11. Что дальше?

В этой главе

• Приводится краткий обзор 10 алгоритмов, которые не рассматривались в книге. Вы узнаете, для чего нужны эти алгоритмы.

• Я порекомендую книги, которые стоит читать дальше в зависимости от того, какие темы представляют интерес для вас.

Деревья

Вернемся к примеру с бинарным поиском. Когда пользователь вводит свое имя на сайте Facebook, сайт должен проверить содержимое большого массива, чтобы узнать, существует ли пользователь с таким именем. Мы выяснили, что для нахождения значения в массиве быстрее всего воспользоваться бинарным поиском. Однако здесь возникает проблема: каждый раз, когда на сайте регистрируется новый пользователь, придется заново сортировать массив, потому что бинарный поиск работает только с отсортированными массивами. Насколько удобнее было бы вставить пользователя в правильную ячейку массива, чтобы потом его не пришлось сортировать заново! Именно эта идея заложена в основу структуры данных бинарного дерева поиска.

Бинарное дерево поиска выглядит так:

Для каждого узла все узлы левого поддерева содержат меньшие значения, а все узлы правого поддерева — большие значения.

Предположим, вы ищете узел Maggie. Поиск начинается с корневого узла.

Строка Maggie идет после David, поэтому идем направо.

Строка Maggie предшествует Manning, поэтому идем налево.

Мы нашли узел Maggie! В целом процедура поиска напоминает бинарный поиск. Поиск элемента в бинарном дереве поиска в среднем выполняется за время O(log n), а в худшем случае — за время O(n). Поиск в отсортированном массиве выполняется за время O(log n) в худшем случае — казалось бы, отсортированный массив эффективнее. Однако бинарное дерево поиска в среднем работает намного быстрее при удалении и вставке элементов.

У бинарных деревьев поиска есть и свои недостатки: во-первых, они не поддерживают произвольный доступ. Вы не сможете потребовать: «Выдайте мне i-й элемент этого дерева». Кроме того, в таблице приведено среднее время выполнения операций; оно зависит от сбалансированности дерева. Допустим, ваше дерево не сбалансировано, как на следующем рисунке.

Видите, как дерево перекошено вправо? Эффективность такого дерева оставляет желать лучшего, потому что это дерево не сбалансировано. Существуют специальные бинарные деревья поиска, способные к самобалансировке (как, например, красно-черные деревья).

Где же используются бинарные деревья поиска? B-деревья, особая разновидность бинарных деревьев, обычно используются для хранения информации в базах данных.

Если вас интересуют базы данных или более сложные структуры данных, поищите информацию по следующим темам:

• в-деревья;

• красно-черные деревья;

• кучи;

• скошенные (splay) деревья.


Инвертированные индексы

Перед вами сильно упрощенное объяснение того, как работает поисковая система. Допустим, имеются три веб-страницы с простым содержимым.

Построим хеш-таблицу для этого содержимого.

Ключами хеш-таблицы являются слова, а значения указывают, на каких страницах встречается каждое слово. Теперь предположим, что пользователь ищет слово hi. Посмотрим, на каких страницах это слово встречается.

Ага, слово встречается на страницах А и B. Выведем эти страницы в результатах поиска. Или предположим, что пользователь ищет слово there. Вы знаете, что это слово встречается на страницах A и C. Несложно, верно? Это очень полезная структура данных: хеш-таблица, связывающая слова с местами, в которых эти слова встречаются. Такая структура данных, называемая инвертированным индексом, часто используется для построения поисковых систем. Если вас интересует область поиска, эта тема станет хорошей отправной точкой для дальнейшего изучения.


Преобразование Фурье

Преобразование Фурье — действительно выдающийся алгоритм: великолепный, элегантный и имеющий миллион практических применений. Лучшая аналогия для преобразования Фурье приводится на сайте Better Explained (отличный веб-сайт, на котором просто объясняется математическая теория): если у вас есть коктейль, преобразование Фурье сообщает, из каких ингредиентов он состоит[5]. Или для заданной песни преобразование разделяет ее на отдельные частоты.

