Случилось непредвиденное.
Поначалу все шло гладко. Серебристый лайнер «ТУ-104» «Москва — Новосибирск» в полном согласии с расписанием вырулил на длинное полотно стартовой дорожки. Изредка похлопывая себя по карману, где лежало командировочное удостоверение в Сибирское отделение академии, я мысленно составлял план визитов на весь остаток дня.
Сразу же по прибытии — в Институт математики.
Мое паломничество в Академгородок, давно уже ставший Меккой для журналистов, было связано с вполне определенными намерениями. Еще задолго до своего вояжа я прочитал прекрасную статью в «Литературной газете», написанную пером увлеченного человека. Она называлась «Поэзия математики». Ее автор — академик Сергей Львович Соболев, директор Института математики Сибирского отделения АН СССР. Того, что на весь мир прославился расшифровкой рукописей древних майя.
Любопытный штрих: Валентин Алексеевич Устинов, один из главных «отгадчиков» знаменитых «стенограмм», — по образованию вовсе не математик. Историк. Но его сноровке в обращении с электронно-вычислительными машинами позавидует любой заправский математик. Когда новосибирский Шамполион защищал диссертацию, разгорелись споры, какую кандидатскую степень присудить Валентину Алексеевичу: исторических наук или физико-математических?
Как стушевываются в наше время пограничные линии между разными областями знаний!
Но в статье Соболева меня заинтересовало другое. «Известно, — писал Сергей Львович, — какое значение имеет при современном состоянии химии так называемый рентгеноструктурный анализ. Еще недавно для расшифровки какой-либо структуры мог требоваться целый год. Сначала в Москве, а затем и в Новосибирске были сделаны попытки применить для этой цели электронно-вычислительную технику. Машина, способная „перепробовать“ за короткое время все возможные комбинации атомов, неизмеримо ускоряет процесс исследования. В нашем институте группой сотрудников под руководством кандидата физико-математических наук В. И. Бурдиной разработана совместно с химиками система программ для анализа так называемых двухмерных структур, разрабатывается аналогичная система для структур, более сложных — трехмерных».
Совместно с химиками… С тех пор призрак Монжа-Бертолле неотступно стоял у меня перед глазами.
Помнится, правда, что обостренный интерес к соболевской статье был отнюдь не случаен. Его подогрело предварительное знакомство с работами преемников курнаковского наследия.
На бойком месте, под боком у широкой московской магистрали — Ленинского проспекта, — примостилось неказистое с виду, серое двухэтажное здание. Это ИОНХ — Институт общей и неорганической химии Академии наук. Удивительный мир, где говорят на языке топологической химии. Недаром он носит имя своего прежнего руководителя, ныне покойного академика Курнакова. Именно здесь, посреди небольшого дворика, ненадежно забаррикадировавшегося от уличной сутолоки чугунной оградой да редкими кустиками зелени, произошла встреча, побудившая меня заинтересоваться судьбой Николая Семеновича Курнакова и его идеи — создания математического языка химии.
Тогда я работал в Институте физической химии Академии наук. ИФХАН (так сокращенно именовался наш институт) образовывал одно целое с ИОНХом, разве что в месте сочленения зданий зияла квадратная подворотня, сквозь которую каждое утро устремлялся торопливый поток людей: они спешили наперерез нам в ИНЭОС (Институт элементоорганических соединений) и другие институты, расположенные на задворках нераздельно слившихся ИФХАНа и ИОНХа. Тут-то я и натолкнулся на своего приятеля, который закончил механико-математический факультет МГУ еще в ту пору, когда я сам был студентом-химиком.
— Я теперь в аспирантуре ИНЭОСа, — сообщил он, к немалому моему изумлению. — И не я один. Там у нас целая группа математиков, все химией занимаются. Впрочем, не только у нас и не только в Москве. В Новосибирске, например, много интересного. Ну, пока…
И мой Монж нырнул в подворотню.
Шутки шутками, а встреча заставила меня призадуматься. Математика в химии… Что ж, пожалуй, здесь действительно нет ничего удивительного. Не только в ИОНХе, но и в Институте физической химии работают математики. А в пяти минутах езды — Институт химической физики, — сколько там студентов мехмата МГУ делает свои дипломы! Того и гляди появится где-нибудь Институт математической химии!
Математическая химия… А почему бы и нет? Разве не настала пора для становления и самостоятельного развития новой науки?
Ведь недаром же говорят, что на ниве знаний подчас наиболее плодородны именно межи: вспомнить хотя бы математическую лингвистику, математическую геологию, математическую экономику.
Мелодичный, но властный голос стюардессы прервал полудремотные грезы пассажиров: «Самолет идет на посадку. Наденьте привязные ремни!» Все, как один, разом посмотрели на циферблаты часов. В чем дело? Если верить расписанию, еще не время для посадки! Уж не случилось ли чего-нибудь?
Так оно и есть. Одной из пассажирок плохо. Сердечный приступ. Ни аварийная химия бортовой аптечки, ни участливые советы воздушных эскулапов помочь не в силах. Расписание расписанием, а здоровье человека превыше всего. С сердцем шутки плохи. И пилот ведет машину в ближайший аэропорт, где пострадавшую уже ждет карета «Скорой помощи», вызванная по радио.
Этот грустный эпизод невольно вспомнился мне потом, уже в Академгородке. Вовсе не потому, что опоздание самолета перепутало все мои карты: день был субботний и учреждения пустели раньше, чем обычно. Нет, повод оказался совсем иным.
Хотя стрелки давно уже перевалили за урочный час, когда кончаются всякие приемы, вахтер безропотно пропустил меня в Институт математики. Наверное, так уж повелось, что здесь даже по субботам сотрудников не выдворишь из лабораторий. Почему, я понял в тот же день.
Сказать правду, никакой это был не институт в традиционном смысле слова, а самый что ни на есть заурядный жилой дом. Напротив отнюдь не парадного подъезда (вход был со двора) прямо под сенью таблички с внушительной надписью «Институт…» годовалые «старожилы» существующего без году неделю Академгородка (стоило детской коляске чуточку притормозить) оглашали воздух пронзительным ревом. А все потому, что молодой папа-физик, заглядевшись, должно быть, в книгу с формулами космических скоростей и запамятовав лирическую гоголевскую строку: «И какой же русский не любит быстрой езды», — перестал вовремя подталкивать и без того тихоходный кабриолет…
Стройка институтского здания вот-вот должна была завершиться, а пока лаборатории временно размещались в гостиных, спальнях, даже, помнится, на кухне. Однако не успел я подумать про себя: «Не красна изба углами…», — как меня не то в кухне, не то в гостиной вместо пирогов встретили… углы. Острые, тупые, прямые, они смотрели с многочисленных диаграмм и графиков, которые разложили передо мной молодые ребята, сотрудники Лаборатории задач химии и физики.
В путешествии по институтским закоулкам, по лабиринтам графиков, по маршрутам своих планов меня сопровождал молодой математик Виктор Кудрин.
Математический анализ применительно к структурам химических веществ. Квантово-механические расчеты электронных состояний на поверхности кристаллов. Оптимизация технологических процессов в химическом производстве. Проектирование контактных аппаратов с помощью электронных машин. Абстрактные на первый взгляд, но на деле очень важные для науки и техники проблемы на стыке химии и математики.
Лаборатория химических проблем в математическом институте… Если бы все это видел Николай Семенович Курнаков! Он бы не нарадовался, глядя на племя современных Монжей, у которых свежесть взгляда и непредвзятость мышления, этот бесценный дар невозвратной юности, соперничает с деловитой уверенностью профессионалов, имеющих за плечами опыт и мудрость великих предшественников. А рядом, в четверти часа ходьбы по асфальтированной дорожке, вьющейся между стволами сибирских сосен, уже вздымались современные корпуса химических институтов, где — хотите верьте, хотите нет — я собственными глазами увидел молодых Бертолле, несущих курнаковскую эстафету. И вот что примечательно: даже привычному уху трудно отличить по манере разговаривать математиков, работающих в области химии, от химиков, работающих в области математики, — настолько общий у них язык, настолько крепко поднаторели они в методах и терминологии обеих наук.
До поры до времени «дела пробирные» обходились карандашом и клочком бумаги. Так было в эпоху Бертолле, так случалось и во времена Курнакова. А нынче химики запанибрата с мощной электронно-счетной техникой: не тот век, чтобы кичиться убожеством стародедовских способов, прикрываясь флагом традиционной скромности химиков в выборе технических средств.
Когда мы произносим слова «большая химия», перед глазами встают многозначные цифры планов, многошумные новостройки в «огнях и звонах», многоэтажные и многотрубные гиганты индустрии. Между тем история любого химического завода с его грохочущими машинами и клокочущими котлами начинается в тиши исследовательской лаборатории. Да, большая химия начинается с маленькой пробирки. Пробирка, над которой колдует экспериментатор, — это заводской аппарат в миниатюре. Именно здесь, в едва слышном бульканье реакционной смеси, чуткому уху слышится могучий ритм шумного и жаркого дыхания воздуходувок, печей, колонн, скрубберов, газгольдеров, труб, где непрерывно перемещаются многотонные массы жидкостей, многокубовые объемы газов.
Не только в химии крупномасштабному воплощению инженерного замысла предшествуют опыты с крошечными моделями. Сколько наблюдений над игрушечной копией «ТУ-104» было проделано в аэродинамических трубах, прежде чем дюзы могучего исполина огласили аэродромы зычным уверенным гулом!
Как же конструкторы переходят от одних масштабов к другим?
Чтобы превратить лилипута в Гулливера, обычно используется теория подобия. Результаты экспериментов с карликовой моделью пересчитывают по определенным уравнениям для всамделишного гиганта. Это очень эффективный метод, давно и хорошо зарекомендовавший себя в авиации, гидравлике, теплотехнике.
Увы, не в химии! Здесь при переходе к другим масштабам характер процессов, как правило, изменяется. Но отчего? Разве синтез того же аммиака в заводском аппарате описывается другим уравнением, нежели в лабораторной установке? Нет, и стехиометрия и характер равновесия остаются теми же самыми. Тогда, может статься, дают о себе знать какие-нибудь неучтенные тонкости процесса?
Что ж, давайте разберемся во всем по порядку.
Огонь, порождающий своего заклятого недруга — воду. Такому мог удивиться разве что Генри Кавендиш, который впервые наблюдал горение водорода в кислороде. А сегодня любой школьник запросто напишет незамысловатую реакцию: 2H2 + O2 = 2H2O. Простенькое уравнение, не так ли? Два объема водорода, один кислорода, и в итоге — два объема водяных паров. Берешь два исходных вещества, получаешь один конечный продукт.
Уравнение одно, но почему такие странные различия? В опытах Кавендиша над трубкой, из которой выходил водород, теплился едва заметный язычок пламени. Зато, если взять те же количества водорода и кислорода, но тщательно перемешать, получится гремучий газ. Если его поджечь, он взорвется.
