал в университете Гамбурга. Именно в этот период были совершены его самые важные открытия в области квантовой теории. В 1924 году Паули ввел квантовое число, относящееся к спину, а в 1925-м опубликовал свою самую знаменитую статью о принципе запрета.


Квантовая физика и строгость

После появления первой работы Гейзенберга по квантовой механике Паули активно участвовал в выстраивании новой теории: он описал спектр атома водорода, развил собственную версию квантовой теории электромагнитного поля и ввел первое описание спина. В 1928 году его назначили профессором теоретической физики в Цюрихской высшей электротехнической школе (Швейцария), где после этого Паули провел всю оставшуюся жизнь (за исключением периода 1940-1945 годов, когда он эмигрировал в США и преподавал в Институте высших исследований Принстона). В 1930 году Паули выдвинул гипотезу существования новой частицы — нейтрино, — однако ее обнаружения пришлось ждать более 20 лет. Среди коллег Паули пользовался репутацией «очень критичного» ученого. Один из его типичных комментариев по поводу работ, которые он считал недостаточно обоснованными, был таким: «Это даже не дотягивает до ошибочного». Паули был одержим всем тем, что было связано с основами квантовой теории. Суровый критический взгляд, касающийся и его собственных трудов, а также глубочайшие познания в физике, наверное, помешали ему создать более оригинальные работы.


УРАВНЕНИЕ ДИРАКА

Журнал Proceedings of Royal Society 2 января 1928 года получил через Фаулера статью Дирака под названием «Квантовая теория электрона», где автор писал:

«В статье показано, что недостатки предыдущих теорий (уравнение КГ и теория спина Паули) связаны с их несовместимостью как с относительностью, так и с общей теорией преобразований квантовой механики. Похоже, что самый простой гамильтониан для точечного электрона, соблюдающий основополагающие принципы относительности и теории преобразований, позволяет объяснить все экспериментальные результаты без дополнительных допущений».

Приведенный выше абзац раскрывает ход рассуждений Дирака в процессе выстраивания релятивистского уравнения. С одной стороны, уравнение должно соблюдать основополагающие принципы квантовой теории в том виде, в котором они сформулированы в теории преобразований: «Изначальное состояние системы полностью определяет ее состояние в последующий момент». Это означает, что волновое уравнение должно было быть дифференциальным уравнением первого порядка по времени. Так волновая функция в любой момент четко определяет волновую функцию в последующий момент. Данная формулировка, согласующаяся с уравнением Шрёдингера, но уводящая в сторону от уравнения КГ, ведет к вероятностной плотности, определяемой положительным значением. Этот результат кроме того связан с другим важным аспектом теории преобразований Дирака: гамильтониан системы должен быть самосопряженным оператором (эрмитовым оператором). Такое свойство гарантирует, что собственные значения оператора, то есть значения полной энергии системы, будут действительными.

С другой стороны, Дираку следовало учитывать принцип относительности. Квантовое релятивистское уравнение должно было действовать для любой инерциальной системы отсчета. Но как этого добиться? Решение Дирака своей красотой и простотой подтверждает его огромный творческий гений. В рамках релятивистской теории время и пространственные координаты являются составляющими «четырехмерного вектора пространство — время». Дирак заключил из этого, что нет причин обращаться по-разному с двумя видами переменных в квантовом волновом уравнении. Наоборот, если волновое уравнение должно было быть, согласно квантовой теории, уравнением первого порядка по производной по времени, то релятивистская теория требовала введения пространственных переменных в виде их первых производных. Это симметричное обращение со временем и пространством согласовывалось с релятивистской формулировкой, но уводило от нерелятивистского уравнения Шрёдингера, в котором временные и пространственные переменные появлялись по-разному: производная первого порядка по времени и второго порядка по пространственным переменным. Дирак считал симметрию главным условием релятивистской теории, которая в свою очередь должна согласовываться с релятивистским выражением для энергии:

E = √(c2 р2 + m2с4) (свободная частица).


САМОСОПРЯЖЕННЫЕ ОПЕРАТОРЫ (ЭРМИТОВЫ ОПЕРАТОРЫ) И МАТРИЦЫ ПАУЛИ

Самосопряженные операторы (эрмитовы операторы) важны для квантовой теории, поскольку присущее им собственное значение является действительным. В случае оператора Гамильтона «самосопряженность» гарантирует нам, что энергия системы, которую мы изучаем, будет действительной. Оператор называют самосопряженным, когда он совпадает со своим сопряженным. Возьмем общий случай квантового оператора, представленного в матричной форме матрицы 2x2:


Сопряженный оператор задан матрицей, выстроенной из изначальной матрицы, в которой изменяются строки и столбцы, и каждый элемент заменен комплексно-сопряженным ему элементом. Такая матрица называется сопряженной:


Если две матрицы согласуются друг с другом, то есть если Ó = Ö, говорят, что матрица Ó является эрмитово-сопряженной, и в этом случае можно доказать, что ее значения являются действительными. Три матрицы Паули, σxyz, являются эрмитово-сопряженными, и они «антикоммутативны» между собой, то есть соблюдают общие отношения, вытекающие из уравнения Дирака. Однако можно доказать, что любая матрица размера 2x2 может быть записана в виде линейной комбинации трех матриц Паули плюс единичная матрица. Это означает, что невозможно найти четвертую матрицу, которая антикоммутативна каждой из трех матриц Паули. Иными словами, уравнение Дирака требует, чтобы размер каждого из четырех матричных коэффициентов, подлежащих определению, был больше 2x2. Кроме того, матрицы Дирака удовлетворяют антикоммутационным соотношениям, и их след равен нулю.


В итоге его требования к новому квантовому релятивистскому уравнению электрона можно описать следующим образом.

1. Это должно быть дифференциальное уравнение первого порядка по времени, которое симметрично включает пространственные переменные, то есть с производными первого порядка.

2. Оператор Гамильтона должен быть самосопряженным — так, чтобы плотность вероятности определялась положительным значением и чтобы энергии были действительными.