Оказывается, эта простая идея находит множество практических применений. Например, если песню можно разложить на частоты, вы можете усилить тот диапазон, который вас интересует, — скажем, усилить низкие частоты и приглушить высокие. Преобразование Фурье прекрасно подходит для обработки сигналов. Также оно может применяться для сжатия музыки: сначала звуковой файл разбивается на составляющие. Преобразование Фурье сообщает, какой вклад вносит каждая составляющая в музыку, что позволяет исключить несущественные составляющие. Собственно, именно так работает музыкальный формат MP3!

Музыка — не единственный вид цифровых сигналов. Графический формат JPG также использует сжатие и работает по тому же принципу. Преобразование Фурье также применяется для прогнозирования землетрясений и анализа ДНК.

С его помощью можно построить аналог Shazam — приложение, которое находит песни по отрывкам. Преобразование Фурье очень часто применяется на практике. Почти наверняка вы с ним еще столкнетесь!


Параллельные алгоритмы

Следующие три темы связаны с масштабируемостью и обработкой больших объемов данных. Когда-то компьютеры становились все быстрее и быстрее. Если вы хотели, чтобы ваш алгоритм работал быстрее, можно было подождать несколько месяцев и запустить программу на более мощном компьютере. Но сейчас этот период подошел к концу. Современные компьютеры и ноутбуки оснащаются многоядерными процессорами. Чтобы алгоритм заработал быстрее, необходимо преобразовать его в форму, подходящую для параллельного выполнения сразу на всех ядрах!

Рассмотрим простой пример. Лучшее время выполнения для алгоритма сортировки равно приблизительно O(n log n). Известно, что массив невозможно отсортировать за время O(n), если только не воспользоваться параллельным алгоритмом! Существует параллельная версия быстрой сор­тировки, которая сортирует массив за время O(n).

Параллельный алгоритм трудно разработать. И так же трудно убедиться в том, что он работает правильно, и понять, какой прирост скорости он обеспечивает. Одно можно заявить твердо: выигрыш по времени не линеен. Следовательно, если процессор вашего компьютера имеет два ядра вместо одного, из этого не следует, что ваш алгоритм по волшебству заработает вдвое быстрее. Это объясняется несколькими причинами.

• Затраты ресурсов на управление параллелизмом — допустим, нужно отсортировать массив из 1000 элементов. Как разбить эту задачу для выполнения на двух ядрах? Выделить каждому ядру 500 элементов, а затем объединить два отсортированных массива в один большой отсор­тированный массив? Слияние двух массивов требует времени.

• Распределение нагрузки — допустим, необходимо выполнить 10 задач, и вы назначаете каждому ядру 5 задач. Однако ядру A достаются все простые задачи, поэтому оно выполняет свою работу за 10 секунд, тогда как ядро B справится со сложными задачами только за минуту. Это означает, что ядро A целых 50 секунд простаивает, пока ядро B выполняет всю работу! Как организовать равномерное распределение работы, чтобы оба ядра трудились с одинаковой интенсивностью?

Если вас интересует теоретическая сторона производительности и масштабируемости, возможно, параллельные алгоритмы — именно то, что вам нужно!


MapReduce

Одна разновидность параллельных алгоритмов в последнее время становится все более популярной: распределенные алгоритмы. Конечно, параллельный алгоритм удобно запустить на компьютере, если для его выполнения потребуется от двух до четырех ядер, а если нужны сотни ядер? Тогда алгоритм записывается так, чтобы он мог выполняться на множестве машин. Алгоритм MapReduce — известный представитель семейства распределенных алгоритмов. Для работы с ним можно воспользоваться популярной системой с открытым кодом Apache Hadoop.


Для чего нужны распределенные алгоритмы?