Масштаб один — эффекты разные.
В годы первой мировой войны немецкое командование для бомбардировки Лондона и Парижа построило 123 дирижабля. Из них 40 было уничтожено противником. Стоило зажигательному снаряду угодить в оболочку воздушного пирата, как цеппелин, мгновенно вспыхнув, исчезал в огне и дыме. Оно и понятно: дирижабли заполнялись водородом. Небесное «аутодафе» не всегда сопровождалось взрывом: оболочка препятствовала перемешиванию водорода с воздухом. И, как в опыте Кавендиша, водород воспламенялся, но не взрывался.
Масштабы разные — эффект один.
При комнатной температуре гремучая смесь — в маленьком ли баллончике, в громадном ли резервуаре — сохраняет спокойствие. Даже при нагревании до 300 градусов скорость реакции неизмеримо мала. Однако при переходе за черту в 600 градусов (температура тлеющего уголька) взаимодействие протекает мгновенно. Смесь взрывается.
Описанные примеры помогут нам сделать кое-какие выводы. Если условия одинаковы, то скорость процесса почти не зависит от его масштабов. И еще: на скорость химического процесса сильно влияет тепло. Опытным путем установлено приближенное правило: нагревание на 10 градусов ускоряет ход реакции в два-четыре раза. Так что если у вас повышенная температура, лекарства будут помогать вам скорее.
Однако непонятно другое. Стоит внести в огромный объем горючей смеси даже тлеющий окурок, как из искры возгорится пламя. Почему? Каким образом маленькая спичка вызывает большой пожар? У крохотного факела температура 600–800 градусов. Но все равно этого далеко не достаточно, чтобы прогреть насквозь внутренности цеппелина или обыкновенного полена до температуры реакции. А языки пламени ненасытны, их не уймешь, пока они не слижут дотла остатки своей добычи. И это еще не все вопросы.
Возьмите кусочек рафинада и попробуйте поджечь его. Сахар оплавится, обуглится, но не воспламенится. А теперь посыпьте его золой из пепельницы. И вторично поднесите зажженную спичку. Сахар вспыхнет ровным голубоватым пламенем. Что случилось?
Зола сама по себе негорюча. Ведь это же минеральные соли! Если провести химический анализ, то в остатке от преданного огню кусочка рафинада вы обнаружите то же количество золы, взятой из пепельницы, что и до опыта. Очевидно, зола сыграла роль катализатора. Выходит, не только от тепла зависит скорость реакции!
И все же сахар можно поджечь спичкой без катализатора.
Те, кому довелось бывать на сахарных заводах, помнят, должно быть, таблички «Не курить!» даже там, где нет и в помине чего-нибудь легковоспламеняющегося. Оказывается, остерегаться следует… сахара. Правда, не кускового. Опасным врагом он становится лишь в виде пылинок, витающих в воздухе.
Обмерьте кусочек пиленого сахара. Общая площадь его граней невелика — в лучшем случае, с большую почтовую марку. Но разотрите кусочек в тонкую пудру — и суммарная поверхность частиц может достигнуть размеров футбольного поля. Между тем количество вещества осталось прежним! Если распылить порошок в воздухе, крупинки хорошо перемешаются с окислителем (кислородом). И сахар, который в компактной массе загорается с таким трудом, внезапно обретает силу динамита.
А посмотрите-ка на формулу горения сахара: С6Н12O6 + 6O2 = 6CO2 + 6H2O. Она скромно умалчивает о химических перипетиях, в которых могут участвовать молекулы сахара. Ибо уравнение реакции отражает лишь перераспределение химических связей между атомами. А нас интересует сейчас, как протекает химический процесс от начала до конца.
Для этого нам придется заглянуть в самые потайные механизмы, прячущиеся за кулисами химических уравнений.
Химическая реакция — ее тонкости не так-то просто постигнуть!
Мы уже знаем, как молекула рождается и как она умирает. Но образование или разрушение валентной связи — лишь итог химической реакции. Причем в реальных системах приходится иметь дело с огромными скоплениями молекул, где беспокойные члены коллектива оказывают друг на друга заметное влияние. Например, когда мы пишем: 2H2 + O2 = 2H2O, то вовсе не имеем в виду, что две молекулы водорода прореагировали с одной молекулой кислорода и дали две молекулы воды. За каждым символом подразумевается колоссальное скопище частиц одного сорта. Уравнение же отражает лишь соотношение между частицами разных сортов, участвующих в реакции. А коли так, то естественно допустить, что изменение количества молекул придаст системе в целом какие-то новые качества.
Так оно и есть на самом деле.
Без следов воды не идет реакция 2H2 + O2 = 2H2O. Вода, которая гасит огонь, оказывает здесь каталитическое действие. Но та же реакция протекает по-разному в зависимости от того, насколько хорошо перемешаны водород и кислород.
Отдельный элементарный акт химического превращения, описываемый стехиометрическим равенством, зависит только от трех условий. От взаимной близости реагирующих частиц. От температуры (вернее, от их энергии). От присутствия и вида катализатора. Но химическое превращение — в пробирке ли, в заводском ли аппарате — сумма огромного количества одновременных элементарных актов. И трудно поверить, чтобы во всех случаях свидание реагирующих молекул или атомов протекало в совершенно одинаковых условиях.
В каком-то месте смесь может оказаться неоднородной. Где-то не будет близкого контакта с катализатором. Да и кинетическая энергия у одной молекулы иная, чем у другой. Более того: она изменяется от взаимных тумаков, которыми мимоходом награждают друг друга молекулы. Ведь они непрерывно снуют туда-сюда в полном беспорядке. При этом либо теряют часть своей энергии, либо приобретают дополнительную. И чем крупнее масштабы процесса, тем, очевидно, больше всяких случайностей в кишащей толпе частиц.
Загляните в холодильник. Температура в нем около нуля. Давление нормальное. Пусть емкость холодильника 224 литра. Это значит, что он рассчитан примерно на 10 грамм-молекул газа. Удесятерите число Авогадро (6·1023), и вы узнаете, сколько газовых частиц вмещает при нуле градусов ваш холодильник, когда он пуст. Чтобы точно описать такую систему, вам пришлось бы составить 60·1023 уравнений. В каждом — миллиарды миллиардов членов. И чтобы рассчитать, как двигается каждая отдельная молекула в течение секунды, потребовались бы миллиарды тысячелетий! Между тем заводской реактор в десятки раз вместительней вашего холодильника. Быть может, именно это обстоятельство делает неприменимыми к большому химическому реактору выводы, справедливые для маленькой пробирки?
Как ни странно, нет. Вот наперсток. Он вмещает в 100 тысяч раз меньше молекул, чем ваш холодильник. И число уравнений окажется во столько же раз меньше. Масштаб такого соотношения 300 лет и одни сутки. Огромная разница! Между тем решать систему из 60 миллиардов миллиардов уравнений (величина 60·1023, уменьшенная в 100 тысяч раз) вам пришлось бы тоже не менее миллиарда тысячелетий. Так что переход от пробирки к аппарату ненамного усложнил бы эту и без того непосильную задачу.
Однако математики ухитрились сделать так, что чем больше частиц, тем точнее описание системы! И это не парадокс. Ученых выручает статистика. Именно она избавила их от непомерной платы за точность, которую требовали законы классической механики.
Да, операции с большими числами подчиняются некоторым своеобразным закономерностям, теряющим силу для чисел малых.
Пожалуй, можно ограничиться одним, но достаточно поучительным примером.
Заболевание пассажира во время рейса — случай из ряда вон выходящий. Любой из нас изумится, если беда стряслась именно в его присутствии. Но для стороннего наблюдателя, скажем диспетчера аэропорта, имеющего дело с сотнями самолетов, а в каждом по сотне пассажиров, это событие не будет столь неожиданным. Он уже готов к тому, чтобы, скажем, примерно на каждую тысячу рейсов (сто тысяч пассажиров) ожидать какого-нибудь ЧП. Недаром любой аэровокзал имеет медпункт — «на всякий случай». Но даже бывалый врач большого аэродрома будет удивлен, если вдруг в один день сразу три таких случая, а потом ни одного много лет подряд.
И хотя так вполне может быть, вероятность подобного совпадения очень и очень мала. Обычно случайные события распределяются более или менее закономерно. Чем больше отклонение от статистической нормы, тем менее оно вероятно. Кривая таких отклонений напоминает наполеоновскую «треуголку». Но называется она «треуголкой Гаусса» — по имени математика, занимавшегося исследованием вероятностных процессов. Самая верхняя часть «треуголки» — какое-то среднее значение определенного параметра, которым характеризуется наше множество. Скажем, число несчастных случаев, приходящееся на определенное множество пассажиров. Оно наиболее вероятно. Меньшие или большие значения находятся на левом или правом склоне «треуголки». И чем больше отклонение от среднего статистического значения, тем ниже точка на кривой, тем меньше вероятность. Кривая строго описывается математическим уравнением. Это помогает предвидеть случайности и приготовиться к ним.
Так, пожертвовав слишком дорогостоящей, а потому и никчемной, точностью ньютоновской механики, статистика приобрела вероятностную строгость описания — куда более ценную в практических расчетах. Таков, видать, парадокс жертвы: мы всегда жертвуем чем-то дорогим ради чего-то еще более ценного.
Процессов, зависящих от воли случая, немало. Например, количество пассажиров колеблется от рейса к рейсу. Их распределение внутри салона воздушного корабля тоже (если, конечно, кассир продает билеты не по порядку). Скорость и высота полета, время старта, точность приземления — словом, все, на чем основана точность расписания, зависит и от капризов погоды. Тем не менее нарушение графика воздушных сообщений — исключение. Как правило, все идет нормально. Ибо мы умеем предвосхитить отклонения от среднего статистического значения и предпринять контрмеры.
Режим работы химического аппарата тоже подвержен случайностям. Начать хотя бы с того, что в смеси реагентов царит несусветный хаос, тогда как в обществе пассажиров на борту самолета порядок. Здесь и речи не может быть о каком-то разумном регулировании режима самими частицами. Если в салоне пассажиры охотно выполняют пожелание экипажа более рационально распределиться по свободным местам, чтобы увеличить устойчивость быстрокрылой махины, то атомы и молекулы не пойдут ни на какие уговоры. Они слепо подчиняются лишь законам физики. Но эта-то слепота и помогает математикам!
Да, частицы не сидят на месте, а мечутся в беспорядке, сталкиваясь друг с другом. Да, ни одна из них в таких условиях не может сохранять свою скорость постоянной. Да, при каждом соударении кинетическая энергия перераспределяется между двумя столкнувшимися молекулами. И все же в этом хаосе царят свои законы.
