10. Алгоритм k ближайших соседей

В этой главе

• Вы научитесь строить системы классификации на базе алгоритма k ближайших соседей.

• Вы узнаете об извлечении признаков.

• Вы узнаете о регрессии: прогнозировании чисел (например, завтрашних биржевых котировок или успеха фильма у зрителей).

• Вы познакомитесь с типичными сценариями использования и ограничениями алгоритма k ближайших соседей.

Апельсины и грейпфруты

Взгляните на этот фрукт. Что это, апельсин или грейпфрут? Я слышал, что грейпфруты обычно крупнее, а их кожура имеет красноватый оттенок.

Мой мыслительный процесс выглядит примерно так: у меня в мозге существует некое подобие графика.

Как правило, крупные и красные фрукты оказываются грейпфрутами. Этот фрукт большой и красный, поэтому, скорее всего, это грейпфрут. Но что, если вам попадется фрукт вроде такого?

Как классифицировать этот фрукт? Один из способов — рассмотреть соседей этой точки. Возьмем ее трех ближайших соседей.

Среди соседей больше апельсинов, чем грейпфрутов. Следовательно, этот фрукт, скорее всего, является апельсином. Поздравляем: вы только что применили алгоритм k ближайших соседей для классификации! В целом алгоритм работает по довольно простому принципу.

Алгоритм k ближайших соседей прост, но полезен! Если вы пытаетесь выполнить классификацию чего-либо, сначала попробуйте применить алгоритм k ближайших соседей. Рассмотрим более реалистичный пример.


Построение рекомендательной системы

Представьте, что вы работаете на сайте Netflix и хотите построить систему, которая будет рекомендовать фильмы для ваших пользователей. На высоком уровне эта задача похожа на задачу с грейпфрутами!

Информация о каждом пользователе наносится на график.

Положение пользователя определяется его вкусами, поэтому пользователи с похожими вкусами располагаются недалеко друг от друга. Предположим, вы хотите порекомендовать фильмы Приянке. Найдите пять пользователей, ближайших к ней.

У Джастина, Джей-Си, Джозефа, Ланса и Криса похожие вкусы. Значит, те фильмы, которые нравятся им, с большой вероятностью понравятся и Приянке!

После того как у вас появится такая диаграмма, построить рекомендательную систему будет несложно. Если Джастину нравится какой-нибудь фильм, порекомендуйте этот фильм Приянке.

Однако в картине не хватает одного важного фрагмента. Вы оценивали, насколько близки вкусы двух пользователей на графике. Но как определить, насколько они близки?


Извлечение признаков

В примере с грейпфрутами мы сравнивали фрукты на основании их размера и цвета кожуры. Размер и цвет — признаки, по которым ведется сравнение. Теперь предположим, что у вас есть три фрукта. Вы можете извлечь из них информацию, то есть провести извлечение признаков.

Данные трех фруктов наносятся на график.

Из диаграммы хорошо видно, что фрукты A и B похожи. Давайте измерим степень их сходства. Для вычисления расстояния между двумя точками применяется формула Пифагора.

Например, расстояние между A и B вычисляется так:

Расстояние между A и B равно 1. Другие расстояния вычисляются аналогично.

Формула расстояния подтверждает то, что мы видим: между фруктами A и B есть сходство.

Допустим, вместо фруктов вы сравниваете пользователей Netflix. Пользователей нужно будет как-то нанести на график. Следовательно, каждого пользователя нужно будет преобразовать в координаты — так же, как это было сделано для фруктов.

Когда вы сможете нанести пользователей на график, вы также сможете измерить расстояние между ними.

Начнем с преобразования пользователей в набор чисел. Когда пользователь регистрируется на Netflix, предложите ему оценить несколько категорий фильмов: нравятся они лично ему или нет. Таким образом у вас появляется набор оценок для каждого пользователя!

