1. Знакомство с алгоритмами

В этой главе

• Закладываются основы для остальных глав книги.

• Вы напишете свой первый алгоритм поиска (бинарный поиск).

• Вы узнаете, как описывается время выполнения алгоритма («O-боль­шое»).

• Будет представлен стандартный прием, часто применяемый при проектировании алгоритмов (рекурсия).

Введение

Алгоритмом называется набор инструкций для выполнения некоторой задачи. В принципе, любой фрагмент программного кода можно назвать алгоритмом, но в этой книге рассматриваются более интересные темы. Когда я отбирал алгоритмы для этой книги, я следил за тем, чтобы они были быстрыми или решали интересные задачи… или и то и другое сразу. Вот лишь несколько примеров.

• В главе 1 речь пойдет о бинарном поиске и о том, как алгоритмы могут ускорить работу кода. В одном примере алгоритм сокращает количество необходимых действий с 4 миллиардов до 32!

• Устройство GPS использует алгоритмы из теории графов (об этом в главах 6, 7 и 8) для вычисления кратчайшего пути к точке назначения.

• При помощи методов динамического программирования (см. главу 9) можно создать алгоритм для игры в шашки.

В каждом случае я опишу алгоритм и приведу пример. Затем мы обсудим время выполнения алгоритма в понятиях «О-большое». В завершение будут рассмотрены типы задач, которые могут решаться с применением того же алгоритма.


Что вы узнаете об эффективности алгоритмов

А теперь хорошая новость: скорее всего, реализация каждого алгоритма в этой книге уже доступна на вашем любимом языке программирования и вам не придется писать каждый алгоритм самостоятельно! Но любая реализация будет бесполезной, если вы не понимаете ее плюсов и минусов. В этой книге вы научитесь сравнивать сильные и слабые стороны разных алгоритмов: из каких соображений выбирать между сортировкой слиянием и быстрой сортировкой? Что использовать — массив или список? Даже выбор другой структуры данных может оказать сильное влияние на результат.


Что вы узнаете о решении задач

Вы освоите методы решения задач, которые вам сейчас, возможно, неизвестны. Примеры:

• Если вы любите создавать видеоигры, вы можете написать систему на базе искусственного интеллекта, моделирующую действия пользователя с применением алгоритмов из теории графов.

• Вы узнаете, как построить рекомендательную систему на базе k ближайших соседей.

• Некоторые проблемы не решаются за разумное время! В части книги, посвященной NP-полноте задач, рассказано о том, как идентифицировать такие задачи и построить алгоритм для получения приближенного ответа.

А если брать шире, к концу этой книги вы освоите некоторые широко применяемые алгоритмы. После этого вы сможете воспользоваться новыми знаниями для изучения более специализированных алгоритмов из области искусственного интеллекта, баз данных и т.д. или взяться за решение более сложных задач в практической работе.


Что необходимо знать

Чтобы читать эту книгу, необходимо знать базовую алгебру. Например, возьмем следующую функцию: f (x) = x × 2. Чему равен результат f(5)? Если вы ответили «10» — читайте спокойно.

Кроме того, вам будет проще понять эту главу (и всю книгу), если вы владеете хотя бы одним языком программирования. Все приведенные примеры написаны на Python. Если вы не знаете ни одного языка программирования, но хотите изучить — выбирайте Python: это отличный язык для начинающих. Если вы уже знаете другой язык (скажем, Ruby) — все в порядке.


Бинарный поиск

Предположим, вы ищете фамилию человека в телефонной книге (какая древняя технология!). Она начинается с буквы «К». Конечно, можно начать с самого начала и перелистывать страницы, пока вы не доберетесь до буквы «К». Но скорее всего для ускорения поиска лучше раскрыть книгу на середине: ведь буква «К» должна находиться где-то ближе к середине телефонной книги.

Или предположим, что вы ищете слово в словаре, и оно начинается с буквы «О». И снова лучше начать с середины.