Число молекул огромно. Не сто, не тысяча, не миллион. Даже в колбе их миллиарды миллиардов. Именно это позволяет применять к системам из такого большого числа частиц теорию случайных процессов. Заметные отклонения от статистического среднего значения здесь настолько несущественны, что выводы теории вероятностей обретают силу закона. Например, можно точно рассчитать, какая доля молекул обладает наиболее вероятной скоростью и насколько другие отклоняются от этого значения. Куда точнее, чем случайное распределение величин в условиях того же самолета.
А это очень важно для математических расчетов скорости реакций.
Скорость реакции… Минули столетия, прежде чем позеленела и рассыпалась в прах бронза старинных мечей. А геохимические процессы тянутся миллионы лет. Зато взрывы настолько кратковременны, что глазом не успеешь моргнуть, как они уже закончились. От того, сколько дней будет затвердевать цемент, зависит срок пуска сооружений. Когда жизнь человека висит на волоске, вся надежда порой на скорость действия медицинского препарата.
Быстрота химического превращения веществ — едва ли не самая главная характеристика любого технологического процесса.
Кому нужен огромный реактор, выдающий продукцию в час по чайной ложке? С другой стороны, если процесс начинает спешить, превышая дозволенный предел, нависает угроза аварии. Вот почему так важно знать, с какой скоростью протекает реакция и как добиться желанного технологического режима.
Скорость химического превращения, мы уже знаем, зависит от концентрации реагентов.
Чтобы частицы прореагировали, они должны сблизиться. Для газовой смеси это не проблема. Там за секунду происходят десятки миллиардов столкновений. Продолжительность каждого соприкосновения ничтожно мала. Но период обращения электрона вокруг атомного ядра еще меньше. Он относится к промежутку между соударениями, как день к столетию. Так что есть время дождаться, пока юркий электрон соблаговолит перескочить с атома на атом, чтобы образовать валентную связь. Поляризуемость молекул еще больше удлиняет время контакта, пребывания одной частицы в электрическом поле соседней.
Разумеется, не всякое сближение приводит к заключению химического союза. Однако чем чаще столкновения, тем выше вероятность взаимодействий. Ведь в более густой толпе толкучка сильнее.
По мере того как образуется новое соединение, толпа молекул зачастую редеет. Например, после каждого элементарного акта взаимодействия 2H2 + O2 = 2H2O вместо трех молекул образуются две. А в реакции N2 + 3H2 = 2NH3 две из четырех. Чтобы повысить концентрации реагирующих веществ и увеличить выход продукта, приходится прибегать к повышенному давлению. Равновесие тотчас же смещается так, чтобы ослабить внешнее воздействие: концентрация исходных веществ падает, зато конечного продукта прибавляется.
Однако если бы скорость химического превращения зависела лишь от концентрации реагентов, на Земле начались бы довольно странные вещи. Представьте себе, что вдруг ни с того ни с сего вспыхнула книга, которую вы читаете. Или стул, на котором вы сидите. Расческа, которая лежит у вас в кармане. Этого не происходит. Даже бензин преспокойно стоит в бачке, не угрожая пожаром. Между тем, казалось бы, созданы все условия для реакции: кислорода предостаточно, а бумаге, дереву, целлулоиду, бензину горючести не занимать. Но нет, недаром книжка Рея Брэдбери называется «451° по Фаренгейту» (примерно 230 градусов по Цельсию). Лишь при такой температуре воспламеняется бумага.
Разумеется, и при нормальных условиях молекулы кислорода сталкиваются с молекулами топлива, скажем бензина. И отскакивают друг от друга, как бильярдные шары. Взаимодействия не происходит. Картина изменится, если поднести спичку (подобный опыт, конечно, следует проводить чисто умозрительно). Тепло ускорит движение молекул, увеличит их энергию. И только перешагнув через определенный энергетический барьер, молекулы смогут вступить в химическое взаимодействие.
Энергия активации не обязательно должна подводиться в виде тепла (инфракрасного излучения). Смесь водорода с хлором взрывается, если на нее направить солнечный свет.
Действие катализатора именно в том и заключается, что он понижает энергию активации, облегчая молекулам путь к химическому союзу. Понижает раза в два-три. А ферменты — органические катализаторы — даже в четыре-пять раз! Понятно, почему в клетках нашего тела сахар сгорает при температуре менее 40 градусов. Катализатор способен ускорить процесс в миллионы раз!
Важная и интересная деталь: катализатор сам по себе не увеличивает выход продукта. Ибо он не смещает равновесия, как давление или нагревание. Он просто ускоряет его наступление. Это немного странно на первый взгляд. Но факт неоспорим.
Вот наша реакция N2 + 3H2 = 2NH3. Аммиак образуется и при комнатной температуре. Ведь какая-то, правда небольшая, часть молекул азота и водорода всегда имеет энергию иную, чем наиболее вероятная. Статистический «разброс» приводит к тому, что некоторые молекулы реакционноспособны. Взаимодействие начинается. Но пока наступит равновесие, придется ждать несколько тысячелетий. Если же внести катализатор, равновесное состояние установится во много раз быстрее. Однако количество аммиака будет тем же, что и через тысячи лет.
Казалось бы, выход аммиака можно повысить нагреванием. Ничуть не бывало! Как раз наоборот: чем выше температура, тем сильнее сдвинуто равновесие в сторону разложения аммиака. Это объясняется просто: при реакции выделяется тепло. А равновесные системы как бы стараются погасить, ослабить внешнее воздействие по мере собственных сил и возможностей. Уже говорилось, что увеличение давления сдвигает равновесие N2 + 3H2↔2NH3 вправо. Ибо тогда суммарное количество молекул убывает, и давление в системе падает. Нагревание же, напротив, привносит тепловую энергию в дополнение к той, которая выделяется в процессе реакции. Чтобы как-то скомпенсировать внешнее «возмущение», система перестраивается. Реакция начинает течь вспять, поглощая тепло. Тогда, быть может, стоит посильней охладить смесь? Опять нет! Понижение температуры сильно уменьшит скорость превращения азота и водорода в аммиак. Придется ждать богатого выхода тысячелетиями. Нет уж, лучше подобрать такие условия, когда скорость превращения окажется достаточно высокой, а выход продукта не слишком низким. Такой режим в математике называется оптимальным.
Не все системы в химии характеризуются подобным приспособленчеством.
Бывает, что они возмущенно реагируют на внешнее «раздражение» бурным противодействием. Например, горючая смесь в цилиндрах двигателей внутреннего сгорания. Иногда она во время такта сжатия взрывается. Приходится усмирять бензин антидетонационными добавками.
Горение и взрыв — пожалуй, самые непокорные среди реакций. Но их неповторимое своеобразие, а главное, их огромное научное и техническое значение притягивают к себе ученых, словно магнитом.
Огонь… Ослепительное и жаркое чудо природы с незапамятных времен будоражило человеческое воображение. «Молодое электричество мы знаем лучше, чем древний огонь». Эти слова принадлежат создателю современной теории горения академику Николаю Николаевичу Семенову.
Лишь в самые последние десятилетия ученым удалось приподнять завесу над тайнами Прометеева дара. И ученые-огнепоклонники обогатили химическую науку удивительными откровениями.
Цепные реакции. Свободные радикалы. Учение о химической кинетике, о скоростях химических превращений. Сколько замечательных достижений связано с этими разделами химии!
А началось все с традиционных «что» и «почему», в которых детская наивность соперничает с философским глубокомыслием.
Почему из искры возгорается пламя? Что такое горение? Что такое огонь? Что такое взрыв?
Не на все вопросы есть исчерпывающие ответы. Но кое-что о загадочной огненной стихии знает хорошо нынешняя наука.
Что происходило, когда Кавендиш поджигал водородную струйку? Поначалу шла диссоциация. Молекула H2 от жары распадалась на атомы. Осколки получались очень активными. Молекулам O2, поступавшим из окружающего воздуха, суждено было тотчас же пасть жертвами агрессии. На какое-то мгновение возникал неустойчивый комплекс HO2. Впрочем, он тут же разваливался на куски HO2 = О + ОН. Оба только что объявившихся обломка — атомарный кислород и гидроксил — продолжали атаку с той же стремительностью. Однако на этот раз нападению подвергались молекулы того, кто начал агрессию, — водорода: ОН + H2 = H2O + H. Молекула воды выбывала из игры. Новый же атом H шел по стопам своего воинственного предшественника. Бросаясь на молекулу O2, он разбивал ее на ОН и О. Атом кислорода не оставался в долгу и громил молекулу водорода: О + H2 = ОН + H. И так далее. Достаточно было появиться одному-единственному «запальному» атому, как он обрушивал на мирно дремавшую смесь непрерывно нараставшую лавину детонаторов. Начиналась разветвленная цепная реакция. Не будь ее, гремучая смесь не взрывалась бы.
За создание теории цепных процессов академик Семенов удостоен Нобелевской премии.
Но, позвольте, цепные реакции? Так это же взрыв! Совершенно верно. Правда, не ядерный. Химический.
Мало кто знает, что цепные реакции были открыты сначала в химии. Это случилось в 1913 году — за тридцать лет до того, как был запущен первый атомный «котел».
В большой прозрачной бутыли — смесь хлора и водорода. Не спеша течет реакция H2 + Cl2 = 2HCl. В темноте. Но стоит на сосуд упасть солнечному лучу, как происходит взрыв. Даже один-единственный световой квант может сыграть роль запала.
Это долгое время смущало ученых. Закон фотохимической эквивалентности, открытый Эйнштейном, гласил: каждый квант способен вызвать лишь один элементарный акт химического превращения. Не больше. Почему же газы реагировали мгновенно и целиком? Неужто Эйнштейн ошибся?
Поставьте на торец костяшку домино. Рядом другую. За ней третью. И так далее. Теперь толкните крайнюю в этой очереди. Вслед за первой полягут все. Импульс один, а падает целиком вся очередь. То же самое и в смеси H2 с Cl2.
Поглощение светового кванта действительно вызывает один элементарный химический акт. Молекулы хлора диссоциируют на атомы: Cl2 + квант = Cl + Ĉl. (Точкой обозначен возбужденный неспаренный электрон.) Но вслед за тем начинается вереница микрокатастроф: Ĉl + H2 = HCl + Ĥ; Ĥ + Cl2 = HCl + Ĉl; Ĉl + H2 = HCl + Ĥ…
Цепочка стремительно нарастает, перебегая от молекулы к молекуле, захватывая в конце концов весь объем смеси.
Цепная реакция! Разве что неразветвленная. Перед нами именно вереница, а не веер взаимодействий, как при горении водорода в кислороде. Там один атом порождает трех не менее активных отпрысков. А здесь число частиц в каждом колене не возрастает. Коэффициент размножения равен единице. И тем не менее хлор взрывается в смеси с водородом. Но позвольте, разве имеет какое-нибудь, пусть даже самомалейшее, сходство грозная сила всесокрушающего взрыва с робким трепетом крохотного язычка пламени?