Приянка и Джастин обожают мелодрамы и терпеть не могут ужасы. Морфеусу нравятся боевики, но он не любит мелодрамы (хороший боевик не должен прерываться слащавой романтической сценой). Помните, как в задаче об апельсинах и грейпфрутах каждый фрукт представлялся двумя числами? Здесь каждый пользователь представляется набором из пяти чисел.

Математик скажет, что вместо вычисления расстояния в двух измерениях вы теперь вычисляете расстояние в пяти измерениях. Тем не менее формула расстояния остается неизменной.

Просто на этот раз используется набор из пяти чисел вместо двух.

Формула расстояния универсальна: даже если вы используете набор из миллиона чисел, расстояние вычисляется по той же формуле. Естественно спросить: какой смысл передает метрика расстояния с пятью числами? Она сообщает, насколько близки между собой эти наборы из пяти чисел.

Это расстояние между Приянкой и Джастином.

Вкусы Приянки и Джастина похожи. А насколько различаются вкусы Приянки и Морфеуса? Вычислите расстояние между ними, прежде чем продолжить чтение.

Сколько у вас получилось? Приянка и Морфеус находятся на расстоянии 24. По этому расстоянию можно понять, что у Приянки больше общего с Джастином, чем с Морфеусом.

Прекрасно! Теперь порекомендовать фильм Приянке будет несложно: если Джастину понравился какой-то фильм, мы рекомендуем его Приянке, и наоборот. Вы только что построили систему, рекомендующую фильмы.

Если вы являетесь пользователем Netflix, то Netflix постоянно напоминает вам: «Пожалуйста, оценивайте больше фильмов. Чем больше фильмов вы оцените, тем точнее будут наши рекомендации». Теперь вы знаете почему: чем больше фильмов вы оцениваете, тем точнее Netflix определяет, с какими пользователями у вас общие вкусы.


Упражнения

10.1 В примере с Netflix сходство между двумя пользователями оценивалось по формуле расстояния. Но не все пользователи оценивают фильмы одинаково. Допустим, есть два пользователя, Йоги и Пинки, вкусы которых совпадают. Но Йоги ставит 5 баллов любому фильму, который ему понравился, а Пинки более разборчива и ставит «пятерки» только самым лучшим фильмам. Вроде бы вкусы одинаковые, но по метрике расстояния они не являются соседями. Как учесть различия в стратегиях выставления оценок?

10.2 Предположим, Netflix определяет группу «авторитетов». Скажем, Квентин Тарантино и Уэс Андерсон относятся к числу авторитетов Netflix, поэтому их оценки оказывают более сильное влияние, чем оценки рядовых пользователей. Как изменить систему рекомендаций, чтобы она учитывала повышенную ценность оценок авторитетов?


Регрессия

А теперь предположим, что просто порекомендовать фильм недостаточно: вы хотите спрогнозировать, какую оценку Приянка поставит фильму. Возьмите 5 пользователей, находящихся вблизи от нее.

Кстати, я уже не в первый раз говорю о «ближайших пяти». В числе «5» нет ничего особенного: с таким же успехом можно взять 2 ближайших пользователей, 10 или 10 000. Поэтому-то алгоритм и называется «алгоритмом k ближайших пользователей», а не «алгоритмом 5 ближайших пользователей»!

Допустим, вы пытаетесь угадать оценку Приянки для фильма «Идеальный голос». Как этот фильм оценили Джастин, Джей-Си, Джозеф, Ланс и Крис?

Если вычислить среднее арифметическое их оценок, вы получите 4,2. Такой метод прогнозирования называется регрессией. У алгоритма k ближайших соседей есть два основных применения: классификация и регрессия:

• классификация = распределение по категориям;

• регресия = прогнозирование ответа (в числовом выражении).