Теперь допустим, что вы вводите свои данные при входе на Facebook. При этом Facebook необходимо проверить, есть ли у вас учетная запись на сайте. Для этого ваше имя пользователя нужно найти в базе данных. Допустим, вы выбрали себе имя пользователя «karlmageddon». Facebook может начать с буквы A и проверять все подряд, но разумнее будет начать с середины.

Перед нами типичная задача поиска. И во всех этих случаях для решения задачи можно применить один алгоритм: бинарный поиск.

Бинарный поиск — это алгоритм; на входе он получает отсортированный список элементов (позднее я объясню, почему он должен быть отсортирован). Если элемент, который вы ищете, присутствует в списке, то бинарный поиск возвращает ту позицию, в которой он был найден. В противном случае бинарный поиск возвращает null.

Например:

Ищем компанию в телефонной книге с применением бинарного поиска

Рассмотрим пример того, как работает бинарный поиск. Сыграем в простую игру: я загадал число от 1 до 100.

Вы должны отгадать мое число, использовав как можно меньше попыток. При каждой попытке я буду давать один из трех ответов: «мало», «много» или «угадал».

Предположим, вы начинаете перебирать все варианты подряд: 1, 2, 3, 4 …. Вот как это будет выглядеть.

Плохой способ угадать число

Это пример простого поиска (возможно, термин «тупой поиск» был бы уместнее). При каждой догадке исключается только одно число. Если я загадал число 99, то, чтобы добраться до него, потребуется 99 попыток!


Более эффективный поиск

Существует другой, более эффективный способ. Начнем с 50.

Слишком мало… но вы только что исключили половину чисел! Теперь вы знаете, что все числа 1–50 меньше загаданного. Следующая попытка: 75.

На этот раз перелет… Но вы снова исключили половину оставшихся чисел! С бинарным поиском вы каждый раз загадываете число в середине диапазона и исключаете половину оставшихся чисел. Следующим будет число 63 (по середине между 50 и 75).

Так работает бинарный поиск. А вы только что узнали свой первый алгоритм! Попробуем поточнее определить, сколько чисел будет исключаться каждый раз.

При бинарном поиске каждый раз исключается половина чисел

Какое бы число я ни задумал, вы гарантированно сможете угадать его не более чем за 7 попыток, потому что с каждой попыткой исключается половина оставшихся чисел!

Предположим, вы ищете слово в словаре с 240 000 словами. Как вы думаете, сколько попыток вам понадобится в худшем случае?

При простом поиске может потребоваться 240 000 попыток, если искомое слово находится на самой последней позиции в книге. С каждым шагом бинарного поиска количество слов сокращается вдвое, пока не останется только одно слово.

Итак, бинарный поиск потребует 18 шагов — заметная разница! В общем случае для списка из n элементов бинарный поиск выполняется за log2n шагов, тогда как простой поиск будет выполнен за n шагов.


Логарифмы

Возможно, вы уже забыли, что такое логарифм, но наверняка помните, что такое возведение в степень. log10100 по сути означает, сколько раз нужно перемножить 10, чтобы получить 100. Правильный ответ — 2: 10 × 10. Итак, log10 100 = 2. Логарифм по смыслу противоположен возведению в степень.

Логарифм — операция, обратная возведению в степень

Когда я в этой книге упоминаю «O-большое» (об этом чуть позднее), log всегда означает log2. Когда вы ищете элемент с применением простого поиска, в худшем случае вам придется проверить каждый элемент. Итак, для списка из 8 чисел понадобится не больше 8 проверок. Для бинарного поиска в худшем случае потребуется не более logn проверок. Для списка из 8 элементов log 8 == 3, потому что 23 == 8. Итак, для списка из 8 чисел вам придется проверить не более 3 чисел. Для списка из 1024 элементов log 1024 = 10, потому что 210 == 1024. Следовательно, для списка из 1024 чисел придется проверить не более 10 чисел.