Предположим, имеется таблица с миллиардами или триллионами запи­сей и вы хотите применить к ней сложный вопрос SQL. Выполнить его в MySQL не удастся, потому что MySQL начнет «тормозить» уже после нескольких миллиардов записей. Используйте MapReduce через Hadoop!

Или, предположим, вам нужно обработать длинный список заданий. Обработка каждого задания занимает 10 секунд, всего требует обработки 1 миллион заданий. Если выполнять эту работу на одном компьютере, она займет несколько месяцев! Если бы ее можно было выполнить на 100 машинах, работа завершилась бы за несколько дней.

Распределенные алгоритмы хорошо работают в тех ситуациях, когда вам нужно выполнить большой объем работы и вы хотите сократить время ее выполнения. В основе технологии MapReduce лежат две простые идеи: функция отображения map и функция свертки reduce.


Функция map

Функция map проста: она получает массив и применяет одну функцию к каждому элементу массива. Скажем, в следующем примере происходит удваивание каждого элемента в массиве:

>>> arr1 = [1, 2, 3, 4, 5]

>>> arr2 = map(lambda x: 2 * x, arr1)

[2, 4, 6, 8, 10]

Массив arr2 теперь содержит значения [2, 4, 6, 8, 10] — все элементы arr1 увеличились вдвое! Удвоение выполняется достаточно быстро. Но представьте, что выполнение применяемой функции требует больше времени. Взгляните на следующий псевдокод:

>>> arr1 = # Список URL

>>> arr2 = map(download_page, arr1)

Имеется список URL-адресов, нужно загрузить каждую страницу и сохранить содержимое в arr2. Для каждого адреса загрузка занимает пару секунд. Для 1000 адресов потребуется пара часов! А теперь представьте, что у вас имеется 100 машин и map автоматически распределяет работу между ними. Тогда в любой момент будут загружаться сразу 100 страниц одновременно, и работа пойдет намного быстрее!


Функция reduce

Функция reduce иногда сбивает людей с толку. Идея заключается в том, что весь список элементов «сокращается» до одного элемента. Напомню, что функция map переходит от одного массива к другому.

С функцией reduce массив преобразуется в один элемент.

Пример:

>>> arr1 = [1, 2, 3, 4, 5]

>>> reduce(lambda x,y: x+y, arr1)

15

В данном случае все элементы в массиве просто суммируются: 1 + 2 + 3 + 4 + 5 = 15! Я не буду рассматривать свертку более подробно, потому что в Интернете хватает руководств по этой теме.

MapReduce использует эти две простые концепции для выполнения запросов на нескольких машинах. При использовании большого набора данных (миллиарды записей) MapReduce выдаст ответ за минуты, тогда как традиционной базе данных на это потребуются многие часы.


Фильтры Блума и HyperLogLog

Представьте себя на месте сайта Reddit. Когда пользователь публикует ссылку, нужно проверить, публиковалась ли эта ссылка ранее. Истории, которые еще не публиковались, считаются более ценными.

Или представьте себя на месте поискового бота Google. Обрабатывать веб-страницу нужно только в том случае, если она еще не обрабатывалась ранее. Итак, нужно проверить, обрабатывалась ли страница ранее.

Или представьте себя на месте bit.ly — сервиса сокращения URL. Пользователи не должны перенаправляться на вредоносные сайты. У вас имеется набор URL-адресов, которые считаются вредоносными. Теперь нужно выяснить, не направляется ли пользователь на URL-адрес из этого набора.

Во всех этих примерах возникает одна проблема. Имеется очень большой набор данных.

Появляется новый объект, и вы хотите узнать, содержится ли он в существующем наборе. Эта задача быстро решается при помощи хеша. Например, представьте, что Google создает большой хеш, ключами которого являются все обработанные страницы.

Как узнать, обрабатывался ли сайт adit.io? Нужно заглянуть в хеш.

