ПОДЦАРСТВО ПРОСТЕЙШИЕ, или ОДНОКЛЕТОЧНЫЕ ______________________ (PROTOZOA)

Ю. И. Полянский

Общая характеристика простейшие (Protozoa)

Знакомство с животным миром мы начнем с простейших, которых следует рассматривать как более примитивный исходный этап в эволюции по сравнению с многоклеточными.

Каковы же общие признаки подцарства простейших? На основании каких черт строения и физиологии мы относим животных к этому подцарству? Основная опеределяющая и самая характерная особенность простейших — одноклеточность. Тело их по строению соответствует одной клетке. Все другие животные, относящиеся к подцарству многоклеточных, построены из большого количества клеток, причем тела многоклеточных различны по строению и функции.

По строению простейшие соответствуют клеткам многоклеточного организма, но в функциональном отношении они несравнимы. Клетки в теле многоклеточного представляют собой части организма и их отправления подчинены функциям многоклеточного организма как целого. В противоположность этому, клетка простейшего — это самостоятельный организм, которому свойственны все жизненные функции: обмен веществ, раздражимость, движение, размножение. К условиям окружающей среды простейшие приспосабливаются как целые организмы. Таким образом, простейших можно охарактеризовать как организмы на клеточном уровне организации.

Существует два основных типа организации клетки: прокариотная и эукариотная. На низшей, прокариотной, ступени организации находятся бактерии, сине-зеленые водоросли и некоторые другие организмы. Прокариотные клетки лишены оформленного клеточного ядра. Материал, несущий наследственную информацию (ДНК), сосредоточен в единственной кольцевой хромосоме, лежащей в цитоплазме. Отсутствуют многие клеточные органоиды — митохондрии, аппарат Гольджи и др. Прокариотные клетки не способны заглатывать оформленные пищевые частицы.

Простейшие на нашей планете распространены повсеместно. Наибольшее количество их видов живет в соленых (моря, океаны) и пресных водах. Они входят в различные биоценозы, в том числе в состав планктона и бентоса, и играют важную роль в круговороте веществ в биосфере. Довольно многочисленные виды простейших живут в почве, где они существенно влияют на плодородие.

Очень многие простейшие от свободного образа жизни перешли к обитанию в других организмах и стали паразитами. Многие из них — возбудители тяжелых заболеваний человека и животных. Есть виды простейших, которые поражают растения, в том числе культурные. Многие простейшие, живущие в Мировом океане, обладают минеральными скелетами из карбоната кальция (СаСО3) или оксида кремния (IV) (SiO2). Эти скелеты после отмирания простейшего опускаются на дно, образуя мощные донные отложения. При горообразовательных процессах земной коры, вследствие которых изменяется рельеф суши и океана, донные отложения становятся сушью и образуют осадочные горные породы (мел, известняк и др.). Значительная часть осадочных горных пород океанического происхождения слагается из остатков скелетов простейших (фораминиферы, радиолярии и др.). Простейшие в течение всей истории Земли играли существенную роль в формировании земной коры.

Размеры тела большинства простейших микроскопические. Наиболее мелкие из них (паразитические простейшие в эритроцитах крови млекопитающих из рода Leichmania, Piroplasma) не превышают в поперечнике 2–4 мкм. Наиболее обычные размеры простейших 50—150 мкм, но встречаются и «гиганты». Так, инфузории родов Bursaria, Spirostomum достигают 1,5 мм в длину, грегарина Porospora gigantea (паразит кишечника жуков) — до 1 см. У некоторых фораминифер раковина имеет 5–6 см в диаметре.

40

Все многообразие строения простейших, которое будет рассмотрено при описании отдельных групп, представляет собой различные преобразования структуры эукариотической клетки. За последние десятилетия благодаря разработке новых методов исследования наши знания о строении и функциях клетки и соответственно простейших значительно углубились. Особенно большую роль в этом сыграла электронная микроскопия, а также методы изучения физиологии клетки с применением меченых изотопов, фотометрии и других методов. За последние 20–30 лет учение о клетке (в том числе и клетке простейших) вступило в качественно новый этап. Лучшие современные оптические микроскопы могут дать увеличение в 2400–3000 раз. Предел разрешающей способности электронного микроскопа неизмеримо выше: он составляет 200–300 тыс. раз! Это позволяет видеть крупные молекулы, например молекулу ДНК.

Напомним основные структурные и функциональные компоненты клетки с учетом данных, полученных с помощью электронного микроскопа. От окружающей среды клетка отграничена тонкой клеточной мембраной, играющей важную роль в регуляции поступления веществ в клетку и выхода их из клетки. В цитоплазме располагаются органоиды — постоянные структуры, которые выполняют определенные функции в жизни клетки. Среди них особое значение в освобождении энергии имеют митохондрии. В цитоплазме расположена сложная система мембран, образующая в совокупности эндоплазматическую сеть. На части мембран расположены мельчайшие, состоящие из рибонуклеиновой кислоты и белков гранулы — рибосомы. На этих органоидах происходит синтез белков. Часть мембран образует систему, называемую аппаратом Гольджи. Функциональное значение этого органоида заключается в том, что в области аппарата Гольджи концентрируются различные вещества. В цитоплазме располагаются мелкие, одетые мембраной зернистые образования — лизосомы. В них локализуются ферменты, связанные с расщеплением крупных молекул органических соединений в процессе обмена. В клетке обычно имеется центросома — органоид, связанный с митотическим делением клетки, и различные нитчатые (фибриллярные) структуры, образующие в совокупности цитоскелет, который выполняет важные опорные и проводящие функции. Кроме названных компонентов в цитоплазме клетки часто присутствуют резервные соединения, используемые в процессе обмена веществ, из которых наиболее обычен гликоген (у животных), крахмал (у растений), жировые включения и др.

Ядро эукариотической клетки отграничено от цитоплазмы оболочкой, состоящей из двух мембран, пронизанных многочисленными мельчайшими порами. Внутренность ядра заполнена ядерным соком — кариолимфой, где расположены структурные компоненты ядра, прежде всего хромосомы, в которых сосредоточена наследственная информация. Основу хромосом составляет ДНК, тесно связанная с ядерными белками — гистонами и образующая с ними дезоксинуклеопротеиды (ДНП). Кроме хромосом большинство ядер содержат еще одно или несколько ядрышек — нуклеол, слагающихся из белков и рибонуклеиновой кислоты (РНК). В ядрышках формируются рибосомы, которые выходят затем в цитоплазму. У всех простейших имеются названные компоненты эукариотической клетки. Их соотношение, структура, размеры исключительно разнообразны, что создает огромное многообразие Protozoa. Кроме перечисленных выше компонентов клетки, большинству простейших свойственны специальные органоиды, которые обеспечивают им возможность движения в окружающей среде.

Часть одноклеточных эукариотических организмов — гетеротрофы, часть — аутотрофы. Гетеротрофный тип обмена веществ, при котором организм использует в качестве источника энергии готовые органические вещества, свойствен животным и грибам, аутотрофный — зеленым растениям. Последний характеризуется тем, что зеленым пигментом хлорофиллом, локализованным в особых клеточных органоидах — хлоропластах, поглощается энергия излучения Солнца и происходит фотосинтез. В результате этого в зеленом растении из простейших неорганических соединений — углекислого газа и воды создаются сложные органические соединения — углеводы. Среди одноклеточных эукариотических организмов встречаются оба типа обмена веществ.

Очень близкие по строению организмы могут обладать разными типами обмена. Среди жгутиконосцев имеются такие виды (например, некоторые виды эвглен), которые в одних условиях существования (при ярком освещении и отсутствии органических веществ в окружающей среде) ведут себя как растения — они становятся зелеными и поглощают энергию излучения Солнца. При других условиях среды (в темноте и при наличии органических веществ) хлорофилл исчезает и организм переходит на гетеротрофный обмен. Изложенные факты показывают, что царства растений и животных имеют общее происхождение и что граница между ними, столь отчетливо выраженная на многоклеточном уровне развития, стирается на клеточном уровне. Все это создает значительные трудности для разграничения одноклеточных животных от одноклеточных растений, что дало основание многим ученым, начиная с Э. Геккеля (1834–1919) и до наших дней объединять одноклеточных эукариотных животных

41

и растения в отдельное царство протистов (Protista), стоящее в основе эволюционного развития царств растений и животных.

В настоящей книге, посвященной миру животных, мы не станем резко отделять простейших от многоклеточных животных и будем рассматривать первых как подцарство в животном царстве. При этом придется, однако, включить и некоторые зеленые виды, отделить которые по их строению от бесцветных гетеротрофов невозможно.

Исследования последних лет подтвердили представления об одноклеточности Protozoa и вместе с тем показали большое разнообразие их организации, которое не укладывается в понятие типа, установленного Кювье еще в начале XIX в. и объединившего животные организмы, обладающие общим планом строения (с. 8). Это заставило единый, по прежним представлениям, тип Protozoa разделить на несколько типов. На VI Международном конгрессе протозологов в 1977 г. была образована специальная комиссия, в которую вошли ученые разных стран (в том числе и из СССР), занимающиеся исследованиями простейших. В 1980 г. был опубликован результат их работы — система простейших. Сказанное не означает, конечно, что на основе дальнейших исследований система не будет совершенствоваться и уточняться. Но она отражает уровень изучения простейших на сегодняшний день. В этой системе выделено семь типов подцарства простейших. В книге мы рассмотрим представителей пяти типов, оставив в стороне два типа, которые стоят ближе к грибам, чем к животным.

В основу подразделения подцарства простейших на типы положены основные черты их строения и в особенности их органоидов движения. Важное значение имеют строение ядерного аппарата, формы размножения и характер жизненных циклов, часто сопровождающихся чередованием разных форм размножения.

Типы подцарства простейших подразделяются на многочисленные группы (таксоны) меньшего систематического ранга: подтипы, классы, отряды, семейства и т. д. Общее количество описанных до сих пор видов простейших превышает 30 тыс. Однако действительно существующее число видов значительно выше, ибо еще многие свободноживущие, в особенности паразитические виды, остаются неизвестными. Каждый год приносит описание сотен новых видов простейших.

В дальнейшем будут рассмотрены следующие пять типов подцарства простейших:

1. Саркомастигофоры (Sarcomastigophora);

2. Споровики (Sporozoa);

3. Книдоспоридии (Cnidosporidia — Myxospora);

4. Микроспоридии (Microspora);

5. Ресничные, или Инфузории (Ciliophora).

ТИП САРКОМАСТИГОФОРЫ __________________________ (SABCOMASTIGOPHORA)

К типу саркомастигофор (Sarcomastigophora) относятся простейшие (свободноживущие и паразитические), органоидами движения которых служат или псевдоподии (непостоянные выросты цитоплазмы — ложные ножки), или жгутики. Иногда оба эти типа органоидов движения сосуществуют одновременно или последовательно возникают в ходе жизненного цикла. Половой процесс осуществляется по типу копуляции. У многих он, однако, отсутствует, и размножение происходит делением надвое или множественным делением.

Тип саркомастигофор распадается на два подтипа:

1. Саркодовые (Sarcodina);

2. Жгутиконосцы (Mastigophora).

Некоторые ученые предлагают рассматривать каждый из названных подтипов, как самостоятельный тип. Эта точка зрения представляется нам не оправданной. Присутствие жгутиков и псевдоподий иногда одновременно или последовательно на разных этапах жизненного цикла не позволяет строго разграничить саркодовых и жгутиконосцев. Саркомастигофоры являются древнейшей группой эукариотных одноклеточных организмов, приспособившихся к самым разнообразным средам обитания: океану, пресным водам, почве, паразитизму в животных и растениях.

Подтип Саркодовые (Sarcodina)

К этому подтипу относятся простейшие, в течение всего жизненного цикла или большей его части обладающие органоидами движения — псевдоподиями. Главная масса саркодовых — обитатели морей. Имеется немало пресноводных видов, а также виды, обитающие в почве. Небольшое число видов саркодовых ведет паразитический образ жизни. Общее число описанных видов превышает 10 тыс.

Рассмотрим некоторых представителей трех классов, относящихся к этому подтипу: корненожек (Rhizopoda), лучевиков (Radiolaria) и солнечников (Heliozoa).

Класс Корненожки (Rhizopoda)

Наиболее просто устроенными организмами среди корненожек являются голые амебы (Amoebinа), образующие первый отряд подкласса корненожек.

Чтобы познакомиться со строением и образом жизни голых амеб, рассмотрим сначала одного характерного и часто встречающегося представителя.

Амёба Протей

В пресных водах, в небольших прудах и канавах g илистым дном, нередко удается обнаружить амебу протей (Amoeba proteus).

Амеба протей — одна из крупных свободноживущих амеб. В активном состоянии она достигает размера 0,5 мм, ее видно простым глазом. Если наблюдать под микроскопом за живой амебой (рис. 14), видно, что она образует несколько довольно длинных лопастных, тупо заканчивающихся псевдоподий. Псевдоподии все время меняют форму, часть их втягивается внутрь, часть, напротив, удлиняется, иногда разветвляется. Тело амебы как бы переливается в псевдоподии, которые в нескольких точках прикрепляются к субстрату, и благодаря этому образование ложных ножек приводит к поступательному движению амебы. Псевдоподии служат не только для движения, но и для заглатывания пищи. Если псевдоподия в процессе образования наталкивается на какую-либо органическую частицу (водоросль, мелкое простейшее и т. п.), она «обтекает» ее со всех сторон (рис. 15) и включает внутрь цитоплазмы вместе с небольшим количеством жидкости. Таким образом в цитоплазме образуются пузырьки с пищевыми включениями, которые называют пищеварительными вакуолями. В них происходит переваривание пищи (внутриклеточное пищеварение).

43

Непереваренные остатки пищи через некоторое время выбрасываются наружу (рис. 14).


Рис. 14. Амебы протей (Amoeba proteus) с разными формами псевдоподий:

1 — клеточное ядро; 2 — пищеварительная вакуоль; 3 — эктоплазма; 4 — эндоплазма; 5 — непереваренные частицы пищи, выбрасываемые наружу; 6 — сократительная вакуоль.



Вся цитоплазма амебы подразделена на два слоя: наружный, светлый, вязкий, всегда лишенный пищеварительных вакуолей (эктоплазма); внутренний, зернистый, жидкий, несущий многочисленные пищевые включения (эндоплазма). В состав псевдоподий входят оба слоя цитоплазмы.

Эктоплазма и эндоплазма не представляют собой резко разграниченных частей тела амебы. Они могут превращаться друг в друга. В области образования и нарастания псевдоподии, куда устремляется жидкая эндоплазма, периферические части ее желатинизируются (уплотняются) и превращаются в эктоплазму.

Напротив, на противоположном конце тела протекает обратный процесс — разжижение эктоплазмы и частичное превращение ее в эндоплазму. Это явление обратимого превращения эндоплазмы в эктоплазму и обратно лежит в основе образования псевдоподий.


Рис. 15. Последовательные стадии заглатывания пищи амебой (Amoeba terricola).



Снаружи тело амебы покрыто тончайшей эластической мембраной (ее поперечник составляет менее 1 мкм), называемой плазмолеммой. Обнаружить ее можно лишь электронным микроскопом. Она имеет большое значение в жизни амебы. Плазмолемма проницаема для газов и воды и непроницаема для большинства органических соединений, обладающих крупными молекулами, а также многих неорганических соединений. Плазмолемма играет важную роль в регуляции проникновения в клетку веществ и выхода их в окружающую среду. В цитоплазме амебы протея обычно отчетливо виден светлый пузырек, который периодически то появляется, то исчезает. Это сократительная вакуоля, играющая очень важную роль в жизненных отправлениях амебы. Сократительная вакуоля заполняется жидкостью (в основном водой), которая поступает в нее из окружающей цитоплазмы. Достигнув определенного, характерного для данного вида амеб размера, сократительная вакуоля уменьшается. Ее содержимое при этом изливается наружу через пору. Весь период наполнения и сокращения вакуоли при комнатной температуре длится у амебы протея обычно 5–8 мин.

Концентрация различных растворенных органических и неорганических веществ в теле амебы выше, чем в окружающей пресной воде. Поэтому в силу законов осмоса вода проникает в протоплазму амебы. Если бы избыток ее не выводился наружу, то через короткий промежуток времени амеба «расползлась» бы и растворилась в окружающей воде. Благодаря деятельности сократительной вакуоли этого не происходит. Таким образом, сократительная вакуоля — это прежде всего органоид осморегуляции, регулирующий постоянно осуществляемый ток воды через тело простейшего. Однако наряду с этим она связана и с другими жизненными функциями. Вместе с выводимой из тела амебы жидкостью выводятся и продукты обмена веществ. Следовательно, сократительная вакуоля участвует в функции выделения.

Постоянно поступающая в цитоплазму вода содержит кислород. Поэтому сократительная вакуоля косвенно участвует и в функции дыхания.

Как и во всякой эукариотической клетке, в теле амебы есть ядро. На живом объекте оно почти не видно. Для выявления ядра применяют некоторые красители, избирательно окрашивающие нуклеиновые вещества ядра. У амебы протея ядро довольно крупное, расположено в эндоплазме, примерно в центре тела.

Как размножаются амебы? Единственной известной у них формой размножения является деление надвое в свободноподвижном состоянии. Процесс этот начинается с митотического деления ядра. Вслед за тем на теле амебы появляется перетяжка, которая перешнуровывает тело ее на две равные половинки, в каждую из которых отходит по одному ядру.

44

Темп размножения амебы протея зависит от условий, прежде всего от питания и температуры. При обильном питании и температуре 20–25 °C амеба делится один раз в течение 1–2 суток.

В пресной и морской воде живет несколько десятков видов амеб. Они различаются размерами, формой псевдоподий (рис. 16). Ложные ножки могут сильно отличаться по форме и размерам. Есть виды амеб (рис. 16), у которых образуется всего одна толстая короткая псевдоподия, у других — несколько длинных заостренных, у третьих — много коротких тупых и т. п. Следует отметить, что даже в пределах одного вида амеб форма псевдоподий может довольно широко варьировать в зависимости от условий окружающей среды (солевой состав, кислотность среды и т. п.).


Рис. 16. Разные виды амеб с различной формой псевдоподий:

1 — Amoeba Umax; 2 — Pelomyxa binucleata; 8 — Amoeba proteus; 4 — Amoeba radiosa; 5 — Amoeba verrucosa; 6 — Amoeba polypodia.


Паразитические амёбы

Некоторые виды амеб приспособились к паразитическому образу жизни в кишечнике позвоночных и беспозвоночных животных. В толстых кишках человека живут пять видов паразитических амеб. Четыре вида их являются безобидными квартирантами». Они питаются бактериями, которые в огромном количестве населяют толстую и слепую кишку человека (так же как и всех позвоночных животных), и не оказывают заметного влияния на хозяина. Но один из видов паразитирующих в кишечнике человека амеб — дизентерийная амеба (Entamoeba histolytica) может вызвать у человека тяжелое заболевание — особую форму кровавого поноса (колита), болезни, носящей название амебиаза.

Дизентерийные амебы живут в толстом кишечнике человека. Это очень мелкие (по сравнению, например, с только что описанной амебой протеем) простейшие. Размеры их — 20–30 мкм. При изучении живой амебы под микроскопом ясно видно, что у нее резко разграничены экто- и эндоплазма, причем зона эктоплазмы относительно широка (рис. 17). Дизентерийная амеба характеризуется очень активной подвижностью. Она образует немногочисленные короткие широкие псевдоподии, в формировании которых принимает участие почти исключительно эктоплазма.


Рис. 17. Дизентерийная амеба (Entamoeba histolytica) в различных стадиях движения:

1 — эктоплазма; 2 — эндоплазма; 3 — ядро.



Дизентерийная амеба широко распространена по всему земному шару. В зависимости от географического положения процент зараженности людей этим паразитом варьирует в среднем от 10 до 30. Но заболевание амебиазом встречается редко и приурочено преимущественно к субтропическим и тропическим районам земного шара. В умеренных и северных широтах в подавляющем большинстве случаев дело ограничивается носительством (возбудитель заболевания присутствует в организме хозяина, но не вызывает патологических явлений). Клинически выраженные формы амебиаза — большая редкость.

45

Почему же такое расхождение между частотой встречаемости паразита и частотой вызываемого им заболевания? Дело в том, что далеко не всегда наличие дизентерийной амебы в кишечнике человека сопровождается болезненными явлениями. В большинстве случаев она не наносит своему хозяину-человеку никакого вреда. Она живет в просвете кишечника, активно двигается и питается бактериями.

Иногда амеба меняет поведение. Она активно внедряется в стенки кишечника, разрушает эпителий, выстилающий кишку, и проникает в соединительную ткань. Стенки кишечника изъязвляются, что приводит к тяжелой форме кровавого поноса. Амебы, проникшие в ткани, меняют в характер своего питания. Вместо бактерий они начинают активно пожирать красные кровяные клетки (эритроциты). В цитоплазме амеб скапливается большое количество эритроцитов на разных стадиях переваривания (рис. 18). Медицине известны некоторые специфические лекарственные вещества, убивающие амеб. Если не прибегать к лечению, то амебиаз переходит в хроническую форму и, вызывая тяжелое истощение организма человека, иногда приводит к смертельному исходу.


Рис. 18. Дизентерийная амеба (Entamoeba histolytica):

слева — амеба с заглоченными красными кровяными клетками; справа — амеба без эритроцитов; 1 — ядро; 2 — эритроциты.



До сих пор остаются неизвестными причины, которые превращают безобидного «квартиранта» кишечника в «агрессивного» пожирателя тканей. Высказывалось предположение, что существуют разные формы дизентерийной амебы, не отличающиеся друг от друга по строению.

Одни из них, распространенные в умеренном и северном поясе, редко переходят к паразитизму в тканях и почти всегда питаются бактериями. Другие — южные — относительно легко становятся «агрессивными» пожирателями тканей.

Каким образом дизентерийная и другие амебы, паразитирующие в кишечнике человека, попадают в организм хозяина? Активно подвижные формы амеб могут жить только в кишечнике человека. Будучи выведены из него, например в воду, в почву, они погибают очень быстро и не могут служить источником заражения. Заражение осуществляется особыми формами существования амеб — цистами. Посмотрим, как происходит у дизентерийной амебы процесс формирования цист. Попадая вместе с содержанием толстого кишечника в его нижние отделы и в прямую кишку, амебы претерпевают значительные изменения. Они втягивают псевдоподии, выбрасывают пищевые частицы, округляются. Затем эктоплазма выделяет тонкую, но прочную оболочку. Этот процесс представляет собой инцистирование.

Одновременно с выделением оболочки цисты претерпевает изменение и ядро. Оно дважды последовательно делится, причем деление ядра не сопровождается делением цитоплазмы. Таким образом образуются характерные для дизентерийной амебы четырехъядерные цисты (рис. 19). В таком виде вместе с фекальными массами цисты выводятся наружу. В отличие от активно подвижных вегетативных форм цисты обладают большой стойкостью. Попадая в воду или в почву, они долгое время сохраняют жизнеспособность (до 2–3 месяцев).


Рис. 19. Стадии инцистирования дизентерийной амебы (Entamoeba histolytica):

слева — одноядерная предцистная форма; справа — четырехъядерная циста.



Подсыхание и нагревание гибельны для цист. Доказано, что цисты, сохраняя жизнеспособность, могут распространяться мухами. Попадая в кишечник человека с пищей и водой, амеба эксцистируется: ее наружная оболочка растворяется, после чего следуют два деления, не сопровождающиеся делением ядра.

46

В результате получаются четыре одноядерные амебы, которые переходят к активной жизни.

Другие, непатогенные виды амеб кишечника человека распространяются таким же образом — цистами. По строению (размеры, число ядер) цисты разных видов несколько отличаются друг от друга. На этом основывается их диагностика.

За последнее десятилетие обнаружено ранее неизвестное явление факультативного (случайного) паразитирования мелких свободноживущих амеб в организме человека. Показано, что некоторые очень мелкие живущие в загрязненных водах пресноводные амебы (относящиеся к родам Naegleria и Acanthamoeba), случайно (например, во время купания) попав на слизистую оболочку, могут активно проникнуть в ткани, в том числе в нервную ткань, и вызвать тяжелое заболевание — менингоэнцефалит (воспаление мозга).

Учитывая сказанное, необходимо проявлять большую осторожность при купании в загрязненных водах.

Раковинные корненожки

Кроме амеб, в пресных водах встречаются представители и другого отряда корненожек — раковинные корненожки (Testacea). В море они не встречаются.

По строению раковинные корненожки напоминают амеб. В отличие от них часть тела корненожек заключена внутри раковинки, играющей роль защитного образования. В раковинке есть отверстие (устье), через которое наружу выдаются псевдоподии.

У арцеллы (Arcella, рис. 20) раковинка имеет форму блюдечка. Устье арцеллы расположено в центре. Раковинка, часто коричневой окраски, состоит из органического вещества, напоминающего по консистенции рог. Выделяется она веществом цитоплазмы подобно тому, как выделяется оболочка цисты. У диффлюгии (Difflugia, рис. 20) раковинка грушевидная. Она состоит из песчинок — мелких посторонних частичек, заглоченных, а затем отложенных на поверхности тела. У эуглифы (Euglypha) раковинка башневидная (рис. 20), но, в отличие от диффлюгии, она слагается из кремневых пластиночек правильной овальной формы. Эти пластиночки образуются в толще цитоплазмы корненожек, а затем выделяются на поверхность. Размеры раковинных корненожек невелики. Обычно они варьируют в пределах 50—150 мкм.


Рис. 20. Разные роды раковинных корненожек:

А — Arcella; Б — Difflugia; В — Euglypha (раковинка); Г — Euglypha с псевдоподиями; 1 — псевдоподии; 2 — ядро.



Выдающиеся из устья наружу псевдоподии выполняют двоякую функцию. Они служат органоидами движения и захвата пищи. Последнее осуществляется по тому же типу, как и у голых амеб.

47

В связи с наличием раковины несколько видоизменяется, по сравнению с амебами, способ бесполого размножения — деления. Раковина служит прочным скелетным образованием, и понятно, что она не может перешнуроваться пополам. Поэтому процесс деления раковинных корненожек связан с развитием новой раковины. Обычно он осуществляется следующим образом. Сначала примерно половина цитоплазмы выступает из устья. Вокруг этой части образуется новая раковинка. Одновременно с этим процессом делится ядро и одно из ядер переходит в дочернюю особь (рис. 21). На этой стадии обе особи оказываются еще связанными друг с другом мостиком цитоплазмы и обе раковинки (старая и вновь образовавшаяся) направлены одна к другой устьями. Вскоре после этого цитоплазматический мостик между особями утончается и перешнуровывается и обе корненожки переходят к самостоятельному существованию.


Рис. 21. Бесполое размножение делением раковинной корненожки Euglupha alveolata:

А — корненожка перед делением; Б — образование цитоплазматической почки, на поверхности которой располагаются скелетные пластинки; В — деление ядра, скелетные пластинки образуют новую раковину; Г — конец деления, одно из ядер переместилось в дочернюю особь; 1 — ядро; 2 — псевдоподии.



Как уже говорилось выше, раковинные корненожки — обитатели пресных вод. Они входят в состав донного населения, причем большая часть видов приурочена к прибрежной зоне. Преимущественно это обитатели мелких стоячих водоемов — прудов, канав, богатых органическими веществами.

Довольно богатая фауна корненожек (несколько десятков видов) встречается в сфагновых болотах, в самом сфагновом мху. Этот мох очень гигроскопичен и всегда впитывает большое количество воды. В прослойках воды, между стебельками и листочками мха, живут многочисленные раковинные корненожки. Здесь же встречаются и некоторые виды инфузорий.

Таким путем создается чрезвычайно характерный биоценоз обитателей сфагновых мхов.

Значительное количество видов раковинных корненожек обнаружено также в почвах, где они обитают в тончайших водных оболочках, покрывающих отдельные почвенные частицы.

Отряд Фораминиферы (Foraminifera)

Самым обширным отрядом среди корненожек являются обитатели моря — фораминиферы (Foraminifera). В составе современной морской фауны известно свыше 1000 видов фораминифер. Небольшое число видов, представляющих, вероятно, остаток морской фауны, обитает в подпочвенных соленых водах и солоноватых колодцах Средней Азии.

Строение. Подобно раковинным корненожкам, все фораминиферы имеют раковину. Строение скелета достигает здесь большой сложности и огромного разнообразия. Познакомимся с некоторыми наиболее характерными формами скелета фораминифер (рис. 22).

Среди огромного разнообразия строения раковин фораминифер можно различить по составу их два типа. Одни из раковин фораминифер состоят из посторонних телу корненожки частиц-песчинок.

Подобно тому как мы это видели у диффлюгии (рис. 20), фораминиферы, обладающие такими агглютинированными раковинами, заглатывают эти посторонние частицы, а затем выделяют их на поверхности тела, где они закрепляются в тонком наружном кожистом слое цитоплазмы. Такой тип строения раковины имеют часто встречающиеся представители родов Hyperammina, Astorhiza (рис. 22, 3–7) и др. Например, в некоторых районах наших северных морей (море Лаптевых, Восточно-Сибирское море) эти крупные фораминиферы, достигающие 2–3 см длины, почти сплошным слоем покрывают дно.

Число видов фораминифер с агглютинированной раковиной относительно невелико (хотя число особей этих видов может быть огромным). Большая часть обладает известковыми раковинами, состоящими из карбоната кальция (CaCO3). Эти раковины выделяются цитоплазмой корненожек, которые обладают замечательной особенностью концентрировать в своем теле кальций, содержащийся в морской воде в небольших количествах (соли кальция в морской воде составляют немногим более 0,1 %). Размеры известковых раковин разных видов фораминифер могут быть очень различны. Они варьируют в пределах от 20 мкм до 5–6 см. Это примерно такое же соотношение размеров, как между слоном и тараканом. Наиболее крупных из фораминифер, раковина которых имеет 5–6 см в диаметре, уже нельзя назвать микроскопическими организмами. Наиболее крупные (роды Cornuspira и др.) живут на больших глубинах.


Рис. 22. Раковинки различных фораминифер:

1 — Saccamina sphaerica; 2 — Lagena plurigera; 3 — Hyperammina elongate; 4 — H. elongata в разрезе; 5 — Rhabdammina linearis; 6 — Rh. linearis в разрезе; 7 — Astrorhiza limicola; 8 — Ammodiscus incertus, вид сбоку; 9 — A. incertus, вид со стороны устья; 10 — Cornuspira involvens; 11 — Rheopax noduloBus; 12 — Nodosaria hispida; 13 — Haplophragmoides canariensis, вид сбоку; 14 — H. canariensis, вид со стороны устья; 15 — Nonion umbilicatulus; 16 — N. umbilicatulus, вид со стороны устья; 17 — Discorbis vesicularis; 18 — D. vesicularis, вид со стороны основания; 19 — Quinqueloculina seminulum, вид сбоку; 20 — Qu. seminulum, вид со стороны устья; 21 — Spiroloculina depressa; 22 — Textularia sagittula; 23 — Globigerina sp.



Среди известковых раковин фораминифер в свою очередь можно различить две группы.

Однокамерные фораминиферы имеют одну-единственную полость внутри раковины, которая сообщается с наружной средой устьем. Форма однокамерных раковин разнообразна. У одних (например, Lagena) раковинка напоминает бутылочку с длинным горлышком, иногда снабженную ребрами (рис. 22, 2).

Очень часто происходит спиральное закручивание раковины, и тогда внутренняя полость ее становится длинным и тонким каналом (например, Ammodiscus, рис. 22, 8, 9).

Большинство известковых раковин корненожек не однокамерные, а многокамерные. Внутренняя полость раковины поделена перегородками на ряд камер, число которых может достигать несколько десятков и сотен. Перегородки между камерами не сплошные, в них имеются отверстия, благодаря чему протоплазматическое тело корненожки не расчленено на части, а представляет собой единое целое. Стенки раковинок не у всех, но у многих фораминифер пронизаны мельчайшими порами, которые служат для выхода наружу псевдоподий. Об этом подробнее будет сказано ниже.

Число, форма и взаимное расположение камер в раковинке может быть очень различным, что и создает огромное разнообразие фораминифер (рис. 22). У некоторых видов камеры расположены в один прямой ряд (например, Nodosaria, рис. 22, 12), иногда же их расположение двурядное (Textularia, рис. 22, 22). Широко распространена спиральная форма раковины, когда отдельные камеры расположены по спирали, причем по мере приближения к камере, несущей устье, размеры их возрастают. Причины этого постепенного нарастания размеров камер станут понятны, когда мы рассмотрим ход их развития.


Рис. 23. Раковины фораминифер:

вверху — Elphiclium strigilata; внизу — Archiacina verworni.



В спиральных раковинках фораминифер имеется несколько оборотов спирали. Наружные (более крупные) обороты могут быть расположены рядом с внутренними оборотами (рис. 22, 17, 18) так, что все камеры видны снаружи. Это эволютный тип раковины. У других форм наружные (более крупные) камеры целиком или частично охватывают внутренние камеры (рис. 23). Это инволютный тип раковины. Особую форму строения раковины находим у фораминифер милиолид (семейство Miliolidae, рис. 22, 19). Здесь камеры сильно вытянуты параллельно продольной оси раковины и расположены в нескольких пересекающихся плоскостях. Вся раковина в целом окапывается продолговатой и по форме несколько напоминает тыквенное зерно. Устье расположено на одном из полюсов и обычно снабжено зубцом.

Большой сложностью строения отличаются раковинки, относящиеся к циклическому типу (роды Archiacina, Orbitolites и др., рис. 23, 24). Число камер здесь очень велико, причем внутренние камеры располагаются по спирали, наружные — концентрическими кольцами.

Биологическое значение столь сложного строения многокамерных раковинок корненожек заключается в том, что многокамерные раковинки по сравнению с однокамерными обладают гораздо большей прочностью. Основное биологическое значение раковинки — защита мягкого протоплазматического тела корненожки. При многокамерном строении раковинки эта функция осуществляется весьма совершенно.

Как устроено мягкое протоплазматическое тело фораминифер?

Внутренняя полость раковины заполнена цитоплазмой. Внутри раковинки помещается и ядерный аппарат. В зависимости от стадии размножения (о чем будет сказано ниже) ядро может быть одно или их несколько. Из раковинки через устье наружу выдаются многочисленные очень длинные и тонкие псевдоподии, ветвящиеся и анастомозирующие между собой. Эти особые свойственные фораминиферам ложные ножки называют ризоподиями. Последние образуют вокруг раковинки тончайшую сеточку, общий диаметр которой обычно значительно превосходит диаметр раковинки (рис. 24). У тех видов фораминифер, у которых имеются поры, ризоподии выдаются наружу через поры.

Функция ризоподий двоякая. Они являются органоидами движения и захвата пищи. К ризоподиям «прилипают» различные мелкие пищевые частицы, очень часто это бывают одноклеточные водоросли. Переваривание их может происходить двояко. Если частичка мала, она постепенно как бы «скользит» по поверхности ризоподии и через устье втягивается внутрь раковинки, где и происходит переваривание. Если пищевая частица велика и не может быть втянута внутрь раковины через устье, то переваривание происходит вне раковинки. Вокруг пищи при этом собирается цитоплазма и образуется местное, иногда довольно значительное утолщение ризоподии, где и осуществляются процессы пищеварения.


Рис. 24. Фораминифера Orbitolites complanatus с ризоподиями.



Выполненные с применением цейтраферной киносъемки исследования показали, что цитоплазма, входящая в состав ризоподии, находится в непрерывном движении. Вдоль ризоподии в центростремительном (к раковине) и центробежном (от раковины) направлениях довольно быстро текут токи цитоплазмы. По двум сторонам тонкой ризоподии цитоплазма как бы струится в противоположных направлениях.