примечание

Бинарный поиск работает только в том случае, если список отсортирован. Например, имена в телефонной книге хранятся в алфавитном порядке, и вы можете воспользоваться бинарным поиском. А что произойдет, если имена не будут отсортированы?

Посмотрим, как написать реализацию бинарного поиска на Python. В следующем примере кода используется массив. Если вы не знаете, как работают массивы, не беспокойтесь: эта тема рассматривается в следующей главе. Пока достаточно знать, что серию элементов можно сохранить в непрерывной последовательности ячеек, которая называется массивом. Нумерация ячеек начинается с 0: первая ячейка находится в позиции с номером 0, вторая — в позиции с номером 1 и т.д.

Функция binary_search получает отсортированный массив и значение. Если значение присутствует в массиве, то функция возвращает его позицию. При этом мы должны следить за тем, в какой части массива проводится поиск. Вначале это весь массив:

low = 0

high = len(list) - 1

Каждый раз алгоритм проверяет средний элемент:

mid = (low + high) / 2 Если значение (low+high) нечетно, то Python автоматически округляет значение mid в меньшую сторону

guess = list[mid]

Если названное число было слишком мало, то переменная low обновляется соответственно:

if guess < item:

low = mid + 1

А если догадка была слишком велика, то обновляется переменная high. Полный код выглядит так:

def binary_search(list, item):

low = 0 В переменных low и high хранятся границы той части списка, в которой выполняется поиск

high = len(list)—1

while low <= high: Пока эта часть не сократится до одного элемента …

mid = (low + high)/2 … проверяем средний элемент

guess = list[mid]

if guess == item: Значение найдено

return mid

if guess > item: Много

high = mid - 1

else: Мало

low = mid + 1

return None Значение не существует

my_list = [1, 3, 5, 7, 9] А теперь протестируем функцию!

print binary_search(my_list, 3) # => 1 Вспомните: нумерация элементов начинается с 0. Второй ячейке соответствует индекс 1

print binary_search(my_list, -1) # => None "None" в Python означает "ничто". Это признак того, что элемент не найден


Упражнения

1.1 Имеется отсортированный список из 128 имен, и вы ищете в нем значение методом бинарного поиска. Какое максимальное количество проверок для этого может потребоваться?

1.2 Предположим, размер списка увеличился вдвое. Как изменится максимальное количество проверок?


Время выполнения

Каждый раз, когда мы будем рассматривать очередной алгоритм, я буду обсуждать время его выполнения. Обычно следует выбирать самый эффективный алгоритм, будь то оптимизация по времени или памяти.

Вернемся к бинарному поиску. Сколько времени сэкономит его применение? В первом варианте мы последовательно проверяли каждое число, одно за другим. Если список состоит из 100 чисел, может потребоваться до 100 попыток. Для списка из 4 миллиардов чисел потребуется до 4 миллиардов попыток. Таким образом, максимальное количество попыток совпадает с размером списка. Такое время выполнения называется линейным.

С бинарным поиском дело обстоит иначе. Если список состоит из 100 элементов, потребуется не более 7 попыток. Для списка из 4 миллиардов элементов потребуется не более 32 попыток. Впечатляет, верно? Бинарный поиск выполняется за логарифмическое время. В следующей таблице приводится краткая сводка результатов.

Время выполнения алгоритмов поиска


«O-большое»

Специальная нотация «O-большое» описывает скорость работы алгоритма. Зачем вам это? Время от времени вам придется использовать чужие алгоритмы, а потому неплохо было бы понимать, насколько быстро или медленно они работают. В этом разделе я объясню, что представляет собой «O-большое», и приведу список самых распространенных вариантов времени выполнения для некоторых алгоритмов.


Время выполнения алгоритмов растет с разной скоростью

Боб пишет алгоритм поиска для NASA. Его алгоритм заработает, когда ракета будет подлетать к Луне, и поможет вычислить точку посадки.