У adit.io имеется свой ключ в хеше, а значит, адрес уже обрабатывался. Среднее время обращения к элементам в хеш-таблице составляет O(1). Таким образом, вы узнали о том, что страница adit.io уже проиндексирована за постоянное время. Неплохо!

Вот только этот хеш получится просто огромным. Google индексирует триллионы веб-страниц. Если хеш содержит все URL-адреса, индексируемые Google, он займет слишком много места. У Reddit и bit.ly возникает аналогичная проблема. Сталкиваясь с такими объемами данных, приходится действовать более изобретательно!


Фильтры Блума

Для решения проблемы можно воспользоваться вероятностными структурами данных, которые называются фильтрами Блума. Они дают ответ, который может оказаться ложным, но с большой вероятностью является правильным. Вместо того чтобы обращаться к хешу, вы спрашиваете у фильтра Блума, обрабатывался ли этот URL-адрес ранее. Хеш-таблица даст точный ответ. Фильтр Блума дает ответ, правильный с высокой вероятностью:

• возможны ложно-положительные срабатывания. Фильтр скажет: «Этот сайт уже обрабатывался», хотя этого не было;

• ложно-отрицательные срабатывания исключены. Если фильтр утверждает, что сайт не обрабатывался, вы можете быть в этом уверены.

Фильтры Блума хороши тем, что занимают очень мало места. Хеш-таблице пришлось бы хранить все URL-адреса, обрабатываемые Google, а фильтру Блума это не нужно. Фильтры Блума очень удобны тогда, когда не нужно хранить точный ответ (как во всех приведенных примерах). Например, bit.ly может сказать: «Мы полагаем, что сайт может оказаться вредоносным, будьте особенно внимательны».


HyperLogLog

Примерно так же действует другой алгоритм, который называется HyperLogLog. Предположим, Google хочет подсчитать количество уникальных поисков, выполненных пользователями. Или Amazon хочет подсчитать количество уникальных предметов, просмотренных пользователями за сегодняшний день. Для получения ответов на эти вопросы потребуется очень много места! Так, в примере с Google придется вести журнал всех уникальных вариантов поиска. Когда пользователь что-то ищет, вы сначала проверяете, присутствует ли условие в журнале, и если нет, добавляете его. Даже для одного дня этот журнал получится гигантским.

HyperLogLog аппроксимирует количество уникальных элементов в множестве. Как и фильтры Блума, он не дает точного ответа, но выдает достаточно близкий результат с использованием малой части памяти, которую обычно занимает такая задача.

Если вы используете большие объемы данных и вас устраивают приближенные ответы — воспользуйтесь вероятностными алгоритмами!


Алгоритмы SHA

Помните процедуру хеширования из главы 5? На всякий случай освежу вашу память: имеется ключ, вы хотите поместить связанное с ним значение в массив.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Элемент, в котором размещается значение, определяется хеш-функцией.

Значение сохраняется в соответствующей позиции массива.

Хеширование позволяет выполнять поиск с постоянным временем. Когда вам потребуется узнать значение, связанное с ключом, вы снова применяете хеш-функцию, и она за время O(1) сообщает, какую позицию следует проверить.

Хеш-функция должна обеспечивать достаточно равномерное распределение. Итак, хеш-функция получает строку и возвращает номер ячейки, соответствующий этой строке.


Сравнение файлов

Одну из разновидностей хеш-функций составляет алгоритм SHA (Secure Hash Algorithm). Он получает строку и возвращает хеш-код этой строки.

Возможно, терминология не настолько проста, насколько хотелось бы. Алгоритм SHA — хеш-функция; эта функция генерирует хеш-код, который представляет собой короткую строку. Хеш-функция для хеш-таблиц преобразует строку в индекс массива, тогда как SHA преобразует строку в другую строку.

Для каждой строки алгоритм SHA генерирует свой уникальный хеш-код.


примечание

Хеш-коды SHA достаточно длинные. Здесь приводится только начало.