50

В цитоплазме фораминифер обычно в большом количестве присутствуют симбионты — одноклеточные организмы, относящиеся к различным группам органического мира. Чаще всего это прокариоты — бактерии. В других случаях симбионтами являются одноклеточные водоросли. Между симбионтами и их хозяевами фораминиферами устанавливаются тесные взаимоотношения, основанные на обмене веществ. Так, бактерии в теле фораминифер находят среду, благоприятную для жизни и размножения. Вместе с тем часть клеток симбионтов хозяева употребляют в качестве источника пищи. Одноклеточные водоросли в результате фотосинтеза выделяют кислород, который корненожка использует для дыхания.

Размножение. Размножение у фораминифер происходит довольно сложно. У большинства видов оно связано с чередованием двух разных форм: бесполого и полового. Не вдаваясь в детали, рассмотрим его на каком-нибудь конкретном примере.

На рисунке 25 изображен жизненный цикл фораминиферы Elphidium crispa. Этот вид представляет собой типичную многокамерную форами-ниферу со спирально закрученной раковинкой. Начнем рассмотрение цикла с многокамерной корненожки, обладающей маленькой зародышевой камерой в центре спирали (микроферическое поколение).

В цитоплазме корненожки первоначально имеется одно ядро. Бесполое размножение начинается с того, что ядро последовательно несколько раз делится, в результате чего образуется множество небольшого размера ядер (обычно несколько десятков, иногда свыше сотни). Затем вокруг каждого ядра обособляется участок цитоплазмы и все протоплазматическое тело корненожки распадается на множество (по числу ядер) одноядерных амебообразных зародышей, которые выходят через устье наружу. Сразу же вокруг амебовидного зародыша выделяется тонкая известковая раковинка, которая и явится первой (эмбриональной) камерой будущей многокамерной раковины. Таким образом, при бесполом размножении на первых стадиях своего развития корненожка является однокамерной. Однако очень скоро к этой первой камере начинают добавляться следующие. Происходит это так: из устья сразу выступает наружу некоторое количество цитоплазмы, которая тотчас же выделяет раковинку. Затем наступает пауза, в течение которой простейшее усиленно питается и масса протоплазмы его увеличивается внутри раковины. Затем вновь часть цитоплазмы выступает из устья и вокруг нее образуется очередная известковая камера. Этот процесс повторяется несколько раз: возникают все новые и новые камеры, пока раковина не достигнет характерных для данного вида размеров. Таким образом, развитие и рост раковины носят ступенчатый характер. Размеры и взаимное положение камер определяется тем, какое количество цитоплазмы выступает из устья и как эта цитоплазма располагается по отношению к предшествующим камерам.

Мы начали рассмотрение жизненного цикла Elphidium с раковинки, обладавшей маленькой эмбриональной камерой. В результате бесполого размножения получается раковинка, эмбриональная камера которой значительно крупнее, чем у той особи, которая приступала к бесполому размножению. В результате бесполого размножения получаются особи макросферического поколения, которые существенно отличаются от дающего им начало микросферического. В данном случае потомство оказывается не вполне похожим на родителей.

Каким же путем возникают особи микросферического поколения? Они развиваются в результате полового размножения макросферического поколения. Происходит это следующим образом.


Рис. 25. Жизненный цикл фораминиферы Elphidium crispa:

слева внизу — выход зародышей, образовавшихся в результате бесполою размножения; сверху справа — выход гамет и их копуляция.



Как и при бесполом размножении, половой процесс начинается с деления ядра. Количество образующихся при этом ядер значительно больше, нем при бесполом размножении. Вокруг каждого ядра обособляется небольшой участок цитоплазмы, и таким путем формируется огромное количество (тысячи) одноядерных клеток[5]. Каждая из них снабжена двумя жгутиками, благодаря движению которых клетки активно и быстро плавают. Эти клетки являются половыми клетками (гаметами). Они сливаются друг с другом попарно, причем слияние затрагивает не только цитоплазму, но и ядра. Этот процесс слияния гамет и есть половой процесс. Образующаяся в результате слияния гамет (оплодотворения) клетка носит название зиготы. Она дает начало новому микросферическому поколению фораминиферы. Вокруг зиготы сразу же по ее образовании выделяется известковая раковина — первая (эмбриональная) камера. Затем процесс развития и роста раковины, сопровождающийся увеличением числа камер, осуществляется по тому же типу, как и при бесполом размножении. Раковина получается микросферической потому, что размер зиготы, выделяющей эмбриональную камеру, во много раз меньше одноядерных амебовидных зародышей, образующихся при бесполом размножении. В дальнейшем микросферическое поколение приступит к бесполому размножению и вновь даст начало макросферическим формам.

На примере жизненного цикла фораминифер мы встречаемся с интересным биологическим явлением закономерного чередования двух форм размножения — бесполого и полового, сопровождающегося чередованием двух поколений — микросферического (развивается из зиготы в результате оплодотворения) и макросферического (развивается из одноядерных амебоидных зародышей в результате бесполого размножения).

Отметим еще одну интересную особенность полового процесса фораминифер. Известно, что у большинства животных организмов образуются гаметы двух категорий. С одной стороны, это крупные, богатые протоплазмой и запасными питательными веществами неподвижные яйцевые (женские) клетки, а с другой — мелкие подвижные сперматозоиды (мужские половые клетки). Подвижность сперматозоидов обычно связана с наличием у них активно двигающегося нитевидного хвостового отдела. У фораминифер, как мы видели, морфологических (структурных) различий между половыми клетками нет. По строению своему все они одинаковы и благодаря наличию жгутиков обладают подвижностью. Здесь нет еще структурных различий, которые позволили бы различать мужские и женские гаметы. Такая форма полового процесса является исходной, примитивной.

Есть еще одна особенность жизненного цикла фораминифер: соотношение гаплоидной и диплоидной фаз клеточного ядра. У всех многоклеточных животных соматические клетки имеют парный (диплоидный) набор хромосом. Каждая хромосома представлена двумя гомологичными структурами. При развитии половых клеток (гамет) происходит мейоз, в результате которого гомологичные хромосомы отходят к разным полюсам митотического веретена и число хромосом становится одинарным (гаплоидным). Таким образом, уменьшение (редукция) числа хромосом вдвое осуществляется при созревании гамет и носит название гаметической редукции. У фораминифер дело обстоит иначе. У них мейоз и соответственно редукция числа

52

хромосом происходят не при образовании гамет, а при формировании клеток бесполого размножения, дающих начало макросферическому поколению. Таким образом, развивающееся в результате бесполого размножения поколение (макросферическое) несет в ядрах гаплоидный комплекс хромосом. Напротив, микросферическое поколение, возникающее из зиготы (результат слияния гамет при оплодотворении), диплоидно. Здесь чередование поколений и форм размножения связано с чередованием гаплоидной и диплоидной фаз клеточного ядра. Оно носит название гетерофазного. В животном мире фораминиферы представляют собой единственный пример гетерофазного чередования поколений.

Среда обитания. В океанах и морях фораминиферы распространены повсеместно. Их находят во всех широтах и на всех глубинах, начиная от прибрежной литоральной зоны и кончая самыми глубокими абиссальными впадинами. Все же наибольшее разнообразие видов фораминифер встречается на глубинах до 200–300 м. Подавляющее большинство видов фораминифер является обитателями придонных слоев, входят в состав бентоса. Лишь очень немногие виды живут в толще морской воды, являются планктонными организмами. Изучение распределения корненожек в океане показало, что оно зависит от ряда факторов внешней среды — от температуры, глубины, солености. Для каждой из зон типичны свои виды фораминифер. Их видовой состав может служить хорошим показателем условий среды обитания.

Среди фораминифер имеются немногочисленные виды, ведущие планктонный образ жизни. Они постоянно «парят» в толще водяной массы. Типичный пример планктонных фораминифер — разные виды глобигерин (Globigerina, рис. 26). Строение их раковинок резко отличается от строения раковинок донных корненожек. Раковинки глобигерин более тонкостенные, а главное, несут многочисленные расходящиеся во все стороны придатки — тончайшие длинные иглы. Это одно из приспособлений к жизни в планктоне. Благодаря наличию игл поверхность тела, а именно отношение поверхности к массе — величина, называемая удельной поверхностью, возрастает. Это увеличивает трение при погружении в воду и способствует «парению» в воде.


Рис. 26 Планктонная фораминифера Globigerina dulloides.



Широко распространенные в современных морях и океанах фораминиферы были богато представлены и в прежние геологические периоды начиная с самых древних кембрийских отложений. Известковые раковинки после размножения или смерти корненожки опускаются на дно водоема, где входят в состав отлагающегося на дне ила. Процесс этот совершается десятки и сотни миллионов лет; в результате на дне океана образуются мощные отложения, в состав которых входит несметное количество раковинок корненожек. При горообразовательных процессах, которые совершались и совершаются в земной коре; как известно, некоторые области дна океана поднимаются и становятся сушей, суша опускается и становится дном океана. Большая часть современной суши в различные геологические периоды была дном, океана. Это относится в полной мере и к территории Советского Союза (за исключением немногих северных районов нашей страны: Кольский полуостров, большая часть Карелии и некоторые другие). Морские донные отложения на суше превращаются в горные осадочные породы. Во всех морских осадочных породах присутствуют раковинки корненожек. Некоторые же отложения, как например меловые, в основной своей массе состоят из раковин корненожек. Столь широкое распространение фораминифер в морских осадочных породах; имеет большое значение для геологических работ, и в частности для геологической разведки. Фораминиферы, как и все организмы, не оставались неизменными. В течение геологической истории нашей планеты происходила эволюция органического мира. Изменялись и фораминиферы. Для разных геологических периодов истории Земли характерны свои виды, роды и семейства фораминифер. Известно, что по остаткам организмов в горных породах (окаменелостям, отпечаткам, и т. п.) можно определить геологический возраст этих пород. Для этой цели могут быть исполосованы и фораминиферы. Как ископаемые они

53

благодаря своим микроскопическим размерам имеют очень большие преимущества, так как могут быть обнаружены в очень небольших количествах горной породы. При геологической разведке полезных ископаемых (в особенности при разведке нефти) широко используется метод бурения. При этом получается колонка породы небольшого диаметра, охватывающая все слои, через которые прошел бур. Если эти слои представляют собой морские осадочные породы, то в них при микроскопическом анализе всегда обнаруживаются фораминиферы. Ввиду большой практической важности вопрос о приуроченности определенных видов фораминифер к тем или иным осадочным породам известного возраста разработан с большой степенью точности.

Класс Лучевики, или Радиолярии (Radiolaria)

Еще более обширную по числу видов группу морских саркодовых, чем фораминиферы, образуют лучевики, или радиолярии (Radiolaria). Этот класс насчитывает 7–8 тыс. видов. Кроме современных видов % радиолярии богато представлены и в ископаемом состоянии. Это обусловлено тем, что у большинства их, так же как и у фораминифер имеется минеральный скелет.

Строение радиолярий сложно и разнообразно. Вся их организация несет выраженные черты приспособления к планктонному образу жизни, которые весьма совершенны и затрагивают разные стороны строения.

Размеры радиолярий варьируют в довольно широких пределах — от 40–50 мкм до 1 мм и более. Имеются немногочисленные колониальные формы радиолярий, размеры которых достигают величины нескольких сантиметров.

Обратимся прежде всего к рассмотрению протоплазматических частей тела радиолярий. Большинство их имеет более или менее ясно выраженную сферическую форму. Характерная особенность строения радиолярий — это наличие центральной капсулы (рис. 27, цв. табл. 2).

Центральная капсула представляет собой мембрану, состоящую из органического вещества и окружающую центральные части цитоплазмы с ядром. Стенки центральной капсулы обычно пронизаны многочисленными мелкими порами, через которые внутрикапсулярная цитоплазма сообщается с экстракапсулярной. Центральную капсулу следует рассматривать как скелетное образование, защищающее внутренние части цитоплазмы и ядерный аппарат (цв. таб. 3). У некоторых радиолярий внутрикапсулярная полость сообщается с экстракапсулярным пространством не многочисленными мелкими отверстиями, а широким отверстием, напоминающим устье раковинок корненожек.

Наружный слой цитоплазмы (эктоплазма) образует у радиолярий широкую зону. В этой зоне располагаются разнообразные включения, составляющие главную массу наружного слоя тела радиолярии. Сама цитоплазма представлена лишь тонкими прослойками между включениями. Основная масса этих включений — слизь, образующая в совокупности мощный слой, называемый калиммой. Кроме слизи, в цитоплазме радиолярий имеются и другие включения, в частности очень часто капли жира. Все эти разнообразные включения уменьшают удельный вес животного и могут рассматриваться как одна из форм приспособления к «парению» в толще воды.

У многих радиолярий в цитоплазме имеются иногда в значительных количествах зеленые (зоохлореллы) и желтые (зооксантеллы) включения. Это одноклеточные водоросли. Некоторые из этих водорослей относятся к отряду панцирных жгутиковых — Dinoflagellata (с. 64). Перед нами типичный пример симбиоза простейшего животного организма с растительным. Это сожительство полезно для обоих компонентов. Водоросли получают в теле радиолярии защиту и, вероятно, некоторые питательные вещества, а также углекислый газ, образующийся при дыхании. Углекислый газ необходим для фотосинтеза зеленого растения. Водоросли в результате фотосинтеза выделяют свободный кислород, используемый радиолярией для дыхания. Кроме того, часть водорослей может перевариваться радиолярией, т. е. служит источником пищи. Водоросли встречаются лишь у радиолярий, живущих на небольших глубинах, куда проникает свет. У глубоководных форм они отсутствуют.

От тела радиолярии наружу отходят многочисленные тончайшие псевдоподии (рис. 27, цв. табл. 2, 3), у некоторых видов анастомозирующие между собой. Они служат для улавливания пищи.

Лишь очень немногие виды радиолярий лишены скелета. У огромного большинства их имеется скелет, выполняющий двойную функцию — защитную и способствующую «парению» в толще воды. Разнообразие форм их скелетов очень велико. Многие скелеты радиолярий, имеющие часто правильную геометрическую форму, необычайно привлекательны. В скелетах радиолярий сочетается большая легкость (у планктонных организмов скелет не может быть тяжелым) с прочностью и часто с наличием разнообразных выростов, увеличивающих поверхность животного. Радиолярии — это один из наиболее красивых и изящных организмов.

54

Мы не имеем возможности в этой книге дать подробное описание различных форм радиолярий и ограничимся лишь некоторыми наиболее интересными представителями этой обширной группы простейших (см. цв. табл. 2, 3).

Радиолярии обладают минеральным скелетом. У большинства он слагается из оксида кремния (IV) (SiO2). В одном из отрядов радиолярий скелет состоит из сульфата стронция (SrSO4).

Класс радиолярий состоит из четырех отрядов. Для каждого из отрядов характерны свои типичные формы скелета. Остановимся кратко на рассмотрении этих отрядов (цв. табл. 2, 3).

В отряде Spumellaria встречаются единичные виды, лишенные скелета (рис. 27), но у большинства имеется кремневый скелет. Исходная и наиболее примитивная форма его — это отдельные разбросанные в эктоплазме одноостные или трех- и четырехостные микроскопические иглы. У многих Spumellaria эти иглы спаиваются, в результате чего получаются ажурные скелетные шары (цв. табл. 3, 4, 5).


Рис. 27. Радиолярия Thalassicola nucleata:

в центре темноокрашенная центральная капсула, две зоны сильно вакуолизированной цитоплазмы (мелкоячеистая и крупноячеистая), наружу выдаются радиально расположенные тончайшие псевдоподии.



Очень часто от шаров отходят радиальные иглы. У некоторых видов образуются не один, а несколько шаров, вложенных друг в друга и соединенных радиальными иглами. Вероятно, эти вложенные друг в друга шары образуются последовательно, по мере роста простейшего (процесс этот остается неизученным). Очень разнообразны кремневые скелеты в отряде Nasselaria. Исходными формами здесь, по-видимому, является четырехлучевая спикула.

55

Три луча ее образуют треножник, поддерживающий центральную капсулу, четвёртый же направлен вверх, образуя апикальную иглу. К этой основной спикуле присоединится кольца, соединяющие иглы спикулы (цв. табл. 2, 3). Эти кольца, разрастаясь, образуют очень разнообразные и причудливые формы скелета, в виде ажурных шапочек, шлемов, шаров и т. п. (цв. табл. 3, 2, 3, 6). Весьма характерен и типичен скелет радиолярий, относящихся к отряду Acantharia. В химическом отношении он имеет иной состав, чем Spumellaria и Nasselaria, а именно состоит из сульфата стронция, который довольно легко растворим в морской воде. Поэтому после отмирания животного скелет акантарий растворяется, тогда как кремневые скелеты (Spumellaria и Nasselaria) опускаются на дно и входят в состав ила.


Таблица 2. Различные радиолярии, зарисованные с живых объектов с их естественной окраской:

1 — Acarrtfcodesmia prismatium (отряд Nasselaiia). Тонкие радиально расходящиеся псевдоподии и желтые сферические симбионты; скелет кремневый с короткими отростками;

2 — Euchitonia virchovl (отряд Spujnellaria). Многочисленные тонкие псевдоподии, сетчатый тpeхлопастный кремневый скелет; цитоплазма окрашена в красный цвет благодаря пигменту;

3 — Auloceras arborescens (отряд Phaeodaria). Коричневая центральная капсула, зеленый феодий; кремневый скелет в форме радиально ветвящихся на концах игл и поверхностно расположенных тонких иголочек (спикул);

4 — Diplocercus fuscus (отряд Acantharia). Нитевидные псевдоподии; состоящие из сернокислого стронция радиальные иглы развиты неравномерно; зеленые симбионты зоохлореллы;

5 — Arachnocorys circumtexta (отряд Acantharia). Нитевидные псевдоподии, кремневый скелет в форме шлема с расходящимися иглами; красная центральная капсула, желтые симбионты;

6 — Tuscarilla nationalis (отряд Phaeodaria). Нитевидные псевдоподии, кремневый скелет в форме конуса, с отходящими от него иглами, две центральные капсулы, темно-зеленый феодий;

7 — Lithoptera miilleri (отряд Phaeodaria). Скелет из сернокислого стронция в форме радиальных неравномерно развитых игл с сетчатыми выростами на концах, центральная капсула „крестообразной формы с зелеными симбионтами зоохлореллами;

8 — Acanthomerta tetracopa (Acantharia) Немногочисленные радиальные псевдоподии; скелет состоит из сернокислого стронция, слагается из 20 радиально расположенных одинаково развитых игл; цитоплазма прикрепляется к иглам при помощи сократительных волокон. В центре ярко окрашенная центральная капсула Миофрисков с зернами пигмента и зоохлореллами.



Основу скелета акантарий составляют 20 радиально расположенных игл, сходящихся в центре животного (цв табл. 2, 7). Эти иглы, образуют пять поясов, по четыре иглы в каждом. Их свободные концы торчат из тела радиолярии наружу. Эта исходная для Acantharia форма скелета у разных видов претерпевает разнообразные видоизменения. Иглы могут быть развиты в различной степени. Например, у Diplocercus (цв. табл. 2, 4) преобладают две иглы. Очень красив скелет liithpptera (цв. табл. 2, 7). Здесь преимущественно развиты четыре иглы, на которых развиваются ответвления, образующие решетки. Весь скелет приобретает характер ажурной пластинки. Скелетные иглы акантарий прикрепляются к наружному слою цитоплазмы, при помощи особых волоконцев, — расположенных вокруг игл. Эти волоконца способны сокращаться. При их сокращении или, наоборот, удлинении меняется общий объем протоплазматического тела радиолярии. Эти изменения представляют собой очень тонкую «настройку» для поддержания животного в состоянии «парения» в толще воды. При колебании температуры или солености плотность морской воды не остаётся постоянной. Увеличение или уменьшение объёма тела радиолярии меняет удельный вес животного в соответствии с физическими свойствами в высшей степени разнообразны и трудно сводимы к какой-либо общей схеме кремнеземные скелеты четвертого отряда радиолярий — Pheodaria (цв. табл. 2, 3, 6) у куда относятся наиболее глубоководное виды. Скелет одних, аналогично Spumellaria, представляет собой вложенные друг в друга шары. У других имеются две створки, окружающие центральную капсулу. К этим элементам скелета добавляются разнообразные, иногда ветвящиеся радиальные отростки — иглы. Нередко имеется периферически лежащая зона тонких полых игл, расположенных в несколько слоев. Многообразие в строении скелета у Pheodaria поразительно!


Таблица 3. Различные радиолярии (скелеты):

1 — Dorcadospyris dinoceras (отряд Nasselaria). Кремневый скелет в виде центрального шара с двумя дугами;

2 — Calocyclus monumentum (отряд Naseeiaria). Кремневый скелет в форме решетчатого колокола с перетяжками и радиальными иглами; многочисленные нитевидные псевдоподии;

3 — Coronidium acacia (отряд Nasselaria). Кремневый скелет из трех взаимно пересекающихся колец с радиальными выростами;

4 — Perypanicium amphocoron (отряд SpUmellaria). Кремневый скелет из вложенных друг в друга двойных сфер, соединенных радиальными иглами;

5 — Hexancistra. quadricuspis (отряд Spumellaria). Кремневый скелет из вложенных друг в друга решетчатых шаров, соединенных радиальными иглами с разветвлениями на концах;

6 — Tympaniscus tropodiscus (отряд Nasselaria). Кремневый скелет из трех взаимно пересекающихся колец с радиально отходящими вторично ветвящимися иглами.



От представителей других отрядов радиолярий представители Pheodaria отличаются тем, что центральная капсула их имеет одно или три широких отверстия, сообщающих внутрикапсулярную полость с экстракапсулярным пространством (вместо многочисленных пор, имеющихся у других радиолярий). Кроме того, в экстракапсулярной цитоплазме в области отверстия, ведущего в полость центральной капсулы, у Pheodaria имеется особое, обычно окрашенное в коричневый цвет скопление пигмента, выделительных телец и нередко пищевых включений. Эти резко выделяющиеся благодаря своему яркому цвету на фоне бесцветной цитоплазмы образования носят название феодиума. Вопрос о физиологическом значении феодиума остается неясным.

Размножение радиолярий до сих пор изучено недостаточно, несмотря на то что многие ученые занимались исследованием этих интересных животных. Объясняется это в значительной мере тем, что никому еще не удалось длительное время содержать культуру радиолярий в аквариумах. Эти подлинные «дети моря» не выносят лабораторных условий существования. У некоторых крупных видов, которые имеют скелет, состоящий из отдельных игл, наблюдалось размножение путем деления надвое. У видов, обладающих сложным монолитным скелетом, такой способ размножения невозможен, так как прочный минеральный скелет не может разделиться на две половинки. По-видимому, у таких видов происходит формирование одноядерных зародышей (бродяжек), подобно тому как это происходит при бесполом размножении фораминифер (с. 51).

У некоторых радиолярий имеются очень крупные ядра с большим количеством хроматина (ДНК). Ученые считают, что эти ядра полиплоидны, т. е. содержат большое число характерных для вида наборов хромосом. При бесполом размножении тело радиолярий распадается на множество снабженных жгутиками клеток (бродяжек), каждая из которых дает начало новой особи радиолярии с центральной капсулой, скелетом и т. п. При образовании бродяжек сложное (вероятно, полиплоидное) ядро распадается на ряд более мелких ядер, несущих одинарный (гаплоидный или диплоидный) комплекс хромосом. По ходу развития бродяжки во взрослую особь увеличивается число наборов хромосом в ядре без деления самого ядра, т. е. происходит его полиплоидизация. Так вновь возникает богатое хроматином полиплоидное ядро.

Вопрос о наличии у радиолярий полового процесса остается открытым. Русский ученый В. Т. Шевяков (1859–1930) описал у акантарий образование жгутиковых гамет, их копуляцию и дальнейшее развитие зиготы во взрослую радиолярию. Выяснение этого вопроса требует дальнейших исследований.

56

Дело чрезвычайно усложняется еще и тем обстоятельством, что в теле радиолярий часто живут (с. 21) симбиотические, а иногда и паразитические водоросли и жгутиконосцы. Эти организмы в свою очередь при размножении образуют снабжённые жгутиками бродяжки, которые выходят из тела радиолярии. Не всегда легко бывает решить вопрос, имеем ли мы дело с бродяжками, принадлежащими самой радиолярии, или же с бродяжками живущих в их теле растительных организмов.

Среда обитания. Радиолярии, так же как и фораминиферы, — исключительно обитатели моря. Все они — планктонные организмы. Жизнь их протекает в состоянии «парения» в морской воде. Наибольшее число видов радиолярий приурочено к тропическим и субтропическим водам. В холодных морях число видов их невелико. Для Атлантического океана, например, установлено, что в экваториальной области число видов радиолярий из отряда Acantharia в 10 раз превышает таковое в северных районах.

Такие же примерно соотношения наблюдаются и в Тихом океане. В арктических морях радиолярий мало. Например, в Карском море их найдено только 15 видов.

Указанные закономерности в географическом распределении радиолярий справедливы для поверхностных слоев океана, температура которых определяется широтным фактором. По мере углубления в толщу водной массы различия в температурах между южными и северными широтами постепенно стираются, в связи с чём уменьшаются и различия в фауне радиолярий.

Кроме отчетливо выраженной зависимости распределения радиолярий от широтного фактора, что связано в первую очередь с температурой, у них отчетливо выражена и вертикальная зональность. Этот вопрос был изучен, например, довольно подробно в области Курило-Камчатской впадины Тихого океана, где глубины достигают 10 тыс. м. Среди радиолярий можно различить две группы видов. Одна не приурочена или слабо приурочена к какой-либо определенной глубине и встречается в разных глубинных зонах. Такие виды называют эврибатными. Другие, напротив, более или менее характерны для определенной глубины — это стенобатные формы. В области Курило-Сахалинской впадины было обнаружено довольно много таких стенобитных видов, причем некоторые из них были найдены лишь на глубинах, превышающих 4000 м.

Для стенобитных видов радиолярий Курило-Камчатской впадины Тихого океана их приуроченность к определенным глубинам совпадает с приуроченностью к определенным температурам. Наиболее глубоководные (абиссальные) виды живут при постоянной температуре 1,5–2,0 °C. Среднеглубинные виды распространены в относительно теплой водной массе с температурой 3,5 °C. Виды, «приуроченные к небольшим глубинам» заселяют характерный для этой области океана холодный слой воды с температурами около 0 °C. Наконец виды, живущие в поверхностных слоях, подвергаются сезонным колебаниям температур (средняя годовая температура этого слоя).

В Неаполитанском заливе Средиземному моря русский ученый проф. В. Т. Шевяков проводил в течение нескольких лет наблюдения за распределением радиолярий. В частности, оказалось, что радиолярии отряда Acantharia чрезвычайно чувствительны к малейшим изменениям условий среды, в том числе, например, к опреснёнию. Обычно акантарии распределены преимущественно в поверхностных слоях моря. Однако после сильных дождей они «спасаются» от опреснения и опускаются на глубины 100–200 м. Через 1–2 суток акантарии вновь поднимаются в поверхностные слои.

Акантарии оказались очень чувствительными и к волнению. При сильной волне они уходят на глубину 5—10 м. В зимние месяцы в связи с похолоданием поверхностных слоёв акантарии также опускаются на глубины 50–200 м., где температура воды выше.

Среди четырех рассмотренных выше отрядов радиолярий Acantharia являются по преимуществу обитателями поверхностных слоёв моря. Три остальных отряда (Spumellarla, Nasfceikrija; Pheodaria) в большей своей части приурочены к глубинным частям.

Из морей, омывающих берега Советского Союза, наиболее богаты радиоляриями дальневосточные моря. Внутренние моря (Каспийское, Азовское) совершенно лишены радиолярий. Это связано, очевидно, с их опреснением по сравнению с мировым океаном. В северных морях как европейской, так и азиатской части СССР радиолярии очень немногочисленны, что связано с преобладающими здесь низкими температурами.

Радиолярий нередко находят и в ископаемом состоянии в осадочных морских породах. В ископаемом состоянии известны представители двух отрядов — Spumellaria и Nasselaria. Скелет Acantharia, состоящий из сульфата стронций (SrSO4), в ископаемом состоянии не сохраняется, так как довольно легко растворяется в воде. Ископаемые радиолярии встречаются в осадочных породах различного геологического возраста, начиная с кембрийских отложений. Это говорит о том, что радиолярии представляют собой очень древнюю группу животного мира. Существуют некоторые древние осадочные породы, в которых среди прочих органических остатков скелеты радиолярий преобладают, составляя основную массу их (такие породы получили название радиоляриты).

57

На территории Советского Союза радиоляриты известны в силурийских и девонских отложениях Урала, в Западной Сибири, на Дальнем Востоке (в пермских отложениях Сихотэ-Алиня). Остров Барбадос (Карибское море), входящий в группу Малых Антильских островов, в основном слагается из трепела — породы, состоящей из скелетов радиолярий. На острове есть гора высотой 360 м, построенная из трепела. Здесь найдено свыше 200 видов радиолярий, причем скелеты их очень хорошо сохранились.

Радиолярии, кроме пород, состоящих преимущественно из их скелетов, присутствуют в различных количествах во многих других осадочных морских породах (известняки, мел, сланцы и т. п.).

В связи с таким широким распространением в морских отложениях радиолярии наряду с фораминиферами (с. 50) играют важную роль при определении возраста горных пород.

Класс Солнечники (Heliozoa)

К классу солнечников (Heliozoa) относится всего несколько десятков видов простейших.

Строение и способ питания. В небольших пресноводных водоемах — прудах, канавах — в летнее время нередко можно встретить солнечника Actinosphaerium eichhorni (рис. 28).


Рис. 28. Солнечник Actinosphaerium eichhorni:

А — общий вид; Б — участок тела при большом увеличении; В — ядро при большом увеличении; 1 — эктоплазма; 2 — эндоплазма; 3 — пища; 4 — аксоподии; 5 — ядро.



Тело Actinosphaerium шарообразно, достигает в диаметре 1 мм, так что его хорошо видно простым глазом. Многочисленные тонкие совершенно прямые псевдоподии расходятся по радиусам во все стороны. Постоянство формы псевдоподий обусловлено тем, что внутри них проходит прочная эластичная осевая нить. Такой тип строения псевдоподий носит название аксоподий.

Цитоплазма солнечника имеет ячеистую структуру и распадается на два слоя: наружный, более светлый, — корковый (эктоплазма) и внутренний — сердцевинный (эндоплазма). Эктоплазма занимает примерно 1/61/10 часть всего диаметра тела животного. В этом наружном слое вакуоли особенно крупны и заполнены прозрачным содержимым. Среди них выделяются по своим размерам две (а иногда и большее количество) особенно крупные вакуоли, которые периодически сокращаются. Это сократительные вакуоли. Частота их сокращения при комнатной температуре около 1 мин.

Эндоплазма обладает гораздо более мелкой ячеистостью, чем эктоплазма, и заполнена обычно многочисленными пищевыми включениями. Здесь происходит внутриклеточное пищеварение. Непереваренные остатки пищи выбрасываются наружу через слой эктоплазмы. Существенным отличием солнечников от радиолярий является отсутствие у них центральной капсулы.

Каким образом солнечник ловит добычу и чем он питается? Добыча улавливается псевдоподиями. Если какое-либо мелкое животное или растение прикоснется к псевдоподии, то оно тотчас же прилипает к ней и очень скоро теряет способность двигаться. Вероятно, животных парализует какое-то ядовитое, выделяемое цитоплазмой солнечника вещество. К захваченной добыче склоняются соседние псевдоподии (аксоподии), и она их совместными движениями подводится к поверхности коркового слоя цитоплазмы. Нередко навстречу пище со стороны эктоплазмы образуется временная короткая тупая псевдоподия, способствующая захвату ее. В эктоплазме пища не задерживается, а тотчас же переходит в эндоплазму, где и переваривается.

58

Пищевые объекты солнечников разнообразны. Это могут быть различные простейшие (инфузории, жгутиконосцы), но также и мелкие многоклеточные животные (например, коловратки, мелкие ресничные черви).

Среда обитания. Часть солнечников распространена в пресной, часть — в морской воде. Большинство солнечников — свободноплавающие в толще воды организмы, лишенные минерального скелета. Некоторые виды ведут прикрепленный к субстрату образ жизни.

Солнечники могут вести себя в водоеме различным образом. Часто они «парят» в придонном слое толщи воды. Кроме того, они могут передвигаться и по субстрату, как бы катиться по дну, медленно изгибая аксоподии.

Размножение. Размножаются солнечники Actinosphaerium делением. Тело солнечника при этом перетягивается на две более или менее одинаковые половинки. Этому предшествует деление ядер, которое, однако, не протекает одномоментно, а растягивается на весь промежуток времени между двумя делениями солнечника. Наряду с бесполым у солнечников имеется и половое размножение, протекающее довольно сложно.

Ядерный аппарат солнечника Actinosphaerium состоит из множества одинаковых ядер (у крупных особей число их может достигать 200 и даже более), всегда расположенных только в эндоплазме. Actinosphaerium — пример многоядерного простейшего.

Кроме крупного Actinosphaerium, в пресных водах встречаются и другие, более мелкие виды солнечников, близких по строению к Actinosphaerium. Укажем, например, на часто встречающихся мелких Actinophrys sol, обладающих, в отличие от Actinosphaerium, лишь одним ядром. В море тоже встречаются солнечники, по строению напоминающие Actinosphaerium, например многоядерные Camptonema nutans.

Среди солнечников как пресноводных, так и морских, имеются некоторые виды с минеральным скелетом из оксида кремния (IV), подобно радиоляриям. Примером может служить пресноводная Clathrulina elegans (рис. 29). Это небольшой солнечник с типичными радиальными аксоподиями, тело которого окружено тонким скелетом в форме ажурного шарика. При помощи тонкой ножки организм этот прикрепляется к субстрату. В эндоплазме имеется одно ядро. При размножении Clathrulina протоплазма делится внутри скелета на две дочерние особи, которые выходят наружу, через отверстие в скелете, а затем образуют новый скелет и стебелек.

В процессе эволюции саркодовые, приспосабливаясь к различным средам обитания, дали большое разнообразие форм. Организация саркодовых еще очень примитивна.


Рис. 29. Солнечник Clathrulina elegans:

слева — вегетативная особь; справа — размножающаяся особь; 1 — аксоподии; 2 — скелет; 3 — дочерние особи внутри скелета материнской особи.



На примере амебы мы видим одного из наиболее просто устроенных животных организмов. Но и в пределах примитивной организации саркодовые проделали большой эволюционный путь от амебообразных организмов к сложно устроенным фораминиферам и радиоляриям. Однако усложнение строения в пределах подтипа саркодовых лишь в относительно малой степени затронуло живые протоплазматические части клетки. Органоидами движения и захвата пищи на всех этапах эволюции саркодовых остаются псевдоподии. Зато большого прогрессивного развития достигают в пределах саркодовых скелетные элементы, выполняющие, с одной стороны, защитную и опорную функцию, а с другой — способствующие «парению» в воде, что имеет важное биологическое значение, так как многие морские саркодовые — планктонные организмы.

Развитие сложных скелетных образований сыграло большую роль и в эволюции донных (бентических) саркодовых — фораминифер. Развитие сложного и разнообразно устроенного скелета обеспечило фораминиферам биологическое процветание как в прежние геологические эпохи, так и в современной морской фауне. Наконец, относительно небольшое число видов саркодовых избрало в качестве среды обитания другие организмы и стало паразитами. В отношении сложности строения паразитические саркодовые остались на уровне голых амеб.

59

Подтип Жгутиконосцы (Mastigopoka)

Жгутиконосцы представляют собой очень обширную и разнообразную группу простейших организмов, широко распространенную в природе.

Строение. Характерная черта жгутиконосцев — наличие жгутиков — органоидов движения (рис. 30). Жгутики представляют собой тончайшие волосовидные выросты цитоплазмы, длина которых иногда значительно превосходит длину тела (с. 61). Активное и быстрое движение жгутиков обусловливает поступательное движение простейшего. Механизм работы жгутиков различен. В основе его лежит винтообразное движение» При помощи жгутиков организм как бы ввинчивается в окружающую жидкую среду. Число оборотов, которое совершает жгутик, сильно варьирует у разных видов. Это также зависит от условий внешней среды. Обычно жгутик совершает от 10 до 40–50 оборотов в 1 с. Число жгутиков может быть различным, чаще всего имеется лишь один (рис. 30), нередко их два (рис. 31), иногда восемь. Имеются виды, число жгутиков у которых может достигать нескольких десятков и даже сотен.