Это один из примеров того, как время выполнения двух алгоритмов растет с разной скоростью. Боб пытается выбрать между простым и бинарным поиском. Его алгоритм должен работать быстро и правильно. С одной стороны, бинарный поиск работает быстрее. У Боба есть всего 10 секунд, чтобы выбрать место посадки; если он не уложится в это время, то момент для посадки будет упущен. С другой стороны, простой поиск пишется проще и вероятность ошибок в нем ниже… Конечно, Боб совершенно не хочет допустить ошибку в коде посадки ракеты. И тогда для пущей уверенности Боб решает измерить время выполнения обоих алгоритмов для списка из 100 элементов.

Допустим, проверка одного элемента занимает 1 миллисекунду (мс). При простом поиске Бобу придется проверить 100 элементов, поэтому поиск зай­мет 100 мс. С другой стороны, при бинарном поиске достаточно проверить всего 7 элементов (log2100 равен приблизительно 7), а поиск займет 7 мс. Но реальный список может содержать более миллиарда элементов. Сколько времени в таком случае потребуется для выполнения простого поиска? А при бинарном поиске? Обязательно ответьте на оба вопроса, прежде чем продолжить чтение.

Время выполнения простого и бинарного поиска для списка из 100 элементов

Боб проводит бинарный поиск с 1 миллиардом элементов, и на это уходит 30 мс (log21 000 000 000 равен приблизительно 30). «32 мс! — думает Боб. — Бинарный поиск в 15 раз быстрее простого, потому что простой поиск для 100 элементов занял 100 мс, а бинарный поиск занял 7 мс. Значит, простой поиск займет 30 × 15 = 450 мс, верно? Гораздо меньше отведенных 10 секунд». И Боб выбирает простой поиск. Верен ли его выбор?

Нет, Боб ошибается. Глубоко ошибается. Время выполнения для простого поиска с 1 миллиардом элементов составит 1 миллиард миллисекунд, а это 11 дней! Проблема в том, что время выполнения для бинарного и простого поиска растет с разной скоростью.

Время выполнения растет с совершенно разной скоростью!

Другими словами, с увеличением количества элементов бинарный поиск занимает чуть больше времени. А простой поиск займет гораздо больше времени. Таким образом, с увеличением списка бинарный список внезапно начинает работать гораздо быстрее простого. Боб думал, что бинарный поиск работает в 15 раз быстрее простого, но это не так. Если список состоит из 1 миллиарда элементов, бинарный поиск работает приблизительно в 33 миллиона раз быстрее. Вот почему недостаточно знать, сколько времени должен работать алгоритм, — необходимо знать, как возрастает время выполнения с ростом размера списка. Здесь-то вам и пригодится «O-большое».

«O-большое» описывает, насколько быстро работает алгоритм. Предположим, имеется список размера n. Простой поиск должен проверить каждый элемент, поэтому ему придется выполнить n операций. Время выполнения «O-большое» имеет вид O(n). Постойте, но где же секунды? А их здесь нет — «O-большое» не сообщает скорость в секундах, а позволяет сравнить количество операций. Оно указывает, насколько быстро возрастает время выполнения алгоритма.

А теперь другой пример. Для проверки списка размером n бинарному поиску потребуется log n операций. Как будет выглядеть «O-большое»? O(log n). В общем случае «O-большое» выглядит так:

Как записывается «O-большое»

Такая запись сообщает количество операций, которые придется выполнить алгоритму. Она называется «O-большое», потому что перед количеством операций ставится символ «O» (а большое — потому что в верхнем регистре).

Теперь рассмотрим несколько примеров. Попробуйте самостоятельно оценить время выполнения этих алгоритмов.


Наглядное представление «O-большое»

Чтобы повторить следующий практический пример, достаточно иметь несколько листков бумаги и карандаш. Допустим, вы должны построить сетку из 16 квадратов.

Как должен выглядеть хороший алгоритм для построения этой сетки?