Алгоритм SHA позволяет определить, совпадают ли два файла. Такая возможность особенно полезна для очень больших файлов. Допустим, у вас имеется 4-гигабайтный файл и вы хотите проверить, хранится ли у вашего друга точно такой же файл. Вам не придется пересылать большой файл по электронной почте; вместо этого можно вычислить хеш-коды SHA двух файлов и сравнить их.


Проверка паролей

Алгоритм SHA также может использоваться для сравнения строк при отсутствии информации об исходной строке. Например, только представьте, что сервис Gmail атакован хакерами! Ваш пароль стал добычей злоумышленников? А вот и нет. Google хранит не исходный пароль, а только хеш-код пароля по алгоритму SHA! Когда вы вводите пароль, Google хеширует его и сравнивает результат с хеш-кодом, хранящимся в базе данных.

Сравниваются только хеш-коды — хранить пароль не нужно! Алгоритм SHA очень часто используются для хеширования паролей. Хеширование является односторонним: вы можете получить хеш-код строки…

…но не сможете восстановить исходную строку по хеш-коду:

Это означает, что даже если злоумышленник похитит хеш-коды SHA с серверов Gmail, он не сможет по ним восстановить исходные пароли! Пароль можно преобразовать в хеш, но не наоборот.

Под термином SHA скрывается целое семейство алгоритмов: SHA-0, SHA-1, SHA-2 и SHA-3. На момент написания книги в алгоритмах SHA-0 и SHA-1 были обнаружены слабости. Если вы применяете алгоритм SHA для хеширования паролей, выбирайте SHA-2 или SHA-3. В настоящее время «золотым стандартом» хеширования паролей считается функция bcrypt (хотя идеальной защиты не бывает).


Локально-чувствительное хеширование

У хеширования SHA есть еще одна важная особенность: оно является локально-нечувствительным. Предположим, имеется строка, для которой генерируется хеш-код:

Если изменить в строке всего один символ, а потом сгенерировать хеш заново, строка полностью изменяется!

И это хорошо, потому что сравнение хешей не позволит атакующему определить, насколько он близок к взлому пароля.

Иногда требуется обратный результат: локально-чувствительная функция хеширования. Здесь на помощь приходит алгоритм Simhash. При незначительном изменении строки Simhash генерирует хеш-код, который почти не отличается от исходного. Это позволяет сравнивать хеш-коды и определять, насколько похожи две строки, — весьма полезная возможность!

• Google использует Simhash для выявления дубликатов в процессе индексирования.

• Преподаватель может использовать Simhash для обнаружения плагиата (копирования рефератов из Интернета).

• Scribd позволяет пользователям загружать документы или книги, чтобы они стали доступны для других пользователей. Но Scribd не хочет, чтобы пользователи размещали информацию, защищенную авторским правом! С помощью Simhash сайт может обнаружить, что отправленная информация похожа на книгу о Гарри Поттере, и при обнаружении сходства автоматически запретить ее размещение.

Simhash используется для выявления сходства между фрагментами текста.


Обмен ключами Диффи—Хеллмана

Алгоритм Диффи—Хеллмана заслуживает упоминания, потому что он изящ­но решает давно известную задачу. Как зашифровать сообщение так, чтобы его мог прочитать только тот человек, которому адресовано сообщение?

Проще всего определить подстановочный шифр: a = 1, b = 2 и т.д. Если после этого я отправлю вам сообщение «4,15,7», вы сможете преобразовать его в «d,o,g». Но чтобы эта схема сработала, необходимо согласовать шифр между сторонами. Договориться о шифре по электронной почте невозможно, потому что злоумышленник может перехватить сообщение, узнать шифр и расшифровать сообщения. Даже если передать шифр при личной встрече, злоумышленник может угадать шифр, если он достаточно прост. Значит, шифр придется ежедневно менять. Но тогда нам придется ежедневно проводить личные встречи для изменения шифра!