Изучение с помощью электронного микроскопа ультраструктуры жгутиков показало, что она сложна и вместе с тем обнаруживает поразительное единообразие (за единичными отклонениями). Каждый жгутик состоит из двух частей. Наружная его часть, выдающаяся в окружающую среду, является аппаратом, совершающим двигательные движения. Вторая часть жгутика — это базальное тельце, или кинетосома, погруженная в толщу эктоплазмы. Снаружи жгутик покрыт мембраной, представляющей собой непосредственное продолжение наружной мембраны клетки.

Внутри жгутика, заполненного жидким содержимым, строго закономерно располагаются 11 фибриллей. Вдоль жрутика проходят две центральные фибрилли, берущие начало в эктоплазме от особой гранулы, которая называется аксиальной. По периферии жгутика непосредственно под мембраной проходят девять фибриллей, причем каждая из них слагается из двух тесно спаянных трубочек. Локомоторная деятельность жгутика определяется изменением конфигурации периферических фибриллей, тогда как центральные играют роль опорного аппарата.

Базальное тельце лежит в эктоплазме. Оно также окружено мембраной. По периферии кинетосомы располагаются девять фибриллей, являющихся непосредственным продолжением периферических фибриллей локомоторной части жгутика. В кинетосоме эти фибрилли становятся тройными — каждая из них состоит из трех спаянных трубочек. Центральные фибрилли в кинетосоме отсутствуют.

В отличие от саркодовых, большинство жгутиконосцев обладает более или менее постоянной формой тела. Это обусловливается тем, что наружный слой эктоплазмы образует плотную эластичную пелликулу. Однако у некоторых жгутиконосцев пелликула очень тонка, и они способны в довольно широких пределах менять форму тела, а немногие виды сохраняют даже способность образовывать ложные ножки (псевдоподии).

Как и все простейшие, жгутиконосцы имеют одно или несколько ядер.


Рис. 30. Жгутиконосец Euglena viridis:

1 — жгутик; 2 — глазное пятнышко; 3 — сократительная вакуоль; 4 — хроматофоры; 5 — ядро.



Характер питания. Среди жгутиконосцев мы встречаем поразительное разнообразие типов обмена веществ. По этому важному признаку жгутиконосцы занимают как бы промежуточное положение между растительным и животным миром: у них можно наблюдать все переходы от типично растительного к животному типу питания.

Среди жгутиконосцев имеются организмы как с аутотрофным, так и с гетеротрофным типами питания, а также виды, которые сочетают в себе черты обоих этих типов обмена.

60

По характеру питания и обмена веществ класс жгутиконосцев делят на два класса: растительных жгутиконосцев, или фитомастигин (Phytomastigina), и животных жгутиконосцев, или зоомастигин (Zoomastigina).

Мы рассмотрим некоторых наиболее интересных представителей, относящихся к тому и к другому классу. Некоторые (аутотрофные) жгутиконосцы представляют собой объект ботаники, тогда как другие (гетеротрофные) — объект изучения зоологии. Мы рассмотрим в дальнейшем изложении и тех и других, так как среди жгутиконосцев иногда даже относительно близкие виды могут обладать разными типами обмена веществ: одни — растительным, другие — животным.

Среда обитания. Жгутиконосцы как по строению, так и по образу жизни чрезвычайно разнообразны. Число видов их велико, оно достигает 6–8 тыс. Многие из них являются обитателями моря. Значительная часть морских видов жгутиконосцев входит в состав планктона, где они развиваются иногда в огромных количествах. Пресные воды тоже богаты жгутиконосцами. Видовой состав их в пресноводных водоемах в большой степени зависит от степени загрязненности вод органическими веществами. Для разных типов озер, прудов и других водоемов характерны определенные виды жгутиковых. Такая строгая приуроченность их к определенным условиям жизни позволяет использовать жгутиконосцев (наряду с другими группами организмов) как своеобразные «биологические индикаторы» при санитарной оценке водоема.

В отличие от фораминифер и радиолярий в ископаемом виде жгутиконосцы почти неизвестны.

Это объясняется отсутствием у подавляющего большинства их минерального скелета. Существует только одна небольшая группа планктонных жгутиконосцев (сем. Silicoflagellidae), обладающих очень нежным кремневым скелетом. Представители этой группы жгутиконосцев найдены в ископаемом состоянии в морских отложениях.

Многие жгутиконосцы паразитируют в организмах различных животных. Хозяева паразитических форм жгутиковых разнообразны. Среди них встречаются беспозвоночные животные (чаще членистоногие, в том числе насекомые); особенно часто жгутиконосцы паразитируют в разных классах позвоночных (в том числе домашних животных и птицах).

Средой обитания паразитических форм-жгутиконосцев могут быть различные органы: кишечный канал, кровяное русло, кожа, половые пути; Человек также является хозяином некоторые видов жгутиконосцев; среди них имеются весьма патогенные виды (трипаносомы, лейшмании, лямблии и др.), вызывающие тяжелые заболевания.

Класс Растительные Жгутиконосцы, или Фитомастигины (Phytomastigina)

Многим, вероятно, приходилось видеть в природе своеобразное явление «цветения воды», когда вода в луже, пруду или озере становится изумрудно-зеленой. Причиной «цветения» являются различные микроскопические растительные организмы, развивающиеся в несметных количествах. Очень часто это разные представители фитомастигин.

Хламидомонады

Хламидомонады часто являются причиной «цветения воды». К роду хламидомонада (Chlamydomonas) относится свыше 150 видов.

Строение. Тело большинства их яйцевидное и шаровидное (рис. 31), очень небольших размеров (10–30 мкм). Все тело покрыто довольно прочной оболочкой из целлюлозы — вещества, из которого состоят оболочки растительных клеток. На переднем конце расположены два жгутика одинаковой длины. Ярко-зеленый цвет жгутиконосца обусловлен наличием в цитоплазме его чашевидного хроматофора, несущего зеленый пигмент — хлорофилл. Весь хлорофилл сосредоточен в хроматофоре и вне его никогда не встречается. В области прикрепления жгутиков имеется одна или две сократительные вакуоли — это органоид осксирегуляции и выделения (рис. 31). У некоторый видов хламидомонад на переднем конце тела имеется еще одно образование в виде небольшого пятна яркого красно-коричневого цвета. Это стигма, или глазок. Его окраска обусловлена наличием особого пигмента, называемого гематохромом. Хламидомонады обладают резко выраженным положительным фототропизмом: они всегда плывут в сторону источника света. Некоторые наблюдения позволяют считать, что стигма представляет собой органоид, связанный с восприятием светового раздражения, и является по своей функции действительно клеточным глазком. В цитоплазме обычно присутствуют зерна крахмала, являющиеся продуктом фотосинтеза.


Рис. 31. Хламидомонада Chlamydomonas angulosa.

А — неделящаяся особь; 1 — жгутик; 2 —сократительная вакуоль; 3 — хроматофор; 4 — ядро; Б-Г — стадии деления.



Клеточное ядро хламидомонад сферической формы и расположено примерно в середине клетки.

Размножение. Большинство хламидомонад размножается в неподвижном состоянии (рис. 31): жгутиконосец теряет жгутики, опускается на дно. Внутри оболочки происходит деление протоплазматической части клетки (протопласта) сначала на две, затем на четыре части. Через разрыв оболочки материнской клетки образовавшиеся в результате деления дочерние клетки выходят наружу, приобретают жгутики, дорастают до величины материнской клетки и выделяют оболочку. Рассмотренный только что процесс представляет собой бесполое размножение.

Кроме бесполого размножения, у большинства хламидомонад известен половой процесс. Он сводится к тому, что вегетативные клетки становятся гаметами, которые попарно сливаются. Слияние гамет сопровождается слиянием ядер. Образовавшаяся в результате оплодотворения зигота теряет жгутики и покрывается прочной оболочкой. Внутри нее происходит деление протопласта на четыре клетки, у которых развиваются жгутики. Клетки превращаются в четыре особи хламидомонад, переходящих к свободноподвижному образу жизни.

Колониальные Фитомастигины

Строение. Среди фитомастигин есть немало колониальных видов. Рассмотрим некоторые наиболее широко распространенные виды колониальных фитомастигин.

В пресных водах часто встречаются маленькие изящные колонии гониумов (Gonium pectorale), представляющие собой зеленые пластиночки, каждая из которых состоит из 16 клеток (рис. 32). Клетки колонии по строению полностью соответствуют хламидомонадам. Отдельные клетки связаны друг с другом бесцветной прозрачной студенистой массой. Эта масса образуется в результате ослизнения наружного слоя оболочек клеток. Благодаря биению жгутиков вся колония активно плавает в воде.


Рис. 32. Колониальная фитомастигина Gonium pectorale.

Вверху — вид колонии сверху: 1 — жгутики; 2 — глазок (стигма); 3 — сократительная вакуоль; 4 — ядро; внизу — вид колонии сбоку.



Другая часто встречающаяся пресноводная колониальная форма фитомастигин — эвдорина (Eudorina elegans). Колонии этого вида, в отличие от гониумов, шаровидны (рис. 33) и в большинстве случаев слагаются из 32 клеток (изредка число клеток колонии может быть и меньше, а именно 16 и 8). Как и у гониумов, отдельные особи колонии эвдорин связаны между собой студенистым прозрачным веществом. Диаметр колоний этого вида варьирует в довольно широких пределах (от 50 до 200 мкм).

62

⠀⠀ ⠀⠀

Рис. 33. Шаровидная колония Eudorina elegans:

слева — колония из 32 клеток; справа — бесполое размножение (каждая особь колонии в результате последовательных делений дает начало новой дочерней колонии).



Каждая клетка колоний гониумов и эвдорин сохраняет способность к бесполому размножению, которое удается наблюдать довольно часто. К делению приступают одновременно все клетки колонии (рис. 33). Каждая клетка у гониума претерпевает три, а у эвдорин — четыре последовательных, быстро следующих друг за другом деления. В результате внутри общей слизистой оболочки колонии образуются новые, дочерние колонии, число которых соответствует числу приступивших к размножению клеток. В дальнейшем слизистый чехол материнской колонии распадается, и дочерние колонии приступают к самостоятельному существованию.

Очень большой сложности достигает строение колоний у вольвокса (Volvox). Несколько видов этого рода — частые обитатели небольших пресноводных водоемов (рис. 34).

Вольвоксы образуют крупные шаровидные колонии. У наиболее часто встречающегося вида Volvox aureus диаметр колоний равен 500–850 мкм, а размеры колоний Volvox globator достигают 2 мм. У Volvox aureus в состав колонии входит 500—1000 отдельных клеток, а у Volvox globator — до 20 тыс. Основная масса колонии состоит из студенистого вещества, образующегося в результате ослизнения клеточных оболочек. Самый наружный слой его представляет собой особый плотный кожистый слой, придающий всей колонии значительную прочность. Центральные части студенистого вещества гораздо менее плотной консистенции — они полужидкие. Отдельные клетки колонии располагаются в самом периферическом слое. Каждая клетка имеет в основных чертах такое же строение, как и одиночные хламидомонады. В колонии вольвокса отдельные особи не вполне изолированы друг от друга, они связаны между собой тончайшими цитоплазматическими мостиками (рис. 35).

Движение вольвокса осуществляется благодаря совместному действию жгутиков. Несмотря на то что колония шаровидна, она обладает некоторой полярной дифференцировкой. Последняя выражается в том, что на одном полюсе стигмы (глазки) развиты сильнее, чем на другом. Движение вольвокса тоже оказывается ориентированным: он плывет вперед тем полюсом, на котором глазки сильнее развиты.


Рис. 34. Колония Volvox aureus с дочерними колониями внутри материнской.



Размножение. У относительно просто устроенных колоний, таких, как гониум и эвдорина, все клетки способны путем бесполого размножения давать начало новой колонии. У вольвокса дело обстоит иначе. Огромное большинство клеток колонии не способно делиться. Этим свойством обладают лишь очень немногие особи. Число их в колонии относительно невелико: чаще всего 4—10. Они располагаются в большинстве своем в нижней части колонии (в той части ее, где глазки относительно слабо развиты). Эти клетки, называемые «вегетативными клетками размножения», удается рассмотреть лишь в относительно молодых колониях. В более старых они находятся на различных стадиях развития в дочерние колонии. Не вдаваясь в детали этого довольно сложного процесса, укажем, что дочерние колонии развиваются внутри материнской в результате многократного деления «вегетативных клеток размножения» (рис. 36). Когда размеры дочерних колоний увеличатся настолько, что они уже не смогут поместиться внутри старой, последняя лопается и погибает, а дочерние колонии выходят наружу. Летом, в период энергичного размножения, нередко можно наблюдать, как внутри дочерних колоний, находящихся еще внутри материнской, начинают развиваться внучатые колонии.


Рис. 35. Небольшой участок колонии Volvox aureus (схематизировано):

1 — вегетативная особь колонии; 2 — цитоплазматический мостик; 3 — более крупная особь, в результате развития которой получаются новые дочерними колонии.



63

Рис. 36. Разрез через колонию вольвокса с тремя дочерними колониями внутри материнской (схематизировано).



Кроме бесполого размножения, у колониальных фитомастигин наблюдается и половой процесс, который протекает у различных видов по-разному. Укажем лишь, что при половом процессе в колонии образуются гаметы, в результате слияния (оплодотворения) которых получается зигота. Из зиготы путем ряда последовательных делений развивается новое поколение колоний.

Отряд Панцирные Жгутиконосцы, или Перинидеи (Dinoflagellata, или Peridinea)

Панцирные жгутиконосцы — обширная группа простейших, широко распространенная в морях и пресных водах. Подавляющее большинство видов этого отряда относится к планктонным формам.

Строение. Характерная особенность панцирных жгутиконосцев — своеобразное строение жгутикового аппарата (рис. 37). Имеющиеся у них два жгута берут начало рядом друг с другом на одной стороне тела простейшего, которую условно называют брюшной. Один жгутик направлен назад и свободно выдается в окружающую среду. Начальная часть его лежит в небольшом желобке, идущем вдоль тела. Второй жгутик, называемый поперечным, опоясывает все тело в экваториальной плоскости и расположен в Довольно глубоком желобе, называемом поясом cingulum, который опоясывает все тело. Поперечный жгут производит характерные волнообразные движения, что создает ложное впечатление, будто в поперечной борозде расположен ряд ресничек.

Вторая характерная особенность большинства (но не всех) панцирных жгутиконосцев — наличие у них оболочки, состоящей из клетчатки. Эта оболочка складывается из строго определенного числа закономерно расположенных отдельных пластинок, соединенных друг с другом швами.

Исследования последних лет, выполненные методами электронной микроскопии и молекулярной биологии, выявили еще одну характерную черту динофлагеллят — перидинии. Эти организмы имеют клеточное ядро, обладающее ядерной оболочкой и ядрышками (нуклеолами). Оказалось, что по тонкой молекулярной структуре хроматин ядра и образуемые им в процессе митоза хромосомы отличаются как от растительных, так и от животных эукариотных клеток. Различие это сводится к тому, что в состав хроматина динофлагеллят входит ДНК, не связанная химически с белками. У всех прочих эукариотных организмов ДНК ядра всегда связана с особыми ядерными белками (гистонами). По строению хроматина перидинии приближаются к прокариотам (бактерии, сине-зеленые водоросли), в составе ядерного вещества (хромосомы) которых белки тоже отсутствуют. Изложенные факты дали основание некоторым ученым рассматривать строение клетки динофлагеллят как промежуточное между прокариотическим и эукариотическим строением клетки, обозначив его как мезокариотическое (промежуточное). С этой точки зрения перидинии занимают особое место в органическом мире — как бы промежуточное между прокариотами и эукариотами. Эта гипотеза требует дальнейших подтверждений и не является общепринятой.

Цитоплазма жгутиконосцев обычно окрашена в буроватый цвет, что обусловлено большим количеством мелких дисковидных хроматофоров, содержащих хлорофилл и некоторые дополнительные пигменты. Продуктом ассимиляции является крахмал, зерна которого рассеяны в цитоплазме.

Рассмотрим представителей двух наиболее широко распространенных родов динофлагеллят. На рис. 37) изображен часто встречающийся в пресных водах перидиний (Peridinium tabulatum). У него отчетливо выражены упомянутые выше пластинки. Форма тела более или менее правильно яйцевидная. Иногда бурное развитие перидиний вызывает «цветение» воды.


Рис. 37. Панцирный жгутиконосец PericUnium tabulatimi.

Слева — виде брюшной стороны; 1 — поперечный жгутяк в пояске; 2 — свободный жгутик; справа — вид со спинной стороны.



Широко распространены как в пресной, так и в морской воде многочисленные виды рода церациум (Ceratium). Характерная особенность представителей этого рода — длинные выросты. У пресноводного Ceratium hirudinella (рис. 38)

64

один вырост (апикальный) направлен вперед и три (антапикальных) — назад.


Рис. 38. Ceratium hirudinella:

А — неделящаяся особь; 1 — антапикальный вырост; 2 — апикальный вырост; 3 — ядро; 4 — поясок; 5 — задний жгутик; Б — деление; В — только что разделившаяся особь, часть пластинок на заднем конце еще недоразвита.



Особенно сильно эти выросты выражены у морских видов Ceratium, у которых они вторично ветвятся (рис. 39).


Рис. 39. Морской панцирный жгутиконосец Ceratium palmаtum.



Для морских же видов характерно образование временных колоний-цепочек (рис. 40), которые возникают в результате того, что разделившиеся особи остаются некоторое время связанными друг с другом. Длинные отростки у морских видов Ceratium представляют собой приспособление к планктонному образу жизни. Отростки увеличивают поверхность тела, что способствует «парению» в воде. Аналогичные приспособления мы уже видели у радиолярий.


Рис. 40. «Цепочка», образовавшаяся в результате деления морского панцирного жгутиконосца Cerаtium voltur.



В планктоне теплых и тропических морей очень часто, и нередко в огромных количествах, встречается жгутиконосец ночесветка (Noctiluca mi-liaris). В летнее время это простейшее обычно развивается и в Черном море.

Ночесветка имеет шаровидное тело до 2 мм в диаметре. В отличие от других панцирных жгутиконосцев, она не имеет оболочки из клетчатки и лишена хроматофоров (рис. 41). Поэтому ночесветка не способна к фотосинтезу.

Очень своеобразно строение эндоплазмы ночесветки. Под ротовым отверстием располагается центральное скопление цитоплазмы, от которого к периферии во всех направлениях отходят тонкие тяжи. Вся же остальная масса тела заполнена жидкостью и представляет собой систему вакуолей. Ядро расположено в центральном скоплении цитоплазмы. В цитоплазматических тяжах имеются многочисленные жировые включения.

Описанное строение цитоплазмы следует рассматривать как одну из форм приспособления к планктонному образу жизни. Сильная вакуолизация цитоплазмы и наличие жировых включений ведут к уменьшению удельного веса и, следовательно, способствуют «парению» в толще воды.

У ночесветки есть еще одна интересная особенность, за которую она и получила название. При раздражении (механическом, химическом и т. п.) ночесветка ярко «вспыхивает». Это явление незаметно днем, при ярком свете, но очень отчетливо выражено в темноте, ночью. Ночесветка — это один из организмов, вызывающих явление свечения, столь характерное для теплых морей. Всякий, кому приходилось в теплую летнюю ночь плыть по Черному морю в лодке или на пароходе, вероятно имел возможность наблюдать это эффектное явление. При ударе весел по воде, при падении капель воды с весел в море, при вращении пароходного винта и т. п. вода начинает светиться слабым фосфорическим, но вполне отчетливым светом. Свечение наступает в результате окисления жировых включений, о наличии которых уже говорилось выше. Свечение имеет, вероятно, защитное значение (отпугивает хищников). В отличие от большинства динофлагеллят, ночесветке свойственно животное (анимальное) питание. Она заглатывает и переваривает различные оформленные пищевые частицы: мелкие водоросли, мелкие виды простейших.

На одной стороне шаровидного тела ночесветки имеется углубление, соответствующее продольному желобку типичных панцирных жгутиконосцев. В глубине его помещается отверстие, выполняющее функцию рта. Через него и происходит поглощение пищи. В области этого же углубления помещаются два жгута. Один из них короткий и толстый. Он скорее напоминает щупальце. Этот жгут совершает относительно очень медленные колебательные движения (не более 10 в 1 мин), способствующие направлению пищевых частиц к ротовому отверстию. Второй, более короткий и тонкий жгутик также расположен в области ротового углубления (рис. 41, 3).


Рис. 41. Ночесветка Noctiluca miliaris:

1 — центральное скопление цитоплазмы; 2 — жгутик «щупальце»; 3 — жгутик, расположенный в области ротового углубления; 4 — пищеварительная вакуоля; 5 — ядро.



Некоторые виды панцирных жгутиконосцев являются симбионтами радиолярий (с. 54). Недавно выяснено, что они в большом количестве поселяются и в мягких тканях коралловых полипов.

Отряд Эвгленовые (Euglenoidea)

Многочисленные виды отряда эвгленовых (Euglenoidea) широко распространены в пресноводных водоемах, особенно часто они встречаются в загрязненных водах.

Строение эвглен представлено на рисунке 30. Эвглены снабжены одним жгутиком. В передней части их расположены сократительная вакуоля и ярко-красный глазок (стигма). В цитоплазме содержатся зеленые хроматофоры, несущие хлорофилл. Форма хроматофоров у разных видов различна. Наружный слой цитоплазмы образует пелликулу. У многих видов она бывает структурирована: несет расположенные рядами утолщения. Тело некоторых эвглен покрыто очень тонкой эластичной пелликулой. Эти виды способны сокращаться и вытягиваться по продольной оси. У эвгленовых имеется одно ядро с крупным ядрышком.

Способ питания. Замечательной особенностью многих видов эвглен является способность менять характер питания и обмена веществ в зависимости от условий среды. На свету при наличии в окружающей среде минеральных солей, содержащих необходимые химические элементы, эвгленам свойствен типичный аутотрофный обмен. В их теле протекает фотосинтез и усвоение неорганических солей. Если тех же эвглен поместить в темноту, в раствор, содержащий органические вещества, то они теряют хлорофилл, становятся бесцветными и начинают усваивать из окружающей среды готовые органические вещества. Таким образом эвглены переходят от аутотрофного к гетеротрофному питанию. Гетеротрофное питание осуществляется у них не заглатыванием оформленных частиц пищи, а поглощением растворенных в окружающей среде органических питательных веществ через пелликулу. Часто, развиваясь в загрязненных водах, где имеется большое количество растворенных

66

органических веществ, эвглены сочетают оба типа питания — аутотрофный и сапрофитный. Таким образом, мы видим, что на низших ступенях развития органического мира животный и растительный тип обмена нерезко отграничены друг от друга.

В отряде эвгленовых имеются роды и виды, которые окончательно утеряли способность к аутотрофному типу обмена веществ и при всех условиях не синтезируют хлорофилл. Некоторые из них, способные заглатывать оформленные частицы пищи, перешли уже к настоящему животному типу питания и обмена веществ (например, роды Peranema, Urceolus).

Класс животные Жгутиконосцы, или Зоомастигины (Zoomastigina)

Среди зоомастигин имеется значительное количество видов, живущих в морской и пресной воде и питающихся сапрофитно либо заглатыванием оформленных частиц пищи (анимальное питание). Однако большая часть зоомастигин перешла к паразитическому образу жизни в различных растительных и животных организмах. Рассмотрим сначала некоторых наиболее характерных и широко распространенных представителей свобод-ноживущих зоомастигин.

В сильно загрязненных органическими веществами водах почти всегда в больших количествах можно встретить разные виды рода Bodo, относящегося к отряду кинетопластид (Kinetoplastidea). Это мелкие жгутиконосцы (рис. 42) длиной 10–25 мкм, с двумя жгутиками. Один из них направлен вперед и активно движется, вызывая поступательное движение простейшего. Второй жгутик направлен назад и более или менее пассивно волочится в воде. Он выполняет, вероятно, функцию руля. Форма тела яйцевидная, сильно варьирующая. Ядро одно, расположено в передней трети тела.

У основания жгутиков помещаются базальные тельца — кинетосомы и особое сферической формы образование — кинетопласт. Кинетопласт представляет собой митохондрию, несущую ДНК. Этот органоид играет активную роль в обмене веществ простейшего.


Рис. 42. Последовательные стадии деления Bodo edox:

А — неделящаяся особь; 1 — жгутики; 2 — сократительная вакуоля; 3 — парабазальное тело; 4 — ядро; Б-К — последовательные стадии деления.



Bodo свойствен анимальный способ питания. У основания жгутиков расположен небольшой участок цитоплазмы, лишенный пелликулы. В этой области и происходит заглатывание пищи, каковой обычно являются бактерии. В передней трети тела (на уровне парабазального тела) расположена сократительная вакуоля.

В пресных и морских водах (преимущественно в прибрежной зоне) распространены жгутиконосцы, относящиеся к отряду воротничковых (Choa-noflagellata). Характерный признак их организации — наличие одного жгутика, у основания которого расположен нежный прозрачный цитоплазматический воротничок (рис. 43). К воротничку, омываемому током воды, прилипают мельчайшие пищевые частицы, которые затем поступают в цитоплазму у основания жгутика. Часть хоанофлагеллят — свободноплавающие организмы, часть— прикрепляются к субстрату задним (противоположным месту прикрепления жгутика) концом тела. У некоторых хоанофлагеллят особи, образующиеся в результате деления, остаются связанными друг с другом студенистым веществом. Таким путем образуются слагающиеся из небольшого числа особей колонии.


Рис. 43. Воротничковые жгутиконосцы (Choanoflagellata).

Слева — схема строения клетки хоанофлагеллят: 1 — жгутик; 2 — воротничок; 3 — шейка клетки; 4 — тело клетки; 5 — ядро с ядрышком; 6 — оболочка; 7 — сократительная вакуоль; 8 — задние выросты; 9 — пищеварительная вакуоля; справа — мелкие колонии воротничкового жгутиконосца.



Большой интерес для понимания связей между саркодовыми и жгутиконосцами представляют

67

простейшие, объединяемые в группу ризомастигин (Rhizomastigina), которая некоторыми зоологами рассматривается. как самостоятельный отряд или подотряд жгутиконосцев, а другими включается в класс саркодовых. Это расхождение во мнениях не случайно. Оно объясняется тем, что ризомастигины сочетают в строении признаки обоих классов: у них имеются и псевдоподии и жгутик (рис. 44). На переднем конце тела расположен жгутик, а на поверхности всего тела — хорошо развитые многочисленные псевдоподии, несущие, особенно на заднем конце, щетинкоподобные выросты. Вся цитоплазма отчетливо разделена на два слоя: наружную (светлую) эктоплазму и внутреннюю (зернистую) эндоплазму. Ядро помещается на переднем конце тела, сократительная вакуоля — на заднем. Размеры Mastigamoeba aspersa достигают 100 мкм. Встречаются эти организмы не очень часто, преимущественно в болотных, богатых гумусовыми веществами водах.


Рис. 44. Жгутиконосец Mastigamoeba aspersa:

1 — жгутик; 2 — ядро; 3 — псевдоподии; 4 — эктоплазма; 5 — эндоплазма; 6 — сократительная вакуоля.



Такие формы, как ризомастигины, показывают, что между саркодовыми и жгутиконосцами существуют тесные связи, что эти два класса связаны филогенетически.

Паразитические жгутиконосцы многочисленны и разнообразны. Мы остановимся лишь на немногих представителях, наиболее интересных в практическом или биологическом отношении. Рассматривать их будем не в порядке зоологической системы, а по месту и характеру паразитирования.

Жгутиконосцы — паразиты человека и животных

Кишечник позвоночных, а также и человека является местом обитания довольно многих видов жгутиконосцев. Рассмотрим некоторых из них. Широко распространен род трихомонад (Trichomonas), обладающий многочисленными видами. В кишечнике человека паразитирует Trichomonas hominis (рис. 45). Место его локализации — тонкие и толстые кишки. Строение его, несмотря на небольшие размеры (7—10 мкм в длину 4–5 мкм в ширину), довольно сложно. Тело почти округлое. На переднем конце расположены 4 жгутика, каждый из которых берет начало от базального зерна (блефаропласта). Пятый жгутик заворачивает назад и идет вдоль края тела, прирастая к нему при помощи тонкой цитоплазматической перепонки. Лишь самый задний конец его торчит свободно. Этот пятый жгутик вместе с перепонкой образует так называемую ундулирующую мембрану, которая находится в постоянном волнообразном движении и играет существенную роль в движении самого жгутиконосца. Через всю цитоплазму от области расположения базальных зерен до самого заднего конца проходит аксостиль.


Рис. 45. Жгутиконосец Trichomonas hominis.

Слева — схема строения: 1 — жгутики; 2 — ундулирующая мембрана; 3 — базальные зерна жгутиков; 4 — ядро; 5 — аксостиль; справа — общий вид.



68

Он представляет собой опорную эластичную нить, которая является внутренним скелетом простейшего. Наличие его свойственно и многим другим паразитическим жгутиконосцам. Трихомонады живут в содержимом кишечника, обладающем довольно густой консистенцией, им приходится передвигаться в этой среде. Одно ядро помещается на переднем конце тела.

У трихомонад имеется ротовое отверстие, расположенное на переднем конце, вблизи основания жгутиков, на стороне, противоположной той, по которой проходит ундулирующая мембрана. Размножаются трихомонады продольным делением.

В кишечнике человека трихомонады встречаются довольно редко. При массовом размножении могут, по-видимому, вызывать понос.

Трихомонады встречаются кроме кишечника человека в кишечнике многих позвоночных животных, в частности кроликов, мышей, ящериц.

В верхних отделах тонкого кишечника человека довольно часто встречается еще один вид паразитических жгутиконосцев — лямблии (Lamblia intestinalis, рис. 46). Этот вид обладает весьма сложным строением. Форма тела грушевидная, заостряющаяся к заднему концу. Длина около 15 мкм, ширина в передней части 7–8 мкм. Все строение лямблии строго двустороннесимметрично. По продольной длинной оси ее можно рассечь на две зеркально равные половинки. Все тело довольно сильно сплющено в спинно-брюшном направлении. Спинная сторона выпуклая, брюшная плоская. В передней части брюшной поверхности лямблий имеется углубление, представляющее собой присоску, при помощи которой жгутиконосец плотно присасывается к эпителиальным клеткам кишечника (рис. 46). Посередине тела до самого заднего конца проходит двойной аксостиль, состоящий из двух эластичных нитей. Имеется четыре пары жгутиков, расположение которых ясно видно на рисунках. Задняя пара их является продолжением аксостилей. Ядер два, они лежат справа и слева от аксостилей в области присоски.


Рис. 46. Жгутиконосец Lamblia intestinalis:

А — вид сбоку; Б — вид с брюшной стороны; 1 — жгутики; 2 — базальные зерна; 3 — присоска; 4 — ядро; 5 — парабазальное тело; 6 — аксостиль; В — лямблия, присосавшаяся к эпителиальной клетке.



Лямблии — очень нежелательные «гости» кишечника человека. Нередко заражение ими проходит без каких-либо болезненных симптомов. Вместе с тем известны многочисленные случаи, когда заражение лямблиями сопровождалось кишечными расстройствами. У. человека лямблии гораздо чаще встречаются у детей, чем у взрослых.

Попадая в нижние отделы кишечника, лямблии могут инцистироваться: они теряют жгутики и одеваются оболочкой. В состоянии цист они и выходят из кишечника наружу. Человек заражается, проглатывая цисты лямблий.

Лямблии встречаются и у многих млекопитающих, в частности у кроликов и мышей. Однако у каждого вида хозяина существует

69

свой, свойственный только ему вид лямблий. Лямблии кролика или мыши не могут заразить человека. В этом выражается явление узкой специфичности этих видов паразитов.

Паразиты крови

Значительное число видов жгутиконосцев — паразиты крови. Их среда обитания — жидкая часть (плазма) крови. Кровяные жгутиконосцы относятся к роду трипаносом (Trypanosoma). У человека паразитирует Trypanosoma gambiense, возбудитель тяжелого заболевания — сонной болезни. Это заболевание широко распространено в Экваториальной Африке. На ранних стадиях заболевания трипаносома живет в плазме крови, на поздних стадиях она проникает в спинномозговую жидкость.

Строение трипаносом чрезвычайно своеобразно и характерно (рис. 47). Тело их продолговатое, суженное на обоих концах и сплющенное в одной плоскости. Длина равняется 15–30 мкм. От переднего конца вперед выдается короткий жгутик. Он продолжается вдоль почти всего тела и соединяется с его краем тонкой протоплазматической перепонкой, образуя, как и у трихомонад, ундулирующую мембрану. Несколько не доходя до заднего конца тела, базальная часть жгутика входит внутрь цитоплазмы. У основания его расположено базальное зерно и особое, резко окрашивающееся различными красками довольно крупное тельце — кинетопласт. Сходный органоид имеется и у некоторых свободноживущих жгутиконосцев, например у видов рода Bodo (рис. 42). Это дает основание род Trypanosoma, так же как и Bodo, отнести к отряду Kinetoplastidea.


Рис. 47. Различные формы жгутиконосца Trypanosoma gambiense — возбудителя сонной болезни человека.



Наблюдения за живыми трипаносомами в крови показывают, что движение их осуществляется благодаря энергичным волнообразным движениям ундулирующей мембраны. Ядро одно, несколько сдвинуто с середины тела кзади. В цитоплазме содержатся резервные питательные вещества в виде разной величины гранул. Питание чисто сапрофитное. Размножение обычно осуществляется продольным делением.

Заболевание человека сонной болезнью при отсутствии лечения протекает очень тяжело. Первый период заболевания характеризуется явлениями лихорадки. Во втором периоде (когда трипаносомы проникают в спинномозговую жидкость) наблюдаются нервно-психические явления, сонливость, резкое истощение, которые приводят к смерти.

В настоящее время существуют специфические лекарственные вещества (например, германин), которые излечивают это тяжелое заболевание. В XIX в., когда терапия сонной болезни еще не была разработана и неизвестны были специфические лекарственные вещества, сонная болезнь представляла страшный бич Африки — от нее погибало огромное количество людей.

Какими путями происходит заражение человека трипаносомами, как проникают они в кровяное русло? Этому вопросу были посвящены многочисленные исследования, в результате которых удалось выяснить весь жизненный цикл возбудителя сонной болезни. Оказалось, что переносчиком трипаносомы является кровососущая муха цеце (Glossina palpalis), широко распространенная в Африке (рис. 48).

Когда муха насосется крови от больного сонной болезнью, то в кишечнике ее трипаносомы не погибают. Они энергично размножаются, несколько меняя при этом свою форму. Образуется так называемая критидиальная стадия, которая отличается от трипаносом крови тем, что кинетопласт у нее сдвигается несколько вперед и оказывается расположенным на уровне ядра. После периода размножения трипаносомы вновь приобретают типичную форму и активно проникают в слюнные железы и хоботок мухи. Эти «метациклические формы» являются инвазионными, т. е. способными заражать. Если цеце с метациклическими трипаносомами укусит человека, то трипаносомы проникают в кровяное русло, где и размножаются, вызывая заболевание сонной болезнью.


Рис. 48. Муха Glossina palpalis (цеце):

слева — вид со спинной стороны; справа — вид сбоку (муха, насосавшаяся крови).



70

Trypanosoma gambiense паразитирует, кроме человека, в крови антилоп. Однако, в отличие от человека, антилопы не страдают от трипаносом, не обнаруживают симптомов заболевания. В природных условиях антилопы являются постоянным источником заражения человека, так как мухи цеце в одинаковой степени нападают на человека и на антилоп. Сонная болезнь — это типичный пример трансмиссивного (передающегося через переносчика) заболевания с природной очаговостью. Борьба с такими заболеваниями особенно затруднительна, так как не только больной человек является источником распространения заболевания, но, кроме того, существует природный очаг возбудителя, представляющий постоянную угрозу как источник инфекции.