3. Оно должно согласовываться с релятивистским выражением для энергии и быть релевантным для любой инерциальной системы отсчета.

Таким образом, Дирак предложил следующее общее уравнение:


Заметим, что два вида переменных — пространство и время — включены одним способом. Кроме того, существует дополнительный член уравнения, ßmc2, связанный с собственной массой электрона, то есть с массой в системе, в которой он находится в состоянии покоя. Уравнение зависит от четырех неизвестных коэффициентов: αxyz,β. Таким образом, вопрос состоит в том, как их определить. Для этого Дирак должен был доказать совместимость своего уравнения с релятивистским выражением для энергии.

Он полностью осознавал «эквивалентность» квантовых операторов и соответствующих классических величин. Кстати, именно это соответствие позволило объяснить форму уравнения Шрёдингера и уравнения Клейна — Гордона. Используя аналогию между классическим и квантовым миром, квантовое уравнение, предложенное Дираком, вело к следующему классическому уравнению для энергии:

Е= с (αxpx + αyрy + αzpz) + ßmc2.

Как связать данное уравнение, линейное в трех составляющих кинетического момента со сложным релятивистским выражением энергии, в котором появляется квадратный корень? Дирак искал способ, позволивший бы ему записать в линейном виде релятивистское уравнение энергии, определив четыре неизвестных коэффициента. Первым большим шагом вперед в этом направлении было открытие того, что его квантовое уравнение может быть совместимым с релятивистским выражением для энергии, только когда введенные им коэффициенты не коммутируют между собой и, кроме того, если квадрат каждого оператора равен единице. Математически это выражается в следующей форме:

αiαj = - αjαi (i ≠ j); αiβ = - βαii = β2 = 1.

Индексы i,j относятся к любой из трех пространственных составляющих: х, у, z. Коэффициенты Дирак интерпретировал как матрицы. Последнее означало, что волновая функция Ψ содержит разные составляющие, помимо своей зависимости от временных и пространственных переменных. Это было новостью. В предыдущем 1927 году Паули уже представил волновую функцию с двумя составляющими, связанными с двумя возможными значениями спина.

Однако проблема была решена не до конца. Сопряженность гамильтониана означала, что четыре матрицы должны быть, в свою очередь, эрмитово-сопряженными. В первое время Дирак думал о матрицах Паули, которые отвечали всем необходимым условиям. Но матриц Паули было три, и Дираку надо было найти четвертую, чтобы окончательно сформировать уравнение. В результате он пришел к выводу, что найти четвертую матрицу для трех матриц Паули невозможно. Математики на самом деле уже знали этот результат, так как они доказали, что для квадратных матриц Nx N максимальное количество независимых эрмитово-сопряженных матриц, которые «антикоммутируют» между собой, равно N2 -1. Следовательно, у Дирака оставалась единственная возможность — увеличить размер матриц. Доказав, что их размер обязательно должен быть парным, ученый наконец нашел четыре независимые эрмитово-сопряженные матрицы 4x4. Это минимальный размер, который согласуется с общими свойствами его уравнения. Дирак заметил:

«Мне понадобилось много недель, чтобы осознать, что необязательно использовать переменные с двумя строками и двумя столбцами. Почему бы не представить четыре строки и четыре столбца?»


МАТРИЦЫ И КОВАРИАНТНАЯ ФОРМА УРАВНЕНИЯ ДИРАКА

Уравнение Дирака запечатлено на его мемориальной доске в Вестминстерском аббатстве. На самом делетам оно присутствует в своей «ковариантной форме». Это значит, что форма уравнения является одинаковой для любой инерциальной системы отсчета. Для упрощения записи уравнения в квантовой релятивистской теории принято одновременно считать редуцированную постоянную Планка, h, и скорость света, с, равными единице. Это называется «естественной системой единиц». В таком случае уравнение Дирака записывается так:


В него включен оператор Гамильтона,


, и использовано выражение:


Матрицы Дирака могут быть прямо выражены через матрицы Паули, оk, в следующей форме:


Вставляя выражение γ0 ≡ β; γk ≡ ßak и умножая левую часть этого уравнения Дирака на матрицу β, мы в итоге получаем


Уравнение в рамке соответствует тому, что запечатлено в Вестминстерском аббатстве. Несмотря на кажущуюся простоту, оно на самом деле объединяет четыре дифференциальных уравнения. Данное уравнение известно как «ковариантная форма уравнения Дирака для свободного электрона» и включает в себя оператор

γ ∙ ∂ ≡ γ0 ∂/∂t + γx ∂/∂x + γy ∂/∂y + γz ∂/∂z.


Ценность уравнения

Дираку не было достаточно просто формулировки своего уравнения в написанной им статье 1928 года: ученый также доказал, что оно соблюдает свойство инвариантности при преобразованиях Лоренца. Так, уравнение Дирака представляет собой действительно удовлетворительное описание квантового поведения субатомных частиц: оно соблюдает релятивистское соотношение момента и энергии, из него вытекает плотность вероятности, имеющая положительное значение, с действительными значениями энергии, и, наконец, оно согласуется с принципом относительности Эйнштейна.


Спустя годы Дирак удивлялся: «Не могу понять, почему мне понадобилось столько времени, чтобы решить такой элементарный вопрос». Дирак довел математику до ее предела. Необходимость ввести новые размеры заставила его принять волновые функции, описанные через четыре составляющие, физический смысл которых (отбросив два возможных состояния спина) в последующие годы стал новой головоломкой для физиков. Теория электрона Дирака является примером того, что Вигнер назвал «иррациональной действенностью математики в естественных науках».


НЕОБЫКНОВЕННЫЙ УСПЕХ, НЕОЖИДАННЫЕ ПРОБЛЕМЫ

Уравнение Дирака ошеломило всех его коллег. Некоторые из них уже многие месяцы выводили квантовое релятивистское уравнение, и работа Дирака поставила их в тупик, породив глубокое чувство неудовлетворенности. Йордан заметил: «Я не прощу себе своей неспособности понять, что главным было найти линейное выражение». Тем не менее он признал качество работы Дирака: «Я бы предпочел сам вывести уравнение, но формулировка Дирака столь восхитительна, уравнение такое лаконичное, что мы все должны наслаждаться тем, что оно появилось на свет». Это мнение разделяли практически все физики. Гейзенберг заявил: «Я очень высоко ценю его последнюю работу о спине». А Эренфест сказал: «Я нахожу последнюю работу Дирака о спине электрона просто замечательной».