Регрессия чрезвычайно полезна. Представьте, что вы открыли маленькую булочную в Беркли и каждый день выпекаете свежий хлеб. Вы пытаетесь предсказать, сколько буханок следует испечь на сегодня. Есть несколько признаков:

• погода по шкале от 1 до 5 (1 = плохая, 5 = отличная);

• праздник или выходной? (1, если сегодня праздник или выходной, 0 в противном случае);

• проходят ли сегодня спортивные игры? (1 = да, 0 = нет).

И вы знаете, сколько буханок хлеба было продано в прошлом при разных сочетаниях признаков.

Сегодня выходной и хорошая погода. Сколько буханок вы продадите на основании только что приведенных данных? Используем алгоритм k ближайших соседей для k = 4. Сначала определим четырех ближайших соседей для этой точки.

Ниже перечислены расстояния. Точки A, B, D и E являются ближайшими.

Вычисляя среднее арифметическое продаж в эти дни, вы получаете 218,75. Значит, именно столько буханок нужно выпекать на сегодня!


Близость косинусов

До сих пор мы использовали формулу расстояния для вычисления степени сходства двух пользователей. Но является ли эта формула лучшей? На практике также часто применяется метрика близости косинусов. Допустим, два пользователя похожи, но один из них более консервативен в своих оценках. Обоим пользователям понравился фильм Манмохана Десаи «Амар Акбар Антони». Пол поставил фильму оценку 5 звезд, но Роуэн оценил его только в 4 звезды. Если использовать формулу расстояния, эти два пользователя могут не оказаться соседями, несмотря на сходство вкусов.

Метрика близости косинусов не измеряет расстояние между двумя векторами. Вместо этого она сравнивает углы двух векторов и в целом лучше подходит для подобных случаев. Тема метрики близости косинусов выходит за рамки этой книги, но вам стоит самостоятельно поискать информацию о ней, если вы будете применять алгоритм k ближайших соседей!


Выбор признаков

Чтобы подобрать рекомендации, вы предлагаете пользователям ставить оценки категориям фильмов. А если бы вы вместо этого предлагали им ставить оценки картинкам с котами? Наверное, вам бы удалось найти пользователей, которые ставили похожие оценки этим картинкам. Однако у вас получилась бы самая плохая рекомендательная система в мире, потому что эти «признаки» не имеют никакого отношения к их вкусам в области кино!

Или представьте, что вы предлагаете пользователям оценить фильмы для формирования рекомендаций — но только «Историю игрушек», «Историю игрушек-2» и «Историю игрушек-3». Эти оценки ничего не скажут вам о вкусах пользователей.

Когда вы работаете с алгоритмом k ближайших соседей, очень важно правильно выбрать признаки для сравнения. Под правильным выбором признаков следует понимать:

• признаки, напрямую связанные с фильмами, которые вы пытаетесь рекомендовать;

• признаки, не содержащие смещения (например, если предлагать пользователям оценивать только комедии, вы не получите никакой информации об их отношении к боевикам).

Как вы думаете, оценки хорошо подходят для рекомендации фильмов? Возможно, я поставил «Прослушке» более высокую оценку, чем «Охотникам за недвижимостью», но на самом деле я провел больше времени за просмотром «Охотников». Как улучшить рекомендательную систему Netflix?

Возвращаясь к примеру с пекарней: сможете ли вы придумать два хороших и два плохих признака, которые можно было бы выбрать для прогнозирования объема выпечки? Возможно, нужно выпечь побольше хлеба после рекламы в газете. Или увеличить объем производства по понедельникам.

В том, что касается выбора хороших признаков, не существует единственно правильного ответа. Тщательно продумайте все факторы, которые необходимо учесть при прогнозировании.


Упражнения

10.3 У сервиса Netflix миллионы пользователей. В приведенном ранее примере рекомендательная система строилась для пяти ближайших соседей. Пять — это слишком мало? Слишком много?


Знакомство с машинным обучением

Мало того, что алгоритм k ближайших соседей полезен — он открывает путь в волшебный мир машинного обучения! Суть машинного обучения — сделать ваш компьютер более разумным. Вы уже видели один пример машинного обучения: построение рекомендательной системы. В этом разделе будут рассмотрены другие примеры.