Да. Колпачок огня, выросший над газовой горелкой или над фитилем свечи, имеет четкие очертания. Но ведь воронка речного водоворота тоже обладает скульптурной рельефностью формы! И тем не менее в обоих случаях налицо непрерывный поток. Вечно обновляющаяся, хотя и стабильная в своем беспокойном равновесии, динамическая система. Здесь тонкая оболочка пламени почти неподвижна. Зато через нее течет топливо навстречу окислителю.
А бывает и наоборот: топливо и окислитель стоят на месте, движется лишь граница пламени. Если в комнату просочилось изрядное количество водорода, не приведи бог чиркнуть спичкой. Взрыв неминуем. Фронт пламени, распространяясь концентрически, мгновенно обежит весь объем смеси. Его скорость при этом превысит звуковую. Это точно измерили ученые, сумевшие заглянуть в недра огненной стихии.
Разумеется, изучать детонацию в газах, когда кругом дребезжат стекла и рушатся потолки, не так уж здорово. Поэтому взрыв укрощают. Прозрачная трубка заполняется газообразной смесью горючего с окислителем. Если поджечь смесь с одного конца, фронт пламени быстро побежит внутри трубки вдоль ее оси. Но тут начинают продувать газовую смесь в противоположном направлении. Скорость подбирают так, чтобы колышущаяся пленка огня остановилась среди трубки. Перед нами самый обыкновенный огненный язычок! А по сути дела — взрыв, упрятанный в трубку.
Обнаружилось, что химические превращения протекают главным образом в тот миг, когда частицы газа пересекают тонкую наружную оболочку пламени. Он длится ничтожные доли секунды — стотысячные, а то и миллионные. Например, газы, подаваемые в горелку Бунзена со скоростью от 30 до 60 метров в секунду, переходя через границу пламени, достигают скоростей до 900 метров в секунду. Это в два с половиной раза резвее звука! А при взрывах фронт пламени может распространяться со скоростью от 1800 до 2500 метров в секунду.
Как же человек проник в этот быстротекущий огненный круговорот, чтобы раскрыть вековечные тайны Прометеева дара?
Заморозить пламя — на первый взгляд это выглядит парадоксальным. И все же, если внезапно охладить до минус 100 градусов зону, где только что началось горение, удается остановить реакцию в самом ее разгаре. И выходцы из призрачного мира огня потрясли ученых своей необычностью. Чего тут только не нашли! Например, в углеводородном пламени одних перекисей углерода целую компанию: CO3, CO4, даже CO5.
Можно, конечно, обойтись и без вмешательства Деда Мороза. Теоретически удается рассчитать длины волн, которые должны испускаться обломками молекул. Например, CH дает фиолетовое свечение, CC — зеленое.
По характерным линиям в спектре были обнаружены также HCO, OH и другие осколки.
Как видно, мир углеводородного пламени еще более экзотичен, чем просто водородного.
Уж коли формулы-простушки: H2 + Cl2 = 2HCl и 2H2 + O2 = 2H2O на поверку выходят далеко не бесхитростными, можно себе представить, насколько сложнее внутренний механизм такой, к примеру, реакции: 2CnH2n+2 + (3n + 1)O2 = 2nCO2 + (2n + 2)H2O. Это уравнение описывает горение насыщенных углеводородов, скажем, вещества свечи. Вернее, не сам процесс, а его пролог и эпилог.
Как и у любого другого уравнения реакции, здесь в левой части — сумма исходных реагентов. В правой — конечных продуктов. Старт и финиш, как на аэродроме. И как на командировочном удостоверении штампы убытия и прибытия ничего не говорят о ваших путевых приключениях, так и здесь из уравнений видны лишь состояния в начальной и конечной стадиях. А между ними — дистанция огромного размера! Огромного, хотя вещества и проходят ее порой за ничтожные доли секунды. Сколько промежуточных соединений, сколько побочных процессов заключает в себе этот коротенький временной интервал!
Задача — пробраться за кулисы химического уравнения. На очереди — химия горячая и химия стремительная.
Именно учение о кинетике сосредоточило внимание исследователей на тонкостях химического взаимодействия, которые так долго ускользали из поля зрения ученых.
Без познания сокровенного механизма реакций было бы немыслимо создание ракетных и реактивных топлив и двигателей. Тот же «ТУ-104» не поднялся бы в воздух, не будь теории горения, созданной академиком Семеновым и его школой. В современной химической технологии тоже все большее значение приобретают процессы, идущие с большими скоростями и при высоких температурах.
Реактивный двигатель, во всяком случае прямоточный, — это, по существу, горелка Бунзена, разве что увеличенная до громадных размеров. Воздух нагнетается в смеситель с ураганными скоростями — 60 метров в секунду и выше. Но еще стремительнее (900 метров в секунду) выстреливаются из хвостового сопла выхлопные газы, возникающие при сгорании распыленного топлива. Неравенство давлений на выходе и входе, развивающееся в процессе реакции, толкает самолет, а горелку прижимает к столу. Изучение пламени горелки привело к интересным и важным практическим выводам.
Посмотрите на пламя свечи или лабораторной горелки. У него четкая внутренняя структура. Всегда можно различить темный внутренний конус, бледную поверхностную оболочку и более яркую промежуточную зону. В каждой области образуются свои вещества. Порой такие, которые в обычных условиях получить невозможно. А главное — с огромными скоростями! Если удлинить реакционные зоны пламени, то можно извлекать из них промежуточные продукты.
Допустим, в трубе сжигают смесь газообразных углеводородов. Тогда на одном участке будет возникать этилен, на другом — ацетилен, на третьем — сажа. Все три — ценнейшее химическое сырье. Их можно отсасывать из пламени — достаточно пристроить к камере сгорания трубы с водяным охлаждением.
Трудно переоценить выгоды, которые сулит подобная «огневая» технология. До сих пор ацетилен C2H2 вырабатывают, применяя трудоемкий двухстадийный процесс. Сначала — получение карбида кальции 2CaO + 5C = 2CaC2 + CO2. Затем обработка его водой: CaC2 + 2H2O = Ca(ОН)2 + C2H2. Новый высокоскоростной способ значительно снижает себестоимость важного продукта.
«Сегодня химические процессы отнимают дни и часы, завтра они будут совершаться со скоростью взрыва». Эти слова произнесены академиком Трапезниковым. Вадим Александрович не химик. Он занимается автоматикой и телемеханикой. Но как бы то ни было, его пророчество, несомненно, сбудется. Залогом тому — стремительное развитие науки о высокотемпературных реакциях. Не менее стремительное, чем сами сверхскоростные процессы.
Огромен диапазон скоростей, давлений и температур, с которыми приходится иметь дело нынешнему химику. И зачастую проверенные расчетные методы, приложимые к одним технологическим режимам, отказывают при переходе к другим. Вот, например, кинетика горения и взрыва — сколько здесь своеобразия! Разве легко учесть все неповторимые особенности, присущие, скажем, цепным реакциям?
Не следует думать, будто цепные реакции идут лишь при адской жаре.
«Осторожно! Окрашено». Сколько раз это короткое предупреждение заставляло нас, как от огня, отпрянуть от долгожданной скамейки или боком, с оглядкой, пробираться через двери, словно боясь обжечься о раскаленные головни! Хотя любая масляная краска, даже самого что ни на есть огненного цвета, сама боится пламени и предпочитает прохладу. И тем не менее высыхание льняного масла — самая настоящая цепная реакция.
При взрыве гремучей смеси инициатором лавинного процесса был обломок молекулы H2. Органические соединения тоже способны отщеплять активные осколки — свободные радикалы…
Как они вырвались на свободу…
«И вижу: сидят людей половины. До пояса здесь, а остальное там». Ну, конечно же, поэт шутил. Зло, остроумно, но, выражаясь языком литераторов, чересчур гротескно. Даже в мифах фантазия людей не переходила столь смело роковой рубикон: попадаются кентавры, но нигде не упоминается полчеловека или пол-лошади в отдельности; можно встретить ундину, но не дамский торс и рыбий хвост, существующие порознь.
Шутки шутками, а явление, с которым столкнулись химики на рубеже XIX и XX веков, заставило ученых пересмотреть взгляд на взаимоотношения между целым и его частями.
Сотрудник Мичиганского университета Мозес Гомберг проводил самый заурядный синтез. Он хотел получить гексафенилэтан действием цинка на бромистый трифенилметил:
Но ученый обманулся в своих ожиданиях. В колбе обнаружилось вещество, которое содержало два атома кислорода. Откуда они? Из воздуха? Тогда опыт был повторен без доступа воздуха. Желанное соединение было-таки получено, но… ни с того ни с сего вдруг развалилось пополам! Самое странное в том, что осколки оказались довольно стойкими. И долго сохраняли полную самостоятельность. В синтезе Гомберга реакция словно бы остановилась на полпути. «Прозаседавшиеся» радикалы не торопились соединиться друг с другом, как смешные человеческие половинки в стихотворении Маяковского. Или хотя бы с другими атомными группами, чтобы дать целостное сочетание — какого-нибудь химического кентавра, что ли. У обеих половинок — радикалов трифенилметила — одна валентная связь оставалась свободной, ненасыщенной.
Так наука впервые познакомилась со свободными радикалами.
Легко видеть, что число электронов, образующих химические связи, у радикала нечетное.
Самый характерный признак радикала — наличие у него неспаренного электрона. Он-то и выдает присутствие свободных радикалов. Чем больше в веществе этих маленьких магнитиков, тем сильнее препарат втягивается магнитным полем. Целостные же органические соединения, подобные бензолу, выталкиваются из него. Ведь у них все спины попарно антипараллельны. И почти все органические соединения именно таковы — диамагнитны. А свободные радикалы парамагнитны. Это различие оказалось на руку исследователям химических реакций. Оно используется в методе ЭПР — электронного парамагнитного резонанса. Предложенный советским ученым, академиком Владиславом Владиславовичем Воеводским, метод ЭПР стал эффективным средством исследования в руках химиков. С его помощью выслеживают осколки молекул, которые участвуют в цепных реакциях.
Да, именно они, эти скоропостижно умирающие частицы, определяют ход цепной реакции.
Разбирая горение водорода, мы столкнулись с необычным промежуточным соединением — HO2. Свободные радикалы столь же жадно, как и атом водорода, присоединяются к кислороду: R + O2 = RO2. И неспроста: молекула кислорода парамагнитна. Правда, в ней четное число электронов. Но ведь два из них не спарены!