Работа о спине рассматривалась как чудо. Общее чувство было, что Дирак получил больший результат, нежели заслуживал. Никто до этого так не подходил к физике.

Леон Розенфельд, бельгийский физик, коллега Борна в Геттингене


Общее восхищение и уважение, вызванное уравнением Дирака, было связано не только с тем, каким именно методом ученый разработал его (главенство основополагающих принципов физики над всеми остальными эмпирическими методами), но также и с решениями этого уравнения. Свойство спина появлялось как естественное следствие самой структуры уравнения, которое в свою очередь было логическим результатом основополагающих принципов двух главных новаторских теорий физики — теории относительности и квантовой теории. Уравнение давало магнитный момент электрона и позволяло получить точное значение постоянной тонкой структуры.

Показатель взаимодействия между спином электрона и его кинетическим орбитальным моментом в атоме водорода также автоматически вытекал из уравнения. Это исключительно релятивистский эффект, связанный с преобразованием между системами отсчета, относящимися к электрону и протону (ядро), который надо было вводить «вручную» в уравнение Паули. Наконец, уравнение Дирака сводилось к уравнению Шрёдингера или уравнению Паули в пределах маленьких кинетических энергий, сопоставляемых с собственной энергией электрона. Оно несомненно было одним из самых значительных прорывов в физике XX века. Однако это же уравнение приводило в замешательство. Позднее Гейзенберг вспоминал:

«До начала 1928 года у меня было впечатление, что в квантовой теории мы твердо стоим на якоре в порту. Но уравнение Дирака снова выбросило нас в открытое море».

Трудности, связанные с уравнением Дирака, косвенно вытекали из его структуры. Если для описания спина достаточно двух составляющих, то в чем смысл двух дополнительных значений, появляющихся в уравнении? Должно было пройти несколько лет, чтобы стал очевидным физический смысл решений уравнения Дирака. Однако ясная и прозрачная математическая структура уравнения не оставляла никаких сомнений: его решения соответствовали одновременно и обычным электронам с положительным значением энергии, и электронам с отрицательным значением энергии.

Дирак с самого начала осознавал возникшую сложность. Он заметил, что возможность двух типов решения (положительные и отрицательные энергии) неизбежно появляется в любой релятивистской квантовой теории. В своих первых работах об электроне Дирак обозначил две главные трудности, которые подрывали предыдущую теорию Клейна — Гордона.

1. Их уравнение не было линейным по энергии или, что возвращает к тому же, по временной производной.

2. Уравнение действует одновременно и для электронов с зарядом +е, и для электронов с зарядом -е.

Дирак писал в своей статье:

«Некоторые из решений волнового уравнения представляют собой волновую группу, описывающую частицу с зарядом -е, тогда как другие соответствуют частице с зарядом +е. Для второго типа решений энергия В имеет отрицательное значение.

Заметим, что Дирак разобрался с первой трудностью, но не смог разрешить вторую. Поэтому в первое время он считал, что его теория является только приближением к решению проблемы, и писал:

«Истинное релятивистское волновое уравнение должно быть таким, чтобы его решения делились на две независимые группы, каждая из которых соответствовала бы частицам с зарядом -е и +е».

Кроме того, в своей статье Дирак обращал внимание на то, что все решения, относящиеся к электронам с зарядом +е, должны исключаться; однако он осознавал главные различия, которые существовали между классической теорией и квантовой, а также возможные последствия нового типа решений:

«В классической теории выходом в подобной ситуации является произвольное исключение всех решений, соответствующих отрицательной энергии. Подобного нельзя сделать в квантовой теории, потому что по общему правилу любое воздействие может привести к преобразованию состояния с положительной энергией в состояние с отрицательной энергией. В экспериментальном плане данный тип преобразования соответствуют процессу, в котором электрон вдруг меняет заряд с -е на +е. Такое явление еще не наблюдалось».

Приведенная выше цитата ясно свидетельствует о том, какую огромную концептуальную трудность породили уравнение Дирака и физическая интерпретация его решений. Сам Дирак, впрочем, представлял в своей статье противоречащие друг другу аргументы. В последующие после публикации уравнения месяцы проблемы решений уравнения с положительными и отрицательными значениями энергии стали настоящей головоломкой для сообщества физиков, занимавшихся квантовой теорией. Гейзенберг даже писал в письме Паули: «Самый мучительный раздел современной физики — это теория Дирака».


ГОДЫ ПУТЕШЕСТВИЙ И СМЯТЕНИЯ

Через месяц после открытия релятивистского уравнения электрона Дирак опубликовал вторую статью. В ней он применял свою теорию к некоторым конкретным проблемам: правилам отбора атомных переходов и эффекту Зеемана. Но уравнение Дирака и интерпретация решений с отрицательными значениями энергии продолжали сеять путаницу. Параллельно Дирак осуществил серию поездок в разные центры, где проводил семинары по своей новой теории. Весной и летом 1928 года он побывал в Копенгагене, Лейдене, Лейпциге и Геттингене. В Лейпциге Дирак встретил Гейзенберга, которого только что назначили университетским профессором, и они много обсуждали новую теорию. Гейзенберг тоже испытывал неудовлетворение, вызванное уравнением Дирака. В письме к Йордану он отметил:

«Приехал Дирак и провел много семинаров по новой теории, однако не смог разрешить существующие трудности».

В следующие месяцы замешательство и неудовлетворенность Гейзенберга только росли. В письме к Бору он даже утверждал:

«Теперь, после более глубокого изучения теории Дирака, трудности мне кажутся еще более значительными, нежели мне виделось вначале. [...] Нынешняя ситуация достаточно абсурдна и безнадежна. [...] Я решил поменять область исследования, и следующие месяцы посвящу ферромагнетизму».