Трипаносомы паразитируют, кроме человека, в самых разнообразных позвоночных животных (в рыбах, амфибиях, пресмыкающихся, птицах и млекопитающих). Ряд видов трипаносом паразитирует и в домашних животных, вызывая подчас очень тяжелые заболевания.

Для крупного рогатого скота в Африке одним из наиболее опасных и широко распространенных заболеваний является болезнь, называемая нагана. Она вызывается одним из видов трипаносом (Trypanosoma brucei), которая также передается кровососущими мухами из рода Glossina.

В Южной Азии не менее распространена другая болезнь — сурра, вызываемая трипаносомой Trypanosoma brucei.

В Советском Союзе трипаносомные заболевания рогатого скота не играют сколько-нибудь заметной роли. Гораздо более распространены они в южных районах СССР у верблюдов и лошадей. Возбудитель трипаносомозов верблюдов, по-видимому, тождествен Trypanosoma evansi и передается слепнями. У лошадей трипаносомы вызывают случную болезнь (возбудитель — Trypanosoma equiperdum). Возбудитель этого заболевания не передается переносчиками, а переходит от одного животного к другому через слизистые половых путей в момент случки.

К семейству трипаносомид относятся также представители рода лейшманий (Leishmania), два вида которых являются возбудителями тяжелых заболеваний человека. Leishmania tropica вызывает кожное заболевание, известное под названием лейшманиоза или пендинской язвы. Эта болезнь широко распространена в Южной Азии, Северной Африке, в некоторых районах Южной Европы (Италия). В дореволюционное время пендинская язва часто наблюдалась в России в Средней Азии (Туркестан, Узбекистан). В настоящее время благодаря профилактической и лечебной работе советских органов здравоохранения заболеваемость кожным лейшманиозом в Советском Союзе резко снизилась. Борьба с кожным лейшманиозом особенно затруднительна тем, что эта болезнь, подобно сонной болезни, является трансмиссивным заболеванием с природной очаговостью. Как показали многолетние исследования советских ученых, человек заражается при укусе кровососущим насекомым из отряда двукрылых — москита (род Phlebotomus, рис. 49), зараженного лейшманиями. В свою очередь, москиты могут заразиться ими при укусе больного человека в области язвы.


Рис. 49. Переносчик лейшманиозов москит Phlebotomus pappatisii.

Самка, увеличенная в 13 раз.



Кроме человека хозяином Leishmania tropica является еще обитающий в пустынных районах Средней Азии грызун — большая песчанка. В природе естественная циркуляция паразита осуществляется между большой песчанкой и москитом. Этому способствует и то обстоятельство, что москиты живут в норах большой песчанки. Таким образом, большая песчанка — это естественный резервуар Leishmania tropica, которые через москитов передаются человеку.

71

Заболевание начинается с того, что на коже (чаще всего на открытых частях тела — на руках, лице) появляется узелок, увеличивающийся до размеров ореха, а затем на этом месте возникает открытая язва. Она очень долго не заживает (1–2 года), затем зарубцовывается. Возбудитель заболевания — Leishmania tropica — локализуется либо в подкожной клетчатке, преимущественно в соединительнотканых клетках (рис. 50), либо в межклеточных промежутках. Возбудитель представляет собой мелкие овальные тельца длиной 4–7 мкм, шириной 3–4 мкм. Они в большом количестве заполняют клетки хозяина. Каждая клетка, паразита имеет одно ядро и окрашивающееся тельце, которое является не чем иным, как кинетопластом, столь характерным для трипаносом.

Близ кинетопласта расположено базальное тельце жгутика (кинетосома). Свободная часть жгутика не выражена. Отсутствие ее вполне понятно, так как лейшмании при внутриклеточном паразитизме неподвижны. Но если их выделить в культуру (они легко культивируются на питательных средах), то у лейшманий развиваются жгутики и они активно плавают. Эту жгутиковую стадию лейшманий называют лептомонадной формой благодаря сходству со жгутиконосцами рода Leptomonas.


Рис. 50. Возбудитель кожного лейшманиоза (пендинской язвы) Leishmania tropica:

1 — группа паразитов, выпавшая из клеток хозяина; 2 — клетка с многочисленными паразитами.



Когда по ходу естественного цикла лейшмании попадают в кишечник москита, то они превращаются также в лептомонадную форму. Эти стадии в кишечнике переносчика размножаются продольным делением. Затем часть их перемещается в самый передний отдел кишечника и при укусе вводится в кожу жертвы.

Другая болезнь человека, вызываемая лейшманиями, — висцеральный (внутренностный) лейшманиоз, или калаазар. Возбудитель его Leishmania donovani морфологически неотличим от описанной выше Leishmania tropica. Переносчик и здесь — москиты. Калаазар также распространен в Южной Азии, Северной Африке, Малой Азии. В Советском Союзе известен в Средней Азии. За последние годы случаев заболевания калаазаром в Советском Союзе зарегистрировано не было. Это очень тяжелое заболевание, проявляющееся в лихорадке, малокровии, общем истощении и гипертрофии печени и селезенки, при отсутствии лечения обычно приводящее к смертельному исходу. Возбудитель поражает различные внутренние органы, особенно часто встречается в эндотелии кровеносных сосудов, в селезенке, печени, костном мозгу, лимфатических железах. Это заболевание чаще поражает детей, чем взрослых.

Кроме человека носителями лейшманий, вызывающих калаазар, могут быть собаки, которые в распространении этого заболевания играют, по-видимому, немаловажную роль.

Паразитические жгутиконосцы земноводных

В заднем отделе кишечника земноводных обитают многочисленные виды паразитических простейших — жгутиконосцев и инфузорий, легко доступных для наблюдения. Из жгутиконосцев особенно богато представлены разные виды отряда опалинид (Opalinidea). В заднем отделе кишечника лягушек в огромных количествах встречаются разные виды рода опалин (Opalina). Это очень крупные простейшие, достигающие 1 мм. У наиболее обычной в наших травяных лягушках Оranarum, как и у других опалин, тело плоское, листовидное. Оно не вполне симметрично: косо срезано спереди и закруглено сзади (рис. 51). Поверхность тела покрыта многочисленными жгутиками, количество которых измеряется многими тысячами. Они расположены продольными и несколько S-образно изгибающимися рядами. Хорошо разграничены эктоплазма и эндоплазма. В эндоплазме разбросано несколько десятков небольших ядер. Здесь мы встречаемся с примером многоядерного простейшего. Сократительных вакуолей у опалин нет.

Среди опалин нередко встречаются делящиеся особи. Борозда деления при этом проходит косо (рис. 52), что не позволяет это деление рассматривать ни как продольное, ни как поперечное.

До недавнего времени опалин причисляли к инфузориям в качестве самостоятельного подкласса. Основанием для этого служило большое количество

72

ресничек (жгутиков), которые целиком покрывают все тело сплошными рядами (см. ниже об инфузориях, с. 95). Однако у опалин отсутствуют основные черты, характерные для инфузорий: ядерный дуализм и половой процесс типа конъюгации (см. с. 99). Это заставило выделить их из инфузорий и рассматривать как своеобразное многожгутиковое простейшее из класса жгутиконосцев. У опалин нет ротового отверстия и питание совершается осмотически.

Как осуществляется заражение новых особей хозяина, как заражаются ими головастики? Основные этапы жизненного цикла хозяина (лягушки) и паразита (опалин) очень точно «синхронизированы», что обеспечивает заражение.


Рис. 51. Паразитический жгутиконосец из задней кишки лягушки Opalina ranarum.

Видно большое количество жгутиков и ядер; слева — неделящаяся особь; справа — деление, борозда проходит косо по отношению к длинной оси простейшего.



В лягушках, пойманных ранней весной в момент икрометания, встречаются очень мелкие особи опалин, образующиеся в результате многократных делений. Это предцистные формы. Они инцистируются и выходят из лягушки, падая на дно водоема. Там они лежат до тех пор, пока не будут проглочены головастиками. В их кишечнике из цист вылупляются мелкие опалины, которые путем деления дают начало еще более мелким одноядерным клеткам — гаметам. Эти клетки попарно сливаются, причем происходит слияние не только цитоплазмы, но и ядер. Из образовавшихся зигот в дальнейшем развиваются многоядерные опалины. Интересно отметить, что половой процесс опалин совершается только на одном этапе цикла — в головастиках. Полового процесса у опалин в теле лягушек никогда не происходит, и размножаются они бесполым путем.

Жгутиконосцы, обитающие в кишечнике термитов и тараканов

Термиты — это большая группа (отряд) преимущественно тропических насекомых, характерных своим «общественным» образом жизни. На территории Советского Союза термиты встречаются в Средней Азии и в окрестностях Одессы. Эти насекомые, образующие большие колонии и строящие сложные гнезда — термитники, питаются преимущественно растительной пищей, в том числе древесиной, поглощая ее в больших количествах. В кишечнике термитов, а именно в задней кишке, образующей большое расширение, живет огромное количество жгутиконосцев. Видовой состав их исключительно разнообразен. В настоящее время описано свыше 200 видов жгутиконосцев, обитающих в кишечнике термитов.

Жгутиконосцы из кишечника термитов относятся к нескольким отрядам. Это наиболее сложно устроенные среди жгутиконосцев формы (рис. 52). Количество простейших в кишечнике термитов иногда настолько велико, что составляет до 1/3 массы тела насекомого! Для многих жгутиконосцев характерно большое количество жгутиков, которые или сосредоточены на переднем конце тела, или занимают значительную часть его поверхности. Жгутики могут быть расположены продольными рядами, по спирали (относительно продольной оси тела) или поперечными рядами. Иногда жгутики собраны пучками на переднем конце (рис. 52). Размеры жгутиконосцев различны, они варьируют от 30–40 мкм до 0,5 мм и более.

Ядерный аппарат у разных представителей устроен неодинаково. Некоторые виды (рис. 52, Г) имеют одно крупное ядро. Другие являются многоядерными. Иногда число ядер невелико (рис. 52, В), и они располагаются венчиком на переднем конце тела. Иногда же число ядер достигает нескольких десятков (рис. 52, Д), и они сосредоточены в передней трети тела.

Характерной особенностью строения некоторых жгутиконосцев, обитающих в кишечнике термитов, является наличие у них опорных образований — аксостилей. Пример таких эластических скелетных структур мы уже видели у трихомонад и лямблий (с. 69). Часто имеется не один, а целый пучок аксостилей (рис. 52, Д).


Рис. 52. Различные жгутиконосцы из кишечника термитов:

А — Teratonympha mirabilis; Б — Spirotrichonympha flagellata; В — Coronympha oetonaria; Г — Trichonympha turkestanica; Д — Calonympha grossi; E — Rhynchonympha tarda; 1 — ядро; 2 — аксостили.



В цитоплазме жгутиконосцев, обитающих в кишечнике термитов, обычно имеется большое количество пищевых включений. Это кусочки растительных тканей разных размеров. Заглатывание пищи происходит различными способами. Ротовое отверстие у большинства видов отсутствует. Часть их цитоплазмы не имеет резко очерченной пелликулы, а сохраняет способность образовывать выросты, напоминающие псевдоподии. При помощи таких выростов жгутиконосец заглатывает частицы растительных тканей, присутствующие всегда в большом количестве в кишечнике термита.

73

На рисунке 53 изображены последовательные стадии заглатывания жгутиконосцем из рода трихонимфа (Trichonympha) довольно крупного кусочка древесины. Захват пищи осуществляется и по-другому. Для заглатывания мелких частиц на заднем конце жгутиконосца образуется временное впячивание, в которое втягиваются кусочки пищи. Впячивание замыкается, и пищевые частицы оказываются лежащими в цитоплазме простейшего.

Установлено, что взаимоотношения между термитами и населяющими их кишечник жгутиконосцами — это явление тесного симбиоза: жгутиконосцы могут существовать только в кишечнике термитов, содержимое которого является для них средой обитания и источником пищи. Но и термиты не могут существовать без жгутиконосцев. Пищей для термитов служит почти исключительно клетчатка (древесина). Заглоченная пища переваривается в основном в заднем отделе кишечника, заселенном жгутиконосцами. В кишечнике самих термитов не выделяется ферментов, расщепляющих клетчатку. Напротив, в теле симбиотических жгутиконосцев обнаружен фермент целлюлаза, расщепляющий клетчатку. Жгутиконосцы переводят клетчатку в растворимое состояние, используя при этом лишь часть переработанного вещества. Таким образом, питание термитов в значительной мере осуществляется при участии симбиотических простейших.

74

Довольно простым методом можно освободить термитов от жгутиконосцев, не повреждая самих насекомых. Если их поместить в чистый кислород при давлении в 3 атм, все простейшие вскоре погибают, тогда как термиты остаются живыми. После освобождения насекомых от простейших Кливленд помещал их в нормальные условия с обильным количеством древесной пищи. В таких же условиях жили и нормальные термиты, т. е. содержащие простейших в кишечнике. Термиты со жгутиконосцами жили в условиях опыта в стеклянных сосудах долгое время, до 1–1,5 лет, пока не наступала естественная смерть их от старости. Напротив, насекомые, лишенные жгутиконосцев, выживали не более 10–14 дней и потом неизбежно погибали. При этом они энергично поглощали пищу, но она не могла у них перевариваться. Стоило искусственно заразить таких «стерильных» термитов жгутиконосцами, как они приобретали способность переваривать пищу и жить продолжительное время.


Рис. 53. Жгутиконосец из кишечника термитов — Trichonympha sp., заглатывающий кусочек древесины.



Мы уже говорили, что каждая особь термита имеет в кишечнике жгутиконосцев. Возникает вопрос: какими путями происходит проникновение в кишечник молодых личинок их симбионтов — жгутиконосцев? У термитов существует особый инстинкт слизывания друг у друга жидких экскрементов, выступающих в форме капельки из анального отверстия. Термит, проглатывающий содержимое задней кишки особи того же вида, получает некоторое количество усвояемой пищи, переведенной в растворенное состояние благодаря деятельности жгутиконосцев. Проглатывая жгутиконосцев, он вводит их в свой кишечник, где они продолжают жить и размножаться. Так же заражаются и молодые личинки.

В колонии термитов лишены жгутиконосцев лишь половозрелые взрослые особи. В термитнике обычно имеется одна самка («царица»), непрерывно откладывающая яйца. Эта самка не питается древесиной. Ее кормят «рабочие», которые представляют собой недоразвитых в половом отношении особей. Пищей служит отрыжка из переднего отдела кишечника, содержащая легкоусвояемые вещества.

Фауна жгутиконосцев развивается, кроме термитов, в кишечнике растительноядных тараканов рода Cryptocercus. Эти тараканы встречаются в нашей стране на Дальнем Востоке в Уссурийской тайге, где они живут в разлагающейся древесине пней, поваленных деревьев и т. п.

Рост и развитие термитов, как и других насекомых, сопровождается периодической линькой, в процессе которой сбрасывается тонкая хитиновая выстилка заднего отдела кишечника. При этом у большинства видов термитов выходят наружу и жгутиконосцы, и насекомое после линьки оказывается лишенным простейших. Очень скоро они вновь появляются, так как слинявшее насекомое начинает энергично слизывать жидкие экскременты окружающих особей. У тараканов Cryptocercus во время линьки жгутиконосцы заползают в просвет между отделяемой внутренней выстилкой и эпителиальной стенкой кишки, откуда по окончании линьки вновь выходят и заполняют просвет кишечника.

У жгутиконосцев, обитающих в кишечнике термитов, известно только бесполое размножение путем деления. Половой процесс у них отсутствует. Иное дело жгутиконосцы из кишечника таракана Cryptocercus. Работами Кливленда установлено наличие у них полового процесса по типу копуляции, который протекает строго периодически. Оказалось, что половые процессы жгутиконосцев находятся в строгом соответствии с линькой личинок. Как известно, рост насекомых на личиночных стадиях сопровождается периодическим сбрасыванием хитинового покрова, так как последний может растягиваться лишь до определенного предела, а затем, после линьки, заменяется новым хитиновым покровом. Процесс линьки — очень сложное явление. Наступление его связано с действием гормонов, которые выделяются некоторыми эндокринными железами насекомого и обусловливают отслаивание старой хитиновой кутикулы. У разных видов жгутиконосцев половой процесс происходит строго закономерно в разные сроки подготовительного к линьке периода или же вскоре (через 1–2 Дня) после завершения линьки. Для каждого вида жгутиконосцев соотношение срока наступления полового процесса и линьки является строго определенным. Очевидно, выделяемые хозяином гормоны линьки воздействуют не только на насекомое, но

75

и на обитателей его кишечника, стимулируя половое размножение. У взрослых тараканов, которые не растут и не линяют, половых процессов у населяющих кишечник жгутиконосцев не происходит.

Жгутиконосцы — паразиты растений

Некоторые жгутиконосцы приспособились к паразитированию в растительных тканях. Хозяевами их являются растения с млечным соком. Это виды семейств молочайных, сложноцветных, маковых, ластовниковых и др. Жгутиконосцы — паразиты растений относятся к роду Leptomonas, принадлежащему к семейству трипаносомид, с некоторыми представителями которых мы познакомились выше (с. 70). Виды этого рода имеют одно ядро, один жгутик и кинетопласт, расположенный впереди ядра (рис. 54).

Живут Leptomonas в сосудах, наполненных млечным соком, в межклетниках, в вакуолях отдельных клеток. Нередко эти простейшие развиваются в растительных тканях в огромных количествах.


Рис. 54. Жгутиконосец Leptomonas davidi из млечного сока молочая.



Массовое развитие жгутиконосцев наносит растениям большой вред, вызывает разрушение хлорофилла, опадение листьев и в конечном счете гибель растения. Жгутиконосцы — паразиты растений распространены преимущественно в тропических и субтропических странах, в умеренной зоне встречаются реже. Очень большой вред паразитические жгутиконосцы наносят в некоторых странах плантациям кофе. Особенно широко это заболевание кофе распространено в Гвиане (Южная Америка). Оно носит название некроз флоэмы, сопровождается пожелтением и опадением листвы. При сильном заражении кофейные деревца погибают в течение 3—12 месяцев.

Перенос возбудителя и заражение растений осуществляется насекомыми. Обычно переносчиками являются растительноядные клопы, сосущие соки растений.

Обзор важнейших представителей жгутиконосцев показал, насколько разнообразны эти организмы. Этот класс стоит как бы на границе растительного и животного мира, и многие представители его совмещают столь различные типы обмена веществ, как аутотрофный и гетеротрофный.

Эволюция жгутиконосцев шла в различных направлениях. Многие ветви их развития привели к образованию планктонных форм, примером которых являются панцирные жгутиконосцы. Особенно широкое развитие получил у жгутиконосцев паразитизм. Многократный переход к паразитизму осуществлялся в разных линиях их филогенетического развития. В ряде случаев на основе паразитизма возникли очень тесные симбиотические взаимоотношения, примером которых могут служить жгутиконосцы кишечника термитов и некоторых тараканов.

Интересный путь эволюции жгутиконосцев — переход к колониальным формам организации. Колонии их очень разнообразны и достигают у высших представителей (например, Volvox) очень сложной дифференцировки, выходящей уже за пределы одноклеточности. Колонию вольвокса, может быть, правильнее рассматривать как многоклеточный организм, поскольку, как мы видели, не все клетки колонии равноценны (с. 62). Возможно, что колониальность имела большое значение в эволюции органического мира и явилась переходным этапом к многоклеточным животным.

ТИП СПОРОВИКИ __________________ (SPOROZOA)

Тип споровиков представляет собой обширную группу простейших организмов, ведущих исключительно паразитический образ жизни. Приспособление к паразитизму у них очень глубокое и совершенное. Хозяевами их являются самые различные беспозвоночные и позвоночные животные. Несколько видов споровиков паразитирует в человеке.

В процессе эволюции они приспособились к паразитированию в самых различных органах и тканях. Многие споровики — паразиты кишечника и различных органов, связанных с пищеварительной системой (в том числе печени). Имеются виды, паразитирующие в органах выделительной системы — почках. Органы кровеносной системы и кровь также служат средой обитания некоторых споровиков.

В этой группе простейших есть немало видов, приспособившихся к внутриклеточному паразитизму. Паразиты проникают внутрь клеток различных тканей хозяина, питаются, растут и развиваются за их счет.

Одной из форм глубокого приспособления споровиков к паразитизму явилась выработка сложных и разнообразных жизненных циклов, обеспечивающих заражение хозяина. По ходу циклов происходит смена разных форм размножения, ведущих, с одной стороны, к увеличению числа паразитов в данной особи хозяина, а с другой — к образованию таких стадий, которые служат для заражения новых особей хозяина.

У некоторых споровиков выработалось не только чередование различных форм размножения, но и смена хозяев, относящихся к разным видам и группам животного мира.

Многие виды споровиков приносят большой вред как возбудители заболеваний человека, домашних и промысловых животных.

В данном разделе мы ограничимся рассмотрением лишь немногих споровиков, представляющих наибольший биологический интерес или особенно большое практическое значение.

Отряд Грегарины (Gregarinida)

Грегарины — большая группа споровиков, включающая около 500 видов. Все без исключения грегарины — паразиты беспозвоночных. Наибольшее число видов их обитает в кишечнике членистоногих, в особенности часто у насекомых. Некоторые грегарины паразитируют и в других группах беспозвоночных — в кольчатых червях, иглокожих, оболочниках. Кроме кишечных грегарин, каковых большинство, имеются виды, живущие в полости тела, в органах размножения и др.

Строение. Наиболее сложно устроены грегарины, живущие в кишечнике членистоногих. На их примере мы и ознакомимся с организацией представителей этого отряда.

На рисунке 55 показано строение взрослой формы Corycella armata — грегарины из кишечника личинки жука-вертячки Gyrinus natator. Тело ее, достигающее довольно значительной длины, разделено на 3 отдела. В наиболее крупном заднем отделе помещается ядро. Этот отдел называется дейтомеритом. Впереди от него расположен протомерит. Он отделен от дейтомерита тонкой прослойкой светлой цитоплазмы, представляющей собой продолжение слоя эктоплазмы.


Рис. 55. Грегарина Corycella armata:

А — взрослая грегарина: 1 — эпимерит; 2 — протомерит; 3 — дейтомерит; 4 — ядро; Б — эпимерит грегарины, внедрившийся в эпителиальную клетку кишечника; В — грегарина, сбросившая эпимерит.



77

На самом переднем конце грегарины расположен эпимерит. Этот участок тела служит для прикрепления грегарины к стенке кишечника. Часто он бывает снабжен крючьями, иногда нитевидными выростами и может принимать весьма причудливую форму. На рисунке 56 изображены некоторые характерные формы эпимеритов разных видов грегарин. По достижении предельных размеров, когда у грегарины наступают процессы полового размножения, эпимерит обычно отбрасывается. Он целиком состоит из эктоплазмы.


Рис. 56. Эпимериты различных видов грегарин:

1 — Gregarina longа; 2 — Sycia inipitata; 3 — Pileocephalus heeri; 4 — Stylocephalus longioollis, 5 — Echinomera hispida; 6 — Beloides firnus; 7 — Cometoidee crinitus; 8 — Geniorhynchus monnieri.



Разделение цитоплазмы грегарин на два слоя — эктоплазму и эндоплазму — выражено всегда очень отчетливо. Наружный слой эктоплазмы образует прочную пелликулу, определяющую постоянство формы тела грегарин. У некоторых грегарин в эктоплазме найдены тонкие скелетно-опорные волоконца, еще более увеличивающие прочность наружных слоев тела. Немногие виды грегарин способны несколько менять форму своего тела, сокращаться вдоль продольной оси. У таких видов в эктоплазме, на границе с эндоплазмой, найдены сократимые волоконца — миофибриллы.

Эндоплазма грегарины, резко отграниченная от эктоплазмы, при рассматривании под микроскопом живых грегарин выглядит темно-серой. Это обусловлено наличием в эндоплазме большого количества гликогена, нередко сконцентрированного в виде мелких гранул. В этом проявляется одна из характерных особенностей многих внутренностных паразитов, тело которых богато гликогеном. Кишечные паразиты живут в среде, в которой свободный кислород присутствует в ничтожных количествах. Это затрудняет или делает невозможными дыхательные процессы, сопровождающиеся поглощением кислорода. В этих условиях паразитические организмы вынуждены искать взамен дыхания другие источники энергии. Такими источниками оказываются процессы анаэробного (без участия свободного кислорода) расщепления гликогена, процессы гликолиза. Не вдаваясь в химическую характеристику этих процессов, отметим лишь, что при этом сложная молекула гликогена распадается на более простые органические соединения (в частности, некоторые органические кислоты). Этот процесс сопровождается выделением энергии. Однако в отношении количества освобождаемой энергии на единицу массы (на моль) гликогена при окислении выделяется во много раз больше энергии, чем при гликолизе. Окисление — гораздо более «экономичный» процесс, чем гликолиз. Поэтому обычно у организмов, основным источником энергии которых являются анаэробные гликолитические процессы, в теле имеются значительные скопления гликогена. Грегарины — один из ярких примеров, иллюстрирующих это правило.

Ядра, расположенные всегда в дейтомерите, имеют обычно вид пузырька, богатого ядерным соком и снабженного одним или несколькими крупными ядрышками.

Рассмотренное выше строение грегарины свойственно преимущественно кишечным паразитам. Оно характерно для группы видов, объединяемых в семейство Polycystidae. У представителей другого семейства — Monocystidae, которые паразитируют главным образом в полости тела, половых железах и других органах, строение более простое. У Monocystidae нет разделения на эпи-, прото- и дейтомерит, и тело их часто имеет червеобразную форму.

Наблюдая под микроскопом за живыми грегаринами, легко обнаружить, что они способны двигаться, медленно перемещаясь в содержимом кишечника. Это движение носит характер плавного скольжения, не сопровождающегося изменением формы тела.

78

Механизм этого движения до настоящего времени не вполне ясен. По современным представлениям, он связан с имеющимися на наружной поверхности грегарин продольно идущими гребнями пелликулы. Эти гребни совершают периодические волнообразные движения, которые обусловливают медленное скользящее перемещение тела грегарины.

Размножение. У настоящих грегарин отсутствует бесполое размножение, они размножаются только половым путем. Рассмотрим типичный цикл развития грегарин (рис. 57).

Живущие в кишечнике насекомого грегарины, достигнув предельного роста, теряют эпимерит и соединяются попарно. Вокруг такой пары (сизигия) выделяется общая оболочка (циста). Вскоре после инцистирования в каждой из соединившихся в сизигий особи начинается многократное последовательное деление ядра. В каждой особи образуется множество ядер. К концу этого процесса все ядра располагаются по периферии грегарины и вокруг каждого из них обособляется небольшой участок цитоплазмы. Так формируется множество мелких одноядерных клеток. Большая часть цитоплазмы при этом остается неиспользованной. Это так называемое остаточное тело, которое в дальнейшем процессе размножения участия не принимает. Мелкие одноядерные клетки представляют собой половые клетки — гаметы. Эти клетки сближаются попарно и сливаются[6].

У некоторых видов грегарин гаметы, образуемые обоими соединившимися в сизигий особями, по размерам и строению неотличимы друг от друга. У других видов они различны. Одна особь дает начало округлым и неподвижным гаметам. Это женские гаметы. Другая особь образует удлиненные гаметы, снабженные жгутиковидным выростом. Это мужские подвижные гаметы.

Образовавшиеся в результате оплодотворения зиготы сразу же покрываются оболочкой, принимая при этом веретенообразную, а нередко бочонковидную форму. Покрывшаяся оболочкой зигота носит название ооцисты. Оболочка цисты в этот период цикла развития еще не разрушается. Таким образом, многочисленные образовавшиеся после копуляции гамет ооцисты лежат внутри оболочки цисты. На этой стадии, а иногда и несколько позже, цисты с ооцистами выводятся из кишечника наружу.


Рис. 57. Цикл развития грегарины Stylocephalus longicollis:

14 — в кишечнике жука Blaps mortisaga: 1 — спорозоит; 2 — гамонт; 3 — соединение двух особей, образование сизигил; 4 — циста с двумя округлившимися гамонтами; 5—15 — грегарина во внешней среде: 5, 6 — деление ядер гамонтов, ведущее к образованию половых клеток (гамет); 7 — сформированные гаметы; 8 — копуляция гамет; 9 — зигота, образовавшая оболочку (ооциста); 10–14 — развитие спорозоитов в ооцисте (спорогония); 13 — спорозоиты, выходящие из ооцисты.



Последним этапом цикла развития грегарины является процесс размножения ооцисты, получивший название спорогонии. Он сводится к следующему. Внутри ооцисты ядро (образовавшееся в результате слияния ядер гамет) трижды делится. Вокруг каждого из возникших таким путем ядер обособляется участок цитоплазмы. В каждой ооцисте получается восемь очень маленьких червеобразной формы клеток, называемых спорозоитами. На этой стадии ооцисты способны к заражению новых особей хозяина. Если циста с ооцистами или даже отдельная ооциста будет проглочена насекомым — хозяином данного вида грегарин, то под воздействием кишечного сока спорозоиты выходят из ооцисты. Они подвижны. В дальнейшем из каждого спорозоита развивается грегарина. Достигнув типичного для данного вида размера, грегарины вновь соединяются попарно, инцистируются, и цикл начинается снова.

79

Таким образом, рассмотренный выше цикл развития грегарин можно отчетливо разделить на три этапа: рост и развитие взрослой грегарины; образование гамет; оплодотворение. Последним этапом цикла является спорогония — развитие зиготы (ооцисты) и формирование спорозоитов.

Отряд Кокцидии (Coccidia)

Так же как и грегарины, кокцидии представляют собой обширную группу паразитических простейших, включающую свыше 400 видов. Паразитируют они в самых различных группах беспозвоночных и позвоночных животных: кольчатых червях, моллюсках, членистоногих, позвоночных. Для кокцидий характерен внутриклеточный паразитизм в различных органах и тканях.

Размножение — эндогенная часть цикла. Жизненный цикл кокцидии слагается (за единичными исключениями) из закономерного чередования бесполого размножения, полового процесса и спорогонии. У одних видов спорогония совершается вне организма хозяина, в наружной среде; у других, при наличии смены хозяев, бесполое размножение и спорогония происходят в организме разных хозяев.

Типичный кокцидийный жизненный цикл рассмотрим на примере представителей рода эймерия (Eimeria). В кроликах паразитирует несколько видов эймерий. Большая часть их — паразиты кишечника, один вид локализуется в печени. Эймерии — кокцидии, развитие которых не сопровождается сменой хозяев. В их жизненном цикле имеется два основных этапа. Первый этап цикла протекает в кишечнике кролика. Это эндогенная часть цикла. Второй этап проходит вне тела хозяина, во внешней среде — экзогенная часть цикла.

Eimeria magna — один из наиболее широко распространенных видов кокцидий кролика. На рисунке 58 схематически представлены основные этапы жизненного цикла этого паразита.

Начнем рассмотрение жизненного цикла Eimeria magna с момента, когда паразит проникает в кишечник хозяина. Первой стадией эндогенной части цикла является спорозоит, выходящий из заглоченной кроликом ооцисты (строение и развитие ооцист будет рассмотрено ниже). Спорозоиты — это очень маленькие клетки (длиной около 8 мкм, шириной 2–3 мкм, веретеновидной формы с одним ядром.


Рис. 58. Цикл развития кокцидии Eimeria magna:

I — первое поколение шизонтов; II — второе поколение шизонгов; III — третье поколение шизонтов; IV — гаметогония; V — спорогония; 1 — спорозоиты; 2 — молодой шизонт; 3 — растущий шизонт с многими ядрами; 4 — шизонт, распавшийся на мерозоиты; 5 — мерозоиты; 6 — развитие макрогаметы; — развитие микрогамет; 7 — микрогамета; 8 — ооциста; 9 — ооциста, вышедшая из кишечника кролика; 10 — ооциста с четырьмя споробластами и остаточным телом; развитие спор; 12 — ооциста с четырьмя зрелыми спорами (в каждой споре по два спорозоита).



Спорозоиты, так же как и другие расселительные стадии кокцидий — мерозоиты (см. ниже), несмотря на небольшие размеры, имеют сложную структуру. На рисунке 59 изображена составленная на основе электронно-микроскопических исследований обобщенная картина строения зонта.

От окружающей среды тело зоита отграничено трехмембранной пелликулой. Наружная мембрана непрерывна. Две внутренние мембранны на переднем и заднем концах прерываются. Здесь располагаются так называемые полярные кольца. На самом переднем конце зонта располагается коноид — особый органоид, представляющий собой полый конус, слагающийся из спиральных фибриллярных компонентов. Считают, что коноид способствует проникновению зоита в клетку хозяина. Под пелликулой вдоль зоита проходят многочисленные микротрубочки, выполняющие, вероятно, опорно-двигательною функцию. Характерная черта организации зоита — особые органеллы роптрии (рис. 59). Это плотные, сужающиеся к переднему концу структуры, открывающиеся, по-видимому, наружу в области коноида. Предполагают, что роптрии — это своеобразнее внутриклеточные «железы проникновения», выделяющие протеолитические вещества, способствующие проникновению зоита в клетку хозяина.

84

Зоит имеет еще несколько микропор, образующихся благодаря втягиванию наружной мембраны в толщу цитоплазмы. Считают, что микропоры выполняют функции цитостома — «клеточного рта», через который поступает пища. Кроме перечисленных специальных органоидов у зонтов имеются клеточное ядро и основные общие всем эукариотическим клеткам органоиды — митохондрии, аппарат Гольджи, эндоплазматическая сеть с рибосомами (рис. 59).

⠀⠀ ⠀⠀

Рис. 59. Ультраструктура зоита кокцидии (схематизировано):

1 — коноид; 2 — роптрии; 3 — митохондрии; 4 — аппарат Гольджи; 5 — эндоплазматическая сеть (ретикулум); 6 — ядро: 7 — жировые включения; 8 — микропора; 9 — трехслойная мембрана; 10 — микронемы.



За внедрением кокцидии в клетку хозяина следует активный рост — паразит увеличивается в массе. На этой стадии развития паразит носит название шизонта, в соответствии с тем способом размножения, к которому он приступает.

По мере роста паразита начинается деление ядра, благодаря чему шизонт становится многоядерным. Число ядер варьирует в широких пределах — от 8 до 60. Растущий шизонт разрушает эпителиальную клетку и постепенно перемещается в субэпителиальный слой соединительной ткани. Развитие шизонта завершается бесполым размножением. Вокруг каждого из ядер обособляется участок цитоплазмы, в результате чего весь шизонт распадается на одноядерные мелкие клетки, каждая из которых имеет веретеновидную форму. На этом заканчивается процесс бесполого размножения шизонта (рис. 60). Такое размножение носит название множественного деления или шизогонии. Весь процесс от момента внедрения спорозоита в эпителиальную клетку до завершения шизогонии занимает 80–96 ч. Одноядерные веретеновидные клетки, образовавшиеся в результате шизогонии, называют мерозоитами.

Мерозоиты вновь внедряются в эпителиальные клетки кишечника и дают начало второму поколению шизонтов. Процесс развития шизонтов второго поколения занимает несколько больше времени, чем первого, — 110–132 ч.


Рис. 60. Рост шизонта и шизогония кокцидий — Eimeria magna:

1 — молодой шизонт, ядро еще не приступило к делению; 2–4 — увеличение числа ядер путем деления и рост шизонта; 5 — распад шизонта на мерозоиты.



Часть мерозоитов от второго поколения дает начало третьему поколению шизонтов. Образующиеся в результате его мерозоиты, так же как и часть мерозоитов второго поколения, не образуют шизонтов. Внедряясь в эпителиальные клетки, они дают начало гаметам. Гаметы кокцидий резко дифференцированы на мужские микрогаметы и женские макрогаметы. Образование тех и других из мерозоитов протекает различно.