Алгоритм 1

Как вариант можно нарисовать 16 квадратов, по одному за раз. Напоминаю: «O-большое» подсчитывает количество операций. В данном примере рисование квадрата считается одной операцией. Нужно нарисовать 16 квадратов. Сколько операций по рисованию одного квадрата придется выполнить?

Сетка рисуется по одному квадрату

Чтобы нарисовать 16 квадратов, потребуется 16 шагов. Как выглядит время выполнения этого алгоритма?


Алгоритм 2

А теперь попробуем иначе. Сложите лист пополам.

На этот раз операцией считается сложение листка. Получается, что одна операция создает сразу два прямоугольника!

Сложите бумагу еще раз, а потом еще и еще.

Разверните листок после четырех сложений — получилась замечательная сетка! Каждое сложение удваивает количество прямоугольников. За 4 операции вы создали 16 прямоугольников!

Построение сетки за 4 сложения

При каждом складывании количество прямоугольников увеличивается вдвое, так что 16 прямоугольников строятся за 4 шага. Как записать время выполнения этого алгоритма? Напишите время выполнения обоих алгоритмов, прежде чем двигаться дальше.

Ответы: алгоритм 1 выполняется за время O(n), а алгоритм 2 — за время O(log n).


«O-большое» определяет время выполнения в худшем случае

Предположим, вы используете простой поиск для поиска фамилии в телефонной книге. Вы знаете, что простой поиск выполняется за время O(n), то есть в худшем случае вам придется просмотреть каждую без исключения запись в телефонной книге. Но представьте, что искомая фамилия начинается на букву «А» и этот человек стоит на самом первом месте в вашей телефонной книге. В общем, вам не пришлось просматривать все записи — вы нашли нужную фамилию с первой попытки. Отработал ли алгоритм за время O(n)? А может, он занял время O(1), потому что результат был получен с первой попытки?

Простой поиск все равно выполняется за время O(n). Просто в данном случае вы нашли нужное значение моментально; это лучший возможный случай. Однако «O-большое» описывает худший возможный случай. Фактически вы утверждаете, что в худшем случае придется просмотреть каждую запись в телефонной книге по одному разу. Это и есть время O(n). И это дает определенные гарантии — вы знаете, что простой поиск никогда не будет работать медленнее O(n).


примечание

Наряду с временем худшего случая также полезно учитывать среднее время выполнения. Тема худшего и среднего времени выполнения обсуждается в главе 4.


Типичные примеры «O-большого»

Ниже перечислены пять разновидностей «O-большого», которые будут встречаться вам особенно часто, в порядке убывания скорости выполнения:

• O(log n), или логарифмическое время. Пример: бинарный поиск.

• O(n), или линейное время. Пример: простой поиск.

• O(n* log n). Пример: эффективные алгоритмы сортировки (быстрая сортировка — но об этом в главе 4).

• O(n2). Пример: медленные алгоритмы сортировки (сортировка выбором — см. главу 2).

• O(n!). Пример: очень медленные алгоритмы (задача о коммивояжере — о ней будет рассказано в следующем разделе).

Предположим, вы снова строите сетку из 16 квадратов, и вы можете выбрать для решения этой задачи один из 5 алгоритмов. При использовании первого алгоритма сетка будет построена за время O(log n). В секунду выполняются до 10 операций. С временем O(log n) для построения сетки из 16 квадратов потребуются 4 операции (log 16 равен 4). Итак, сетка будет построена за 0,4 секунды. А если бы было нужно построить 1024 квадрата? На это бы потребовалось log 1024 = 10 операций, или 1 секунда. Напомню, что эти числа получены при использовании первого алгоритма.

Второй алгоритм работает медленнее: за время O(n). Для построения 16 прямо­угольников потребуется 16 операций, а для построения 1024 прямоугольников — 1024 операции. Сколько это составит в секундах?