Похожее чувство владело Дираком, пусть он никогда и не выказывал его так явно, как Гейзенберг. В июле 1928 года он признавался Клейну:

«До настоящего времени все мои попытки разрешить трудности положительных и отрицательных значений энергии провалились».

Когда пребывание в Геттингене подходило к концу, ученый решил поехать в СССР. В последующие годы, которые оказались очень непростым временем, Дирак регулярно осуществлял туда поездки.


ПАРАДОКС КЛЕЙНА

Одной из типичных проблем, которую ставят перед студентами на занятиях по квантовой физике, является проблема электрона, приближающегося к потенциальному барьеру определенной высоты (см. рисунок). Она возникла при описании электрона в уравнении Шрёдингера: анализируется поведение волновой функции в присутствии потенциального барьера. Также можно рассчитать коэффициент прохождения и отражения, то есть вероятность того, что электрон пройдет через барьер и количество отраженного потока. Полученные результаты ясно свидетельствуют о некоторых исключительно квантовых свойствах. Кроме того, можно наблюдать, что даже если выпущенный электрон обладает энергией немного меньшей, нежели высота потенциально барьера, есть ненулевая вероятность прохождения его через барьер. В классической физике такого произойти не может.


Как появился парадокс

«Парадокс Клейна» появился во время одного исследования с использованием уравнения Дирака. Клейн анализировал эту проблему и убедился в том, что результаты, получаемые им в определенных ситуациях, полностью отличаются оттого, что дает уравнение Шрёдингера: эти результаты очень трудно понять, они кажутся абсурдными. Так, он убедился, что для достаточно интенсивного потенциала, который превосходит общую энергию (кинетическую энергию плюс собственную энергию) электрона, передаваемая волновая функция не становится показательной убывающей функцией, как в случае уравнения Шрёдингера, но данная функция сохраняет колебание при отрицательных энергиях. Также изучение вероятностей прохождения и отражения электрона через барьер показывает, что отраженный поток больше, чем изначальный. Этот результат, который невозможно понять, напрямую связан с существованием потока от частицы с противоположным зарядом, нежели заряд выпускаемого электрона; иначе говоря, передаваемая волна связана с решениями с отрицательной энергией. Результаты парадокса Клейна проявлялись и при анализе с использованием уравнения Клейна — Гордона; таким образом, они — естественное следствие использования квантового релятивистского уравнения. Парадокс Клейна делает очевидной невозможность сохранения квантового релятивистского описания только одной субатомной частицы при взаимодействиях; другими словами, при взаимодействии могут рождаться частицы в соответствии с принципом эквивалентности массы и энергии Эйнштейна. Парадокс Клейна показывает нам, что при взаимодействии неизбежно происходит рождение пар или переход между двумя типами решений уравнения Дирака: с положительной и отрицательной энергией. Вспомним, что число частиц не сохраняется в квантовой релятивистской теории; в этом заключается ее главное отличие от нерелятивистской теории и уравнения Шрёдингера.


Среди западных физиков он более других поддерживал прямые контакты с советскими коллегами. С некоторыми из них, например с Капицей и Таммом, он на всю жизнь сохранил тесные дружеские отношения.

Осенью 1928 года Дирак вернулся в Кембридж, где провел шесть месяцев, начав работу над книгой о квантовой теории. В это время смятение, порожденное уравнением Дирака, стало еще больше. Клейн проанализировал проблему релятивистского электрона при туннелировании потенциального барьера.

Результаты в некоторых случаях казались абсурдными. Эта проблема получила название «парадокса Клейна».

Через несколько месяцев сам Клейн и японский физик Ёсио Нисина (1890-1951) развили, используя уравнение Дирака, теорию, которая позволила описать рассеяние фотонов свободными электронами. Полученные результаты согласовывались с экспериментальными данными только в той части, где были учтены решения с отрицательной энергией. Как теория, приводящая в некоторых ситуациях к, казалось, столь абсурдным результатам, могла одновременно так прекрасно описывать природные процессы, когда все ее составляющие учтены?

В течение почти всего 1929 года Дирак сохранял выжидательную позицию по отношению к трудностям, которые, казалось, чуть ли не ежедневно возникали из его уравнения. Он верил в последовательность и точность своей теории, но не знал, как найти ответы на вопросы, которые каждый день ставили перед ним его коллеги. В итоге Дирак решил сделать перерыв и провести несколько месяцев в Висконсинском университете в Мадисоне (США). Это была его первая поездка на американский континент. Там он снова встретился с Гейзенбергом, которого пригласил университет Чикаго.

В истории осталось много знаменитых анекдотов о первом американском путешествии Дирака. Один из них очень показателен и прекрасно характеризует странную личность физика. Однажды, после семинара Дирака, один человек встал и сказал: «Профессор Дирак, я не понимаю уравнение, которое Вы написали на доске». Дирак смотрел на него и молчал, а когда ситуация стала неловкой, модератор был вынужден вмешаться и попросить физика ответить на вопрос. Тогда Дирак заявил: «Это был не вопрос, а просто комментарий». Очевидно, ученый был неспособен читать между строк, что иногда казалось бестактным по отношению к другим.

Гейзенберг и Дирак решили поехать вместе из Штатов в Японию, куда их пригласили читать лекции в университетах Токио и Киото. Точно неизвестно, говорили ли они во время этой поездки о проблемах уравнения. Дирак вспоминал следующее:

«В 1929 году мы с Гейзенбергом пересекли Тихий океан и провели некоторое время в Японии. Мы не говорили о технических проблемах. Мы оба хотели наслаждаться каникулами и отстраниться от физики. Единственные наши разговоры о физике состоялись во время семинаров, которые мы оба проводили в Японии».

Дирак вернулся в Кембридж в октябре 1929 года и сразу же начал работать над новой идеей, способной, по его мнению, разрешить все трудности, связанные с положительными и отрицательными решениями. Точкой отсчета его изысканий было предположение Вейля, сделанное весной 1929 года:

«Кажется вероятным, что из двух решений уравнения Дирака одно соответствует электрону, а другое — протону».