Стадии развития кокцидий, дающие начало микрогаметам, называют микрогаметоцитами. При развитии их, сопровождающемся энергичным ростом, деление ядер начинается на самых ранних стадиях роста, оно совершается гораздо чаще, чем при шизогонии (рис. 61). В результате в цитоплазме располагается несколько сот мелких ядер. Микрогаметы образуются путем вытягивания отдельных ядер. Тело их почти целиком состоит из веретеновидно вытянутого ядра с очень тонким периферическим слоем цитоплазмы. На переднем конце зрелой гаметы имеются два жгута. Длина их очень мала — 4–3 мкм. Гаметы подвижны. Большая часть цитоплазмы микрогаметоцита не идет на образование гамет, а остается неиспользованной в виде большого так называемого остаточного тела.

⠀⠀ ⠀⠀

Рис. 61 Развитие микрогамет Eimeria magna:

1 — Молодой микрогаметоцит с неразделившимся ядром; 2–4 — ста-дии роста микрогаметоцита, сопровождающиеся делением ядер; 5 — формирование микрогамет; 6 — микрогаметы, каждая снабженная двумя жгутиками.



Совсем иначе осуществляется развитие женских половых клеток — макрогамет (рис. 62). Происходит рост цитоплазмы, не сопровождающийся делением ядра, размеры которого увеличиваются. Ядро приобретает пузыревидное строение, в центре его расположено крупное ядрышко. В цитоплазме по мере роста происходит накопление большого количества гранул. Макрогаметы сначала имеют сферическую форму, к концу развития они становятся овальными. Часть гранул цитоплазмы приближается к поверхности и располагается периферически в один слой. За счет этих гранул в конце развития макрогаметы образуется оболочка.

82

На одном из полюсов макрогаметы в оболочке остается отверстие (микропиле), через которое проникают микрогаметы.

Следующий важный этап развития кокцидий— это процесс оплодотворения. Подвижные микрогаметы приближаются вплотную к макрогаметам. Одна микрогамета проникает через микропиле в макрогамету, причем ядра гамет сливаются, образуя характерную веретеновидную фигуру. В момент оплодотворения формируется вторая (внутренняя) оболочка, микропиле закрывается особой слизистой пробкой и зигота попадает в просвет кишечника. Обладающая двумя оболочками зигота получает название ооцисты.

⠀⠀ ⠀⠀

Рис. 62 Последовательные стадии роста и формирования макрогаметы Eimeria magna.



На этом заканчивается эндогенная часть цикла, так как в кишечнике в отсутствие кислорода ооцисты эймерий кролика дальше развиваться не могут.

Размножение — экзогенная часть цикла. Экзогенная часть цикла сводится к процессу спорогонии и осуществляется вне тела хозяина. Из кишечника наружу ооцисты выходят вместе с фекальными массами. Только что вышедшие из кишечника ооцисты имеют овальную форму (рис. 58). Все протоплазматическое содержимое отделено от оболочки и занимает центральную часть ооцисты. Споруляция сводится к тому, что после двукратного деления ядра протоплазматическое содержимое ооцисты распадается на четыре одноядерных споробласта. Каждый из них выделяет оболочку, превращаясь в спору (спороцисту). Обычно не все цитоплазматическое содержимое ооцисты идет на образование споробластов, часть его остается неиспользованной в виде остаточного тела.

В каждой споре ядро делится еще один раз, и образуются два червеобразных одноядерных спорозоита. На этом процесс спорообразования заканчивается. Размеры зрелых ооцист Eimeria magna: длина 25–40 мкм, ширина 18–30 мкм.

Таким образом, зрелая, способная к заражению ооциста содержит четыре спороцисты с двумя спорозоитами каждая.

При попадании зрелой ооцисты в кишечник кролика под воздействием кишечного сока пробка ооцисты разрушается, спорозоиты выходят из оболочки спор и проникают в клетки эпителия кишечника, начиная новую, эндогенную, часть цикла.

Таким образом, в рассмотренном выше жизненном цикле кокцидий эймерий следует различать три основных этапа, из которых два первых относятся к эндогенной, а третий — к экзогенной части цикла.

Цикл начинается с нескольких поколений бесполого размножения — шизогонии. Это первый этап. Биологическое значение его очевидно: это увеличение числа особей паразита в данном экземпляре хозяина. Благодаря шизогонии количество паразитов возрастает в огромной степени. У кролика, проглотившего даже небольшое количество ооцист, вследствие шизогонии через короткий срок в. кишечнике окажется огромное количество паразитов.

Второй этап — образование половых клеток и оплодотворение. Он завершается формированием тех стадий жизненного цикла паразита (в данном случае ооцист), при помощи которых паразит распространяется на новые особи хозяина, т. е. вид расселяется.

Третий этап — спорогония. Он приводит к тому, что «расселительные» стадии жизненного цикла становятся способными к инвазированию (заражению) хозяина. Зрелые ооцисты кокцидий обладают большой стойкостью к действию — различных неблагоприятных факторов среды, что очень затрудняет борьбу с ними.

Специфичность кокцидий. Кокцидии — паразиты с очень узкой специфичностью. Почти все вида Их строго приурочены к одному виду хозяина и не могут паразитировать даже в близких видах. Например, кокцидии кролика не могут заражать зайцев, а кокцидии зайцев — развиваться в кроликах. В пределах организма хозяина кокцидии локализуются в строго определенных органах и даже частях органов. Например, Е. М. Хейсин доказал, что у кролика разные виды кокцидйй локализуются в строго определенных отделах- кишечника.

Следует отметить, что большинство кокцидиозов (заболеваний, вызываемых кокцидиями) поражает молодых птиц и млекопитающих, это главным образом «детские болезни», хотя и взрослые животные могут заражаться кокцидиями. Ряд видов кокцидий (Eimeria tenella, Egrae-сох и др.) поражает кур (преимущественно цыплят), вызывая нередко гибель молодняка.

83

Крупный рогатый скот также страдает от кокцидий (Eimeria zurni, Еsmithi, Isospora aksaica), причем заболевает преимущественно молодняк.

В рыбоводных хозяйствах (особенно на Украине), кокцидиозы неоднократно поражали карпов (Eimeria cyprini) что также часто приводило к гибели рыб.

Борьба с кокцидиозами — важная задача животноводства и ветеринарии. Она строится главным образом на профилактических мероприятиях, направленных на предохранение животных от заражения.

К. кокцидиям относится также Toxoplasma gondii — возбудитель токсоплазмоза — тяжелого заболевания человека. Этот возбудитель представляет собой типичную кокцидию. В отличие от видов рода Eimeria, у Toxoplasma gondii два хозяина. Шизогония, развитие гамет, половой процесс и образование ооцист протекают в кишечнике хищных млекопитающих, относящихся к семейству кошачьих (чаще всего это кошка). Вторым хозяином Toxoplasma служат многочисленные виды млекопитающих, в том числе и человек. В данном случае имеет место широкая специфичность паразита в отношении хозяина (рис. 63). Заключенные в спорах спорозоиты Toxoplasma, если будут проглочены промежуточным хозяином, проникают в самые различные внутренние органы, в том числе в мозг. Происходит энергичное размножение паразита бесполым путем (делением). Если лежащие в цисте одноклеточные паразиты — цистозоиты попадут в кишечник кошки (например, в случае, если кошка съест мышь, зараженную токсопазмами), то они внедрятся в эпителий кишечника и проделают весь характерный для кокцидий цикл. Человек может заразиться токсоплазмозом от кошек, имеющих в кишечнике ооцисты и выделяющих их наружу. Источником заражения может быть также мясо животных, зараженных токсоплазмой.

⠀⠀ ⠀⠀

Рис. 63. Цикл развития и способы заражения Toxoplasma gondii:

1 — кошка-хозяин, в котором проходят шизогония и стадии полового цикла; 2–4 — последовательные стадий развития ооцисты; 5,6 — мыши-хозяева, в которых протекает дополнительное бесполое размножение; 7 — внутриутробное заражение мышей.


Отряд Кровяные споровики (Haemosporidia)

Кровяные споровики, как показывает и само название отряда, приспособились к паразитированию в крови позвоночных животных, главным образом млекопитающих и птиц. Они являются внутриклеточными паразитами. Место локализации паразитов — кровяные клетки. Число видов кровяных споровиков свыше 100.

Кровяные споровики имеют очень большое практическое значение для медицины, так как к этому отряду относится возбудитель тяжелого заболевания человека — малярии. Существует четыре вида рода Plasmodium, вызывающие малярию (Р. vivax, Р. malaria, Р. falciparum. Р. ovale[7]). Клиническая картина болезни, вызываемой разными видами паразита, несколько различна. О некоторых из этих различий будет сказано ниже. Жизненный цикл всех четырех видов протекает сходно, что позволяет рассмотреть его для всего рода Plasmodium.

Жизненные циклы кокцидий и кровяных споровиков очень сходны.

84

Они слагаются из тех же основных этапов: смены шизогонии, развития гамет, оплодотворения и спорогонии. В отличие от кокцидий здесь совершенно отсутствуют экзогенные стадии, половая и бесполая части цикла распределяются между двумя хозяевами, из которых один является позвоночным (бесполая часть цикла), а другой — беспозвоночным, обычно насекомым (половая часть цикла и спорогония). В этих условиях защитные оболочки ооцист и спор, столь характерные для кокцидий, лишены биологического значения и в процессе эволюции исчезают.

Человек является для Plasmodium хозяином, в котором протекают стадии бесполого размножения (шизогония). Половой процесс и спорогония осуществляются в переносчике, каким для возбудителей малярии служат виды комаров, относящиеся к роду анофелес (Anopheles).

Обратимся к рассмотрению жизненного цикла Plasmodium и начнем его с той же стадии спорозоита, как мы это делали выше для кокцидий (рис. 64, цв. табл. 4). Спорозоит проникает в кровь человека при укусе зараженным комаром. Он представляет собой очень маленькую одноядерную веретеновидно вытянутую клетку длиной 10–15 мкм при ширине всего в 1 мкм. С током крови спорозоиты разносятся по телу человека и попадают в печень. Здесь они активно внедряются в клетки печени и превращаются в шизонтов, достигающих значительной величины. Каждый шизонт распадается в процессе шизогонии на большое количество мерозоитов, которые могут вновь внедряться в клетки печени.

После одного или большего числа бесполых поколений в печени шизонты дают мерозоитов, судьба которых оказывается иной. Они внедряются не в печеночные клетки, а в эритроциты крови, где дают начало шизонтам гораздо меньших размеров, чем шизонты, развивающиеся в печени. Начинается период шизогонии в кровяном русле. Число мерозоитов, на которые распадаются шизонты крови, относительно невелико, обычно 8-16.

Шизонты на ранних стадиях развития имеют характерную форму колечка благодаря тому, что центр их тела занят большой вакуолей (цв. табл. 4). По мере роста шизонта вакуоля исчезает и он приобретает форму маленькой амебы. Наблюдения за живыми паразитами показали, что шизонтам свойственно довольно активное амебоидное движение внутри красного кровяного тельца. Мерозоиты, получающиеся в результате размножения шизонта, представляют собой мелкие клетки овальной формы диаметром около 2 мкм. По завершении шизогонии оболочка эритроцита лопается и мерозоиты оказываются плавающими в плазме крови. По мере роста шизонт поглощает содержимое эритроцита. Красный пигмент крови (гемоглобин) при этом изменяется химически и превращается в темно-коричневый, почти черный, меланин откладывающийся в цитоплазме паразита в виде мелких зерен. В момент шизогоний пигмент выбрасывается из тела паразита и остается в крови в виде остаточного тела.

⠀⠀ ⠀⠀

Таблица 4. Разные стадии жизненного цикла возбудителей человеческой малярии в эритроцитах крови человека (1—15) и в слюнных железах комара-переносчика Anopheles (16, 17) с препаратов, окрашенных по Гимза — Романовскому. (Стадии жизни Plasmodium).

1–5 — возбудитель тропической малярии Plasmodium falciparum:

1 — начало роста шизонта в эритроците; в одном эритроците два мелких «кольца», в каждом из них по одному окрашенному в красный цвет ядру,

2, 3 — более крупные «кольца», одно (2) с двумя, другое (3) с одним ядром,

4 — бобовидная макрогамета,

5 — микрогаметоцит;

6-11 — возбудитель трехдневной малярии Р. vivax:

6 — молодой шизонт в начале роста в форме кольца,

7 — более крупный одноядерный шизонт амебоидной формы,

8 — растущий шизонт с четырьмя ядрами,

9 — выросший шизонт, распадающийся на одноядерные мерозоиты,

10 — макрогамета,

11 — микрогаметоцит;

12–15 — возбудитель четырехдневной малярии Р. malariae:

12 — растущий шизонт в форме пояска,

13 — выросший шизонт, распадающийся на одноядерные мерозоиты,

14 — макрогамета,

15 — микрогаметоцит;

16 — продольный разрез через слюнную железу комара Anopheles maculipennis; в клетках железы, обладающих крупными ядрами, расположены многочисленные веретеновидные спорозоиты, часть их вышла в проток железы;

17 — мазок слюнной железы комара Апорheles superpictus, зараженного малярийным плазмодием; в центре крупная клетка железы с ядром, вокруг нее многочисленные веретеновидные одноядерные спорозоиты.



Шизогония в крови осуществляется с большой правильностью в отношении времени роста и размножения шизонта. У видов Plasmodiuni vivax, Р. falciparum, Р. ovale шизогония происходит каждые 48 ч, у P. malaria — каждые 72 ч. С моментом завершения шизогонии связаны характерные клинические явления: повышение температуры до 40 °C и выше, озноб. Эти явления обусловлены тем, что при разрушении эритроцитов в кривь поступают токсические вещества — результат жизнедеятельности паразита, которые в период роста шизонта были изолированы оболочкой эритроцита.

Мерозоиты вновь внедряются в эритроциты, и весь цикл шизогонии начинается сначала. После каждой шизогоний, число паразитов в крови все более и более возрастает.

Шизогония, однако, идет не беспредельно. Через несколько циклов бесполого размножения часть внедрившихся в эритроциты мерозоитов превращается в стадии развития, подготовительные к образованию половых клеток, которые получают название гаметоцитов. Гаметоциты образуются двух категорий: микро- и макрогаметоциты. Первые в дальнейшем дают начало микрогаметам (мужским половым клеткам), вторые — макрогаметам (женским половым клеткам). Между этими двумя категориями гаметоцитов имеются некоторые небольшие различия в строении, которые в основном сводятся к тому, что макрогаметоциты богаче снабжены резервными запасными включениями.

85

Для дальнейшего развития гаметоциты должиы попасть в кишечник комара анофелес, что происходит при сосании им крови больного малярией. Судьба микро- и макрогаметоцитов различна. Каждый микрогаметоцит в желудке комара дает начало 4–8 нитевидным подвижным микрогаметам. Макрогаметоциты без деления преобразуются в макрогаметы. В просвете желудка комара происходит слияние мужских и женских гамет (оплодотворение), и образуется овальной формы зигота. Зигота (которая здесь благодаря своей подвижности получает название оокинеты) прободает желудок и закрепляется на его стенке, обращенной в сторону полости тела, превращаясь в ооцисту. Здесь она одевается оболочкой (эта оболочка несравнима с оболочкой ооцист кокцидий: у плазмодия она образуется за счет тканей комара), после чего начинается очень быстрый рост, в результате которого объем ооцисты увеличивается во много сот раз. По мере роста ооцисты происходит многократное деление ядра. Процесс развития ооцисты на кишечнике завершается образованием длинных (до 14 мкм) спорозоитов, очень тонких (1 мкм) одноядерных клеток (но спор, как у кокцидий, здесь не образуется). В каждой ооцисте формируется огромное количество (до 10 тыс. в одной ооцисте) спорозоитов. Зрелая ооциста лопается, и спорозоиты попадают в заполненную гемолимфой (кровью) полость тела комара. Спорозоиты активно перемещаются, совершая червеобразные движения. Перемещение их не беспорядочно. Они направляются в слюнные железы комара, в которых собираются в огромных количествах (цв. табл. 4).

Анофелесы, у которых спорозоиты заполняют слюнные железы, — источник заражения человека. Спорозоиты при укусе проникают в кровяное русло человека и цикл развития плазмодия начинается вновь.

Сколько времени требуется для завершения цикла развития малярийного плазмодия в комаре и при каких условиях среды он протекает? Быстрота развития плазмодия в комаре в большой степени зависит от температуры. Цикл развития Plasmodium vivax при 17–18 °C завершается в комаре в течение трех недель. При более высоких температурах среды он протекает значительно быстрее. Например, при 25–27 °C для развития плазмодия требуется лишь одна неделя. Если температура окружающей среды ниже 15–17 °C, то развитие его начинается нормально, происходит оплодотворение и образование оокинеты, но спорозоиты не формируются.

Указанные закономерности зависимости развития человеческих видов Plasmodium в переносчике от температуры объясняют основные факты географического распространения малярии. Ареал комаров рода Anopheles значительно шире, чем ареал возбудителя малярии. Комары могут жить и развиваться при температурах более низких, чем это необходимо для развития Plasmodium. Поэтому наличие Anopheles далеко не всегда означает возможность существования в данной местности малярии.

⠀⠀ ⠀⠀

Рис. 64. Цикл развития кровяного споровика Plasmodium vivax (возбудителя малярии):

1 — спорозоиты; 2–4 — бесполое размножение (шизогония) паразита в клетках печени: 2 — спорозоит, внедрившийся в печеночную клетку; 8 — растущий шизонт с многочисленными ядрами; 4 — шизонт, распадающийся на мерозоиты; 5-10 — бесполое размножение (шизогония) в красных кровяных клетках (эритроцитах): 5 — молодой шизонт в форме кольца; 6 — растущий шизонт с псевдоподиями; 7, 8 — дальнейшие стадии роста шизонта, деление ядер; 9 — распад шизонта на мерозоиты; 10 — выход мерозоитов из эритроцита; 11 — молодой макрогаметоцит; 11а — молодой микрогаметоцит; 12 — зрелая макрогамета; 12а — зрелый микрогаметоцит; 13 — макрогамета; 14 — микрогаметоцит; 15 — образование микрогамет; 16 — копуляция микро- и макрогаметы; 17 — зиготы; 18 — подвижная зигота (оокинета); 19 — оокинета, проникающая через стенку кишечника комара; 20 — оокинета, прикрепившаяся к наружной стенке кишечника и превращающаяся в ооцисту; 21, 22 — растущая ооциста с делящимися ядрами; 23 — зрелая ооциста со спорозоитами; 24 — спорозоиты, покидающие оболочку ооцисты; 25 — спорозоиты в слюнной железе комара.



Малярия и борьба с ней. В эпидемиологии малярии до недавнего времени оставалась неизвестной причина одной особенности этого заболевания, имеющая важное практическое значение. Дело в том, что лица, переболевшие малярией и, казалось бы, уже совершенно здоровые, иногда через значительный промежуток времени. (даже через годы) давали рецидив заболевания без дополнительного заражения. Откуда брался возбудитель? Исследования показали, что мерозоиты плазмодия способны проникать в клетки внутренних органов человека и сохранять в них жизнеспособность, не размножаясь. Через некоторый срок из такого как бы «спящего» состояния эти зоиты вновь могут перейти в активное состояние, приступить к размножению, внедриться в эритроциты и дать вспышку малярии. Причины такого внезапного «пробуждения» зонтов остаются неизвестными. Такие недеятельные стадии плазмодия получили название гипнозоиты.

Малярия — болезнь преимущественно теплых стран, обладающих необходимыми условиями для развития комаров анофелесов. Личинки этих насекомых, развивающихся с полным превращением, живут в воде, в мелких стоячих водоемах (рис. 65), сохраняя, однако, воздушное дыхание. На заднем конце тела личинки расположены дыхальца, через которые воздух проникает в их дыхательную (трахейную) систему. Личинки периодически поднимаются на поверхность воды для дыхания. Куколки комаров тоже живут в воде и дышат атмосферным воздухом. Лишь взрослый комар является воздушным насекомым. Яйца анофелесы откладывают в воду.

Борьба с малярией осуществляется двумя основными путями. Первый — это лечение маляриков специальными лекарственными средствами (хинин, акрихин, плазмоцид и др.). Отсутствие возбудителя в крови людей делает невозможным заражение переносчиков щ следовательно, распространение-малярии.

87

⠀⠀ ⠀⠀

Рис. 65. Комар Anopheles maculipennis — переносчик возбудителя малярии:

1 — взрослая самка; 2 — личинка в момент захвата атмосферного воздуха через дыхальце у поверхности воды; 3 — куколка.



При этом необходимо отметить одну важную особенность, имеющую существенное значение для борьбы с малярией. Дело в том, что — большинство специфичных лекарственных средств убивает шизонтов в крови. Гаметоциты же гораздо более стойкие и могут сохраняться в эритроцитах продолжительное время в отсутствие шизонтов. Больной малярией после лечения становится вполне здоровым и часто не подозревает, что является носителем гаметоцитов. Он может явиться источником заражения других людей, если комар насосется его крови с гаметоцитами. Поэтому в малярийных местностях необходим систематический контроль за всеми переболевшими малярией лицами. У них периодически берутся мазки крови и исследуются на носительство гаметоцитов.

В случае обнаружения гаметоносительства проводится специальный курс лечения лекарственными препаратами, разрушающими гаметоциты.

Второй путь борьбы с малярией — это уничтожение переносчиков. Методы этой борьбы разнообразны. В основном это уничтожение личинок путем заливки водоемов керосином или нефтью. Личинки, поднимающиеся на поверхность для дыхания, наталкиваются на пленку нефти, которая, заполняя трахеи, вызывает их гибель.

Существуют и другие методы борьбы с личинками. Особенно интересен биологический метод борьбы с использованием небольших живородящих рыбок — гамбузий (Gambusia affinis). Эти теплолюбивые рыбки (родина их Америка) особенно охотно поедают личинок комаров. Водоемы — места выплода личинок Anopheles, заселяют гамбузиями, которые быстро уничтожают всех личинок. Этот способ применяют в теплых странах, так как гамбузии не могут жить в холодных водоемах.

Борьба со взрослыми летающими комарами представляет большие трудности. Ее проводят в зимнее время на местах зимовок. Анофелесы скопляются в значительных количествах в хлевах, так как, кроме человека, они охотно нападают на рогатый скот. Здесь их и уничтожают, применяя для этого различные инсектициды.

В дореволюционной России малярия была широко распространена и для многих областей страны была массовым заболеванием. Десятки тысяч людей болели малярией. Особенно неблагополучными были некоторые районы Кавказа, Средней Азии, Поволжья. Большие эпидемические вспышки возникали и в первые годы Советской власти, особенно в период гражданской войны. Органы здравоохранения Советского Союза провели огромную работу по борьбе с малярией. Эта борьба, шедшая по разным направлениям, увенчалась полным успехом. В настоящее время малярия как массовое заболевание на территории нашей Родины не существует. Однако необходима постоянная бдительность, чтобы не занести малярию из тропических стран, где она продолжает существовать как массовое заболевание.

В других странах Европы малярия как массовое заболевание тоже ликвидирована. Но в азиатских и африканских странах (в особенности в Индии, экваториальной Африке) малярия — страшный бич населения, от которого страдают десятки миллионов людей. Понадобятся еще большие усилия, чтобы окончательно освободить человечество от этого тяжелого заболевания.

Кровяные споровики, так же как и кокцидии, — паразиты с узкой специфичностью. Виды рода Plasmodium, паразитирующие в человеке, в других млекопитающих развиваться не могут. Благодаря этому не существует природных очагов малярии, не связанных с человеком, какие мы видим, например, у вызываемой трипаносомами сонной болезни (с. 70).

Среди многочисленных видов гемоспоридий известное практическое значение имеет Plasmodium gallin&ceum, паразитирующий в крови домашней курицы. Этот паразит встречается в тропических странах, где он может вызывать тяжелые эпизоотии среди кур. Особенно тяжело протекает заболевание цыплят, обычно приводящее к гибели. Переносчиками Р. gallinaceum являются комары рода Aedes.

Р. gallinaceum широко используют в лабораторной практике для изучения жизненного цикла, так как исследование человеческих видов (особенно шизогонии, протекающей во внутренних органах) представляет большие трудности.

Приведенный выше обзор основных групп споровиков показывает их глубокую приспособленность к паразитическому образу жизни. Приспособления эти разнообразны. Характерный для большинства споровиков способ бесполого размножения — множественное деление (шизогония), обеспечивает быстрое увеличение числа паразитов в хозяине.

88

При наличии в жизненном цикле экзогенных стадий вырабатываются специальные приспособления защитного характера, допускающие длительное существование паразита в неблагоприятных условиях внешней среды. Примером могут служить ооцисты кокцидий. Наконец, наиболее сложным и биологически совершенным приспособлением к паразитизму является полное выключение экзогенных стадий и появление двух хозяев, в одном из которых осуществляется шизогония, а в другом — половой процесс и спорогония. По этому пути пошла эволюция кровяных споровиков.

Среди какой группы свободноживущих простейших следует искать корни происхождения споровиков? Весьма вероятно, что они взяли начало от жгутиконосцев. Серьезным доказательством в пользу этой точки зрения является наличие в жизненном цикле большинства споровиков жгутиковых стадий. Например, микрогаметы кокцидий по своему строению являются как бы небольшими жгутиконосцами, снабженными двумя жгутиками. Характер полового процесса споровиков — копуляция — весьма близок к тому, что наблюдается у жгутиконосцев. Наконец, как мы видели выше, представители класса жгутиконосцев довольно легко переходят к паразитизму.

Глубокая приспособленность к паразитическому образу жизни обеспечивает споровикам широкое распространение и большое видовое разнообразие.

У споровиков сложный жизненный цикл, как мы видели, выражается в смене форм размножения и строения. Разные этапы цикла приспособлены к различным условиям окружающей среды. Часть стадий (а иногда и весь цикл) проходит в теле животного-хозяина. Некоторые стадии осуществляются в наружной среде. Возникает вопрос, каково же в этих сложных циклах соотношение гаплоидной И — диплоидной фаз клеточного ядра? Выше было показано (с. 52), что у многоклеточных животных мейоз и, как его следствие, уменьшение вдвое числа хромосом, происходит при созревании половых клеток. Соответственно обе зрелые половые клетки: мужская (сперматозоид) и женская (зрелая яйцевая плетка) — несут одинарный (гаплоидный) комплект хромосом. Двойной (диплоидный) комплект восстанавливается в момент оплодотворения (образования зиготы). Таким образом, все без исключения многоклеточные животные являются диплоидами с гаметической редукцией. У фораминифер (с. 53), как мы видели, имеет место своеобразное и уникальное для животных гетерофазное чередование поколений, в процессе которого одно поколение (размножающееся бесполым путем) диплоидно, а другое поколение (размножающееся половым путем) гаплоидно. У споровиков (а также у большинства жгутиконосцев, у которых имеется половой процесс) имеет место совсем иное соотношение гаплоидной и диплоидной фазы в жизненном цикле. В результате многочисленных исследований можно считать установленным, что во всех классах споровиков диплоидны только зиготы. Каждая хромосома представлена здесь двумя гомологичными единицами. Первое деление ядра зиготы (проходящее обычно в ооцисте) являемся мейозом и ведет к редукции числа хромосом, т. е. к преобразованию диплоидного комплекта хромосом в гаплоидный. Все последующие стадии цикла сохраняют гаплоидное число хромосом. Деление клеток здесь осуществляется путем простого митоза. При образовании гамет мейоза и редукции числа хромосом не происходит. Таким образом, все споровики являются гаплонтами с зиготическим типом редукции. Соотношение гаплоидной и дийлоидной фаз противоположно тому, что имеет место у многоклеточных животных.

ТИП КНИДОСПОРИДИИ __________________ (CNIDOSPOMDIA)

Этот тип, так же как и споровики, состоит исключительно из паразитических организмов. Рассмотрим наиболее характерный класс типа книдоспоридий — миксоспоридии (Myxosporidia).

Класс Миксоспоридии (Myxosporidia)

Миксоспоридии (их называют также слизистыми споровиками) — почти исключительно паразиты морских и пресноводных рыб. В природе миксоспоридии распространены очень широко во всех широтах и во всех типах водоемов. Число описанных видов превышает 1000.

Строение и цикл размножения. Полостные виды миксоспоридий имеют амебоидное тело с несколькими ядрами. Они образуют псевдоподии и способны передвигаться (рис. 66). Размеры этих миксоспоридий невелики, они измеряются обычно десятками микрометра. Цитоплазма разделена на два слоя: наружную, более светлую эктоплазму и внутреннюю — эндоплазму. В эндоплазме у зрелых особей лежат споры.

⠀⠀ ⠀⠀

Рис. 66 Плазмодии полостных миксоспоридий со спорами:

А — Ceratomyxa appendiculata; Б — Leptotheca agillis; В — Сhiоromyxum leidigi; 1 — псевдоподии; 2 — споры со стрекательными капсулами.



Тканевые миксоспоридии представляют собой плазматические массы, лежащие в толще тканей и окруженные оболочкой. В плазматическом теле их обычно имеется большое число ядер (измеряемое иногда сотнями и тысячами) и спор. Размеры многоядерных плазмодиев тканевых миксоспоридий могут быть очень различны. Некоторые из них достигают горошины или даже ореха. В этих случаях на теле рыб образуются опухоли (рис. 67), которые затем прорываются и превращаются в язвы.

⠀⠀ ⠀⠀

Рис. 67. Плотва с опухолями, образованными плазмодиями миксоспоридий.



Как же осуществляется цикл развития миксоспоридий, как паразит проникает в тело рыбы?

Для распространения миксоспоридий служат споры, с рассмотрения строения и развития которых мы и начнем изложение хода жизненного цикла.

Споры формируются в эндоплазме миксоспоридий. В плазмодиях многих мелких полостных видов образуются всего две споры. В крупных плазмодиях тканевых видов число спор может достигать сотен и тысяч. Зрелая спора миксоспоридий обладает характерной и сложной структурой (рис. 68). Снаружи спора имеет двустворчатую прочную оболочку. Створки ее соединены друг с другом по линии, называемой швом. В этой области они соприкасаются друг с другом, как два часовых стекла, сложенных краями. Как видно на рисунке 68, форма створок у разных видов различна, кроме того, они могут нести снаружи отростки разной формы и длины.

⠀⠀ ⠀⠀

Рис. 68. Споры различных миксоспоридий:

А — Henneguya acerina; Б — Ceratomyxa truncate; В — Sinuolinea dlmorpna; Г — Sphaerospora divergens; Д — Myxobolus cyprini; E — Myxobolus sp.; 1 — стрекательные капсулы; 2 — выброшенная стрекательная нить; 3 — амебоид с двумя ядрами; 4 — отростки оболочки споры.



Внутри створок в задней части споры помещается маленький амебовидный зародыш, обычно двухъядерный. На переднем конце споры (а у сильно вытянутых спор — у линии шва или на противоположных концах) помещаются две стрекательные капсулы (у немногих видов их 4–6). Стрекательная капсула представляет собой пузырек с жидкостью, имеющий собственную оболочку, внутри которого расположена скрученная спиралью длинная тонкая нить. Длина нити в несколько раз превосходит длину споры. Эта нить играет важную роль при заражении хозяина миксоспоридиями.

Развитие споры протекает сложно. На деталях его мы останавливаться не будем, укажем лишь, что в формировании каждой споры принимают

90

участие шесть ядер, из них два переходят в амебоиды, за счет двух формируются створки, два остальных участвуют в образовании стрекательных капсул.

Зрелые споры попадают в воду. Это совершается разными путями: у полостных миксоспоридий — через кишечник или почки, у тканевых — при разрыве цисты и образовании язв. У некоторых видов споры освобождаются лишь после смерти хозяина, как, например, у миксоспоридий, паразитирующих в хрящевой и нервной ткани. Если спора будет заглочена хозяином (рыбой), то под воздействием пищеварительных соков стрекательные нити с силой выбрасываются и внедряются в стенку кишечника. Таким путем спора прочно закрепляется в теле хозяина. После этого створки расходятся по линии шва — спора как бы раскрывается. Амебоидный зародыш выходит из споры и активно внедряется в ткани. Далее через ткани хозяина он направляется в тот орган, в котором паразитирует данный вид миксоспоридий.

Рассмотренный выше жизненный цикл миксоспоридий не имеет ничего сходного с циклами споровиков (грегарин, кокцидий, гемоспоридий). Здесь отсутствуют шизогония, гаметогенез, оплодотворение и спорогония, закономерное чередование которых столь характерно для класса споровиков. Размножение и распространение связано у миксоспоридий с образованием спор. Строение спор и их развитие совершенно иное, чем у споровиков. Очевидно, что развитие спор миксоспоридий следует рассматривать как своеобразный процесс бесполого размножения, несколько напоминающий внутреннее почкование. Имеется ли у миксоспоридий в какой-либо форме половой процесс? Вопрос этот окончательно не решен. Мы видели выше, что амебоид, заключенный в споре, обладает двумя ядрами. По наблюдениям многих авторов, по выходе амебоида из споры ядра сливаются. В этом усматривают вторично упрощенную форму полового процесса, поскольку основным моментом в оплодотворении является слияние ядер.

Миксоспоридиоз и борьба с ним. Как отмечалось, миксоспоридии — возбудители заболеваний рыб. Перечислим некоторые наиболее опасные из них.

У карпа, являющегося одним из основных объектов разведения в прудовых рыбоводческих хозяйствах, известно несколько заболеваний, вызываемых миксоспоридиями. Наиболее часто встречается Myxobolus cyprini, вызывающий злокачественную анемию. Вегетативные стадии паразита и цисты со спорами поражают ткани различных органов карпа: жабры, мускулатуру, почки, печень, селезенку.

Имеется много видов миксоспоридий (преимущественно виды родов Myxobolus и Henneguya), которые паразитируют на жабрах. Они поражают карповых рыб, судаков, щуку и других промысловых рыб. При массовом поражении жабр нарушается нормальный процесс дыхания, что приводит к заболеваниям.

Тяжелое заболевание рыб, особенно ценных лососевых (форель, лосось), вызывает миксоспоридия Myxosoma cerebralis. Этот паразит поражает преимущественно мальков, вызывая их массовую гибель. Болезнь получила название «вертеж» форелей по характерному признаку заболевания. Myxosoma cerebralis локализуется в хрящевой ткани. При массовом заражении споры встречаются и в других органах: головном мозгу, мышцах. Особенно часто миксоспоридия локализуется в полукружных каналах, вызывая разрушение органа равновесия. Это нарушает нормальное движение.

91

Рыбки начинают кружиться с большой быстротой, после чего наступает период утомления. Второй характерный симптом заболевания — искривление позвоночника (рис. 69), связанное с нарушением целостности хряща позвоночника. — Кроме искривления хвостового отдела, наблюдается ненормальная темная пигментация хвоста. «Вертеж» форелей часто приводит к массовой гибели: молодых рыбок. После гибели рыбки при разложения трупа споры попадают в воду.

⠀⠀ ⠀⠀

Рис. 69. Молодая форель, больная «вертежом» (возбудитель Myxosoma cerebralis).

Позвоночник искривлён, задняя треть тела сильно пигментирована.



Как осуществляется в рыбоводных хозяйствах борьба с миксоспоридиозами? Мероприятия эти носят в основном профилактический характер. Следует избегать контакта больных и здоровых рыб. Зараженные водоемы рекомендуют обезвреживать, спуская их на зиму и дезинфицируя ложе известью, и другими химикатами.

Миксоспоридии могут вызывать у карпа и некоторых других карповых рыб тяжелые заболевания почек. Например Hoferellus cyprini, поражающий преимущественно молодь карпа, локализуется в мочевых канальцах почек и разрушает стенки канальцев. При сильном заражении это заболевание вызывает гибель рыбы.