Органические молекулы разваливаются на куски при меньшей температуре, чем H2. Некоторые из них, особенно сложные, претерпевают подобную катастрофу уже при 93 градусах — раньше, чем закипит вода. Распад происходит в тот момент, когда мы подносим спичку к полену, свече или газовой конфорке. Тотчас же возникают неустойчивые соединения RO2. Если тепла достаточно, они диссоциируют на RO и О, которые поведут себя затем столь же агрессивно, как НО и О при горении водорода. Поначалу тепло дает спичка. Потом оно в нарастающем количестве выделяется самой реакцией. Число звеньев увеличивается в геометрической прогрессии. Спичка давно погасла, а огонь захватывает все новые и новые массы вещества: горение уже перешло в самоподдерживающийся процесс.
…И как их заковали в цепи.
Иногда цепи разветвляются сверкающим веером настолько стремительно, что процесс заканчивается взрывом. Но цепи могут и обрываться. Например, в тех случаях, когда происходит рекомбинация. Соединяясь между собой или с атомами водорода, свободные радикалы снова дают устойчивые соединения. Так, в пламени конечным звеном цепи служат обычно молекулы H2O или СО2.
Столкновение со стенкой или даже с пылинкой отбирает у активной частицы избыточную энергию и тоже, как правило, рвет цепь. Очевидно, каждый такой обрыв препятствует дальнейшему развитию реакции. А при неблагоприятных условиях может и вовсе прекратить ее. Вот почему для цепных процессов существенно, какое им отведено помещение. В длинных и узких трубках вероятность столкновений со стенками, очевидно, больше, чем в шарообразном сосуде. И цепи будут обрываться, конечно, чаще.
При низких температурах цепочки почти не разветвляются. Вместо веера здесь вереница взаимодействий. Каждый свободный радикал занимает место предыдущего, уступая его следующему себе подобному. Устанавливается подвижное равновесие между возникновением и обрывом цепей. Реакция достаточно медлительна, чтобы выделившееся тепло рассеялось в окружающую среду и не взвинтило скорость процесса. Именно так высыхают краски. Сначала кислород взаимодействует с маслом. Получается гидроперекись. Она неторопливо разлагается, порождая свободные радикалы. А те, в свою очередь, образуют поперечные связи между молекулами льняного масла. Пленочное покрытие твердеет.
А если бы тепло не успевало рассеяться? Температура дошла бы до точки, где цепи начинают разветвляться. Произошло бы, как говорят пожарники, самовозгорание. И это действительно случается временами с кучами промасленного тряпья.
Не приходила ли вам в голову мысль: а почему, собственно, мы, люди, не воспламеняемся? Ведь каждый наш вздох — окисление. Достаточно появиться одному запальному радикалу, как… Конечно, можно возразить: сгорание глюкозы протекает в водной среде внутри клеток. Разумеется, в таких условиях о пламени и речи быть не может. А все-таки интересно: идут в нашем организме разветвленные цепные реакции или нет?
Нет. Не идут. Хотя, быть может, вдыхаемый нами кислород поглощается и не без участия свободных радикалов. Если, конечно, так можно назвать промежуточные вещества, переносящие один электрон в сложном процессе окисления глюкозы. Любопытно, что зеленый лист, облученный светом, дает характерный спектр ЭПР. Но ведь фотосинтез — это процесс, обратный сгоранию глюкозы в наших клетках! И все же одноэлектронный перенос заряда не имеет ничего общего с типичной цепной реакцией. В этом немалая заслуга витаминов E и C. Первый защищает жировую ткань, второй — водную среду организма от разрушительного действия возможных окислительных цепных реакций.
Между тем образование настоящих свободных радикалов в человеческом организме вполне реально. Так происходит, например, при радиоактивном облучении. Это не значит, разумеется, что человек вспыхивает как спичка. Но цепные процессы могут привести к серьезным расстройствам в нормальной деятельности клеток. Недаром ученые заняты поисками ингибиторов (так называются отрицательные катализаторы, тормозящие ход нежелательных химических процессов). В технике уже получили широкое применение антиокислители и консерванты: их добавляют к смазкам, пластмассам, топливам, медикаментам и пищевым продуктам.
Математический анализ раковой опухоли. Кощунство? Нет, гуманность!
Как это ни странно, цепные реакции имеют непосредственное отношение к проблеме рака. Конечно, пока это лишь гипотеза. Но весьма правдоподобная. Она высказана одним из создателей теории горения — членом-корреспондентом АН СССР Эмануэлем. Вот что рассказал автору этих строк Николай Маркович:
— Механизм превращения нормальных клеток в опухолевые? Вот уже много лет подряд мы исследуем его с позиций учения о химической кинетике. Среди разных причин, вызывающих страшный недуг, наше внимание привлекают свободные радикалы. Они образуются в клетке под действием радиации. Канцерогенность, то есть способность возбуждать рак, свойственна и химическим соединениям. Например, бензпиренам, содержащимся в выхлопных газах автомобилей, в табачном дыме. Попав через легкие в организм, канцерогены приводят к образованию свободных радикалов. А те повреждают белки, ферменты, нуклеиновые кислоты. Они покушаются и на ингибиторы-антиокислители (в частности, некоторые витамины), содержащиеся в клетке. Такое варварство не проходит бесследно. Клетки начинают безудержно размножаться. Если это так, то естественно ожидать, что картину прогрессирующей злокачественной опухоли можно описать уравнениями химической кинетики. И вот оказалось, что развитие экспериментального лейкоза у мышей действительно подвластно строгим математическим закономерностям!
Онкологам давно известно, что привить опухоль от больного зверька здоровому не удается, если взято слишком мало клеток. Нужно вполне определенное их количество, чтобы началась болезнь. Подобные явления получили название «пороговых». Мы рассмотрели их в кинетическом аспекте. Обнаружилось, что переход от невосприимчивости к заболеванию при постепенном увеличении числа клеток имеет скачкообразный характер. Это напоминает критические явления в цепных реакциях, когда незначительное изменение условий вызывает внезапный скачок: только что процесс протекал с едва заметной скоростью, и вдруг — взрыв!
Николай Маркович показывает график. На нем плавные кривые. Они поначалу идут полого, почти горизонтально, а затем круто взбегают кверху. Да, именно так, лавинообразно, развивается во времени цепной процесс. Вот уж никто бы не подумал, что даже сугубо биологические явления в руках химика приобретут математическую четкость!
А в самой химии? А какой мере поддается математическому анализу огромное разнообразие явлений — от спокойной, размеренной вереницы взаимодействий в сохнущей краске до стремительного фейерверка цепных процессов при взрыве?
В 1907 году известный русский математик Андрей Андреевич Марков заложил основы теории, которая впоследствии стала незаменимым инструментом исследований в химии. Впрочем, не только в химии. В радиотехнике, метеорологии, биологии — в любых отраслях науки и техники успешно используются вероятностные построения, известные под названием «цепей Маркова».
Наиболее рациональное обслуживание больных на медпункте аэродрома… Автоматическое распределение нагрузок в большой энергосети… Размножение и гибель раковых клеток… Диффузионное разделение урановых изотопов… Трудно поверить, что столь несхожие явления можно привести к одному знаменателю. Но это так. Перед нами знаменитые марковские процессы. Их теория славится хорошо разработанным математическим аппаратом. Он сводится к дифференциальным и интегральным уравнениям. Тяжелая математическая артиллерия бьет без промаха, допуская строгий теоретико-вероятностный анализ случайных процессов.
Любой процесс из целого калейдоскопа окружающих нас ситуаций может быть сведен к одному из двух типов: либо к марковскому, либо к стационарному. Процессы первого типа развиваются во времени так, что состояние в следующий момент у них иное, чем в предыдущий. Пример: взрыв. И он строго описывается разделом математики, который так и называется: теория ветвящихся случайных процессов. Процессы второго типа не зависят от бега времени. Это установившиеся системы, подобные заводскому реактору, работающему в стабильном технологическом режиме.
Заводской реактор… Так это же и есть конечная цель химического моделирования! Как ее достигнуть?
Мы узнали, что химики умеют проникнуть в любые тайны пробирки. Что они могут описать кинетику любого процесса подходящими математическими уравнениями. Но они не в силах перейти сразу же от лабораторной колбы к заводскому аппарату. Не работает теория подобия, по которой авиаконструкторы рассчитывают самолеты. Почему же так?
Химический реактор и впрямь чем-то напоминает самолет. Внутри обоих поддерживаются неизменными температура и давление. Оба рассчитаны на определенную пропускную способность. Только у одного — молекулы, у другого — пассажиры. Чем больше размеры того и другого, тем выше производительность. Полезный «выход» зависит от скорости. Правда, реактор в отличие от самолета стоит на месте. Но существенной разницы здесь нет. Через оба аппарата — летательный и химический — идет поток индивидов. В одном случае биологических, в другом — химических.
Оба потока подвержены случайностям. Но и тот и другой поддаются теоретико-вероятностному анализу. А вот поди ж ты…
Различие начинается в тот момент, когда мы вспомним, что конструкция самолета зависит от свойств внешней среды, а не содержимого, как у реактора. Летательный аппарат — герметичный обтекаемый ящик, рассчитанный на внешние нагрузки, на взаимодействие с течениями воздушного океана. Содержимое этого ящика заботит конструкторов в меньшей степени. В конце концов какая разница, кого или что будет транспортировать воздушный лайнер? Люди, письма, газеты, продовольственные или промышленные товары — все одно какой груз. От его вида не зависят главные требования к конструкции самолета. Сила тяги, скорость, прочность, долговечность, грузоподъемность — все упирается прежде всего в аэродинамические качества машины. Иными словами, в то, насколько хорошо подогнаны формы самолета к непрерывному напору стремительного встречного ветра. А это соотношение между потоком воздуха и формой самолета почти не зависит от масштабов эксперимента.
Иное дело химический аппарат. В нем вид оболочки зависит прежде всего от характера содержимого. Клокочущего, бурлящего, пышущего жаром, распирающего что есть силы внутренности труб и котлов. Снаружи здесь такая же спокойная и комфортабельная обстановка, как и в салоне «ТУ-104». Зато внутри… Именно там непрерывный поток, а не снаружи, как у самолета. Правда, поток установившийся, как и за бортом воздушного корабля. Стационарный режим, который поддается математическому анализу. Но тут-то и кончается последняя капелька сходства.
Мы убедились: влияние тепла на ход химического взаимодействия огромно. Кинетика процесса в маленькой пробирке и большом реакторе будет одинаковой лишь в том случае, когда температуры распределены равномерно по всему объему. А ведь тепло выделяется непрерывно при каждом элементарном акте химического взаимодействия. Между тем равномерный отвод тепла из зоны реакции зависит от размеров и конструкции аппарата. И это не все. На перенос тепла и вещества влияют также свойства катализатора, размеры и взаимное расположение его зерен. Потому-то результаты химического процесса и зависят от масштабов эксперимента.
Странное дело: лилипуты не хотят превращаться в Гулливеров!
Проектирование промышленной установки обычно проходит долгий путь постепенного увеличения габаритов. Сначала, конечно, просто колба. Лабораторная установка. За ней укрупненная, опытная, дальше полупромышленная, наконец заводская.