Снова, спустя два года после публикации релятивистского уравнения электрона, Дирак поразил своих коллег идеей, которая не была принята с восторгом большинством физиков. Среди них сначала доминировали скепсис и даже некоторое неприятие. Но для решения концептуальной проблемы Дирак был вынужден сделать еще более смелое предположение, снова породившее множество вопросов. Эта идея содержала решение трудностей уравнения и заключала в себе невозможное по тем временам: открытие античастиц.


ТЕОРИЯ ДЫРОК. ЭЛЕКТРОН И ПРОТОН

Частицы с отрицательной энергией являлись прямым следствием релятивистского уравнения, которое нельзя было не принимать во внимание. Однако Дирак указал, что эти состояния невозможно прямо установить для физических частиц, как предполагал Вейль, избежав парадоксов и абсурдных ситуаций. Новая интерпретация Дирака состояний с отрицательной энергией излагалась в статье «Теория электронов и протонов.

Она была отправлена в журнал в начале декабря 1929 года. В отличие от большинства предыдущих статей физика, которые многие понимали с трудом, данная статья содержала мало уравнений, и чтение ее было гораздо более доступным.

Еще до публикации статьи Дирак начал переписываться с Бором, затрагивая во многих письмах главные идеи собственной теории. Бор был настроен скептически по отношению к интерпретации Дирака, а некоторые аспекты теории считал и вовсе абсурдными. И он не один придерживался такого мнения. В декабре 1929 года Гейзенберг написал Бору:

«Дирак написал новую статью о проблеме ±е [...]. Я настроен очень скептично, потому что в этом случае массы протона и электрона должны быть равными».

Гейзенберг также послал свои возражения и самому Дираку:

«Я думаю, что Ваша новая теория уводит слишком далеко от соответствия классическим законам, также как и от экспериментальной очевидности».

В чем же состояла новая теория, разработанная Дираком и вызвавшая столь суровую критику? Почему Дирак не мог просто принять изначальное предложение Вейля? Ученый заметил, что прямое отождествление решений с отрицательной энергией с протоном вело к недопустимым парадоксам. Например, он показал, что в рамках подобного отождествления переход электрона из состояния положительной энергии в состояние отрицательной энергии интерпретируется как переход электрона в протон, а это противоречит закону сохранения электрического заряда. Также вышесказанное означало, что чем больше электрон с отрицательной энергией перемещался, тем меньше у него энергии, а это было совершенно непонятно. Дирак указал в своей статье, что единственный способ обойти подобные трудности — пересмотр решений, соответствующих электронам с отрицательной энергией, и их отношений с физическими частицами.

У Дирака была следующая гипотеза: «Все состояния с отрицательной энергией заняты электронами». Его предположение означало, что никакой электрон с положительной энергией не может перейти в состояние с отрицательной энергией, поскольку данное состояние уже занято, — а принцип запрета Паули не позволяет электронам занимать одно и то же квантовое состояние. Таким образом, Дирак решил проблему перехода, введя бесконечное число электронов с состоянием отрицательной энергии. Несмотря на возражения Бора (электроны создавали бесконечную плотность отрицательного заряда), Дирак указал: плотность электронов с отрицательной энергией везде одинакова, и значит, эту однородную плотность наблюдать невозможно. Только небольшие изменения этой однородности, например через уменьшение числа незанятых состояний отрицательной энергии, производят эффекты, которые можно наблюдать.

Так Дирак использовал — впервые в квантовой физике — понятие квантового вакуума, включающего в себя бесконечное число электронов, занимающих состояния с отрицательной энергией. Такая ситуация соответствует ситуации максимальной стабильности, известной сегодня под названием «море Дирака». Эта изобретательная идея позволила ему «решить» возникшие раньше парадоксы. Однако большинство физиков высказывались скептически, если не отвергали полностью новую теорию. На самом деле трудно было принять, что состояние квантового вакуума может быть описано через бесконечное число электронов.

Как бы там ни было, Дирак заявил, что только незанятые электронами состояния отрицательной энергии производят физические эффекты. «Дырка» в море Дирака — то есть отсутствие электрона — вела себя во всех отношениях подобно частице с положительным зарядом. Из этого Дирак заключил:

«Мы приходим к выводу, что дырки в распределении состояний являются протонами».

Прямое отождествление пустот с протонами позволило Дираку заявить:

«Так мы можем решить трудности и парадоксальные ситуации, упомянутые раньше; достаточно представить один тип основополагающей частицы вместо двух, электрона и протона, как было необходимо раньше».

Иначе говоря, новая теория Дирака предоставляла единое объяснение двух частиц, электрона и протона, которые могут рассматриваться как два разных и дополняющих друг друга проявления одного основного состояния.

Теория дырок Дирака, в которой дырки отождествлялись с протонами, вела к двум дополнительным трудностям. Прежде всего, наличие дырки — то есть существования протона — означало, что электрон с положительной энергией может упасть в такую дырку. Это эквивалентно процессу аннигиляции электрона и протона. Также электрон в море Дирака мог поглощать излучение и таким образом переходить в состояние с положительной энергией. Другими словами, электрон и протон можно создать. Процессы рождения и аннигиляции частиц соблюдают принцип эквивалентности массы и энергии. Однако ни один из данных процессов никогда не был зафиксирован.

Другая трудность теории Дирака была связана с огромной разницей в массе электрона и протона. На самом деле протон примерно в 2000 раз тяжелее электрона. Дирак полностью осознавал эту проблему, которую он так описал в своей статье:

«Может ли настоящая теория объяснить огромную асимметрию, существующую между электроном и протоном? [...] Очевидно, что теория дырок имеет смысл только при симметричном обращении с двумя частицами. [...] Однако эта симметрия математически неидеальна, когда мы рассматриваем взаимодействие электронов и протонов. [...] Последствия этой асимметрии трудно представить в рамках релятивистской теории, но мы надеемся найти объяснение разнице в массе между протоном и электроном».