За последние годы многочисленными исследованиями в основном советских ученых показано, что миксоспоридии широко распространено не только среди пресноводных, но также и морских рыб. Многие из морских миксоспоридий локализуются в мускулатуре, большинство их принадлежит к роду Kudoa. Они обладают не двумя, а четырьмя и даже большим числом стрекательных капсул в споре. Эти морские многокапсульные микеоспоридии объединяются в особое семейство Multivalvolea. Эти паразиты наносят существенный вред морскому промысловому рыболовству. Выловленную морскую рыбу в значительной части замораживают и в замороженном состоянии хранят длительное время. Однако при замораживании даже при очень низких температурах миксоспоридии не погибают, а сохраняются живыми длительное время. Они продолжают выделять ферменты, разжижающие мускульную ткань рыбы. В результате значительная часть мускулатуры превращается в студневидную массу, совершенно не пригодную к употреблению в пищу. Это наносит большой материальный ущерб морскому рыболовству, так как большие партии рыбы приходится выбраковывать. Микеоспоридии рода Kudoa поражают массовые виды морских промысловых рыб, таких, как мерлуза, потассу, атлантическая сельдь и другие.

* * *

Книдоспоридии представляют собой группу простейших, глубоко измененную паразитизмом. В их происхождении и эволюции важную роль сыграло замечательное приспособление — образование сложных спор со стрекательными нитями. Эта особенность их строения обеспечивает широкое распространение паразитов. С какой группой свободноживущих простейших вероятнее всего связаны книдоспоридии в своем происхождении? Наличие в их жизненном цикле амебоидной стадии и полное отсутствие жгутиковых стадий позволяет предположить, что книдоспоридии происходят от саркодовых в результате их глубокого приспособления к паразитизму, выразившегося в появлении особо устроенных спор.

92

⠀⠀ ⠀⠀

ТИП МИКРОСПОРИДИИ __________________ (MICROSPORIDIA)

В отличие от миксоспоридий, микроспоридии паразитируют как в позвоночных животных (преимущественно в рыбах), так и в беспозвоночных. Это внутриклеточные паразиты. Число известных видов свыше 300. Наибольший вред причиняют паразиты насекомых, так как некоторые виды микроспоридий вызывают тяжелое заболевание медоносной пчелы и тутового шелкопряда. У медоносной пчелы болезнь, вызываемая микроспоридиями (Nosema apis), называется белым поносом. Она сильно истощает пчелиную семью и нередко вызывает ее гибель. Микроспоридиоз тутового шелкопряда носит название пебрины (Nosema bombycis). Это заболевание в большинстве случаев смертельно.

Большинство видов насекомых и других членистоногих поражаются специфичными для них видами микроспоридий. Можно ожидать, что в ближайшие годы по мере изучения число известных видов микроспоридий возрастет во много раз.

Число видов микроспоридий, паразитирующих в рыбах, невелико. Они могут поражать разные органы, локализуясь чаще всего в соединительной ткани и мышцах. Из рыб, имеющих промысловое значение, микроспоридиями поражаются снетки, корюшка. Особенно сильно страдает от микроспоридии Glugea hertwigi снеток, имеющий немаловажное промысловое значение в северных пресноводных водоемах СССР (Псковско-Чудское озеро, озеро Белое и др.). Сильное заражение снетков микроспоридиями вызывает у них воспаление и нарушение функций большинства внутренних органов и, как результат, массовую гибель рыбок.

Один из видов микроспоридий (Cocconema sulci) паразитирует в икринках осетровых рыб бассейнов Черного и Каспийского морей, вызывая гибель икринок. Однако массового заражения осетровых этим паразитом пока не отмечалось. Нередко микроспоридии рода Glugea паразитируют в колюшках, вызывая образование крупных белых цист в коже (рис. 70).

⠀⠀ ⠀⠀

Рис. 70. Трехиглая колюшка с цистами микроспоридии Glugea anomala в коже.



Познакомимся с жизненным циклом микроспоридий на примере Nosema apis (паразит медоносной пчелы) и N. bombycis (паразит тутового шелкопряда). У пчелы микроспоридий развивается в клетках эпителия кишечника, у тутового шелкопряда — в клетках самых различных органов. Споры (рис. 71) очень мелкие (у Nosema apis длина 4,5–6,5 мкм, ширина 2,5–3,5 мкм). Имеется прочная и относительно тонкая оболочка, которая, в отличие от таковой у миксоспоридий, не является двустворчатой. Значительная часть пространства внутри оболочки споры занята одной стрекательной капсулой с расположенной в ней спирально закрученной длинной тонкой нитью. Сзади к капсуле примыкает очень маленький, вероятно двухъядерный, амебоидный зародыш.

При проникновении споры в кишечник хозяина нить стрекательной капсулы с силой выбрасывается и внедряется в клетку эпителия. Длина ее в выброшенном состояний достигает 70 мкм, что превосходит длину споры более чем — в 10 раз. Вместе с нитью выносится и амебоидный зародыш, который проникает в клетку хозяина. Ранее полагали, что зародыш прикрепляется к наружному концу нити. Недавними исследованиями с применением электронной микроскопии удалось показать, что нить представляет собой тончайшую полую трубку и что зародыш проникает в клетку хозяина через полость этой трубки. Здесь амебоид

93

Рис. 71. Микроспоридии рода Nosema.:

Слева — строение споры Nosema bombycis; 1 — стрекательная капсула; 2 — нить стрекательной капсулы; 3 — амебонд с ядрами; справа — срез через эпителий кишечника шелковичного червя, набитого шизонтами и спорами.



начинает энергично делиться, образуя цепочки» состоящие из отдельных клеток паразита. Многоядерных плазмодиев не образуется: Вскоре начинается формирование спор, строение которых уже рассмотрено выше. — У Nosema bombycis (возбудителя пебрины шелкопряда) паразит при сильном заражении проникает в цитоплазму яйцевых клеток, и в этом случае, если родительская особь не погибает, паразит передается следующему поколению. Получается передача возбудителя «по наследству».

Борьба с микроспоридиозами пчелы и тутового шелкопряда представляет собой сложную задачу. В основном борьба сводится к профилактическим мероприятиям. Зараженные ульи дезинфицируют. Сильно зараженные семьи приходится уничтожать. Важная мера борьбы с пебриной шелковичного червя — микроскопический контроль отложенных яиц. Часть яиц изучают под микроскопом. Если в них найдут споры микроспоридий, то всю партию яиц уничтожают.

Наряду с отрицательным значением микроспоридий за последние Годы выявляются возможности их широкого использования на пользу человека. Большая часть микроспоридий (свыше 70 % описанных до сих пор видов) — это паразиты членистоногих. Среди последних имеется большое число вредителей сельского хозяйства, существенно снижающих урожайность полей, плодовых садов, бахчей, наносящих большой вред лесным Насаждениям. Кроме того, многие членистоногие (например, клещи) являются переносчиками различных тяжелых заболеваний человека и домашних животных, (комары. — малярии, москиты — лейшманиоза, муха цеце — сонной болезни, слепни — трипаносом рогатого скота и т. п.). Возникает вопрос: нельзя ли при помощи микроспоридий бороться с вредными членистоногими? Заражать вредителей и переносчиков заболеваний микроспоридиями и вызывать таким путем их гибель? Такой биологический метод борьбы имеет значительные преимущества перед химическими методами, ибо он не загрязняет окружающую среду и не наносит вреда полезным насекомым. На пути разработки биологического метода с использованием микроспоридий стоят большие трудности. Заражение вредителей микроспоридиями может осуществляться только живыми спорами. Нужно научиться в садках разводить насекомых для культивирования на них микроспоридий. Такая работа ведется в настоящее время в нескольких странах (СССР, Канада, Великобритания). Имеются уже ощутимые успехи в использовании микроспоридий в борьбе с малярийным комаром, с вредителями некоторых огородных культур. Можно полагать, что микроспоридии найдут широкое применение в борьбе с вредными членистоногими.

94

⠀⠀ ⠀⠀

ТИП ИНФУЗОРИИ __________________ (Infusoria, или Ciliohora)

Простейшие этого многочисленного типа (свыше 7 тыс. видов) широко распространены в природе. К ним относятся разнообразные обитатели морских и пресных вод. Некоторые виды приспособились к жизни во влажной почве. Немалое количество видов инфузорий ведет паразитический образ жизни. Хозяева для паразитических инфузорий — беспозвоночные и позвоночные животные, включая высших обезьян и человека.

По сравнению с другим группами простейших инфузории имеют наиболее сложное строение, что связано с разнообразием и сложностью их функций.

Инфузория-туфелька (Paramecium caudatum)

Строение. Чтобы ознакомиться со строением и образом жизни этих интересных одноклеточных организмов, обратимся сначала к одному характерному примеру. Возьмем широко распространенных в мелких пресноводных водоемах инфузорий туфелек (виды рода Paramecium). Этих инфузорий очень легко развести в небольших аквариумах, если залить прудовой водой обычное луговое сено. В таких настойках развивается множество различных видов простейших и почти всегда развиваются инфузории туфельки. Свое название инфузория туфелька получила по форме тела, напоминающей изящную дамскую туфельку (рис. 72). Среди простейших инфузории туфельки — довольно крупные организмы (длина тела около 0,2 мм).

Все цитоплазматическое тело инфузории отчетливо распадается на два слоя: наружный (эктоплазма) — более светлый и внутренний (эндоплазма) — более темный и зернистый. Эктоплазма инфузорий, обладающая сложной структурой, получила название кортекс (рис. 73, 74). Ее периферическая часть, граничащая с наружной средой, представляет собой эластичную двойную мембрану — пелликулу. От эндоплазмы кортекс отделен двойной мембраной. В эктоплазме тела живой туфельки хорошо видны многочисленные коротенькие палочки, расположенные перпендикулярно к поверхности (рис. 72, 7). Эти образования носят название трихоцисты. Функция их очень интересна и связана с защитой простейшего. При механическом, химическом или каком-либо ином сильном раздражении трихоцисты с силой выбрасываются наружу, превращаясь в тонкие длинные нити, которые поражают хищника, нападающего на туфельку. Трихоцисты представляют собой мощную защиту. Они располагаются между ресничками так, что число трихоцист приблизительно соответствует числу ресничек. На месте использованных («выстреленных») трихоцист в эктоплазме туфельки развиваются новые.

⠀⠀ ⠀⠀

Рис. 72. Инфузория туфелька (Paramecium caudatum):

1 — реснички; 2 — пищеварительные вакуоли; 3 — большое ядро (макронуклеус); 4 — малое ядро (микронуклеус); 5 — ротовое отверстие и глотка; 6 — непереваренные остатки пищи, выбрасываемые наружу; 7 — трихоцисты; 3 — сократительная вакуоль.



Рис. 73. Строение эктоплазмы (кортекса) инфузории туфельки (схематизировано):

7 — кортекс; 2 — фибриллы (волоконца); 3 — трихоцисты; 4 — реснички.



На одной стороне, приблизительно по середине тела (рис. 72, 5), у туфельки имеется довольно глу-

95

бокая впадина — ротовая, или перистом. По стенкам перистома, так же как и по поверхности тела, расположены реснички. Они развиты здесь гораздо более мощно, чем на всей остальной поверхности тела. Эти тесно расположенные реснички собраны в две группы. Функция этих особо дифференцированных ресничек связана не с движением, а с питанием (рис. 75).

⠀⠀ ⠀⠀

Рис. 74. Поверхностный разрез через кортекс инфузории туфельки (электронная микроскопия):

1 — поперечный разрез кинетосомы (базального тельца), видны центральные и периферические фибриллы (внизу — увеличено);

2 — кинетодесмальные фибриллы; 3 — постцилиарные фибриллы; 4 — тангентальные (продольные) фибриллы.



Инфузория туфелька имеет вакуоли, выполняющие очень важные жизненные функции — пищеварительные (о них будет сказано ниже) и сократительные. Сократительных вакуолей у туфельки две, они расположены в передней и задней трети тела. Каждая из вакуолей состоит из центрального резервуара и приводящих каналов (5–7), которые расположены радиально вокруг центрального резервуара. Цикл работы сократительной вакуоли начинается с того, что приводящие каналы заполняются жидкостью и становятся хорошо видимыми (рис. 72). Затем жидкое содержимое их изливается в центральный резервуар, сами каналы после опорожнения становятся на некоторое время невидимыми. Последний этап цикла работы сократительной вакуоли заключается в том, что жидкость из центрального резервуара изливается через особую пору в пелликуле наружу. После этого центральный резервуар на короткий срок перестает быть видимым. В это время приводящие каналы вновь начинают заполняться жидкостью и весь цикл начинается сначала. Обычно передняя и задняя сократительные вакуоли работают последовательно, как бы по очереди. Каков темп пульсации вакуолей? Какое количество жидкости выводится ими наружу? Частота сокращения сократительной вакуоли в большой степени зависит от условий внешней среды, и особенно от температуры и осмотического давления. При комнатной температуре у туфельки сократительная вакуоля проделывает весь цикл пульсации за 10–15 с. У морских и паразитических инфузорий темп пульсации сократительных вакуолей обычно значительно ниже, чем у пресноводных.

Подсчеты показывают, что примерно за 30–45 мин у туфельки через сократительные вакуоли выводится объем жидкости, равный объему тела инфузории. Таким образом, благодаря деятельности сократительных вакуолей через тело инфузории осуществляется непрерывный ток воды, поступающей снаружи через ротовое отверстие (вместе с пищеварительными вакуолями), а также осмотически непосредственно через пелликулу. Сократительные вакуоли играют важную роль в регулировании тока воды, проходящего через тело инфузории, в регулировании осмотического давления (с. 44). Этот процесс здесь протекает в принципе так же, как у амеб, только структура сократительной вакуоли намного сложнее.

⠀⠀ ⠀⠀

Рис. 75. Продольный разрез инфузории туфельки, в области глотки:

1 — густо расположенный ряд ресничек глотки; 2 — трихоцисты; 3 — макронуклеус; 4 — пищеварительная вакуоль; 5 — образующаяся пищеварительная вакуоль.



96

В течение долгих лет среди ученых, занимающихся изучением простейших, шел спор по вопросу о том, имеются ли в цитоплазме какие-нибудь структуры, связанные с появлением сократительной вакуоли, или же она образуется всякий раз заново. На живой инфузории никаких особых структур, которые предшествовали бы ее образованию, наблюдать не удается. После того как произойдет сокращение вакуоли — систола, в цитоплазме на месте бывшей вакуоли не видно никаких структур. Затем заново появляются прозрачный пузырек или приводящие каналы, которые начинают увеличиваться в размерах. Однако никакой связи вновь возникающей вакуоли с существовавшей ранее не обнаруживается. Создается впечатление, что преемственности между следующими друг за другом циклами сократительной вакуоли нет и всякая новая сократительная вакуоля образуется в цитоплазме заново. Однако специальные методы исследования показали, что на самом деле это не так. Применение электронной микроскопии убедительно показало, что у инфузории на том участке, где формируются сократительные вакуоли, имеется особо дифференцированная цитоплазма, состоящая из переплетения тончайших трубочек.

Таким образом, оказалось, что сократительная вакуоля возникает в цитоплазме не на «пустом месте», а на основе предшествующего особого органоида клетки, функция которого — формирование сократительной вакуоли.

Как и у всех простейших, у инфузорий имеется клеточное ядро. Однако по строению ядерного аппарата инфузории резко отличаются от всех других групп простейших. Ядерный аппарат инфузорий характеризуется дуализмом. Это означает, что у инфузорий имеется два разных типа ядер — большие, или макронуклеусы (Ма), и малые, или микронуклеусы (Ми). У инфузории туфельки имеется один макронуклеус и один микронуклеус. Такая структура ядерного аппарата свойственна многим инфузориям. У других может быть по нескольку Ма и Ми.

Посмотрим, какое строение имеет ядерный аппарат у инфузории туфельки (рис. 72). В центре тела инфузории (на уровне перистома) помещается большое массивное ядро яйцевидной или бобовидной формы. Это макронуклеус. В тесном соседстве с ним расположено второе ядро во много раз меньших размеров, обычно довольно тесно прилежащее к макронуклеусу. Это микронуклеус. Различие между этими двумя ядрами не сводится только к размерам, оно более значительно, глубоко затрагивает их структуру.

Макронуклеус до сравнению с микронуклеусом гораздо богаче хроматином, или, точнее, ДНК, входящей в состав хромосом. Соотношение количества хроматина в макронуклеусе и микроруклеусе у разных видов инфузорий различно и колеблется от нескольких десятков до нескольких тысяч раз. Исключение составляют некоторые: ВИДЫ низших Инфузорий, у которых содержание хроматина в Ма и Ми примерно одинаково. Высокое содержание хроматина в Ма большинства инфузорий, как доказали исследования последних лет, объясняется повторным расщеплением (репликацией) всех, или части хромосом. При каждом расщеплении происходит удвоение количества ДНК. Богатство Ма хроматином вызывает его высокую функциональную активность. Высокий темп транскрипции и образований: больших количеств PHК, в свою очередь, определяет энергичный синтез белка, это функционально высокоактивное ядро, обусловливающее большую физиологическую активность, в том числе быстрый процесс размножения.

Движение. Инфузория туфелька находится в непрерывном быстром движении:. Скорость ее (при комнатной температуре) около 2,0–2,5. Это большая скорость: за 1 с туфелька пробегает расстояние, превышающее длину ее тела в 10–15 раз. Траектория движения туфельки довольно сложна. Она движется передним концом прямо вперед и при этом вращается вправо вдоль продольной оси тела.

Столь активное движение туфельки зависит от работы большого количества тончайших волосковидных придатков — ресничек, которые покрывают все тело инфузории. Количество ресничек у одной особи инфузории туфельки равняется 10–15 тыс.!

Каждая ресничка совершает очень частые веслообразные движения — при комнатной температуре до 30 биений в 1 с. Во время удара назад, ресничка держится в выпрямленном положении. При возвращении ее в исходную позицию (при движении вниз) она движется в 3–5 раз медленнее и описывает полукруг.

При плавании туфельки движения многочисленных покрывающих ее тело ресничек суммируются. Действия отдельных ресничек согласованные, в результате чего получаются правильные волнообразные колебания всех ресничек. Волна колебания начинается у переднего конца тела и распространяется назад. Одновременно вдоль тела ту-

97

фельки проходят 2–3 волны сокращения. Таким образом, весь ресничный аппарат инфузории представляет собой как бы единое функциональное физиологическое целое, действия отдельных структурных единиц которого (ресничек) тесно связаны (координированы) между собой.

⠀⠀ ⠀⠀

Рис. 76. Последовательные стадии работы сократительной вакуоли инфузории туфельки.



Строение каждой отдельной реснички туфельки, как показали электронномикроскопические исследования, является весьма сложным. Оно ничем не отличается от тонкого строения жгутика, которое подробно рассмотрено выше (рис. 31).

Направление и быстрота движения туфельки не являются величинами постоянными и неизменными. Туфелька, как и все живые организмы (мы видели это уже на примере амебы), реагирует на изменение внешней среды изменением направления движения.

Изменение направления движения простейших под влиянием различных раздражителей называют таксисами. У инфузорий легко наблюдать различные таксисы. Если в каплю, где плавают туфельки, поместить неблагоприятно действующее на них вещество (например, кристаллик поваренной соли), то туфельки уплывают (как бы убегают) от этого неблагоприятного для них фактора (рис. 77).

⠀⠀ ⠀⠀

Рис. 77. Хемотаксис инфузорий туфелек:

1 — положительный хемотаксис, инфузории концентрируются в области привлекающего их вещества; 2 — положительный хемотаксис при введении того же вещества повышенной концентрации, вредно действующей на инфузории; 3 — введен пузырек углекислого газа, инфузории обнаруживают к нему положительный хемотаксис; 4 — тот же препарат через несколько минут; углекислый газ диффундирует в воду, высокая концентрация его вызывает отрицательный хемотаксис туфелек, которые собираются в зону, где концентрация углекислого газа для них оптимальна.



Перед нами пример отрицательного таксиса на химическое воздействие (отрицательный хемотаксис). Можно наблюдать у туфельки и положительный хемотаксис. Если, например, каплю воды, в которой плавают инфузории, прикрыть покровным стеклышком и подпустить под него пузырек углекислого газа, то большая часть инфузорий направится к этому пузырьку и расположится вокруг него кольцом.

Очень наглядно таксис проявляется у туфелек под воздействием электрического тока. Если через жидкость, в которой плавают туфельки; пропустить слабый электрический ток, то можно наблюдать следующую картину: все инфузории ориентируют свою продольную ось параллельно линии тока, а затем, как по команде, двинутся в направлении катода, в области которого и образуют густое скопление. Движение инфузорий, определяемое направлением электрического тока, носит название гальванотаксиса. Различные таксисы у инфузорий могут быть обнаружены под влиянием самых разнообразных факторов внешней среды.

Размножение. Обратимся в качестве примера опять к инфузории туфельке. Если посадить в небольшой сосуд (микроаквариум) один экземпляр туфельки, то уже через сутки там окажется две, а нередко и четыре инфузории. Как это происходит? После некоторого периода активного плавания и питания инфузория несколько вытягивается в длину. Затем точно по середине тела появляется все углубляющаяся поперечная перетяжка (рис. 78). В конце концов инфузория как бы перешнуровывается пополам и из одной особи получаются две, первоначально несколько меньших размеров, чем материнская особь. Весь процесс деления занимает при комнатной температуре около часа. Изучение внутренних процессов показывает, что еще до того, как появляется поперечная перетяжка, начинается процесс деления ядерного аппарата. Путем митоза первым делится микронуклеус, после него — макронуклеус (с. 97). Деление Ма по внешности напоминает прямое деление ядра — амитоз. Этот бесполый процесс размножения инфузории туфельки, как мы видим, сходен с бесполым размножением амеб (с. 45) и жгутиконосцев (с. 67). В отличие от них инфузории в процессе бесполого размножения делятся всегда поперек, тогда как у жгутиконосцев плоскость деления параллельна продольной оси тела.

⠀⠀ ⠀⠀

Рис. 78. Бесполое размножение путем поперечного деления инфузории туфельки (схематизировано):

1 — микронуклеус; 2 — макронуклеус.



Во время деления происходит глубокая внутренняя перестройка тела инфузории. Образуется два новых перистома, две глотки и два ротовые отверстия. К этому же времени приурочено деление базальных ядер ресничек, за счет которых образуются новые реснички. Если бы при размножении число ресничек не возрастало, то в результате каждого деления дочерние особи получили бы примерно половину числа ресничек материнской

98

особи, что привело бы к полному «облысению» инфузорий. На самом же деле этого не происходит.

Время от времени у большинства инфузорий, в том числе и у туфе-наблюдается особая и чрезвычайно своеобразная форма полового процесса, которая получила название конъюгации. Отметим самое главное в этом процессе. Конъюгация протекает следующим образом (Рис. 79). Две инфузории сближаются, тесно прикладываются друг к другу брюшными сторонами и в таком виде плавают довольно длительное время вместе (у туфельки примерно в течение 12 ч при комнатной температуре). Затем конъюганты расходятся. Что же происходит в теле инфузории во время конъюгации?

Сущность этих процессов сводится к следующему (рис. 79). Большое ядро (макронуклеус) разрушается и постепенно растворяется в цитоплазме. Микронуклеус, который является диплоидным ядром, сначала дважды делится. Эти деления мейотические. В результате мейоза в каждом из партнеров образуется по четыре гаплоидных ядра. Три из них разрушаются, а одно делится обычным митозом еще один раз. В каждом конъюганте, таким образом, возникает по два гаплоидных ядра.

Одно из них остается на месте, там, где оно образовалось (стационарное ядро), а второе перемещается (мигрирующее ядро) в соседнего конъюганта, где сливается со стационарным ядром. Таким путем в каждом из конъюгантов образуется по одному синкариону — ядру, вновь обладающему диплоидным комплексом хромосом. Процесс слияния мигрирующего и стационарного ядер — это процесс оплодотворения.

И у многоклеточных существенный момент оплодотворения — слияние ядер половых клеток. У инфузорий половые клетки не образуются, имеются лишь половые ядра, которые и сливаются между собой. Таким образом происходит взаимное перекрестное оплодотворение.

Вскоре после образования синкариона конъюганты расходятся. По строению ядерного аппарата они на этой стадии еще очень существенно отличаются от обычных так называемых нейтральных (не конъюгирующих) инфузорий, так как у них имеется лишь по одному ядру. В дальнейшем за счет синкариона происходит восстановление нормального ядерного аппарата. Синкарион делится (один или несколько раз). Часть продуктов этого деления вследствие сложных преобразований, связанных с увеличением числа хромосом и обогащением хроматином, превращается в макронуклеусы. Во время этих преобразований хромосомы (все или только часть их) многократно умножаются, в результате чего Ма обогащается хроматином. Далее хроматин активно участвует в синтезе белка, обеспечивая быстрый рост и размножение инфузорий. Ми сохраняет диплоидный набор хромосом. В синтетических процессах клетки он участвует слабо и является как бы «сейфом», хранящим наследственную информацию вида, которая передается последующим бесполым поколениям в результате митоза. Таким образом, у инфузорий, обладающих ядерным дуализмом, функция ДНК распределяется между двумя ядрами. Одно из них (Ма) становится вегетативным ядром, активно участвующим в синтетических процессах в клетке, тогда как другое (Ми) сохраняет генеративную функцию и обеспечивает преемственность генетической информации.

⠀⠀ ⠀⠀

Рис. 79. Конъюгация инфузорий (схематизировано):

1 — две особи соединились брюшными сторонами, враждой имеется один Ми и один Ма; 2 — Ми осуществляет первое деление; 3 — в левой особи Ми заканчивает первое деление, в правой оба ядра, образовавшиеся в результате деления, приступили ко второму делению, Ма распался на фрагменты; 4 — в каждой особи второе деление Ми; 5 — в каждой инфузории из образовавшихся в результате двух делений Ми четырех ядер три дегенерируют, по одному приступают к третьему делению; 6 — из двух ядер, образовавшихся после третьего деления Ми, одно переходит в партнера (мигрирующее ядро), другое остается на месте (стационарное ядро); 7 — мигрирующее и стационарное ядра сливаются (оплодотворение), образуя синкарион, на, этой стадии конъюгирующие особи расходятся; 8 — синкарион делится; 9 — из двух ядер, образовавшихся в результате деления синкариона, одно ядро начинает расти, превращаясь в Ма, другое дает Ми (старый Ма окончательно растворяется в цитоплазме); 10 — реконструкция ядерного аппарата закончилась — имеется один Ма и один Ми.



В чем заключается биологическое значение конъюгации, какую роль играет она в жизни инфузорий? Во-первых, конъюгация, как и всякий другой половой процесс, при котором происходит объединение в одном организме двух наследственных начал (отцовского и материнского), ведет к повышению наследственной изменчивости, наследственного многообразия. Повышение наследственной изменчивости увеличивает приспособительные возможности организма к условиям окружающей среды. Во-вторых, вследствие конъюгации развивается новый макронуклеус за счет продуктов деления синкариона и одновременно с этим разрушается старый. Экспериментальные данные показывают, что именно макронуклеус играет исключительно важную роль в жизни инфузорий. Им контролируются все основные жизненные процессы и определяется важнейший из них — образование (синтез) белка, составляющего основную часть протоплазмы живой клетки. При длительном бесполом размножении путем деления происходит как бы своеобразный процесс «старения» макронуклеуса, а вместе с тем и всей клетки: снижается активность процесса обмена веществ, снижается темп деления. После конъюгации (в процессе которой, как мы видели, старый макронуклеус разрушается) происходит восстановление уровня обмена веществ и темна деления.

Поскольку при конъюгации происходит процесс оплодотворения, который у большинства других организмов связан с размножением и появлением нового поколения, у инфузорий особь, образовавшуюся после конъюгации, тоже можно рассматривать как новое половое поколение, которое возникает здесь как бы за счет «омолаживания» старого.

Способ питания и пищеварения. Туфельки относятся к числу инфузорий, основную пищу которых составляют бактерии. Наряду с бактериями они могут заглатывать любые другие взвешенные в воде частицы независимо от их питательности. Околоротовые реснички создают непрерывный ток воды со взвешенными в ней частицами в направлении ротового отверстия, которое расположено в глубине перистома. Мелкие пищевые частицы (чаще всего бактерии) проникают через рот в небольшую трубковидную глотку и скапливаются на дне ее, на границе с эндоплазмой. Ротовое отверстие всегда открыто. Пожалуй, не будет ошибкой сказать, что инфузория туфелька — одно из самых прожорливых животных: она непрерывно питается. Этот процесс прерывается только в определенные моменты жизни, связанные с размножением и половым процессом.

Скопившийся на дне глотки пищевой комочек в дальнейшем отрывается от дна глотки и вместе с небольшим количеством жидкости поступает в эндоплазму, образуя пищеварительную вакуолю. Последняя не остается на месте своего образования, а, попадая в токи эндоплазмы, проделывает в теле туфельки довольно сложный и закономерный путь, называемый циклозом пищеварительной вакуоли (рис. 80). Во время этого довольно длительного (при комнатном температуре занимающего около часа) путешествия пищеварительной вакуоли внутри ее происходит ряд изменений, связанных с перевариванием находящейся в ней пищи. Из окружающей пищеварительную вакуолю эндоплазмы в нее поступают пищеварительные ферменты, которые воздействуют на пищевые частицы. Продукты переваривания пищи всасываются через стенку пищеварительном вакуоли в эндоплазму.

По ходу циклоза пищеварительной вакуоли в ней сменяется несколько фаз пищеварения. В первые моменты после образования вакуоли заполняющая ее жидкость мало отличается от жидкости окружающей среды. Вскоре начинается поступление из эндоплазмы в вакуолю пищеварительных ферментов и реакция среды внутри нее становится резко кислой. Это легко обнаружить, добавляя к пище какой-либо индикатор, цвет которого меняется в зависимости от реакции (кислой, нейтральной или щелочной) среды. В этой кислой среде проходят первые фазы пищеварения. Затем картина меняется и реакция внутри пищеварительных вакуолей становится слабощелочной. В этих условиях и протекают дальнейшие этапы внутриклеточного пищеварения. Кислая фаза обычно более короткая, чем щелочная; она длится примерно 1/61/4 часть всего срока пребывания пищеварительной вакуоли в теле инфузории. Однако соотношение кислой и щелочной фаз может варьироваться в довольно широких пределах в зависимости от характера пищи.

Путь пищеварительной вакуоли в эндоплазме заканчивается тем, что она приближается к поверхности тела и через пелликулу содержимое ее, состоящее из жидкости и непереваренных остатков пищи, выбрасывается наружу — происходит дефекация. Этот процесс, в отличие от амеб, у которых дефекация может происходить в любом месте, у туфелек, как и у других инфузорий, строго приурочен к определенному участку тела, расположенному на брюшной стороне (брюшной условно называют ту поверхность животного, на которой помещается околоротовое углубление), примерно посередине между перистомом и задним концом тела.

⠀⠀ ⠀⠀

Рис. 80. Путь пищеварительной вакуоли (показан стрелками) в теле инфузории туфельки.



Таким образом, внутриклеточное пищеварение представляет собой сложный процесс, слагающийся

100

из нескольких последовательно сменяющих друг друга фаз.

На примере инфузории туфельки мы познакомились с типичным представителем обширного типа инфузорий. Однако этот тип характеризуется чрезвычайным разнообразием видов как по строению, так и по образу жизни. Познакомимся ближе с некоторыми наиболее характерными и интересными формами.

Инфузория Трубач (Stentor)

В пресных водах очень часто встречаются виды крупных красивых инфузорий, относящихся к роду трубачей (Stentor). Это название соответствует форме тела животных, которая действительно напоминает трубу (рис. 81).

Можно заметить одну особенность, которая не свойственна туфельке. При малейшем раздражении, в том числе механическом (например, постукивание карандашом по стеклу, где имеется капля воды с трубачами), тело их резко и очень быстро (в долю секунды) сокращается, принимая почти правильную шарообразную форму. Затем довольно медленно (через секунды) трубач расправляется, принимая характерную для него форму. Способность трубача быстро сокращаться обусловлена наличием особых мускульных волоконец, расположенных вдоль тела и в эктоплазме, т. е. и в одноклеточном организме может развиться мышечная система.

В роде трубачей имеются виды, ряд которых характеризуется яркой окраской. Очень обычен в пресных водах голубой трубач (Stentor coeruleus), окрашенный в ярко-голубой цвет. Эта окраска обусловлена тем, что в эктоплазме трубача расположены мельчайшие зерна синего пигмента.

Другой вид трубача (Stentor polymorphus) нередко окрашен в зеленый цвет. Зеленый цвет обусловлен тем, что в эндоплазме инфузории живут и размножаются одноклеточные зеленые водоросли, которые и придают телу трубача характерную окраску. Трубач и водоросли находятся во взаимно полезных симбиотических отношениях: трубач защищает водоросли, живущие в его теле, и снабжает их углекислым газом, образующимся в результате дыхания; со своей стороны, водоросли дают трубачу кислород, освобождающийся в процессе фотосинтеза. По-видимому, часть водорослей переваривается инфузорией, являясь пищей для трубача.

⠀⠀ ⠀⠀

Рис. 81. Инфузория трубач (Stentor coeruleus) в расправленном состоянии:

1 — околоротовая (адоральная) зона мембранелл; 2 — сократительная вакуоль, состоящая из резервуара и двух приводящих каналов; 3 — макронуклеус; 4 — микронуклеус.



Трубачи медленно плавают в воде широким концом вперед. Но они могут также временно прикрепляться к субстрату задним узким концом тела, на котором при этом образуется небольшая присоска.

В теле трубача можно различить расширяющийся сзади наперед туловищный отдел и почти перпендикулярно к нему расположенное широкое околоротовое (перистомальное) поле. Это поле напоминает асимметричную плоскую воронку, с одного края которой имеется углубление — глотка, ведущая в эндоплазму инфузории. Тело трубача покрыто продольными рядами коротких ресничек. По краю перистомального поля по кругу располагается мощно развитая околоротовая (адоральная) зона мёмбранелл (рис, 81). Эта зона состоит из большого числа отдельных мерцательных пластинок, каждая из которых слагается из множества слипшихся друг с другом, расположенных двумя тесно сближенными рядами ресничек.

В области ротового отверстия околоротовые мембранеллы заворачивают в сторону глотки, образуя левозакрученную спираль. Ток воды, вызываемый колебанием околоротовых мембранелл, направлен в сторону ротового отверстия (в глубину воронки, образуемой передним концом тела). Вместе с водой в глотку попадают и пищевые частицы. Пищевые объекты у трубача разнообразнее, чем у туфельки. Наряду с бактериями он поедает мелких простейших (например, жгутиковых), одноклеточные водоросли и т. п.

У трубача хорошо развита сократительная вакуоля, имеющая своеобразное строение. Центральный резервуар расположен в передней трети тела, несколько ниже ротового отверстия. От него отходят два длинных приводящих канала. Один из них идет от резервуара к заднему концу тела, второй расположен в области перистомального поля параллельно околоротовой зоне мембранелл.

Очень своеобразно устроен ядерный аппарат трубача. Макронуклеус здесь поделен на четки (их около 10), связанные друг с другом тонкими перемычками. Микронуклеусов несколько. Они очень мелкие и обычно тесно прилегают к четкам макронуклеуса (рис. 81).

Многочисленными опытами была доказана высокая регенеративная способность трубачей. Если тонким скальпелем инфузорию разрезать на множество частей, то каждая из них через короткое время (несколько часов, иногда сутки и более) превратится в пропорционально построенного маленького трубача, который затем в результате энергичного питания достигнет типичного для

101

данного вида размера. Для завершения восстановительных процессов в регенерирующем кусочке должен быть хотя бы один сегмент четковидного макронуклеуса.

⠀⠀ ⠀⠀

Рис. 82. Брюхоресничная инфузория Stylonichia mytibs:

Слева — вид с брюшной стороны; справа — вид сбоку: 1 — брюшные цирры; 2 — мембранеллы адоральной зоны; 3 — перистом с оккж-ротовыми ресничками и мембраной; 4 — микронуклеус; 5 — хвостовые (каудальные) цирры; 6 — пищевые вакуоли; 7 — макронуклеус; 8 — сократительная вакуоль; 9 — спинные щетинки.