Ну и что? Чем больше этапов, тем лучше будет отработана технология. Да, но сколько это займет времени?
Десять, а то и все пятнадцать лет! Столько обычно отнимает путь от лабораторного стенда до заводского цеха.
Выходит, новое химическое предприятие, пущенное сегодня, освоило технологию 1950–1955 годов? Значит, перерезая традиционную ленточку, мы входим во вчерашний день? И это при теперешних-то темпах научного прогресса! Трудно поверить, чтобы за два семилетия, которые необходимы для внедрения нового способа, не состарилась технология, слывшая когда-то прогрессивной. Да и потребность в «новом» химическом продукте может отпасть!
Однако допустим невероятное — что такого не произойдет. Все равно десяти лет мало, слишком мало, чтобы выбрать наилучший вариант из всех возможных конструкций аппарата. Для этого пришлось бы на каждом этапе изготовлять сотни образцов одной и той же модели, которые отличаются, скажем, диаметром труб, формой реакционной камеры, толщиной ее стенок, структурой каталитической массы, условиями контакта между катализатором и реагентами и так далее и тому подобное. Между тем построить даже одну-единственную установку — дело нелегкое. Это многие недели, а то и месяцы работы литейщиков, слесарей, токарей, сварщиков. Это многие килограмм, а то и центнеры дефицитных материалов. А экономика несговорчива. А время нетерпеливо.
И только богатый опыт да недюжинная интуиция способны выручить конструкторов.
Но вот реактор спроектирован и «выполнен в металле». Казалось бы, цель достигнута и заботы химиков на этом кончаются. Нет! Предстоит еще найти наиболее выгодный технологический режим для созданной конструкции.
Самолет может летать туда-сюда и базироваться на любом аэродроме. Если «ТУ-104» стал в ремонт, его легко подменить. «ИЛ-18» или другой его собрат — на графике рейсов такая перестановка почти не скажется. Химический же аппарат накрепко привинчен болтами к опоре, жестко соединен трубами с остальными элементами производственной схемы. За этим чисто поверхностным различием кроется глубокий смысл. Реактор — неотъемлемое звено длинной технологической цепочки. Если он вышел из строя — замирает вся линия. И, в свою очередь, его «самочувствие» зависит от поведения всех других аппаратов и коммуникаций. Малейшее отклонение от стационарного режима на предыдущем участке непрерывного потока вносит искажения в динамическое равновесие внутри нашей системы. Как это возмущение скажется на выходе продукта? В каких пределах допустимы пульсации ритма? Каков оптимальный режим?
Мы знаем, что нагревание увеличивает скорость реакции N2 + 3H2↔2NH3. И в то же время уменьшает выход нужного продукта — аммиака. Какая температура наиболее выгодна?
Правда, можно сместить равновесие вправо, повысив давление. Однако это зависит от мощности насосов и крепости стенок аппарата. Какое давление наиболее разумно?
Конечно, катализатор пришпоривает процесс, ускоряя наступление равновесия. Но чем быстрее ход реакции, тем сильнее «устает», «отравляется» ее ускоритель. Добавить побольше «бодрящего вещества» — значит изменить условия теплопередачи в контактном аппарате (реактор так называется потому, что именно в нем реагенты и катализатор приходят в соприкосновение).
Какое количество катализатора наиболее рационально?
А как подобрать самое подходящее сочетание всех условий процесса? Да так, чтобы и экономика и техника безопасности не были в претензии? Иными словами, как нащупать оптимальный режим с определенным допуском отклонений в ту или иную сторону?
Целый клубок вопросов, где тесно переплелись разноречивые желания и возможности, требования и ограничения!
Нет ничего удивительного, что по завершении строительства крупных промышленных объектов иногда вдруг новая установка начинает капризничать, а то и вовсе объявляет забастовку. На укрощение строптивой приходится терять время, ставить бесчисленные опыты в нервозной атмосфере, когда завод стоит, ожидая устранения недоделок. Недоделок? Если бы это было так! Ведь предварительные эксперименты были проведены со всей тщательностью. Установка на всех предшествующих этапах проверена и перепроверена. И вот — надо же! — такая незадача…
Как же так? Неужели теория спасовала перед практикой? Разве не говорилось о том, сколь огромны достижения науки в изучении химической кинетики и теплофизики? Неужели нет такого катализатора, который ускорил бы процесс перехода от лабораторной модели к безотказно действующему заводскому аппарату?
Есть! Математическое моделирование.
Цифры вместо интуиции. Эта эпоха уже настала.
Еще в тридцатые годы, когда академик Курнаков в окружении многочисленных исследователей совершенствовал свою топологическую химию, появились научные работы совершенно нового направления в математической химии. Их автором был молодой ученый Георгий Боресков, ныне член-корреспондент АН СССР. Он сформулировал и решил первые задачи по математическому моделированию химических процессов. Теоретически рассчитывать промышленные реакторы, не строя полупромышленных установок, исходя лишь из экспериментов в пробирках… Это противоречило всему конструкторскому опыту в химической технологии. О таком не слыхивали даже крупнейшие зарубежные специалисты, помогавшие Стране Советов создавать химические комбинаты в Березниках, Дзержинске, в Кузбассе и Донбассе. Да и наши ученые скептически отнеслись тогда к новым идеям. Слишком уж громоздким оказывался математический аппарат при анализе самых простеньких процессов. И хотя работы Борескова имели теоретический интерес, с точки зрения практической они считались бесперспективными.
А теперь…
«В 1963 году, — заявил президент нашей академии Мстислав Всеволодович Келдыш, — получены первые результаты методов физического и математического моделирования к расчету некоторых химико-технологических процессов, что сокращает сроки перехода от лабораторных опытов к промышленной реализации процессов. Эта проблема настолько важна, что в предстоящем году на ней должны быть сосредоточены усилия и химиков, и физиков, и математиков».
Мыслимое ли дело — проводить технологический процесс без контактного аппарата? Даже без самих веществ — непосредственных участников химического процесса?
Мыслимое. Просто необходимое. Ибо иного, более эффективного пути масштабного перехода пока что попросту не дано.
Помните язык курнаковских чертежей и гипсовых изваяний? Подобная «графика» и «скульптура» — тоже математическое моделирование. Там по диаграмме можно было проследить, как меняются свойства системы в зависимости от ее состава. Здесь моделью служит набор математических уравнений, описывающих химические и физические процессы в аппарате. Разумеется, без экспериментов с колбами и пробирками не обойтись и здесь.
Но вот что самое интересное: лабораторная установка вовсе не обязана быть моделью заводского аппарата! Таковой служит именно система математических уравнений. Странно, не правда ли?
Когда авиаконструкторы строят модель будущего самолета, у них получается лилипут, как две капли воды схожий с Гулливером. Чертежи одни. Только масштабы разные. Так поступали раньше и химики. Они старались в миниатюре воссоздать промышленный реактор. И максимально приблизиться к реальным условиям его работы. Дескать, чем точнее маленькая копия, тем совершенней большой оригинал. А оказалось наоборот.
Вместо копирования реальной обстановки необходимо создать идеальные условия чистого химического эксперимента. Ибо только так можно устранить помехи при изучении химизма реакции. Иначе теплофизические и гидродинамические факторы, накладываясь на кинетические закономерности, могут настолько усложнить картину процесса, что выяснение его тонкой механики станет неосуществимым.
Эта фундаментальная идея, высказанная в 1958 году Георгием Константиновичем Боресковым и Михаилом Гавриловичем Слинько, — один из краеугольных камней математического моделирования.
Но вот изучена кинетика химических реакций со всеми «драматическими коллизиями»: промежуточными стадиями, побочными продуктами и, что особенно важно, скоростями взаимных превращений веществ. Как же теперь учесть чисто физические стороны явления?
А учесть надо многое: как переносится тепло вместе с веществами, как оно передается стенкам сосуда и катализатору, как его отводить или подводить. Как и для модели самолета, очень важно знать гидродинамические характеристики потока.
Все это уже выяснено физиками для подавляющего большинства практически важных процессов. Зачастую можно воспользоваться готовыми уравнениями.
Осталось совместить физические и химические закономерности, чтобы перенести их в условия крупного масштаба. Как показал Слинько, такая «проекция» не по плечу теории подобия, хотя она верой и правдой служит авиаконструкторам. И единственный выход из положения — математическое моделирование.
Модель аппарата нельзя потрогать. Она незрима и невесома. Если можно так выразиться, это математический сценарий, где вместо действующих лиц — переменные величины, связанные определенными закономерностями. В нем воедино сливаются химические и физические закономерности. Как же теперь поставить спектакль?
Если посадить за стол многолюдную группу самых смекалистых математиков и поручить им с карандашом в руках проанализировать и решить выведенные уравнения, на такую работу уйдет не один год. Вот почему этот путь был практически закрыт перед химией до появления вычислительных машин.
Электронный мозг поднял шлагбаумы перед математическим моделированием.
С октября 1962 в Институте катализа Сибирского отделения АН СССР, где директором Боресков (его заместитель Слинько), установлена аналоговая вычислительная машина «МН-14». Заметьте: не в математическом, а в химическом институте!
Аналоговой ее нарекли потому, что в своей работе она опирается на аналогию (сходство) между физико-химическими явлениями в контактном аппарате и процессами в ее радиоэлектронных схемах.
При решении кинетических, теплофизических и гидродинамических уравнений приходится складывать, вычитать, умножать, делить разные величины. Эти арифметические операции аналоговая машина проделывает не с цифрами, а с электрическим напряжением. Она горазда и в высшей математике. Например, умеет интегрировать.
Интегратор. Звучит загадочно и громко. А это всего-навсего конденсатор, соединенный с сопротивлением. Интегрирование дифференциальных уравнений. Тоже звучит! Но химика уже не испугаешь такой терминологией. Он научился манипулировать сложной вычислительной техникой, способной в минуту расправиться с уравнением, которое раньше вселяло ужас даже в бывалого математика.
В радиометрических лабораториях есть такие приборы — счетчики Гейгера — Мюллера. Они измеряют скорость распада радиоактивных изотопов. Гамма-кванты, или элементарные частицы, испускаемые ядром, вызывают разряд конденсатора. Каждый такой разряд регистрируется электронной схемой. Схема может быть дифференциальной. Или интегральной.
В первом случае дрожащая стрелка указывает на шкале прибора количество электрических импульсов в секунду. Это скорость распада в каждый данный момент. Примерно так же по шкале спидометра вы можете каждую секунду следить за изменением скорости автомобиля. А в конце поездки из показаний спидометра узнать, сколько километров проехал автомобиль за какой-то отрезок времени. Это уже интегральная схема. Только в радиометрическом приборе вместо километража — сумма импульсов за определенный период.