Четыре лауреата Нобелевской премии 1933 года. Слева направо: писатель Иван Бунин и физики Шрёдингер, Дирак и Гейзенберг.

Один из самых знаменитых снимков в истории физики: участники Сольвеевского конгресса 1927 года. Дирак сидит в центре.


Почему Дирак настаивал на отождествлении дырок с протонами, хотя понимал огромные трудности, вытекающие из такой интерпретации? Сам физик предоставил объяснение этому факту на заседании британской Ассоциации содействия развитию науки, которое состоялось в Бристоле в 1930 году.


РОЖДЕНИЕ И АННИГИЛЯЦИЯ ПАР В ТЕОРИИ ДИРАКА

Энергетический спектр, вытекающий из уравнения Дирака, представлен на рисунке 1. Мы можем видеть бесконечное количество состояний с положительной энергией, которая больше собственной энергии электрона, mс2. Данные состояния соответствуют физическим электронам, обладающим разной кинетической энергией. Впрочем, уравнение Дирака косвенно содержит также бесконечную группу решений с отрицательной энергией -mс2. Это бесконечное число состояний называется «морем Дирака». Понятие «квантового вакуума» соответствует всем состояниям, занятым электронами. Так Дирак объясняет стабильность вещества, используя принцип запрета Паули: никакой переход из физического состояния с положительной энергией в состояние с отрицательной энергией невозможен, поскольку эти состояния уже заняты.

РИС. 1

РИС. 2


Море Дирака соответствует полностью однородной ситуации, которую никоим образом нельзя наблюдать, если только в ней не происходят изменения, например когда одному из электронов «моря» не хватает (см. рисунок 2). Модель Дирака предполагает возможность рождения и аннигиляции частиц. Как интерпретировать эти процессы в рамках теории дырок Дирака? Наличие незанятого состояния в море Дирака допускает, что электрон с положительной энергией может упасть в дырку: в таком случае высвобождается разница в энергиях и испускается электромагнитное излучение. При рассмотрении дырки в море Дирака в качестве частицы это явление интерпретируется как аннигиляция электрона и положительной частицы, порождающая излучение (см. рисунок 3, справа). Когда Дирак определил дырки как антиэлектроны, то речь пошла об аннигиляции пары электрон/антиэлектрон. Впрочем, возможно нарушить состояние квантового вакуума. Так, электромагнитное излучение может выбить электрон из моря Дирака и заставить его перейти в состояние с положительной энергией (см. рисунок 3, слева). Для этого энергия излучения должна быть равной или больше 2mс2, минимальной широты запретной зоны, которую электрон должен перейти. В таком случае процесс сопровождается рождением электрона и дыркой в море Дирака, то есть положительной частицы: антиэлектрона Дирака. Упомянутый процесс называется «рождение пары частица/античастица».

РИС.З


«Мечтой философов всегда была возможность выстроить любое вещество из основополагающей частицы; наша теория, правда, оперирует двумя частицами (электроном и протоном). Однако есть серьезные причины полагать, что электроны и протоны являются разными проявлениями одного типа частиц. Эта связь вытекает из симметричности электрического заряда».


АНТИЭЛЕКТРОН: МИР АНТИЧАСТИЦ

В 1930 году Дирак считал главной разработку единой физической теории для электрона и протона (то, что он называл «мечтой философов»). Именно поэтому он продолжал верить в свою теорию, несмотря на очевидные проблемы и результаты (часть которых была получена им самим), доказывающие непоследовательность его интерпретации протонов. В феврале 1930 года американский физик Роберт Оппенгеймер (1904-1967) опубликовал короткую статью, в которой показал, что средняя жизнь атомного электрона, согласно теории Дирака, должна длиться всего примерно 10-9. Это было очевидным абсурдом, поскольку означало, что материя невероятно нестабильна. Оппенгеймер из вышесказанного заключил, что теорию Дирака следует изменить: протоны и электроны обязательно должны быть разными частицами.

В следующем месяце Дирак послал для публикации новую статью под названием «Об аннигиляции электронов и протонов». Он снова признавал, что большая разница в массе электронов и протонов представляет серьезное затруднение. Ученый нашел выражение вероятности аннигиляции электрона-протона:

«Невозможно представить точное численное выражение нашего результата, поскольку мы не знаем, относится ли появляющаяся в нем масса к электрону или протону. Как бы там ни было, полученная цифра слишком велика, чтобы объяснить стабильность электронов и протонов».

Однако Дирак не смирился и завершил статью следующими словами:

«Мы должны предположить, что взаимодействие между электронами и протонами должно значительно сокращать зону столкновения. [...] Возможно, для очень высоких энергий результат этой работы будет точным, когда массе будет присвоено значение».

Советский физик Игорь Тамм со своей стороны пришел к такому же выводу: средняя жизнь электронов и протонов в уравнении Дирака полностью противоречит действительности. Как Дирак и Оппенгеймер, Тамм полагал, что включение эффекта взаимодействия между электронами и протонами значительно улучшит результаты. Оппенгеймер и Тамм были среди немногих физиков, которые приняли теорию дырок Дирака. Поэтому они пытались найти ее подтверждение, несмотря на абсурдность результатов, к которым она приводила.

Дирак еще несколько месяцев продолжал верить в свою интерпретацию протонов как дырок в море с отрицательной энергией. Но он прекрасно знал, что очень небольшое число физиков разделяют его точку зрения. Со свойственной ему критичностью Паули сформулировал то, что впоследствии в узких кругах квантовой физики получит название «второго принципа Паули»:

«С того момента, как физик предлагает теорию, она должна быть сразу приложена к своему автору: так, Дирак должен быть аннигилирован».

Осенью 1930 года были опубликованы другие статьи, которые снова ставили под вопрос теорию Дирака. Тамм сообщил Дираку:

«Паули заметил: он точно проверил, что в рамках теории дырок взаимодействие электронов и протонов не может исключить одинаковость их массы».