Трубач, как мы видели, обладает разными ресничками: с одной стороны короткими, покрывающими все тело, а с другой — околоротовой зоной мембранелл. В соответствии с этой характерной чертой строения отряд инфузорий, к которому относится трубач, получил название разноресничных инфузорий (Heterotricha).

Стилонихия (Stylonichia mytilus)

Очень сложно и разнообразно дифференцированный ресничный аппарат имеют инфузории, относящиеся к отряду брюхоресничных (Hypotricha), многочисленные виды которых обитают как в пресной, так и в морской воде. Одним из наиболее обычных, часто встречающихся представителей этой интересной группы можно назвать стилонихию (Stylonichia mytilus). Это довольно крупная инфузория (длина до 0,3 мм), живущая на дне пресноводных водоемов, на водной растительности (рис. 82). В отличие от туфельки и трубача, у стилонихии отсутствует сплошной ресничной покров, а весь ресничный аппарат представлен ограниченным числом строго определенно расположенных ресничных образований.

Тело стилонихии (как и большинства других брюхоресничных инфузорий) сильно сплющено в спинно-брюшном направлении, и у нее ясно различимы спинная и брюшная стороны, передний и задний концы. Спереди тело несколько расширенно, сзади — сужено. При рассматривании животного с брюшной стороны ясно видно, что в передней трети слева расположен сложно устроенный перистом и ротовое отверстие.

102

На спинной стороне довольно редко расположены реснички, которые не способны к биению. Их скорее можно назвать тонкими эластичными щетинками. Они неподвижны и не имеют отношения к функции движения. Им приписывают обычно осязательную, Чувствительную, функцию.

Все ресничные образования, связанные с движением и захватом пищи, сосредоточены на брюшной стороне животного (рис. 82). Здесь имеется небольшое количество толстых пальцевидных образований, расположенных несколькими группами. Это брюшные цирры. Каждая из них — сложное ресничное образование, результат тесного соединения (слипания) многих десятков отдельных ресничек. Таким образом, цирры — это как бы кисточки, отдельные волоски которых тесно сближены и соединены между собой.

При помощи цирр животное быстро передвигается, «бегает» по субстрату. Кроме «ползания» и «бегания» по субстрату стилонихия способна производить довольно резкие и сильные скачки, сразу отрываясь при этом от субстрата. Резкие движения осуществляются при помощи двух мощных хвостовых цирр (рис. 82), которые в обычном «ползании» участия не принимают.

По краю тела, справа и слева, расположены два ряда краевых цирр. С правого края животного они проходят вдоль всего тела, с левого — доходят лишь до области перистома. Эти ресничные образования служат для поступательного движения животного, когда оно оторвано от субстрата и свободно плавает в воде.

Сложно устроен также ресничный аппарат, связанный с функцией питания. Мы видели уже, что околоротовое углубление (перистом), на дне которого помещается ротовое отверстие, ведущее в глотку, расположен в передней половине животного слева. По левому краю начиная с самого переднего конца тела проходит сильно развитая зона околоротовых (адоральных) мембранелл. Своим биением они направляют ток воды в сторону ротового отверстия. Кроме того, в области перистомального углубления расположены еще три сократимые перепонки (мембраны), внутренними концами заходящие в глотку, и ряд особых околоротовых ресничек (рис. 82). Весь этот сложный аппарат служит для улавливания и направления пищи в ротовое отверстие.

Стилонихия относится к числу простейших с очень широким диапазоном пищевых объектов. Ее можно назвать всеядным животным. Она может питаться, как и туфелька, бактериями. В число ее пищевых объектов входят жгутиконосцы, одноклеточные водоросли (нередко диатомовые). Стилонихия может быть и хищником, нападая на другие, более мелкие виды инфузорий. (Способность поглощать различную пищу свойственна большинству инфузорий, однако среди них есть и такие виды, которые строго специализированы.)

У стилонихии имеется сократительная вакуоля. Она состоит из центрального резервуара, расположенного у левого заднего конца перистома, и одного направленного назад приводящего канала.

Ядерный аппарат, как всегда у инфузорий, состоит из Ма и Ми. Макронуклеус слагается из двух половинок, соединенных тонкой перетяжкой; микронуклеусов два, они расположены непосредственно около обеих половинок Ма.

Инфузории-хищники

Среди инфузорий есть хищники, которые очень «разборчивы» в отношении своей жертвы. Примером

103

может служить инфузория дидиний (Didinium nasutum). Дидиний — относительно небольшая инфузория, длиной в среднем около 0,1–0,15 мм. Передний конец вытянут в виде хоботка, на конце которого помещается ротовое отверстие. Ресничный аппарат представлен двумя венчиками ресничек (рис. 83). Дидиний быстро плавает в воде, часто меняя направление движения. Предпочитаемая пища дидиниев — инфузории туфельки. В данном случай хищник оказывается меньше своей жертвы. Дидиний внедряется в добычу хоботком, а затем, постепенно все более расширяя ротовое отверстие, проглатывает туфельку целиком! В хоботке имеется особый, так называемый палочковый аппарат. Он состоит из ряда эластичных прочных палочек, располагающихся в цитоплазме по периферии хоботка, Предполагают, что этот аппарат увеличивает прочность стенок хоботка, который не разрывается при проглатывании такой огромной по сравнению с дидинием добычи, как туфелька. Дидиний — пример крайнего случая хищничества среди простейших.

Если сравнить заглатывание дидинием добычи-туфельки — с хищничеством у высших животных, то аналогичные примеры найти трудно.

Дидиний, проглотивший парамецию, очень сильно раздувается.

⠀⠀ ⠀⠀

Рис. 84. Инфузории Дидинии (Didinium nasutum), пожирающие инфузорию-туфельку.



Процесс переваривания протекает очень быстро, при комнатной температуре он занимает всего около 2 ч. Затем непереваренные остатки выбрасываются наружу, и дидиний начинает охотиться за очередной жертвой. Суточный рацион дидиния составляет 12 туфелек — поистине колоссальный аппетит! Исследования последних лет показали, что ведущую роль при обнаружении пищи играют химические раздражители, т. е. вещества, которые выделяют пищевые объекты. Очевидно, хищные инфузории обладают расположенной в пелликуле системой хеморецепторов, которые помогают им находить и улавливать добычу. В промежутках между очередными охотами дидинии иногда делятся. При недостатке пищи они очень легко инцистируются и так же легко выходят из цист.

Растительноядные инфузории

Гораздо реже, чем хищничество, встречается среди инфузорий чистое вегетарианство — питание исключительно растительной пищей. Одним из примеров инфузорий-вегетарианцев могут служить представители рода нассула (Nassula). Объект их питания — нитчатые сине-зеленые водоросли (рис. 8).

⠀⠀ ⠀⠀

Рис. 84. Последовательные стадии заглатывания инфузорией Nassula нити сине-зеленой водоросли.



Они проникают в эндоплазму через рот, расположенный сбоку, а затем закручиваются инфузорией в плотную спираль, которая постепенно переваривается. Пигменты водорослей частично поступают в цитоплазму инфузории и окрашивают ее в яркий темно-зеленый цвет.

Кругоресничные инфузории (Peritricha)

Интересную и довольно большую по числу видов группу инфузории составляют сидячие, прикрепленные к субстрату формы, образующие отряд кругоресничных (Peritricha). Широко распространенными представителями этой группы являются сувойки (виды рода Vorticella).

Строение. Сувойки напоминают изящный цветок вроде колокольчика или ландыша, сидящий на длинной стебельке, который прикреплен к субстрату. Большую часть жизни сувойка проводит в прикрепленном к субстрату состоянии.

Рассмотрим строение тела инфузории. У разных видов их размеры варьируют в довольно широких пределах (примерно до 150 мкм). Ротовой диск (рис. 85) расположен на расширенном переднем участке тела, которое совершена лишено ресничек. Ресничный аппарат расположен лишь по краю ротового (перистомального) диска (рис. 85) в особой бороздке, снаружи от которой образуется валик (перистомальная губа). По краю валика идут три мерцательные мембраны, из которых две расположены вертикаль» одна (наружная) — горизонтально. Они образу» несколько больше одного полного оборота спирали. Эти мембраны находятся в постоянном мерцательном движении, направляя ток воды к ротовому отверстию. Ротовой аппарат начинается глубокой воронкой у края перистомального поля (рис. 85), в глубине которой располагается ротовое отверстие, ведущее в короткую глотку. Сувойки, так же как и туфельки, питаются бактериями. Их ротовое отверстие постоянно открыто, и возникает непрерывный ток воды в направлении рта.

⠀⠀ ⠀⠀

Рис. 85. Кругоресничная инфузория Vorticella:

1 — мерцательные (ундулирующие) мембраны; 2 — перисто-мальный валик; 3 — углубление ротовой воронки; 4 — сократительная вакуоль; 5 — стебелек.



104

Одна сократительная вакуоля без приводящих каналов расположена недалеко от ротового отверстия. Макронуклеус имеет лентовидную басовидную форму, к нему тесно примыкает единственный маленький микронуклеус.

Сувойка способна резко сокращать стебелек, который в долю секунды закручивается штопором. Одновременно с этим сокращается и тело инфузории: перистомальный диск и мембраны втягиваются внутрь и весь передний конец замыкается.

Размножение. Естественно возникает вопрос: поскольку сувойки прикреплены к субстрату, как осуществляется их расселение по водоему? Это происходит благодаря образованию свободноплавающей стадии — бродяжки. На заднем конце тела инфузории возникает венчик ресничек (рис. 86). Одновременно перистомальный диск втягивается внутрь и инфузория отделяется от стебелька. Образовавшаяся бродяжка способна плавать в течение нескольких часов. Затем события разыгрываются в обратном порядке: инфузория прикрепляется к субстрату задним концом, вырастает стебелек, редуцируется задний венчик ресничек, на переднем конце расправляется перистомальный диск, начинают работать адоральные мембраны. Образование бродяжек у сувойки нередко связано с процессом бесполого размножения. Инфузория на стебельке делится, причем одна из дочерних особей (а иногда и обе) становится бродяжкой и уплывает.

⠀⠀ ⠀⠀

Рис. 86. Кругоресничная инфузория Vorticella microstoma:

1 — инфузория с расправленным передним концом, несущие ротовой аппарат; 2 — инфузория с сократившимся стебельком я втянутым передним концом; 3–6 — последовательнее стадии образовавния бродяжки.



Как же осуществляется характерная для инфузорий форма полового процесса — конъюгация? К началу полового процесса бродяжки, активно двигаясь, ползают в течение некоторого времени по колонии, а затем вступают в конъюгацию с крупными нормальными сидячими особями колонии. Таким образом, здесь происходит дифференцировка конъюгантов на две группы особей: мелкие, подвижные (микроконъюганты) и более крупные, неподвижные (макроконъюганты). Дифференцировка конъюгантов на две категорий, из которых одна (микроконъюганты) подвижная, явилась необходимым приспособлением к сидячему образу жизни. Без этого нормальный ход полового процесса (конъюгация) не мог быть, очевидно, обеспечен.

Колониальность. Среди сидячих инфузорий, относящихся к отряду кругоресничных, лишь относительно немногие виды вроде рассмотренных выше сувоек — одиночно живущие формы. Большая часть относящихся сюда видов — организмы колониальные.

⠀⠀ ⠀⠀

Рис. 87. Разные представители кругоресничных инфузорий:

1 — Pyxidium ventriosa, не образующие колоний; 2 — Колония Carchesium polypinum; 3 — участок колонии Campanella timbelferia.



Обычно колониальность возникает в результате не вполне завершенного бесполого или вегетативного размножения. Образующиеся в результате размножения особи в большей или меньшей степени сохраняют связь друг с другом и все вместе образуют органическую индивидуальность высшего порядка, объединяющую большие количества отдельных особей, которая и получает название колонии (с колониальными организ-

105

мами мы уже познакомились на примере жгутиконосцев, с. 67).

Колонии кругоресничных инфузорий образуются в результате того, что разделившиеся особи не превращаются в бродяжек, а сохраняют связь друг с другом при помощи стебельков (рис. 87). При этом основной стебелек колонии, так же как и его первые разветвления, не может быть отнесен ни к одной из особей, а принадлежит всей колонии в целом. Иногда колония состоит лишь из небольшого числа особей, у других же видов инфузорий число отдельных особей колонии может достигать нескольких сотен. Однако рост любой колонии не беспределен. По достижении характерных для данного вида размеров колония перестает увеличиваться и образующиеся в результате деления особи развивают венчик ресничек, становятся бродяжками и уплывают, давая начало новым колониям.

Колонии кругоресничных инфузорий бывают двух типов. У одних стебелек колонии несократим: при раздражении сокращаются лишь отдельные особи колонии, втягивая перистом, вся же колония в целом не претерпевает изменений (к такому типу колоний относятся, например, род Epistylis, Opercularia). У других (например, род Carchesium) стебелек всей колонии способен сокращаться, так как цитоплазма проходит внутри всех веточек и связывает между собой всех особей колонии. При раздражении таких колоний они сокращаются целиком. Вся колония в данной случае реагирует как единое целое.

Среди всех колониальных кругоресничных инфузорий особый интерес представляет, пожалуй, зоотамний (Zoothamnium arbuscula). Колонии этой инфузории отличаются особенной правильностью строения. Кроме того, в пределах колонии здесь намечается интересное биологическое явление полиморфизма.

Колония зоотамния имеет вид зонтика. На одном, главном стебельке колонии располагаются вторичные ветви (рис. 88). Размер взрослой

106

колонии 2–3 мм, так что они хорошо видны простым глазом. Живут зоотамнии в небольших прудах с чистой водой. Колонии их обычно находят на подводных растениях, чаще всего на элодее.

⠀⠀ ⠀⠀

Рис. 88. Общий вид колонии Zoothamnium arbuscula.

На ветвях колонии множество мелких особей и крупные особи-расселительницы (макрозоиды).



Стебельки колонии зоотамния обладают сократимостью, так как сократимая цитоплазма проходит через все ветви колонии, за исключением базальной части главного стебелька. При сокращении, которое происходит очень быстро и резко, вся колония собирается в комочек.

Для зоотамния характерно строго закономерное расположение ветвей. К субстрату прикрепляется один главный стебелек. От верхней части его в плоскости, перпендикулярной к стебельку, отходит девять главных ветвей колонии, строго закономерно расположенных друг относительно друга (рис. 89, 6). От этих ветвей отходят вторичные веточки, на которых сидят отдельные особи колонии. На каждой вторичной веточке может быть до 50 инфузорий. Общее количество особей в составе колонии достигает 2–3 тыс.

⠀⠀ ⠀⠀

Рис. 89. Развитие и строение колонии Zoothamnium at buscula:

1–4 — последовательные стадии развития (2-, 4-, 8-, 16-клеточные стадии); 5 — небольшой участок колонии с микрозоидами и двумя макрозоидами (один макрозоид в начале роста, второй выросший, готовый к отделению от колонии); 6 — схема расположения девяти ветвей колонии (видны места образования макрозоидов).



Большая часть особей колонии по строению напоминает небольших одиночных сувоек, размером 40–60 мкм. Но кроме мелких особей, которые называются микрозоидами, на взрослых колониях, примерно на середине главных ветвей развиваются особи совершенно другого вида и размера (рис. 89, 5). Это крупные шаровидные особи диаметром 200–250 мкм, превосходящие по массе объем микрозоида в сотню и более раз. Крупные особи получили название макрозоидов. По строению они существенно отличаются от мелких особей колонии. Перистом у них не выражен: он втягивается внутрь и не функционирует. Макрозоид с самого начала развития из микровоида перестает самостоятельно принимать пищу. У него отсутствуют пищеварительные вакуоли. Растет макрозоид, очевидно, благодаря веществам, поступающим через цитоплазматические мостики, соединяющие между собой всех особей колонии. В участке тела макрозоида, которым он прикрепляется к стебельку, имеется скопление особых зернышек (гранул), которые, как увидим, в его дальнейшей судьбе играют существенную роль. Что же представляют собой эти крупные шаровидные макрозоиды, какова их биологическая роль в жизни колонии зоотамния? Макрозоиды — это будущие бродяжки, из которых развиваются новые колонии. Достигнув предельного размера, макрозоид развивает венчик ресничек, отделяется от колонии и уплывает. Его форма при этом несколько меняется: из шаровидного он становится коническим. Через некоторое время бродяжка прикрепляется к субстрату всегда той стороной, на которой расположена зернистость. Сразу же начинается образование и рост стебелька, причем на построение стебелька затрачиваются гранулы, которые локализованы на заднем конце бродяжки. По мере роста стебелька зернистость исчезает. После того как стебелек достигнет окончательной, характерной для зоотамния длины, начинается ряд быстро следующих друг за другом делений, ведущих к образованию колонии. Деления эти совершаются в строго определенной последовательности (рис. 89). Обратим внимание, что во время первых делений бродяжки зоотамния при развитии колонии у образующих особей перистом и рот не функционируют. Питание начинается позже, когда молодая колония состоит уже из 12–16 особей. Таким образом, все первые стадии развития колонии осуществляются исключительно благодаря запасам, которые образовались в теле макрозоида в период его роста и развития на материнской колонии. Существует бесспорное сходство между развитием бродяжки зоотамния и развитием яйца у многоклеточных животных. Это сходство выражается в том, что развитие в обоих случаях осуществляется с использованием ранее накопленных запасов, без поступления пищи из внешней среды.

107

Сосущие инфузории (Suctoria)

Своеобразную в отношении способа питания группу представляют сосущие инфузории (Suctoria). Эти организмы, подобно сувойкам и другим кругоресничным инфузориям, сидячие. Количество относящихся к этому отряду видов измеряется несколькими десятками. Форма тела сосущих инфузорий весьма разнообразна. Некоторые характерные их виды изображены на рисунке 90. Одни сидят на субстрате на более или менее длинных стебельках, другие не имеют стебельков, у некоторых тело довольно сильно ветвится и т. п. Однако, несмотря на разнообразие формы, все сосущие инфузории характеризуются двумя признаками: полным отсутствием (у взрослых форм) ресничного аппарата и наличием особых придатков щупалец, служащих для высасывания добычи.

⠀⠀ ⠀⠀

Рис. 90. Разные виды сосущих инфузорий:

1 — Tokophrya quadripartita, щупальца расположены четырьмя пучками; 2 — Epnelota gemmipara, много коротких щупалец; 3 — Dendrosoma radians с ветвящимися колониями и группами щупалец.



У разных видов сосущих инфузорий количество щупалец неодинаково. Нередко они собраны группами. При большом увеличении микроскопа можно рассмотреть, что на конце щупальце снабжено небольшим булавовидным утолщением.

Как функционируют щупальца? На этот вопрос нетрудно ответить, наблюдая за сосущими инфузориями. Если какое-нибудь небольшое простейшее (жгутиконосец, инфузория) прикоснется к щупальцу суктории, то оно к нему мгновенно прилипнет. Все попытки жертвы оторваться бывают обычно тщетными. Если продолжить наблюдение за прилипшей к щупальцам жертвой, то можно видеть, что она постепенно начинает уменьшаться в размерах. Ее содержимое через щупальца постепенно «перекачивается» внутрь эндоплазмы сосущей инфузории до тех пор, пока от жертвы не останется одна пелликула, которая отбрасывается. Таким образом, щупальца сосущих инфузорий — это совершенно своеобразные, нигде больше в животном мире не встречающиеся органы улавливания и вместе с тем высасывания пищи (рис. 90).

Сосущие инфузории — это неподвижные хищники, которые не гоняются за добычей, но мгновенно улавливают ее, если только неосторожная добыча к ним прикоснется сама.

Почему эти своеобразные организмы мы относим к типу инфузорий? На первый взгляд они не имеют с ними ничего общего. О принадлежности сукторий к инфузориям говорят следующие факты. Во-первых, они обладают типичным для инфузорий ядерным аппаратом, состоящим из макронуклеуса и микронуклеуса. Во-вторых, во время размножения у них появляются реснички, отсутствующие «у взрослых» особей. Бесполое размножение и вместе с тем расселение сосущих инфузорий осуществляется путем образования бродяжек, снабженных несколькими кольцевыми венчиками ресничек. Образование бродяжек у сукторий может происходить по-разному. Иногда они образуются в результате не вполне равномерного деления (почкованием), при котором каждая отделяющаяся наружу почка получает участок макронуклеуса и один микронуклеус (рис. 91, А). На одной материнской особи может образоваться сразу несколько дочерних почек (рис. 91, В). У других видов (рис. 91, Г, Д) наблюдается очень своеобразный способ «внутреннего почкования». При этом внутри тела суктории-матери образуется полость, в которой и формируется почка-бродяжка. Наружу она выходит через специальные отверстия, сквозь которые с известным трудом «протискивается». Такое развитие зародыша внутри тела матери, а затем акт деторождения — интересная аналогия простейшего с тем, что происходит у вышестоящих многоклеточных организмов.

⠀⠀ ⠀⠀

Рис. 91. Почкование у разных видов сосущих инфузорий;

А — Paracineta patula, образующая одну почку; Б — отделившаяся бродяжка Paracineta patula; В — множественное наружное почкование Epbeiota gemmipara; Г — внутреннее почкование Tocophrya cyclopum, отделение почки в выводковую камеру еще не завершено; Д — T. cyclopum, в выводковой камере находится сформированная бродяжка с ресничками; 1 — почка; 2 — макронуклеус; 3 — выводковая камера; 4 — отверстие выводковой камеры.



На предыдущих страницах было рассмотрено несколько типичных свободноживущих представителей класса инфузорий, по-разному приспособ-

108

ленных к различным условиям среды. Интересно и рассмотреть характерные общие черты инфузорий, живущих в определенных, резко очерченных условиях среды.

В качестве примера возьмем две очень различающиеся среды обитания: жизнь в составе планктона и жизнь на дне в толще песка.

Планктонные инфузории

В составе морского и пресноводного планктонов встречается большое число видов инфузорий.

Особенно ярко выражены черты приспособлений к жизни в толще воды у радиолярий (с. 54). Основная линия приспособления к планктонному образу жизни сводится к выработке таких черт строения, которые способствуют парению организма в толще воды.

Типичным планктонным, к тому же почти исключительно морским семейством инфузорий является тинтинниды (Tintinnidae, рис. 92, 5). Общее число известных до сих пор видов тинтиннид около 300. Это мелкие формы, характерные тем, что протоплазматическое тело инфузории помещается в прозрачном, легком и вместе с тем прочном домике, состоящем из органического вещества. Из домика выдается наружу диск, несущий венчик ресничек, находящихся в постоянном мерцательном движении. В состоянии парения инфузорий в толще воды поддерживает здесь главным образом постоянная активная работа ресничного аппарата. Домик, очевидно, выполняет функцию защиты нижней части тела инфузории. В пресной воде обитает всего два вида тинтиннид (не считая семи видов, характерных только для озера Байкал).

У пресноводных инфузорий наблюдаются некоторые другие приспособления к жизни в планктоне. У многих из них (Loxodes, Condylostoma, Trachelius) цитоплазма очень сильно вакуолизирована так, что напоминает пену. Это ведет к значительному уменьшению удельного веса. Все перечисленные инфузории обладают, кроме того, ресничным покровом, благодаря работе которого тело инфузории, по удельному весу лишь немногим превышающее удельный вес воды, легко поддерживается в состоянии парения. У некоторых видов форма тела способствует увеличению удельной поверхности и облегчает парение в воде. Например, некоторые планктонные инфузории озера Байкал напоминают по форме зонтик или парашют (рис. 92, 2). В озере Байкал существует планктонная сосущая инфузория (рис. 93, 4), которая резко отличается от своих сидячих родичей (с. 108). Этот вид лишен стебелька. Его протоплазматическое тело окружено широким слизистым футляром — приспособлением, ведущим к уменьшению массы. Наружу торчат длинные тонкие щупальца, которые наряду со своей прямой функцией, вероятно, выполняют и другую — увеличение удельной поверхности, способствующее парению в воде.

⠀⠀ ⠀⠀

Рис. 92. Планктонные инфузории.

Планктонные инфузории озера Байкал: 1 — Liliomorpba viridls; 2 — Marituja pelagica; 3 — Tintinnopsis beroidea; 4 — Mucophrya pelagica (Suctoria).



Другая косвенная форма приспособления инфузорий к жизни в планктоне — это прикрепление мелких инфузорий к организмам, ведущим планктонный образ жизни. Так, среди кругоресничных инфузорий (Peritricha) имеются многочисленные виды, которые прикрепляются к планктонным веслоногим рачкам. Это обычный и нормальный для данных видов инфузорий образ жизни. Наряду с кругоресничными инфузориями и среди сосущих (Suctoria) имеются виды, поселяющиеся на планктонных организмах.

Инфузории, живущие в песке

Своеобразную среду обитания представляют песчаные пляжи и отмели. По побережью морей они занимают огромные пространства.

Проведенные в различных странах многочисленные исследования показали, что толща многих

109

морских песков очень богата разнообразной микроскопической или приближающейся по размерам к микроскопической фауной. Между частичками песка имеются многочисленные заполненные водой мелкие и мельчайшие пространства. Оказывается, что эти пространства богато заселены организмами, относящимися к самым различным группам животного мира. Здесь живут десятки видов ракообразных, кольчатые черви, — круглые черви, особенно многочисленны плоские черви, некоторые моллюски, кишечнополостные. В большом количестве здесь встречаются и простейшие, главным образом инфузории. По современным данным, в состав фауны инфузорий, населяющих толщу морских песков, входит примерно 250–300 видов. Если иметь в виду не только инфузорий, а и другие группы населяющих толщу песка организмов, то общее число видов их будет очень велико. Всю совокупность животных, населяющих толщу песка, обитающих в мельчай-щих просветах между песчинками, называют псаммофильной фауной.

Богатство и видовой состав псаммофильной фауны определяются многими факторами. Среди них особенно важное значение имеет размер частиц песка. В крупнозернистых песках фауна бедная. Бедна также фауна очень мелкозернистых заиленных песков (с диаметром частиц менее 0,1 мм), где, очевидно, просветы между частицами слишком мелки для обитания в них животных. Наиболее богаты жизнью пески средне- и мелкозернистые.

Второй фактор, играющий важную роль в развитии псаммофильной фауны, — богатство песка органическими остатками, разлагающимися органическими веществами (так называемая степень сапробности). Пески, лишенные органических веществ, бедны жизнью. С другой стороны, почти безжизненны и пески, очень богатые органическими веществами, так как распад органических веществ ведет к обеднению кислородом. Нередко к этому добавляется анаэробное сероводородное брожение. Наличие свободного сероводорода является крайне отрицательно действующим на развитие фауны фактором.

В поверхностных слоях песка иногда развивается довольно богатая флора одноклеточных водорослей (диатомовые, перидиниевые). Это фактор, благоприятствующий развитию псаммофильной фауны, так как многие мелкие животные (в том числе и инфузории) питаются водорослями.

Наконец, фактор, очень отрицательно действующий на псаммофильную фауну, — прибой, который, перемывая верхние слои песка, убивает здесь все живое. Наиболее богата псаммофильная фауна в защищенных, хорошо прогреваемых бухточках. Приливы и отливы не препятствуют развитию псаммофильной фауны… Когда в отлив вода временно уходит, обнажая пёсок, то в толще песка, — в промежутках между песчинками, она сохраняется, и это не препятствует существованию животных.

У инфузорий, входящих в состав псаммофильной фауны и относящихся к различным систематическим группам (отрядам, семействам), вырабатываются в процессе эволюции многие общие черты, являющиеся приспособлениями к своеобразным условиям существования между частицами песка. Тело большинства их более или менее сильно вытянуто в длину, червеобразно. Это дает возможность легко «протискиваться» в мельчайшие отверстия между песчинками. У очень многих видов (рис. 93) удлинение тела сочетается с его уплощением. Ресничный аппарат всегда хорошо развит, что позволяет активно, с известной силой, двигаться в узких просветах. Нередко реснички развиваются на одной стороне червеобразного уплощенного тела, противоположная сторона оказывается голой. Эта особенность связана, вероятно, с резко выраженной у большинства псаммофильных видов способностью очень тесно и очень прочно при посредстве ресничного аппарата прикрепляться к субстрату. Это свойство позволяет животным оставаться на месте в тех случаях, когда в узких просветах, где они живут, возникают токи воды.

⠀⠀ ⠀⠀

Рис. 93. Разные виды морских инфузорий, входящие в состав псаммофильной фауны (живущие в толщее песка):

1, 2 — Trachelonema grassei; 3, 4 — Centrophorella grandis; 5 — С. fasclolata; 6 — Helicoprorodon arenlcola; 7 — Pseudoprorodon arenicola; 8 — Remanella caudata; 9 — Condylostoma remanei; 10 — Uroleptus rattulus; 11 — Strongilidium arenicolus.



Чем питаются псаммофильные инфузории? Значительную часть «рациона» у многих видов составляют водоросли, в особенности диатомовые. Бактерии в меньшей степени служат им пищей. Это зависит в значительной мере и от того, что в песках, не сильно загрязненных, бактерий мало. Наконец, особенно среди наиболее крупных псаммофильных инфузорий имеется немалое количество хищных форм, которые поедают других инфузорий, относящихся к более мелким видам. Псаммофильные инфузории распространены, по-видимому, повсеместно.

Ихтиофтириус (Ichthyophthirius multifiliis)

Среди инфузорий, часть жизненного цикла которых протекает в паразитическом, часть в свободноживущем состоянии, большой интерес, особенно в практическом отношении, представляет ихтиофтириус (Ichthyophthirius multifiliis). Эта инфузория в течение большей части своей жизни — паразит рыб. Она может вызвать тяжелое заболевание, в особенности поражающее мальков, часто приводящее к гибели хозяина (рис. 94).

Паразитарные стадии развития ихтиофтириуса протекают непосредственно в покровах рыбы: в коже, на плавниках, очень часто на жабрах рыбы.

Рыба заражается очень мелкими свободноплавающими бродяжками (20–30 мкм диаметром), плавающими в воде. Бродяжки при соприкосновении с рыбой немедленно прикрепляются к ее поверхности и сразу же активными движениями внедряются в ткани. Проникнув в живую ткань, инфузории начинают активно питаться и расти. Питание осуществляется путем заглатывания при помощи помечающегося на переднем конце тела ротового отверстия клеточных элементов хозяина. Растущие в тканях рыбы ихтиофтириусы вскоре становятся видны простым глазом. Рыба как бы обсыпана манной крупой (рис. 94). Продолжительность стадий роста и царазитирования ихтиофтириуса в субэпителиальном слое рыбы в высокой степени зависит от температуры.

К концу периода роста ихтиофтириус по сравнению с бродяжками достигает очень большой величины: 6,5–1 мм в диаметре. По достижении предельной величины инфузории активными движениями выходят из тканей рыбы в воду и некоторое время медленно плавают при помощи покрывающего все их тело ресничного аппарата. Вскоре крупные ихтиофтириусы оседают на каком-нибудь подводном предмете и выделяют цисту. Тотчас же вслед за инцистированием начинаются последовательные деления инфузории: сначала пополам; затем каждая дочерняя особь делится опять на две и так до 10–11 раз. В результате внутри цисты образуется до 2000 мелких почти округлых особей, покрытых ресничками. Внутри цисты бродяжки активно двигаются. Они прободают оболочку и выходят наружу. Плавающие бродяжки заражают новых особей рыб.

⠀⠀ ⠀⠀

Рис. 94. Жизненный цикл Ichthyophthirius multifiliis:

1 — рыба, пораженная ихтиофтириазисом; 2 — зрелый паразит из кожи рыбы; 3 — паразит, покинувший рыбу; 4 — циста размножения, 5 — выход бродяжек из цисты.



Быстрота деления ихтиофтириуса в цистах, так же как и темп его роста в тканях рыб, в большей степени зависит от температуры: при 26–27 °C процесс развития бродяжек в цисте занимает 10–12 ч, при 15–16 °C требуется 28–30 ч, при 4–5 °C он продолжается 6–7 суток.

Ихтиофтириус — широко распространенный и очень опасный паразит рыб. Особенно большой вред он приносит в рыбоводческих хозяйствах, где происходит нерест и выращивание мальков. Ихтиофтириус, нападая на мальков, в короткий срок губит их. Известны многочисленные случаи поголовного уничтожения мальков карповых и лососевых рыб в прудовых хозяйствах.

Главное значение в борьбе с ихтиофтириусом имеют профилактические мероприятия, направленные на то, чтобы не допустить свободно плавающих бродяжек проникнуть в ткани рыбы. Для этого полезно часто пересаживать больных рыб в новые водоемы или аквариумы, создавать проточность, что особенно эффективно.

Триходины (Trichodina)

Очень своеобразны паразитирующие главным образом на рыбах инфузории семейства урцелариид (Urcelariidae) отряда кругоресничных. Особенно характерны многочисленные представители рода триходин (Trichodina) и некоторых других близких к нему родов (рис. 95). За немногими исключениями, все триходины и близкие к ним формы — эктопаразиты, т. е. живущие на поверхности своих хозяев (рыб). Место локализации триходин — кожные покровы, плавники, очень часто жабры рыб. Они встречаются на морских и пресноводных рыбах. Количество видов триходин измеряется несколькими десятками. Триходины активно передвигаются по поверхности своих хозяев. Вне организма хозяина, в воде, они долго жить не могут и, будучи отделены от рыбы, быстро погибают.

Вся система приспособлений триходин к жизни на поверхности хозяина направлена на то, чтобы не оторваться от тела хозяина. Приспособления эти весьма совершенны. Тело большинства триходин имеет форму довольно плоского диска, иногда шапочки. Сторона, обращенная к телу хозяина, слегка вогнутая, она образует прикрепительную присоску. По наружному краю присоски расположен венчик хорошо развитых ресничек, при помощи которых главным образом и происходит передвижение (ползание) инфузории по поверхности тела рыбы. Этот венчик соответствует венчику, имеющемуся у бродяжек си-

112

дячих кругоресничных инфузорий, рассмотренных выше (с. 104). Таким образом, триходину можно сравнить с бродяжкой. На брюшной поверхности (на присоске) у триходин имеется очень сложный опорный и прикрепительный аппарат, способствующий удержанию инфузории на хозяине. Не вдаваясь в детали его строения, отметим, что основу его составляет сложной конфигурации кольцо, слагающееся из отдельных сегментов, несущих наружный и внутренний зубцы (рис. 95). Это кольцо образует эластичную и вместе с тем прочную основу брюшной поверхности, выполняющей функцию присоски. Разные виды триходин отличаются друг от друга по количеству сегментов, образующих кольцо, и по конфигурации наружного и внутреннего крючьев.

На противоположной от диска стороне тела триходины расположен перистом и ротовой аппарат. Строение его более или менее типично для кругоресничных инфузорий (с. 105). Закрученные по часовой стрелке адоральные мембраны ведут в углубление, на дне которого расположен рот. Ядерный аппарат триходин устроен типично для инфузорий: один лентовидный макронуклеус и один расположенный рядом с ним микронуклеус. Имеется одна сократительная вакуоля.

⠀⠀ ⠀⠀

Рис. 95. Инфузория триходина.

Слева — Trichodina pediculus, вид сбоку: 1 — околоротовые (адоральные) мембраны; 2 — ядро; 3 — нижний венчик ресничек; 4 — сократительная вакуоль; справа — прикрепительный аппарат Т. domeruei.



Триходины широко распространены в водоемах всех типов. Особенно часто их обнаруживают на мальках разных видов рыб. При массовом размножении триходины наносят большой вред рыбе, в особенности если массами покрывают жабры. Это нарушает нормальное дыхание рыбы.

Для того чтобы очистить рыбу от триходин, рекомендуют делать лечебные ванны из 2 %-ного раствора хлорида натрия или 0,01 %-ного раствора перманганата калия (в течение 10–20 мин).