Число импульсов в секунду — дифференциальная величина. Она колеблется от момента к моменту около какого-то статистического среднего значения. А это среднее значение изменяется по определенному закону. Кинетическое уравнение подобного процесса напоминает выражение для скорости такой, например, реакции: J2→2J. Оно выглядит несложно: V = k1[J2], или в общем случае V = kc.
А в дифференциальной форме так: dc/dt = –kc.
Здесь c — концентрация радиоактивного препарата или молекул йода.
Очевидно, скорость распада уменьшается, по мере того как убывает концентрация исходного вещества. Поэтому коэффициент k взят со знаком «минус». Чтобы найти, сколько распавшихся атомов образовалось к какому-то моменту времени, нам надо проинтегрировать это дифференциальное уравнение. Грубо говоря, просуммировать все значения переменной величины c за все моменты времени. Такие операции и выполняет интегратор.
Интегрируемая функция поступает на выход блока в виде напряжения, которое изменяется во времени так же, как и концентрации реагентов. Интегрирующим элементом служит конденсатор, на котором постепенно накапливается заряд. На выходе схемы мы получим ток с другими характеристиками. Он и будет нашим электронным «километражем» — интегралом.
Математика химической кинетики сводится, как правило, к решению дифференциальных уравнений. Машина способна решать их, варьируя значения концентраций, температур, давлений и прочих параметров процесса. Именно «значения». Ибо самих веществ, самого тепла, самого сжатия нет. Есть только напряжение тока.
Так электронная машина «превращается» в аппарат. И не просто в аппарат. Ведь у подлинного реактора жесткие стенки да еще из дефицитных материалов. Менять его форму — значит заказывать новые металлические детали, потом сваривать их и свинчивать вместе. Между тем реактор для получения, скажем, серной кислоты — это махина ростом в два с половиной метра да столько же в обхвате. А машина моделирует аппарат с непрерывно изменяемыми размерами и формой.
На аналоговых машинах типа «МН-14» легко варьировать не только форму «сцены», где развертывается действие химических и физических сил, но также «декорации» и характеристики «действующих лиц» — все параметры технологического процесса, причем одновременно.
Собственно, никакого всамделишного химического процесса нет и в помине — точь-в-точь как в театре, где вместо реальных людей перед зрителем живут и умирают актеры, да и сам аппарат не менее призрачен, чем мнимая фигура Монжа-Бертолле. Только перемигиваются лампочки на панели «МН-14», спешат-торопятся электронные импульсы по всем 45 километрам ее проводов, срабатывают 8 тысяч ее полупроводниковых диодов и триодов да 3100 радиоламп… Но когда вы поворачиваете ручку настройки, знайте: вы меняете какой-то параметр, ну, к примеру, условия теплопередачи. И тотчас зеленоватые зигзаги на экране осциллографа оповещают нас, что «горячее пятно» в невидимом чреве аппарата стало еще горячее, значит продукты реакции вот-вот разнесут вдребезги всю линию технологического цикла; или наоборот: пятно остывает, процесс того и гляди замрет.
Именно так на «МН-14» Институтом катализа был опробован новый метод получения из метилового спирта формальдегида — важного полупродукта в производстве полимеров. Три-четыре дня работы машины — и перед химиками-математиками лежали готовые результаты. Вместе с лабораторными исследованиями все это заняло меньше четырех месяцев. Расчеты сразу же были переданы в конструкторское бюро для проектирования заводского контактного аппарата.
Тем временем новосибирский химзавод параллельно разрабатывал конструкцию обычным путем. Монтаж, налаживание и пуск одной лишь опытной установки отняли почти год. Предстояла следующая стадия — создание и освоение полупромышленной установки. Только после этого можно было приступать к проектированию заводского аппарата. Сколько времени длилась бы эта томительная процедура, если бы не химики-математики?
Вместо пятнадцати лет за три года. Вот что значит математическое моделирование, этот чудесный катализатор большой химии.
Математическое моделирование химических процессов на электронных машинах уже сегодня позволяет сократить 10–15-летний путь от пробирки к заводу в пять раз. Это значит, в пять раз скорее промышленность может получить пластмассовые детали, сельское хозяйство — удобрения и ядохимикаты. Это значит, во много раз ускорить выполнение грандиозных планов по развертыванию строек большой химии и ее ударного фронта — химии плодородия.
Летом 1963 года в Новосибирске проходила 1-я Всесоюзная конференция, посвященная моделированию химических процессов. Это был настоящий форум молодости. И не только потому, что средний возраст большинства ученых в Академгородке — 25–30 лет. Сами идеи были под стать участникам — юны, свежи, озорны. Сколько раз с трибуны в зал смотрели проницательные и вдохновенные глаза Монжа-Бертолле!
Одним из самых активных участников конференции был младший научный сотрудник Института катализа Владимир Бесков. Химик, одержимый математическими идеями, он регулярно выступает и в местной печати как талантливый популяризатор.
«Современный технолог должен хорошо владеть математикой, — пишет и доказывает собственным примером Владимир Бесков, — должен знать математический анализ и современную вычислительную математику, вариационное исчисление и динамическое программирование, аппарат математической физики и методы теории автоматического регулирования».
Побольше бы нашей химии таких энтузиастов! Подумать только: уж если в неторопливую эпоху от Бертолле до Курнакова союз химии и математики принес богатые плоды, то что будет сейчас, когда на дворе XX век — стремительный в своем электронном быстродействии! Какие сдвиги сулит математика народному хозяйству!
Институтом катализа совместно с Научно-исследовательским институтом мономеров синтетического каучука был рассчитан на электронных машинах новый оптимальный режим для получения дивинила из бутилена. Он позволяет повысить выход чуть ли не в два раза и снизить стоимость продукции. Результаты расчетов убедительно доказали, что необходимо в корне переделать спроектированный обычным способом реактор для дегидрирования бутана.
Да, переделать! Ибо эти рекомендации исходят от умной машины, которая, как это ни грустно для человеческого сознания, оказалась более предусмотрительной, более проницательной и смекалистой.
В настоящее время Институт катализа и Институт математики Сибирского отделения АН СССР располагают рядом типовых программ для расчета химических аппаратов. Но этого мало! Нужна целая библиотека стандартных математических моделей и совершенных программ.
— У нас, — говорит Боресков, — уже рассчитаны или рассчитываются оптимальные конструкции контактных аппаратов и оптимальные режимы работы для многих процессов: производства серной кислоты, аммиака, окисления этилена, синтеза высших спиртов из окиси углерода и водорода, дегидрирование бутилена, получение нитрила акриловой кислоты.
Малопонятные словосочетания, что поделаешь.
Но это новые цехи по производству удобрений, ядохимикатов, каучука, пластмасс, красителей, медикаментов. И не просто новые, а работающие с более высокой производительностью и низкой себестоимостью, чем прежние, созданные без участия электронных консультантов. Нужно ли говорить, что значит каждый процент экономии в условиях гигантского размаха, который приняло у нас строительство предприятий большой химии?
Серная кислота. Хлеб современной химии. Трудно назвать химический процесс, где бы не участвовал этот важный продукт. Современная технология сернокислотного производства отрабатывалась более полувека. Казалось бы, здесь нет места усовершенствованиям. Но вот за дело принялась группа химиков нашего института и математиков вычислительного центра. Решалась сложная задача: сколько слоев и какое количество катализатора наиболее выгодны? Какова должна быть температура между слоями? Предстояло определить также степень превращения веществ на всех стадиях.
Систему уравнений вручили электронной машине. Она расправилась с ними за десять минут. И что же? Три процента. Настолько возрастет выпуск продукции, если перейти на рассчитанный нами оптимальный режим. Три процента — много или мало? Это равносильно сооружению нескольких новых заводов, и довольно крупных. А достигается такая экономия без всяких дополнительных затрат!
И это далеко не единственная иллюстрация огромных возможностей, которые несет в себе машинная математизация самой революционной науки нашего времени.
Полиэтилен. Король пластиков. И одновременно чернорабочий — мастер на все руки. Ему отведена львиная доля в производстве полимеров в самые ближайшие годы. А получается он пока что не самым совершенным способом. Процесс состоит из многочисленных стадий. И очень трудоемок. Между тем именно математическое моделирование показало, что его можно существенно упростить. Разработан оригинальный метод суспензионной полимеризации, который позволяет безболезненно отказаться от двух стадий производства: предварительной очистки растворителя и последующего отделения растворителя от полимера. Новый способ успешно испытывается в Баку.
Сбережение человеческих сил и материальных средств, энергии и времени. Какой рачительный производственник этого не желает! Однако математические расчеты так и останутся стопкой бумаги с набором символических цифр, пока за дело не возьмутся проектировщики, чтобы облечь абстрактные схемы и формулы в стальную и бетонную плоть.
Прискорбно, но факт: химия оказалась менее подготовленной к вторжению электронных машин, чем другие области техники и технологии. Отчасти такое положение объясняется отсутствием специальных кадров. Особенно остро ощущается этот недостаток в Сибири.
Вузы страны каждый год выпускают математиков-исследователей. Однако неутолима жажда нашей науки, техники, промышленности. Стоит ли удивляться, что проблемами химии занимается так мало математиков — раз, два, и обчелся?
Спрашивается, а разве химические вузы не могли бы готовить кадры по профилю «математическая химия»?
От желающих идти в химию нынче отбоя нет. Только почему-то многие мыслят свое будущее место в химии довольно однобоко. Восемь-девять из десяти намерены стать инженерами-химиками. Непременно. И не иначе, как на гигантском химическом комбинате. А ученым-исследователем? И не на капитанском мостике в цехе, а в стеклянном царстве лаборатории под боком у умных машин?
Спросите у школьников: хотят ли они пойти в математическую химию? В ответ почти наверняка воцарится робкое молчание. Нет, не потому, что не хотят. Потому что, как правило, просто не знают, о чем речь.
Топологическая химия. Квантовая химия и биология. Передовые эшелоны широкого фронта химических исследований. Они ждут своих новобранцев.
Спору нет, увлекательно работать в новой области, где сошлись пути двух древних наук, где перед творческой инициативой открываются широчайшие горизонты. Непочатый край исследований, результаты которых с нетерпением ждет страна. Тысячи молодых специалистов-химиков приходят ежегодно в наши исследовательские лаборатории. Какой-то процент из них мог бы посвятить себя математической химии, или, если угодно, химической математике.
Но дело не в названии. Современной химии нужны люди, грамотно разбирающиеся в машинной математике.
Химизация, умноженная на математизацию?
Скорейшему выполнению планов химизации способствуют именно математические методы, умножающие творческую мощь наших ученых и инженеров. Они намного убыстряют внедрение новой химической технологии.
До 1980 года осталось ровно пятнадцать лет. Как раз тот интервал времени, в какой укладывается обычно цикл работ по созданию промышленного химического аппарата. Но ведь этот срок можно сократить раз в пять с помощью математического моделирования! Так что у химии есть все возможности приблизить эпоху коммунизма.