Спустя немного времени, в ноябре 1930 года, Вейль в свою очередь доказал, что дырка в теории Дирака должна обязательно иметь ту же массу, что и электрон. Результат Вейля начал понемногу расшатывать веру Дирака в собственную модель протона и в идею единой теории для протона и электрона. Он особенно оценил возражения Вейля, поскольку способ этого ученого представлять физику через математику совпадал с его собственным. Кстати, по поводу Вейля Дирак писал:

«Вейль был больше математиком, чем физиком. Он анализировал математические последствия идеи, развивая то, что вытекало из разных симметрий. Так, Вейль пришел к выводу, что дырки должны иметь точно такую же массу, что и электроны. Он никак не прокомментировал физические последствия этого вывода; возможно, они его даже не интересовали».


Теоретики должны обращать больше внимания на математические основы их предмета исследования и гораздо меньше — на лабораторные результаты.

Поль Дирак


В начале 1931 года Дирак согласился с идеей Вейля и решил отказаться от своей теории, тем не менее сохранив уверенность в существовании моря Дирака. В мае 1931 года он опубликовал новую статью, в которой представлял иную версию своей теории дырок и предлагал еще более смелую гипотезу: дырки в море электронов с отрицательной энергией соответствуют новым частицам, еще не открытым. В данной статье под названием «Квантовые сингулярности в электромагнитном поле» Дирак писал:

«Мы можем предположить, что в мире, который мы знаем, все состояния с отрицательной энергией заняты электронами. Дырка, если она существует, будет новой частицей, неизвестной экспериментальной физике; у нее будет такая же масса, как у электрона, но противоположный заряд. Мы можем назвать такую частицу антиэлектроном. Мы не ждем обнаружения ее в природе — из-за ее быстрого взаимодействия с электроном; однако, если бы она была получена через опыт в вакууме, она была бы тоже стабильной, и ее можно было бы наблюдать. Столкновение двух высокоэнергетических гамма-лучей способно привести к рождению пары электрон/антиэлектрон. Вероятность этого процесса, с нынешней интенсивностью гамма-излучения, ничтожна».


ПРИНЦИПЫ КВАНТОВОЙ МЕХАНИКИ

Летом 1930 года появилось первое издание «Принципов квантовой механики»Дирака, вышедшее, как ни странно, в издательстве Oxford University Press.

Книгу ждал успех, особенно популярным стал перевод на русский. В 1930-е годы«Принципы...»стали обязательной книгой для всего сообщества квантовой физики. Стиль и способ изложения соответствовали обычной манере Дирака, которую он сам называл «символическим методом». Общая теория представлена ясным и лаконичным языком и через абстрактную математическую формулировку, которая практически никак не соотносится с эмпирическими наблюдениями или с физической интерпретацией. В книге не упоминается никакая историческая эволюция, в ней нет иллюстраций, почти никаких ссылок и библиографии. С педагогической точки зрения «Принципы...»с самого появления считались слишком абстрактным и сложным учебником. Большинство студентов полагают, что книга не приспособлена для начала изучения физики и понимания главных аспектов квантовой теории. И это не только их мнение. Сам Эренфест оценил ее как «слишком сложную для понимания... ужасную книгу». А для Эйнштейна, напротив, она была «логическим и самым прекрасным представлением квантовой механики на сегодняшний день». Паули рассматривал данное сочинение как большой успех и советовал старательно его изучать, однако и он критиковал символический метод Дирака, заметив: «...есть риск, что теория оказывается без видимой связи с реальностью». «Принципы...» были много раз переизданы, и в варианте 1947 года Дирак ввел свои знаменитые обозначения бра и кет, сегодня используемые в каждом тексте по квантовой механике.


В этой статье Дирак не только выдвинул гипотезу существования антиэлектронов, но и пошел дальше, поскольку применил свое предположение к любому виду частиц:

«Похоже, что протоны тоже обладают состояниями с отрицательной энергией, которые все заняты. Дырки в этих состояниях должны вести к появлению антипротонов».

В нескольких абзацах Дирак представлял гипотезу существования античастиц. Но была ли эта гипотеза лишь отчаянной попыткой сохранить теорию дырок или же она хоть немного опиралась на реальность?


ОТКРЫТИЕ ПОЗИТРОНА

Космические лучи (заряженные частицы) из внешнего пространства стали интересной областью исследования. Этот предмет стал даже одним из главных исследовательских проектов Роберта Э. Милликена и его коллег в Калифорнийском технологическом институте (Калтехе). В ноябре 1931 года Милликен дал несколько семинаров в Кавендишской лаборатории в Кембридже, во время которых показывал фотографии, сделанные его бывшим аспирантом Карлом Д. Андерсоном (1905-1991). На них были видны оставляемые электронами и некоторыми положительными частицами траектории в камере Вильсона.

Физик Патрик М.С. Блэкетт (1897-1974) был сразу же очарован результатами Андерсона и начал исследовательский проект по изучению космических лучей в Кавендишской лаборатории. Но вся слава в Кембридже в следующие месяцы досталась Джеймсу Чедвику (1891-1974) и его открытию нейтрона. В феврале 1932 года, через 12 лет после того, как Резерфорд предположил существование этой частицы, нейтрон был наконец обнаружен.

Летом 1932 года Андерсону удалось сфотографировать траекторию частиц, которые, казалось, соответствовали, с одной стороны, электронам, а с другой — положительным частицам, также отклонявшимся, как и электроны. Андерсон опубликовал результаты в журнале Science и в своей статье очень осторожно интерпретировал эти частицы. Закончил он ее следующими словами: «Представляется необходимым рассмотреть вопрос о существовании частицы с положительным зарядом, которая имеет массу, сопоставимую с массой электрона». Однако работа Андерсона осталась практически незамеченной. Кроме того, в его статье не устанавливалось никакой связи с гипотезой антиэлектрона Дирака.