Инфузории кишечного тракта копытных

Среди инфузорий имеется множество видов, ведущих эндопаразитический образ жизни, т. е. живущих внутри (в различных органах и тканях) животных-хозяев. Особенно многочисленны и разнообразны инфузории, населяющие кишечный тракт копытных животных. У жвачных (рогатый скот, овцы, козы, антилопы, олени, лоси) эти инфузории в огромных количествах населяют передние отделы желудка. Желудок жвачных состоит из четырех отделов — рубца, сетки, книжки и сычуга. Из них только сычуг соответствует желудку других млекопитающих: он имеет пищеварительные железы, в него выделяются пищеварительные ферменты и соляная кислота. Реакция среды в сычуге сильнокислая. Первые три отдела не имеют пищеварительных желез. Их внутренняя стенка частично ороговевает. Эти три отдела по происхождению следует рассматривать как нижние расширенные части пищевода. Названия сетки и книжки даны по форме и характеру складок их внутренней стенки. Самый вместительный отдел — рубец. Заглоченная и почти не пережеванная растительная пища сначала проходит в рубец. Сюда же попадает большое количество слюны. В рубце пища подвергается сложным процессам брожения, которые увеличивают ее усвояемость. В этом отделе в огромных количествах живут разнообразные микроорганизмы, вызывающие процессы брожения, которые протекают в условиях нейтральной или слабощелочной реакции. В рубце наряду с бактериями обитает масса простейших — очень мелких жгутиконосцев и инфузорий.

Из рубца через сетку пища отрыгивается в ротовую полость, где дополнительно пережевывается (жвачка). Проглатываемая вновь пищевая пережеванная масса по особой трубке, образуемой складками пищевода, идет уже не в рубец, а в книжку и оттуда в сычуг, где подвергается действию пищеварительных соков жвачного. В сычуге в условиях кислой среды и наличия пищеварительных ферментов инфузории погибают. Попадая туда со жвачкой, они перевариваются.

Количество простейших в рубце (а также в сетке) может достигать колоссальных величин. Если взять каплю содержимого рубца и рассмотреть ее под микроскопом (при нагревании, так как при комнатной температуре инфузории останавливаются), то в поле зрения инфузории буквально кишат. Количество инфузорий в 1 см3 содержимого рубца достигает 1 млн., а нередко и более. В пересчете на весь объем рубца это дает астрономические цифры! Богатство содержимого рубца инфузориями в большой степени зависит от характера пищи жвачного. Если пища богата клетчаткой и бедна углеводами и белками (трава, солома), то инфузорий в рубце относительно немного. При добавлении в пищевой рацион углеводов и белков (отруби) их количество резко увеличивается. Нужно иметь в виду, что существует постоянный отток инфузорий. Попадая вместе с жвачкой в сычуг, они погибают.

У непарнокопытных (лошадь, осел, зебра) в пищевом тракте тоже имеется большое количество инфузорий, однако локализация их в хозяине иная. У непарнокопытных нет сложного желудка, благодаря чему возможность развития простейших в передних отделах пищевого тракта отсутствует. Зато у непарнокопытных очень сильно развиты толстая и слепая кишка, которые обычно забиты пищевыми массами и играют существенную роль в пищеварении. В этом отделе кишечника, подобно тому как в рубце и сетке жвачных, развивается очень богатая фауна простейших, преимущественно инфузорий, большинство которых также относится к отряду энтодиниоморф. Однако по видовому составу фауна рубца жвачных и фауна толстого кишечника непарнокопытных не совпадают.

Наибольший интерес представляют собой инфузории семейства офриосколецид (Ophryoscolecidae). Общее количество видов инфузорий семейства офриосколецид — около 120.

Строение. Характерный признак этого отряда — отсутствие сплошного ресничного покрова. Сложные ресничные образования — цирры — расположены на переднем конце тела инфузорий в области ротового отверстия. К этим основным элементам ресничного аппарата могут прибавиться еще дополнительные группы цирр, расположенные либо на переднем, либо на заднем конце тела. Наиболее просто устроены инфузории рода энтодиний (Entodinium, рис. 96, 4). На переднем конце тела их имеется одна околоротовая зона цирр. Передний конец тела, на котором расположено ротовое отверстие, может втягиваться внутрь. Резко разграничены эктоплазма и эндоплазма. Хорошо видна на заднем конце анальная трубка, служащая для выведения наружу непереваренных остатков пищи. Несколько сложнее строение аноплодиния (рис. 96, Г). У них имеются две зоны ресничного аппарата — околоротовые и спинные цирры. Обе они расположены на переднем конце. На заднем конце тела изображенного на рисунке вида имеются длинные острые выросты — это довольно типично для многих видов офриосколецид. Высказывалось предположение, что эти выросты способствуют «проталкиванию» инфузорий между растительными частицами, заполняющими рубец.

Виды рода эудиплодиний (рис. 96, Д) сходны с аноплодинием, но, в отличие от них, имеют скелетную опорную пластинку, расположенную по правому краю вдоль глотки. Эта скелетная пластинка состоит из вещества, близкого по химической природе к клетчатке, т. е. к веществу, из которого состоят оболочки растительных клеток.

У рода полипластрон (рис. 96, Б, В) наблюдается дальнейшее усложнение скелета. Строение этих инфузорий близко к эудиплодиниям. Отличия сводятся прежде всего к тому, что вместо одной скелетной пластинки эти инфузории имеют пять. Две из них, наиболее крупные, расположены но правой стороне, ц три, более мелкие, — по левой стороне инфузории. Вторая особенность полипластрона — увеличение количества сократительных вакуолей. У энтодиниев одна сократительная вакуоля, у аноплодиниев и эудиплодиниев две, у полипластрона их около десятка.

У эпидиниев (рис. 96), обладающих хорошо развитым углеводным скелетом, расположенным по правой стороне тела, спинная зона цирр смещается с переднего конца на спинную сторону. На заднем конце инфузорий часто развиваются шипы.

Наиболее сложное строение обнаруживает род офриосколекс (Ophryoscolex), по которому названо и все семейство инфузорий (рис. 96, Е). У них хорошо развита спинная зона цирр, охватывающая около 2/3 окружности тела и скелетные пластинки. На заднем конце образуются многочисленные шипы, из которых один бывает обычно особенно длинным.

⠀⠀ ⠀⠀

Рис. 96. Инфузории семейства Ophryoscolecidae из рубца жвачных:

А — Entodinium simplex; Б — Polyplastron multivesiculatum, вид с левой стороны; В — Р. multivesiculatum, вид с правой стороны; Г — Anoplodinium denticulatum; Д — Eudiplodinium neglectum; Е — Ophryoscolex caudatus; Ж — Epidinium ecau-datum; 1 — малое ядро (микронуклеус); 2 — большое ядро (макронуклеус); 3 — околоротовая ресничная зона; 4 — сократительная вакуоль; 5 — спинная ресничная зона; 6 — скелетные пластинки.



Знакомство с некоторыми типичными представителями офриосколецид показывает, что в пределах этого семейства произошло усложнение организации (от энтодиниев до офриосколекса).

Очень часто, как мы это увидим, например, при знакомстве с червями, паразитизм, особенно эндопаразитизм, приводит к значительному упрощению организации, к регрессивным изменениям многих систем органов. У инфузорий, живущих в кишечнике копытных, этого не произошло. Напротив, здесь имело место прогрессивное развитие, не упрощение, а усложнение организации.

Кроме инфузорий семейства офриосколецид, в рубце жвачных встречаются в небольших количествах представители других групп инфузорий. В общей массе инфузорного населения рубца они не играют заметной роли, и поэтому мы не будем здесь останавливаться на их рассмотрении.

Способ питания. Пища офриосколецид довольно разнообразна, и у разных их видов наблюдается известная специализация. Самые мелкие виды рода энтодиниев питаются бактериями, зернами крахмала, грибками и другими небольшими частицами. Очень многие средние и крупные офриосколециды поглощают частицы растительных тканей, которые составляют главную массу содержимого рубца. Эндоплазма некоторых видов бывает буквально забита растительными частицами. Можно видеть, как инфузории набрасываются на обрывки растительных тканей, буквально разрывают их на кусочки и затем заглатывают, нередко закручивая их в своем теле спиралью (рис. 97, 4). Иногда приходится наблюдать, как само тело инфузории оказывается деформированным благодаря заглоченным крупным частицам (рис. 97, 2).

У офриосколецид наблюдается иногда хищничество. Более крупные виды пожирают более мелкие. Хищничество (рис. 98) сочетается со способностью питаться растительными частицами.

Пути заражения офриосколецидами. Новорожденные жвачные не имеют в рубце инфузорий. Они отсутствуют также, пока животное питается молоком.

115

Рис. 97. Инфузории семейства Ophryoscolecidea:

1 — Opisthotrichum Janus; 2 — Ostracodinium sp.; 3 — Anoplodinium bubalidis; 4 — Anoplodinlum gracile.



Но как только жвачное переходит на растительную пищу, сразу же в рубце и сетке появляются инфузории, количество которых быстро нарастает. Откуда они берутся? Долгое время предполагали, что инфузории рубца образуют какие-то покоящиеся стадии (вероятнее всего, цисты), которые широко рассеиваются в природе и, будучи проглоченными, дают начало активным стадиям инфузорий. Дальнейшие исследования показали, что у инфузорий рубца жвачных никаких покоящихся стадий нет. Удалось доказать, что заражение происходит активными подвижными инфузориями, которые проникают в ротовую полость при отрыгивании жвачки. Если исследовать под микроскопом взятую из ротовой полости жвачку, то в ней всегда имеется большое количество активно плавающих инфузорий. Эти активные формы легко могут проникнуть в рот и далее в рубец других особей жвачного из общего сосуда для пойла, вместе с травой, сеном.

Если покоящиеся стадии у офриосколецид отсутствуют, то, очевидно, легко получить «безинфузорных» животных, изолировав их, когда они еще питаются молоком. Если не допускать прямого контакта между растущим молодняком и имеющими инфузорий жвачными, то молодые животные могут остаться без инфузорий в рубце. Такие опыты были проведены несколькими учеными в разных странах. Результат был однозначен. При отсутствии контакта между молодняком (отнятым от матери еще в период кормления молоком) с имеющими в рубце инфузорий жвачными, животные вырастают стерильными в отношении инфузорий. Однако достаточно даже кратковременного контакта с животными, имеющими инфузории (общая кормушка, общее ведро для питья, общее пастбище), чтобы в рубце стерильных животных появилась фауна инфузорий.

Симбиотические взаимоотношения. Массовое развитие фауны простейших в рубце и сетке, естественно, ставит вопрос о характере взаимоотношений между простейшими и их хозяевами — жвачными. Мы уже видели (с. 73) на примере жгутиконосцев, паразитирующих в кишечнике термитов, какие тесные симбиотические взаимоотношения могут возникать между простейшими, населяющими кишечный тракт, и их хозяевами (с. 74). Не существует ли между инфузориями, населяющими рубец и сетку, аналогичных симбиотических взаимоотношений? Этот вопрос ставился многими исследователями. Однако до сих пор окончательный ответ на него не получен, и требуются дальнейшие исследования. Ввиду большого биологического и практического интереса этого вопроса рассмотрим его подробнее.

Как отражается отсутствие инфузорий в рубце на жизни хозяина? Отрицательно или положительно влияет отсутствие инфузорий на хозяина? Для ответа на эти вопросы на козах провели

116

следующие опыты. Были взяты козлята-близнецы (одного помета и одного пола), чтобы иметь более сходный материал. Затем один из близнецов данной пары воспитывался без инфузорий в рубце (ранняя изоляция), другой же с самого начала питания растительной пищей обильно заражался множеством видов инфузорий. Оба получали совершенно одинаковый рацион и воспитывались в одинаковых условиях. Единственное различие между ними сводилось к наличию или отсутствию инфузорий. На нескольких изученных таким образом парах козлят не было обнаружено каких-либо различий в ходе развития обоих членов каждой пары («инфузорного» и «безинфузорного»). Таким образом, можно утверждать, что сколько-нибудь резкого влияния на жизненные функции животного-хозяина инфузории, живущие в рубце и сетке, не оказывают.

Приведенные выше результаты опытов не позволяют, однако, утверждать, что инфузории рубца совершенно безразличны для хозяина. Эти опыты проводились при нормальном пищевом рационе хозяина. Не исключена возможность, что при других условиях, при ином пищевом режиме (например, при недостаточном кормлении) удастся выявить влияние на хозяина фауны простейших, населяющих рубец.

В литературе высказывались различные предположения о возможном положительном влиянии протозойной фауны рубца на пищеварительные процессы хозяина. Указывалось, что многие миллионы инфузорий, активно плавающие в рубце и размельчающие растительные ткани (см. выше, с. 113), способствуют брожению и перевариванию пищевых масс, находящихся в передних отделах пищеварительного тракта. Значительное количество инфузорий, попадающее вместе с жвачкой в сычуг, переваривается, и белок, составляющий значительную часть тела инфузорий, усваивается. Инфузории, таким образом, могут быть дополнительным источником белка для хозяина. Высказывались также предположения, что инфузории способствуют перевариванию клетчатки, составляющей основную массу пищи жвачных, переводу ее в более усвояемое состояние. Все эти предположения не являются доказанными, и против некоторых из них выдвигались возражения. Указывалось, например, что инфузории строят протоплазму своего тела из белков, которые поступают в рубец с пищей хозяина. Поглощая белок растительный, они переводят его в животный белок своего тела, который затем переваривается в сычуге. Дает ли это какие-нибудь преимущества хозяину, остается неясно.

В последние годы стали широко применять методы искусственного культивирования офриосколецид вне организма хозяина, на разных питательных средах. Удалось показать, что некоторые их виды также могут расщеплять клетчатку.

⠀⠀ ⠀⠀

Рис. 98. Хищные инфузории семейства Ophryoscolecidae:

слева — Anoplodinium costatum, заглотивший несколько инфузорий рода Entodinium; справа — Е. vorax, проглотивший Е. simplex.



Офриосколециды жвачных обладают, как правило, широкой специфичностью. В видовом отношении население рубца и сетки рогатого скота, овец, коз очень близко между собой. Если сравнить видовой состав рубца африканских антилоп с рогатым скотом, то и здесь около 40 % от общего числа видов окажется общим. Однако существует немало видов офриосколецид, которые встречаются только в антилопах или только в оленях. Таким образом, на фоне общей широкой специфичности офриосколецид можно говорить об отдельных более узкоспецифичных их видах.

Балантидий (Balantidium coli)

Балантидий коли (Balantidium coli) — паразитирует в толстом кишечнике человека. Случаи заражения человека балантидиями очень редки. В этом отношении балантидий несравним с кишечными амебами, которые, как мы видели, встречаются часто (с. 43–47). Паразитирование балантидия в кишечнике человека обычно вызывает тяжело протекающий колит. Поэтому паразит этот требует к себе пристального внимания, несмотря на то что встречается он относительно редко.

Тело балантидия, паразитирующего в кишечнике человека, имеет яйцевидную форму (рис. 99). Размеры варьируют в очень широких пределах: длина 30—150, ширина 20—110 мкм. Эти вариации величины в значительной степени зависят от того, в какой мере инфузория набита пищей. Все тело густо покрыто короткими ресничками, расположенными продольными рядами от переднего конца к заднему. На переднем конце имеется углубление в виде неглубокой щели. Это околоротовое углубление (перистом), на дне которого помещается ротовое отверстие. По краю перистома расположены особые сильно развитые реснички, направляющие пищу в глубину его. Имеются две сократительные вакуоли (одна в передней трети тела, вторая на заднем конце). Ядерный аппарат типичный для инфузорий: бобовидный, рас-

117

ложенный примерно в центре тела макронуклеус и в непосредственном соседстве с ним один маленький микронуклеус

Балантидий захватывает разнообразные пищевые частицы из содержимого толстой кишки. Особенно охотно он питается крахмальными зернами. Если балантидий живет в просвете толстой кишки человека, то он питается содержимым кишечника и не оказывает никакого вредного влияния. Это типичное «носительство». Балантидий редко остается «безобидным квартирантом». Он активно внедряется в слизистую кишечника и проникает в толщу его стенки. Здесь балантидий переключается на питание клетками хозяина и особенно «охотно» заглатывает красные кровяные тельца (эритроциты). В результате нарушения целостности внутренней стенки кишечник изъязвляется, и это сопровождается тяжелой формой кровавого поноса. Поскольку паразит внедряется в самую толщу тканей кишечника, лечение балантидиоза очень затруднительно.

⠀⠀ ⠀⠀

Рис. 99. Инфузория Balantidium coli:

А — активно плавающая форма; Б — циста неокрашенная; В — циста — окрашенный препарат; 1 — ротовое отверстие; 2 — ядро макронуклеус); 3 — оболочка цисты.



Может ли балантидий паразитировать в других хозяевах, кроме человека? Оказывается, что эта паразитическая инфузория часто встречается в кишечнике свиней. У взрослых свиней он не вызывает болезненных явлений. Иное дело у поросят и подсвинков. У них балантидий вызывает тяжелую форму колита. Это заболевание часто имеет смертельный исход, поэтому для свиноводческих хозяйств борьба с балантидиозом очень актуальна.

Каким же путем осуществляется заражение балантидием? У этой инфузории имеются покоящиеся стадии — цисты. Инцистирование происходит при проникновении паразита в заднюю кишку. Цисты выводятся наружу с фекальными массами. Они долгое время (свыше двух месяцев при комнатной температуре) сохраняют жизнеспособность. Если циста будет случайно проглочена свиньей или человеком, то она проходит в неизменном виде через желудок и тонкие кишки. Когда циста достигает толстой кишки, оболочка ее разрушается и из нее выходит активная стадия балантидия.

Из сказанного выше следует, что персонал, обслуживающий свиней, должен соблюдать элементарные гигиенические правила. Помимо кишечника человека и свиней, балантидий коли может паразитировать (при непосредственном заражении) в кишечнике крыс и человекообразных обезьян. У обезьян, так же как и у человека, балантидии вызывают тяжелую форму колита.

Безротые инфузории Астоматы (Astomata)

На предыдущих страницах было рассказано о различных паразитических инфузориях, хозяевами которых являются позвоночные животные. Наряду с этим большое количество видов паразитических инфузорий живет в беспозвоночных животных. Рассмотрим кратко наиболее интересных их представителей.

Глубоко приспособленной к паразитизму и выработавшей ряд интересных приспособлений является обширная группа безротых инфузорий — астомат (Astomata).

Среда обитания. Общее число видов астомат превышает сотню. Встречаются они в беспозвоночных, относящихся к самым различным группам (типам и классам) животного мира: в ресничных червях, кольчатых червях, моллюсках, иглокожих. Небольшое число видов астомат паразитирует в позвоночных животных, а именно в земноводных. Однако астоматы распределены по разным группам хозяев неравномерно. Существует группа «излюбленных» хозяев астомат, в которой сосредоточено свыше 75 % их видов, — это малощетинковые кольчатые черви (Oligochaeta), класс животных, к которому относится всем известный дождевой червь. Однако лишь часть видов малощетинковых кольчецов живет в почве. Большая часть их — обитатели пресных вод, где они образуют заметную (а иногда и преобладающую) часть донного населения. Эти пресноводные малощетинковые кольчецы и являются «излюбленными» хозяевами астомат. Небольшое число видов олигохет встречается и в море, почти исключительно в прибрежной, литоральной (осушаемой во время отлива) зоне, но в морской фауне они не играют сколько-нибудь заметной роли.

Изучение распределения астомат по разным видам хозяев показывает, что большая часть астомат приурочена к строго определенным видам хозяев. Большинству астомат свойственна узкая специфичность: хозяином для них может служить лишь один вид животного.

Строение. Самая характерная особенность этого отряда отражена в его названии — инфузории астоматы лишены ротового отверстия. Их питание осуществляется всасыванием питательных веществ всей поверхностью тела. Поскольку оформленной пищи

118

астоматы не поглощают, пищеварительные вакуоли у них не образуются. Многие черты строения астомат связаны с приспособлением к жизни в кишечнике. Через кишечник постоянно осуществляется движение пищи, иногда довольно активное. Паразиты кишечника, чтобы не быть вынесенными наружу (что равнозначно гибели), должны обладать приспособлениями, направленными на то, чтобы удержаться в кишечнике. Эти приспособления выражены не только у инфузорий, но и у всех других групп кишечных паразитов, к какой бы систематической группе они ни относились и в каких бы хозяевах ни паразитировали. Мы увидим это в дальнейшем, при знакомстве с разными группами паразитических червей.

Тело всех паразитирующих в кишечнике олигохет астомат вытянуто в длину, что способствует их движению в просвете кишечника. Ресничный покров всегда хорошо развит, реснички покрывают все тело инфузорий и расположены тесными продольными рядами.

В простейшем случае, например у представителей рода аноплофрий (Anoplophrya, рис. 100, Г), никаких особых прикрепительных и опорных образований не развивается. Но у большинства видов других родов имеются разнообразные и подчас довольно сложные структуры двух категорий — опорные и прикрепительные, являющиеся формами приспособления к кишечному паразитизму.

Опорные скелетные образования развиваются преимущественно на переднем конце тела, которому приходится испытывать механические воздействия и преодолевать препятствия, проталкиваясь в просвете кишечника между частицами пищи. У видов рода радиофрий (Radiophrya) на переднем конце с одной стороны тела (которую условно считают брюшной) располагаются очень прочные эластичные ребра (спикулы), лежащие в поверхностном слое эктоплазмы (рис. 100, Б,В,Д). У видов рода менилелла (Mesnilella) тоже имеются опорные лучи (спикулы), которые на большей части своего протяжения лежат в более глубоких слоях цитоплазмы (в эндоплазме, рис. 100, А). Аналогично устроенные опорные образования развиты и у видов некоторых других родов астомат.

У многих представителей этой интересной группы инфузорий имеются специальные структуры, позволяющие паразиту прочно прикрепляться к стенке кишечника. У известной уже нам радиофрии на самом переднем конце торчит наружу острый зубец, подвижно сочленяющийся с особыми опорными образованиями, имеющими форму наконечника стрелы. При помощи этого зубца радиофрия может прочно прикрепляться (зацепляться) к стенке кишечника.

Другим типом прикрепительных образований астомат, но менее распространенным, являются присоски на переднем конце тела. Такой прикрепительный аппарат развит у видов рода гаптофрий (Haptophrya). Разные виды этого рода паразитируют в очень несхожих друг с другом хозяевах: одни — в ресничных червях (турбелляриях), другие — в земноводных.

⠀⠀ ⠀⠀

Рис. 100. Безротые инфузории отряда Astomala:

А — Mesnilella maritui; Б — Radiophrya boplites с почками на заднем конце; В — R. boplites, передний конец с прикрепительным аппаратом; Г — Anoplophrya teleuscolicis; Д — изолированный прикрепительный аппарат; 1 — скелетные лучи; 2 — макронуклеус; 3 — микронуклеус; 4 — сократительная вакуоль.



При изучении прикрепительных аппаратов паразитирующих в кишечнике различных хозяев инфузорий астомат обращает на себя внимание их большое сходство с аналогичными органами у других групп паразитов. Например, у ленточных червей (см. с. 286) основными формами органов прикрепления являются присоски и крючья. У инфузорий астомат — одноклеточных организмов — возникают структуры, весьма напоминающие органы прикрепления сложных многоклеточных животных (ленточные черви). Возникновение сходных структур (конвергенция), выполняющих аналогичную функцию у животных, относящихся к совершенно различным группам животного мира, связано с приспособлением к сходным условиям существования, в данном случае с приспособлением паразитов к жизни в кишечнике хозяев.

119

Размножение. Бесполое размножение у некоторых инфузорий астомат протекает своеобразно. Вместо поперечного деления надвое, свойственного большинству инфузорий (с. 98), у многих астомат происходит неравномерное деление (почкование). При этом почки, отделяющиеся на заднем конце, некоторое время остаются связанными с материнской особью (рис. 100, Б). В результате получаются цепочки, состоящие из передней крупной и задних более мелких особей (почек). В дальнейшем почки постепенно отделяются от цепочки и переходят к самостоятельному существованию. Эта своеобразная форма размножения широко распространена, например, у радиофрии. Возникающие в результате почкования цепочки некоторых астомат напоминают по внешнему виду цепочки ленточных червей. Здесь мы вновь встречаемся с явлением конвергенции.

Ядерный аппарат астомат имеет характерную для инфузорий структуру: макронуклеус, чаще всего лентовидной формы (рис. 100), и один микронуклеус. Сократительные вакуоли обычно хорошо развиты. У большинства видов имеется несколько (иногда свыше десятка) сократительных вакуолей, расположенных в один продольный ряд.

Несмотря на большое количество исследований, посвященных изучению инфузорий астомат, одна очень важная сторона их биологии остается совершенно неясной: каким образом происходит передача инфузорий от одной особи хозяина к другой? Никогда еще не удавалось наблюдать образование цист у этих инфузорий. Поэтому высказывают предположение, что заражение происходит активно — подвижными стадиями.

Инфузории астоматы представляют собой яркий пример глубокого приспособления инфузорий к паразитическому образу жизни. Это приспособление отразилось на различных сторонах их организации (скелет, органоиды прикрепления) и жизненных отправлений. Они утеряли характерный для инфузорий способ питания и перешли к осмотическому питанию.

Инфузории кишечника Морских ежей

Разнообразный комплекс паразитических инфузорий обитает в кишечнике морских ежей. Морские ежи — богатый видами класс морских беспозвоночных животных, относящихся к типу иглокожих. Размеры морских ежей различны, но у большинства встречающихся в наших водах видов поперечник их почти шаровидного тела составляет 5—10 см.

Очень многочисленны морские ежи в прибрежной зоне наших северных (Баренцево) и дальневосточных морей (Японского моря, тихоокеанского побережья Курильских островов). Большинство морских ежей питается растительной пищей, главным образом водорослями, которые они соскабливают с подводных предметов особыми острыми «зубами», окружающими ротовое отверстие. В кишечнике этих растительноядных ежей имеется богатая фауна инфузорий. Нередко они развиваются здесь в массовом количестве, и содержимое кишечника морского ежа под микроскопом почти так же «кишит» инфузориями, как содержимое рубца жвачных. Нужно сказать, что кроме глубоких различий в условиях жизни инфузорий кишечника морского ежа и рубца жвачного имеются и некоторые черты сходства. Они заключаются в том, что и там и здесь инфузории живут в среде, очень богатой растительными остатками. В настоящее время известно свыше 50 видов инфузорий, обитающих в кишечнике морских ежей, которые встречаются только в прибрежной зоне, где ежи питаются водорослями. На больших глубинах, где водоросли уже не растут, инфузорий в морских ежах нет.

Что же представляет собой фауна паразитических инфузорий кишечника морских ежей в отношении систематического состава? Оказывается, что в кишечнике морских ежей встречаются представители разных отрядов и семейств инфузорий. На рисунке 101 изображены некоторые характерные представители этой фауны из кишечника морских ежей, обитающих в прибрежных водах Японского моря в окрестностях Владивостока. Интересно отметить, что некоторые из видов инфузорий из кишечника морских ежей относятся к родам, имеющим свободноживущие виды. У них нет тех глубоких приспособлений, которые можно видеть у энтодиниоморф (Entodiniomorpha) к жизни в кишечнике копытных или у астомат (Astomata) к жизни в кишечнике малощетинковых кольчецов. Лишь у некоторых видов, например у энторипидиум (Entorhipidium), развиваются скелетные лучи (подобно радиофриям, рис. 100). Другие же виды мало чем отличаются от свободноживущих инфузорий.

По образу жизни и характеру питания большинство инфузорий кишечника морских ежей растительноядны. Они питаются водорослями, которые в большом количестве наполняют кишечник хозяина. Некоторые виды довольно «привередливы» в выборе пищи. Например, стробилидий (рис. 101, А) питается почти исключительно крупными диатомовыми водорослями. Имеются здесь и хищники, поедающие представителей других, более мелких видов инфузорий.

У инфузорий из кишечника морских ежей, в отличие от астомат, не наблюдается какой-либо строгой приуроченности к определенным видам хозяев. Они живут в самых разных видах морских ежей, питающихся водорослями.

Простейшие из кишечника морских ежей хотя и ведут эндопаразитический образ жизни, но почти не отличаются от свободноживущих родичей. Вероятно, эти инфузории относительно недавно

120

перешли к паразитизму. Этот переход осуществлялся независимо для разных видов. В новых условиях паразитической жизни они нашли среду, не очень отличающуюся от морской воды. В кишечнике морских ежей всегда много заглоченной вместе с пищей воды и много водорослей на разных стадиях переваривания. Эти условия оказались весьма благоприятными для жизни инфузорий, которые и размножаются здесь в больших количествах.

Пути заражения морских ежей инфузориями не изучены. Однако здесь с большой долей вероятности можно допустить, что оно происходит активными свободноплавающими формами. Дело в том, что инфузории из кишечника морских ежей могут длительное время (многие часы) жить в морской воде. Однако они настолько приспособились к жизни в кишечнике ежей, что вне тела их, в морской воде, погибают.

⠀⠀ ⠀⠀

Рис. 101. Инфузории, живущие в кишечнике морских ежей:

А — Strobilidium rapulum; Б — Eijtorhipidium tenue; В — Entorhipidium triangularis; Г — Entodiscus indomitus; 1 — макронуклеус; 2 — микронуклеус; 3 — скелетные лучи.



Заканчивая знакомство с инфузориями, следует еще раз подчеркнуть, что они представляют собой богатую видами, обширную и процветающую группу животного мира. Оставаясь на уровне клеточной организации, инфузории достигли по сравнению с другими классами простейших наибольшей сложности строения и функций. Особенно существенную роль в этом прогрессивном развитии сыграло, вероятно, преобразование ядерного аппарата и возникновение ядерного дуализма (качественной неравноценности ядер). Богатство макронуклеуса ДНК связано с активными процессами обмена веществ, с энергично протекающими процессами синтеза белков.

Организация инфузорий оказалась очень пластичной, что позволило им приспособиться к различным средам обитания в морской и пресной воде и дать разнообразные паразитические формы.

Эволюция Простейших

Мы подошли к концу нашего обзора строения и образа жизни обширного подцарства животного мира — простейших. Характерная их особенность — одноклеточность. В отношении строения простейшие — клетки. Однако они несравнимы с клетками многоклеточных организмов, потому что сами являются организмами. Таким образом, простейшие — организмы на клеточном уровне организации. Некоторые высокоорганизованные простейшие, обладающие многими ядрами, как бы выходят за морфологические пределы строения клетки, что дает основание некоторым ученым называть таких простейших «надклеточ-ными».

Простейшие прошли длинный путь эволюционного развития и дали огромное разнообразие форм, приспособленных к самым различным условиям жизни. В основе родословного ствола простейших стоят два типа: саркодовые и жгутиконосцы. До сих пор в науке дебатируется вопрос, какой из них более примитивный. С одной стороны, низшие представители саркодовых (амебы) обладают самым примитивным строением. Но жгутиконосцы обнаруживают наибольшую пластичность типа обмена веществ и стоят как бы на границе между животным и растительным миром. В жизненном цикле некоторых саркодовых (например, фораминифер) имеются жгутиковые стадии (гаметы), что указывает на их связь со жгутиконосцами. Очевидно, что ни современные сарко-

121

довые, ни современные жгутиконосцы не могут быть исходной группой эволюции животного мира, ибо они сами прошли большой путь исторического развития и выработали многочисленные приспособления к современ условиям жизни на Земле. Вероятно, оба этих класса современных простейших следует рассматривать как два ствола в эволюции, берущих свое начало от древних, не сохранившихся до наших дней форм, которые жили на заре развития жизни на нашей планете.

В отношении низших групп простейших (жгутиковых и саркодовых) некоторые ученые высказывают предположение, что они имеют полифилетическое происхождение, т. е. возникают от разных групп, имеют разные эволюционные корни. Например, бесцветных жгутиконосцев связывают с разными группами зеленых аутотрофных жгутиковых, считая, что бесцветные формы возникали независимо друг от друга в результате утери способности к аутотрофному питанию и переходу к гетеротрофному обмену веществ. Так, отряды кинетопластид и воротничковых жгутиконосцев, возможно, возникли от разных предковых форм. Сказанное относится и к амебам, которых отдельные ученые рассматривают как упростившиеся формы, имеющие различное происхождение, и допускают, что сходство разных амеб может иметь вторичное происхождение вследствие конвергенции, т. е. схождения признаков в результате приспособления к сходным условиям жизни.

В дальнейшей эволюции простейших произошли изменения различного характера. Некоторые из них привели к общему повышению уровня организации, повышению активности, интенсивности жизненных процессов. К числу таких филогенетических (эволюционных) преобразований следует, например, отнести развитие органоидов движения и захвата пищи, которое достигло высокого совершенства в типе инфузорий. Бесспорно, что реснички представляют собой органоиды, соответствующие (гомологичные) жгутикам. В то время как у жгутиконосцев, за немногими исключениями, число жгутиков невелико, у инфузорий число ресничек достигло многих тысяч. Развитие ресничного аппарата резко повысило активность простейших, сделало более многообразными и сложными формы их взаимоотношений со средой, формы реакций на внешние раздражения. Наличие дифференцированного ресничного аппарата, бесспорно, явилось одной из основных причин прогрессивной эволюции в классе инфузорий, где возникло большое многообразие форм, приспособленных к разным средам обитания.

Развитие ресничного аппарата инфузорий — пример таких эволюционных изменений, которые были названы академиком А. Н. Северцовым (1866–1936) ароморфозами.

У простейших, как это было подчеркнуто В. А. Догелем (1882–1955), изменения типа ароморфозов обычно связаны с увеличением числа органоидов, т. е. происходит их полимеризация. Развитие ресничного аппарата у инфузорий — типичный пример такого изменения. Другим примером ароморфоза в эволюции инфузорий может служить их ядерный аппарат. Мы рассмотрели выше особенности строения ядра инфузорий (с. 97). Ядерный дуализм инфузорий (наличие микронуклеуса и макронуклеуса) сопровождался увеличением в составе Ма числа хромосом. Поскольку хромосомы связаны с основными синтетическими процессами в клетке, в первую очередь с синтезом белков, этот процесс привел к общему повышению интенсивности основных жизненных функций. И здесь произошла полимеризация, затронувшая хромосомные комплексы ядра.

Инфузории — одна из наиболее многочисленных и прогрессивных групп простейших, происходят от жгутиконосцев. Об этом говорит полное морфологическое сходство их органоидов движения. Этот этап эволюции был связан с двумя большими ароморфозами: один из них затрагивал органоиды движения, второй — ядерный аппарат. Оба эти типа изменений связаны между собой, так как оба ведут к повышению жизнедеятельности и усложнению форм взаимосвязей с внешней средой.

Наряду с ароморфозами существует и другой тип эволюционных изменений, выражающихся в выработке приспособлений (адаптаций) к определенным условиям существования. Этот тип эволюционных изменений А. Н. Северцов назвал идиоадаптациями. В эволюции простейших этот тип изменений играл очень большую роль. Выше, при рассмотрении разных типов простейших, приведены многочисленные примеры идиоадаптивных изменений: приспособления к планктонному образу жизни у разных групп простейших, приспособления к жизни в песке у инфузорий (с. 109), образование защитных оболочек ооцист у кокцидий и многое другое.

Приспособления к различным конкретным средам обитания у простейших носят разнообразный характер, обеспечивший широкое распространение этого подцарства в самых разных средах обитания.

Следует еще остановиться на вопросе о паразитизме у простейших. У простейших переход от свободного образа жизни к паразитизму распространен очень широко. Паразитические формы мы встречаем среди всех типов Protozoa. Кроме того, типы споровики и книдоспоридии целиком состоят из паразитов. Споровики взяли начало от жгутиконосцев, книдоспоридии — от саркодовых (с. 92). По ходу эволюции паразитических групп простейших у них выработались сложные жизненные циклы, обеспечивающие как размножение паразитов, так и их широкое распространение в природе.

123

⠀⠀ ⠀⠀

Загрузка...