Ниже показано, сколько времени потребуется для построения сетки с остальными алгоритмами, от самого быстрого до самого медленного:

Существуют и другие варианты времени выполнения, но эти пять встречаются чаще всего.

Помните, что эта запись является упрощением. На практике «O-большое» не удается легко преобразовать в количество операций с такой точностью, но пока нам хватит и этого. Мы еще вернемся к «O-большому» в главе 4, после рассмотрения еще нескольких алгоритмов. А пока перечислим основные результаты:

• Скорость алгоритмов измеряется не в секундах, а в темпе роста количества операций.

• По сути формула описывает, насколько быстро возрастает время выполнения алгоритма с увеличением размера входных данных.

• Время выполнения алгоритмов выражается как «O-большое».

• Время выполнения O(log n) быстрее O(n), а с увеличением размера списка, в котором ищется значение, оно становится намного быстрее.


Упражнения

Приведите время выполнения «O-большое» для каждого из следующих сценариев.

1.3 Известна фамилия, нужно найти номер в телефонной книге.

1.4 Известен номер, нужно найти фамилию в телефонной книге. (Подсказка: вам придется провести поиск по всей книге!)

1.5 Нужно прочитать телефоны всех людей в телефонной книге.

1.6 Нужно прочитать телефоны всех людей, фамилии которых начинаются с буквы «А». (Вопрос с подвохом! В нем задействованы концепции, которые более подробно рассматриваются в главе 4. Прочитайте ответ — скорее всего, он вас удивит!)


Задача о коммивояжере

Наверное, после прочтения предыдущего раздела вы подумали: «Уж мне-то точно не попадется алгоритм с временем O(n!)» Ошибаетесь, и я это сейчас докажу! Мы рассмотрим алгоритм с очень, очень плохим временем выполнения. Это известная задача из области теории вычислений, в которой время выполнения растет с просто ужасающей скоростью, и некоторые очень умные люди считают, что с этим ничего не поделать. Она называется задачей о коммивояжере.

Это коммивояжер.

Он должен объехать 5 городов.

Коммивояжер хочет побывать в каждом из 5 городов так, чтобы при этом проехать минимальное общее расстояние. Одно из возможных решений: нужно перебрать все возможные комбинации порядка объезда городов.

Все расстояния суммируются, после чего выбирается путь с кратчайшим расстоянием. Для 5 городов можно создать 120 перестановок, поэтому решение задачи для 5 городов потребует 120 операций. Для 6 городов количество операций увеличивается до 720 (существуют 720 возможных перестановок). А для 7 городов потребуется уже 5040 операций!

Количество операций стремительно растет

В общем случае для вычисления результата при n элементах потребуется n! (n-факториал) операций. А значит, время выполнения составит O(n!) (такое время называется факториальным). При любом сколько-нибудь серьезном размере списка количество операций будет просто огромным. Скажем, если вы попытаетесь решить задачу для 100+ городов, сделать это вовремя не удастся — Солнце погаснет раньше.

Какой ужасный алгоритм! Значит, коммивояжер должен найти другое решение, верно? Но у него ничего не получится. Это одна из знаменитых нерешенных задач в области теории вычислений. Для нее не существует известного быстрого алгоритма, и ученые считают, что найти более эффективный алгоритм для этой задачи в принципе невозможно. В лучшем случае для нее можно поискать приближенное решение; за подробностями обращайтесь к главе 10.

И последнее замечание: если у вас уже есть опыт программирования, почитайте о бинарных деревьях поиска! Эти структуры данных кратко описаны в последней главе.


Шпаргалка

• Бинарный поиск работает намного быстрее простого.

• Время выполнения O(log n) быстрее O(n), а с увеличением размера списка, в котором ищется значение, оно становится намного быстрее.

• Скорость алгоритмов не измеряется в секундах.

• Время выполнения алгоритма описывается ростом количества операций.

• Время выполнения алгоритмов выражается как «O-большое».

Загрузка...