В Кембридже Блэкетт и Джузеппе Окьялини (1907-1993) получили результаты, которые подтверждали результаты Андерсона, но они прямо соотнесли их с антиэлектронами Дирака. В опубликованной ими статье содержался следующий вывод:

«Кажется, не существует доказательств, опровергающих теорию Дирака; напротив, в этой теории предсказано достаточно долгое время жизни положительного электрона для наблюдения его в камере Вильсона и в то же время достаточно короткое для того, чтобы объяснить, почему он не был обнаружен другими способами».

Название «позитрон» появилось впервые во второй статье Андерсона, опубликованной в 1933 году. Эмпирическое открытие позитрона стало триумфом теории Дирака. Однако значительное число физиков продолжали сохранять критическое отношение к морю Дирака и интерпретации частицы как дырки в этом море. Бор писал: «Даже когда вопрос о позитроне установлен, я остаюсь при своем убеждении в том, что это не имеет никакого отношения к морю Дирака». Паули также писал Дираку: «Я не верю в вашу теорию дырок несмотря на то, что существование антиэлектрона доказано».

Фотография позитрона, сделанная Карлом Д. Андерсоном благодаря камере Вильсона — устройству, заполненному насыщенными парами и помещенному в магнитное поле; в нем заряженные частицы оставляют след своей траектории.


Скептицизм Паули и многих других физиков по поводу теории дырок еще некоторое время сохранялся. Нелегко было принять идею вакуума, образованного из бесконечного числа электронов с отрицательной энергией. Однако в то же время оставалось неоспоримым, что некоторые следствия данной теории (например, существование антиэлектрона и его отождествление с положительным электроном, обнаруженным Андерсоном) являются очевидными фактами. Должно было пройти еще много времени, прежде чем существование античастиц и процесс рождения и аннигиляции пар частица/античастица получили объяснение без использования моря Дирака.


ЗАСЛУЖЕННАЯ СЛАВА

Публикация релятивистской теории электрона сделала Дирака одним из самых уважаемых физиков в мире. Он все чаще участвовал в конгрессах и конференциях, поскольку его теория вызывала огромный интерес. Этот интерес к теории дырок и взаимодействию протонов и электронов с годами только рос. Дирак много ездил по разным научным центрам. Помимо главных европейских исследовательских центров (Копенгаген, Геттинген, Лейпциг, Лейден и так далее) он часто посещал США и Советский Союз. В феврале 1931 года Дирак был избран иностранным членом Академии наук СССР и официально считался большим другом Советского Союза. Он стал одним из немногих физиков, которые еще могли ездить в СССР после 1934-1935 годов.

Дираку открылась возможность работать на кафедрах в самых престижных университетах. В 1928 году, спустя несколько месяцев после появления его теории электрона, университет Манчестера предложил ему должность профессора. Чуть позже американский физик Артур Комптон пригласил его занять кафедру в университете Чикаго. В последующие годы выбор стал еще шире: Торонто, Принстон, Мадисон... Несмотря на более выгодные в экономическом смысле предложения, Дирак решил остаться в университете Кембриджа. В феврале 1930 года он был избран членом Лондонского королевского общества, что является самым престижным знаком признания научных заслуг в Великобритании. Эта процедура предполагает много предварительных голосований, однако Дирака избрали с первого раза. Кроме того, на тот момент ему было только 27 лет — гораздо меньше среднего возраста, подходящего для того, чтобы стать членом Общества.

В июле 1932 года руководство Кембриджского университета решило, что Дирак примет у Джозефа Лармора Лукасовскую кафедру. Такое назначение ни для кого не стало сюрпризом. Дирак считался одним из самых блестящих физиков того времени и, несомненно, самым блестящим физиком Великобритании. Казалось естественным, что именно он займет самую важную кафедру страны и одну из самых престижных кафедр мира. В XVII веке Лукасовскую кафедру более 30 лет занимал Исаак Ньютон. Дирак занимал ее в течение 37 лет. Кстати, оба ученых получили назначение в одном возрасте: у Дирака оно состоялось, когда ему только исполнилось 30 лет — всего на несколько месяцев больше, чем Ньютону, когда тот возглавил кафедру.

В 1933 году Дирак получил высшую научную награду — Нобелевскую премию. Когда в ноябре 1933 года были названы имена трех лауреатов, ученый был удивлен, в отличие от двух других претендентов — Гейзенберга, один раз уже получившего Нобелевскую премию в 1932 году, и Шрёдингера, который разделил с Дираком премию 1933 года. Дирак получил Нобелевскую премию в возрасте 31 года и стал самым молодым из всех нобелевских лауреатов, награжденных за исследования в области теоретической физики. Когда имена всех лауреатов были оглашены, стало возможным оценить исключительность присуждения премии Дираку в 1933 году: за свою карьеру он получил всего две награды, что резко контрастировало, например, со Шрёдингером, у которого их было одиннадцать. Нобелевская премия была присуждена ему «за открытие новых продуктивных форм атомной теории».

Физик Карл Вильгельм Озеен, личный друг Нильса Бора, произнес речь о Дираке перед Нобелевским комитетом. Озеен продемонстрировал критическое отношение к работе Дирака: он признавал ее ценность и оригинальность, но считал менее основополагающей, нежели работы других физиков, таких как Гейзенберг, Эйнштейн, Планк или Бор. В то время Озеен, вероятно, был неспособен оценить революционный характер теорий Дирака. Никакой другой исследователь не оказал такого влияния на развитие физики в последующие десятилетия.

Речь Дирака во время церемонии вручения Нобелевской премии была посвящена «теории электронов и позитронов». Он упомянул об антиэлектронах и антипротонах и заключил свое выступление следующими словами:

«Мы должны рассматривать тот факт, что Земля (и, возможно, вся Солнечная система) образована, главным образом, из отрицательных электронов и положительных протонов как случайность. Очень вероятно, что для некоторых звезд ситуация является обратной, то есть они состоят из позитронов и антипротонов. На самом деле половина звезд должна принадлежать к первому типу, а другая половина — ко второму. Две категории звезд имеют совершенно одинаковый спектр, и их нельзя различить при помощи методов современной астрономии».

Дирак представил нам Вселенную, в которой вещество и антивещество равным образом являются главными элементами. Вымысел это или реальность?


Загрузка...