Широкое наступление химии требует от ученых и инженеров не только разрабатывать новую технологию. Необходимо эффективное управление производственными процессами.
Химическое производство — непрерывный поток. Малейшее нарушение режима в одном из звеньев моментально сказывается на состоянии всей технологической цепочки разом, начиная с загрузки сырья и кончая выпуском готовой продукции. Приходится внимательно следить за работой каждого агрегата в отдельности. И всей их совокупности, конечно. А это не так просто.
Огромны пульты управления современных химических заводов. Нервно подрагивают стрелки приборов, дергаются по меланхолично ползущим бумажным лентам перья самописцев, то гаснут, то вспыхивают сигнальные лампы и световые табло — попробуй уследи за всеми показаниями разом! Человек может устать, отвлечься, заболеть — да мало ли случайностей подстерегает рулевых большого завода! И даже в том случае, когда тревожный вой сирены возвещает об опасности, скорость реакции человеческого организма на сигнал может оказаться недостаточной. Вот вам и авария…
Глаз — самый быстродействующий аппарат изо всех органов чувств. Однако и он не в состоянии отличить один предмет от другого, если они сменяются чаще чем пять раз в секунду. А сигналы на контрольном щите иногда чередуются гораздо скорее — ведь их так много! У оператора порой в глазах рябит при взгляде на приборную доску.
Всего четверть секунды требуется хорошо тренированному пилоту, чтобы отреагировать на упреждающий сигнал прибора. А за это время реактивный самолет пролетает 150 метров. Контактный аппарат вырабатывает десятки килограммов серной кислоты.
Да, у нервной системы есть свой потолок скоростей, выше которого не прыгнешь, как бы ты ни был опытен и скор. Между тем малейшая неточность — и государство несет миллионные убытки.
Впрочем, даже при безаварийной работе диспетчеру очень трудно подбирать наиболее выгодные параметры технологического режима. Придя на работу, оператор за несколько минут усвоит лишь самое главное из тех сведений о состоянии процесса, которые накапливались у предыдущей смены. Новая смена не сразу освоится с ситуацией и лишь неполное время сможет вести процесс в оптимальных рамках. Да и сумеет ли вообще дежурный мастер подобрать оптимальный режим? Мозг не справляется в достаточно короткое время с огромным потоком информации, хлещущим со шкал многочисленных сигнализаторов. Нужны феноменальная память и молниеносная сообразительность, чтобы быстро перепробовать всевозможные варианты и выбрать из них наилучший.
Такую «память и сообразительность» имеют электронные машины.
На большом нефтеперегонном заводе за показаниями приборов следят сотни операторов. Всех их может заменить одна электронно-вычислительная машина. Но даже тысячи операторов не заменят эту машину.
Самое большее, на что способен весь дежурный персонал, — это устойчиво поддерживать заранее заданный режим. «Электронный мозг» умеет непрерывно регулировать процесс так, чтобы он, несмотря ни на какие изменения, шел в наиболее выгодном режиме.
Делается это так. В блок памяти вводится программа с математическим описанием технологического процесса. Показания приборов, переведенные в форму электрических импульсов, поступают с контрольных точек завода в машину. Эти сигналы сравниваются с теми требованиями, которые записаны (тоже в виде импульсов) на магнитных лентах или других запоминающих устройствах. Совпадение тех и других оставляет машину безучастной. Если же обнаружилось расхождение, в мгновение ока на выход поступают управляющие сигналы. Они приводят в действие исполнительные механизмы, которые тут же изменяют в нужном направлении давление, влажность, температуру или скорость потока.
Так машина поддерживает стационарный, заранее заданный режим. Но она может и нарушать его! Если у нее в памяти есть еще и программа оптимизации.
Активность катализатора со временем падает. Выход продукта тоже. Как же быть?
Поначалу машина самостоятельно пробует, например, повысить давление. Это немедленно сказывается на состоянии всей технологической схемы. Выждав секунду-другую, машина накапливает информацию. Затем она стремительно анализирует ситуацию. Ага, выход продукта повысился! Значит, надо и дальше увеличивать давление в аппарате. Так продолжается до тех пор, пока не будет найдено наилучшее значение параметра. Затем машина начинает изменять температуру, расход и так далее. Сигналы с контрольных постов непрерывно сверяются логическим узлом с заданной программой. Так подыскивается новый режим, самый экономичный из всех возможных.
Конечно, не всегда проста зависимость производительности от величины параметра. Мы уже знаем, что при низких температурах синтез аммиака практически не идет. А при нагревании равновесие смещается так, что выход продуктов уменьшается. Но машина способна варьировать и противоречивые параметры, запоминая наилучшие их комбинации.
Правда, не для всех технологических процессов имеются достаточно полные математические описания. Да и составлять их не легко. Не беда: можно создать самонастраивающиеся системы автоматического управления. Они будут работать по неполной программе, накапливая опыт, запоминая удачные сочетания условий и забывая остальные.
Для заводов синтетического каучука у нас построена электронная машина «Марс-300». Она предназначена для централизованной инспекции сразу по тремстам точкам технологической линии. Все данные регистрируются машиной за полминуты.
Результаты осмотра поступают на выход в числовой форме. При отклонениях от стабильного режима начинает моргать красный глазок на панели вычислительного устройства.
Основные функции «Марса-300» контрольные. Но машина способна выполнять также и некоторые операции управления — пуск, остановка, защита при взрывах.
На Новомосковском химкомбинате завершается комплексная автоматизация аммиачных цехов. Вся информация многочисленных агрегатов будет обрабатываться электронно-вычислительной машиной. Пять минут на размышление — и вывод готов: как и где подправить процесс, чтобы себестоимость оставалась минимальной (экономический оптимум) или выход продуктов был максимальным (оптимум технологический). Оба значения могут не совпадать. Например, увеличение давления с целью увеличить выход продукта потребует большего расхода электроэнергии на вращение моторов компрессоров. А из-за этого может подпрыгнуть вверх значение себестоимости. Но все зависит от программы, вложенной в машину. Она будет точно и беспрекословно выполнять предписание человека.
Машина эта не простая. Самопрограммирующая. Она по ходу дела вносит коррективы в первоначальную программу, подлаживаясь к особенностям технологического процесса и подгоняя его параметры к наивыгоднейшему сочетанию. Подсчитано, что «электронные администраторы» только на Новомосковском комбинате обеспечат ежегодную экономию в миллион рублей.
Изучая профессиональный состав кадров в химической промышленности, статистика выяснила, что до половины заводского персонала занято на таких операциях, которые можно автоматизировать. А нужда в специалистах-химиках растет с каждым годом. Вот почему проблема автоматизации становится особенно актуальной.
Автоматический анализатор, обслуживаемый одним человеком, заменяет два десятка лаборантов. Представляете, сколько резервов рабочей силы высвободят подобные приборы в сочетании с электронными машинами?
Далее. Чем устойчивей режим, тем долговечнее оборудование. И тем меньше потребность в ремонтниках. Мгновенная корректировка технологического процесса по плечу лишь машинам. Только с их помощью удается свести пульсации на нет. Так стабилизация режимов «сокращает штаты», увеличивая число рабочих рук для других видов труда в химической промышленности.
И это не все. Автоматический контроль и машинное регулирование несут с собой в химию скорость. В самом деле: раньше химическая аппаратура строилась в расчете на ограниченные возможности ручного управления. Сейчас эти ограничения снимаются. Быстродействующие электронно-вычислительные устройства могут регулировать самые стремительные процессы. Даже если они неравновесные. Марковские. Значит, можно использовать цепные реакции горения и взрыва! Так электронная техника делает реальным прогноз академика Трапезникова. Химии быстрой, химии горячей — быть!
Математика и кибернетика распахивают перед химией неохватные горизонты.
В гостях у Монжа-Бертолле.
…Огромный заводской цех. Впрочем, это уже и не цех в обычном смысле слова. У него нет стен. Нет крыши. Да и зачем они? Компрессоры, насосы, колонны синтеза, скрубберы, газгольдеры, трубы не боятся дождя. Им не страшен рыжий бич металлов — ржавчина, ибо они сделаны из прочных и жаростойких полимеров. Сквозь прозрачные стенки видно, как в одних реакторах бушует пламя. В других процессы идут при обычной температуре. Но с необычной скоростью и производительностью. Ведь в них работают катализаторы, напоминающие ферменты!
Завод не имеет дымовых труб. Здесь нет ни газообразных, ни жидких отходов. Они полностью утилизированы. То, что нужно для процесса, возвращено в технологическую схему. Остатки поступают на склад. Это сырье для других цехов.
Вокруг ни души. Лишь кое-где на заводском дворе маячат редкие фигуры в белых халатах. Это рабочие, занятые на тех операциях, автоматизация которых пока неосуществима.
Вместо многоэтажного административного корпуса — небольшая будка, похожая на трансформаторную. Но не ищите в ней электронных машин. Их здесь нет. Они за тридевять земель — в крупном вычислительном центре. Оттуда осуществляется контроль сразу за десятками заводов. В будке собраны лишь самые необходимые приемные устройства и переключатели, которые служат посредниками между далекой машиной и исполнительными органами механизмов.
Над складскими помещениями простерта прозрачная пленка. Это гибкая полупроводниковая электростанция. Ток, возбужденный солнечным светом, накапливается в аккумуляторах, чтобы непрерывно вращать электромоторы.
Завод сравнительно небольшой. Но производительность его колоссальна. День и ночь из бункеров в непрерывно подходящие составы ссыпаются сотни и тысячи тонн готовой продукции. А сырье? Оно поступает из расположенного рядом большого соленого озера.
На воротах большие буквы: «Химический завод им. Н. С. Курнакова». А ниже надпись помельче: «Спроектирован электронными машинами в 198… году».
Последнюю цифру трудно разобрать: на нее падает тень от густой листвы. Деревья буйно разрослись вокруг и внутри заводского двора. Завод-сад, бесшумный, бездымный, безлюдный, без устали несет трудовую вахту на благо народа, построившего коммунизм…
А неподалеку от завода раскинулись современные корпуса исследовательских лабораторий. Сверкающая лента асфальта бежит к большой человеческой фигуре, одиноко стоящей перед входом. Он смотрит строго, пряча улыбку в бронзовые усы, пушистые гренадерские усы создателя химической топологии. Табличка над дверьми гласит: «Институт математической химии АН СССР имени Монжа-Бертолле». О, это будет мечта каждого журналиста — посетить такой институт. Разумеется, никто из тамошних брюнетов не будет носить париков, а блондины не станут распускать по ветру свои белокурые локоны. Но из-под современных причесок на вас нет-нет да и посмотрят черные ли, голубые ли, но, ей богу, вдохновенные глаза Монжа-Бертолле — удивительного своей символичностью образа, порожденного фантазией народа.