OCR

Сокращение OCR означает «Optical Character Recognition», то есть «оптическое распознавание текста». Иначе говоря, вы берете фотографию страницы текста, а компьютер автоматически преобразует изображение в текст. Google использует OCR для оцифровки книг. Как работает OCR? Для примера возьмем следующую цифру:

Как автоматически определить, что это за цифра? Можно воспользоваться алгоритмом k ближайших соседей:

1. Переберите изображения цифр и извлеките признаки.

2. Получив новое изображение, извлеките признаки и проверьте ближайших соседей.

По сути это та же задача, что и задача классификации апельсинов и грейпфрутов. В общем случае алгоритмы OCR основаны на выделении линий, точек и кривых.

Затем при получении нового символа из него можно извлечь те же признаки.

Извлечение признаков в OCR происходит намного сложнее, чем в примере с фруктами. Однако важно понимать, что даже сложные технологии строятся на основе простых идей (таких, как алгоритм k ближайших соседей). Те же принципы могут использоваться для распознавания речи или распо­знавания лиц. Когда вы отправляете фотографию на Facebook, иногда сайту хватает сообразительности для автоматической пометки людей на фото. Да это машинное обучение в действии!

Первый шаг OCR, в ходе которого перебираются изображения цифр и происходит извлечение признаков, называется тренировкой. В большинстве алгоритмов машинного обучения присутствует фаза тренировки: прежде чем компьютер сможет решить свою задачу, его необходимо натренировать. В следующем примере рассматривается создание спам-фильтров, и в нем тоже есть шаг тренировки.


Построение спам-фильтра

Спам-фильтры используют другой простой алгоритм, называемый наив­ным классификатором Байеса. Сначала наивный классификатор Байеса тренируется на данных.

Предположим, вы получили сообщение с темой «Получите свой миллион прямо сейчас!» Это спам? Предложение можно разбить на слова, а затем для каждого слова проверить вероятность присутствия этого слова в спамовом сообщении. Например, в нашей очень простой модели слово «миллион» встречается только в спаме. Наивный классификатор Байеса вычисляет вероятность того, что сообщение с большой вероятностью является спамом. На практике он применяется примерно для тех же целей, что и алгоритм k ближайших соседей.

Например, наивный классификатор Байеса может использоваться для классификации фруктов: есть большой и красный фрукт. Какова вероятность того, что он окажется грейпфрутом? Это простой, но весьма эффективный алгоритм — из тех, что нам нравятся больше всего!


Прогнозы на биржевых торгах

Есть одна задача, в которой трудно добиться успеха машинным обучением: точно спрогнозировать курсы акций на бирже. Как выбрать хорошие признаки? Предположим, вы говорите, что если курс акций рос вчера, то он будет расти и сегодня. Хороший это признак или нет? Или, предположим, вы утверждаете, что курс всегда снижается в мае. Сработает или нет? Не существует гарантированного способа прогнозировать будущее на основании прошлых данных. Прогнозирование будущего — сложное дело, а при таком количестве переменных оно становится почти невозможным.


Шпаргалка

Надеюсь, вы хотя бы в общих чертах поняли, что можно сделать с помощью алгоритма k ближайших соседей и машинного обучения! Машинное обучение — интересная область, и при желании в нее можно зайти достаточно глубоко.

• Алгоритм k ближайших соседей применяется для классификации и регрессии. В нем используется проверка k ближайших соседей.

• Классификация = распределение по категориям.

• Регрессия = прогнозирование результата (например, в виде числа).

• «Извлечением признаков» называется преобразование элемента (например, фрукта или пользователя) в список чисел, которые могут использоваться для сравнения.

• Качественный выбор признаков — важная часть успешного алгоритма k ближайших соседей.

Загрузка...