Даже если вам удастся ежедневно изменять шифр, подобные простые шифры достаточно легко взламываются методом грубой силы. Допустим, я вижу сообщение «9,6,13,13,16 24,16,19,13,5». Я предполагаю, что при шифровании используется подстановка a = 1, b = 2 и т.д.

Бессмыслица. Пробуем a = 2, b = 3 и т.д.

Сработало! Подобные простые шифры взламываются достаточно легко. Во Вторую мировую войну в Германии использовался намного более сложный шифр, но и он был взломан.

Алгоритм Диффи—Хеллмана решает обе проблемы:

• знание шифра обеими сторонами не обязательно. Следовательно, им не придется встречаться и согласовывать шифр;

• расшифровать зашифрованные сообщения чрезвычайно сложно.

Алгоритм Диффи—Хеллмана использует два ключа: открытый и закрытый. Открытый ключ известен обеим сторонам. Его можно опубликовать на сайте, отправить электронной почтой друзьям и вообще сделать с ним все, что вам заблагорассудится. Его не нужно скрывать. Когда другая сторона захочет отправить вам сообщение, она зашифрует его с применением открытого ключа. Зашифрованное сообщение можно расшифровать только с закрытым ключом. При условии, что вы являетесь единственным владельцем закрытого ключа, никто другой расшифровать сообщение не сможет!

Алгоритм Диффи—Хеллмана продолжает применяться на практике вместе с его наследником RSA. Если вы интересуетесь криптографией, алгоритм Диффи—Хеллмана станет хорошей отправной точкой: он элегантен и не особо сложен.


Линейное программирование

Самое лучшее я приберег напоследок. Линейное программирование — одна из самых интересных областей, которые мне известны.

Линейное программирование используется для максимизации некоторой характеристики при заданных ограничениях. Предположим, ваша компания выпускает два продукта: рубашки и сумки. На рубашку требуется 1 м ткани и 5 пуговиц. На изготовление сумки необходимо 2 м ткани и 2 пуговицы. У вас есть 11 м ткани и 20 пуговиц. Рубашка приносит прибыль $2, а сумка — $3. Сколько рубашек и сумок следует изготовить для получения максимальной прибыли?

Здесь мы пытаемся максимизировать прибыль, а ограничения определяют количество имеющихся материалов.

Другой пример: вы политик, пытающийся получить максимальное количество голосов. Исследования показали, что на каждый голос жителя Сан-Франциско требуется примерно час работы (маркетинг, исследования и т.д.), а на каждый голос жителя Чикаго — 1,5 часа. Вам нужны голоса как минимум 500 жителей Сан-Франциско и как минимум 300 жителей Чикаго. В вашем распоряжении 50 дней. Кроме того, затраты на жителя Сан-Франциско составляют $2, а на жителя Чикаго — $1. Ваш бюджет составляет $1500. Какое максимальное количество голосов вы сможете получить (Сан-Франциско+Чикаго)?

На этот раз вы стремитесь к максимуму голосов при ограничениях по времени и деньгам.

Возможно, вы думаете: «В этой книге много говорилось о вопросах оптимизации. Как они связаны с линейным программированием?» Все алгоритмы, работающие с графами, могут быть реализованы средствами линейного программирования. Линейное программирование — намного более общая область, а задачи с графами составляют ее подмножество.

В линейном программировании используется симплекс-метод. Этот алгоритм достаточно сложен, поэтому я не привожу его в книге. Если вы интересуетесь задачами оптимизации, поищите информацию о линейном программировании!


Эпилог

Надеюсь, этот краткий обзор показал, как много вам еще предстоит узнать. Я считаю, что лучший способ узнать что-то — найти тему, которая вас интересует, и изучить ее. Надеюсь, эта книга закладывает достаточно надежную основу для этого.

5 Kalid, «An Interactive Guide to the Fourier Transform,» Better Explained, http://mng.bx/874X.

Загрузка...