Время стало одним из главных завоеваний научной революции XVII века. Гюйгенс первым создал часы, которые были достаточно точными, чтобы служить измерительным инструментом. Его проект маятниковых часов является великолепным симбиозом геометрии, физики и механики.
Париж дал Гюйгенсу все, о чем тот мечтал. Пятнадцать лет ученый активно работал в одном из главных государственных научных центров, но платой за такую удачу стала потеря душевного равновесия. Однажды в январе 1670 года он сильно замерз и почувствовал, что заболевает. Сначала недомогание сочли обычной простудой. Однако вскоре оказалось, что заболевание имеет более глубокие корни: пострадало не только тело Гюйгенса, но и его разум. Месяц спустя ученого навестил Франсис Вернон, секретарь британского посольства. Он обнаружил исследователя в кровати, повсюду были разбросаны рукописи. Это были работы, которые он не мог закончить десятилетиями. Вернон заметил у Гюйгенса пугающие симптомы:
«Его слабость и бледность лица ясно показывали, до какой степени болезнь подорвала его здоровье. Но дело было не только в этом, я увидел нечто худшее, что нельзя узреть ни одним глазом и почувствовать ни одним органом чувств. Это было разложение духа, огромная потребность в отдыхе, которую плохо понимали и он сам, и те, кто занимался его состоянием. Не зная, чего ожидать, он приготовился к худшему».
Гюйгенс, убежденный в скорой смерти, собрал все свои самые ценные открытия и попросил Вернона передать их в Лондонское королевское общество. Этот поступок показывал, что он не очень-то доверял своим французским коллегам. Возможно, секретарь британского посла был излишне пристрастен и исказил слова Гюйгенса, но, может быть, и нет:
«Он сказал, что желал скорейшего развала Академии, потому что видел ее зараженной завистью, утверждал, что она держится только на ожидании будущих благ и полностью зависит от настроения государя и от благоволения министров. Если бы энтузиазм кого- либо из них угас, все это собрание перестало бы существовать».
Долгие недели ученый пребывал в неведении о причинах своей болезни и, казалось, находился под воздействием Сатурна — планеты, под которой он родился и которую традиционно связывают с меланхолией. Его осмотрел придворный врач Антуан Вайо, но за три столетия до изобретения антидепрессантов единственным средством в подобных ситуациях считалось избегание цельного молока, которое якобы усиливает грусть. Как только Гюйгенс почувствовал себя в состоянии перенести долгое путешествие, он покинул Францию и отправился в Гаагу, в свой старый дом, где и провел остаток зимы. В окружении семьи, среди заботы родственников и друзей, темное облако рассеялось, и к концу года у ученого вновь стал появляться вкус к жизни.
Вернувшись в Париж, Гюйгенс оказался в довольно беспокойной обстановке. В истории Нидерландов 1672 год запомнился как Год бедствий. Стране пришлось вести практически безнадежную войну на четырех фронтах: против Франции, Великобритании, Мюнстера и Кельна. Выглядывая из окна своего парижского дома, Гюйгенс слышал крики, скрип колес, голоса разгоряченных солдат, которые направлялись на его родину, чтобы завоевать ее. Свое новое сочинение, которое сам Гюйгенс считал фундаментальным, Horologium oscillatorium («Маятниковые часы»), он посвятил Людовику XIV. Многие голландцы не простили ученому этот жест. Трактат был напечатан во французских типографиях несколько месяцев спустя после начала военных действий, и научной части предшествовало воодушевленное восхваление французского монарха. Когда голландцам, проживающим в Париже, было приказано покинуть страну, для Гюйгенса было сделано исключение.
Осенью в двери Королевской библиотеки постучал молодой человек. Это был 26-летний Готфрид Вильгельм Лейбниц, который хотел изучать математику. Гюйгенс согласился обучать юношу, и так родилась дружба, в которой ученик и учитель очень скоро поменялись местами.
Для Гюйгенса наука была пространством, в котором он мог укрыться от суровости мира, но удовольствие, которое он получал от исследований, давало все больше побочных эффектов. Он больше не был подающим надежды юношей, влекомым исключительно своим любопытством, который часами в одиночку или вдвоем с братом шлифовал линзы, а астрономы и математики поощряли его, поскольку не видели в нем соперника. Профессиональные занятия наукой, управление государственной организацией, которая подчинялась королю и его министрам, сделали Гюйгенса мишенью для академических интриг и зависти. Все это было ему глубоко неприятно. К тому же в Париже он был представителем вражеской страны, получающим большое жалованье, а значит, ему постоянно следовало добиваться все новых и новых результатов, оправдывавших его положение. Зависть к Гюйгенсу и личная неприязнь стали маскироваться за подозрениями к нему как к иностранцу, возможному шпиону или еретику. В довершение ко всему в 70-е годы XVII века ученый оказался втянут в ожесточенные споры с противниками, не отличавшимися особой дипломатичностью.
Среди них был один из наиболее выдающихся членов Академии, Жиль де Роберваль, автор гипотезы, согласно которой кольца Сатурна объяснялись паром, исходившим от экватора планеты. Его описывали как человека «импульсивного, вспыльчивого, нетерпеливого в спорах». С Гюйгенсом Роберваль вел дискуссию о гравитации. Даже Роберт Гук, плодовитый и проницательный ученый, высмеивал Гюйгенса, считая, что тот хочет украсть у него первенство открытия часовой пружины. Из-за часов же у ученого возник конфликт и с придворным часовщиком Исааком Тюре, который усовершенствовал проект Гюйгенса и хотел, чтобы честь создания маятниковых часов приписывалась ему. Гюйгенсу доставлял удовольствие сам процесс исследования, он жил радостью научных открытий, но ленился публиковать свои достижения и ненавидел интриги и споры, связанные с его профессией.
В личной жизни у него тоже хватало причин для меланхолии. С годами Гюйгенс становился все более одинок. Его братья и сестра один за другим создавали собственные семьи. В 1660 году вышла замуж Сюзанна, в 1668 году — Константин, в 1674 — Лодевейк. Последнему Христиан сообщил о создании часовой пружины такими словами:
«У тебя есть прекрасный сын, а у меня дочь — открытие, прекрасное в своем роде. Она проживет долгую жизнь в компании своей старшей сестры, маятника, и брата — кольца Сатурна, как дети Эпаминонда».
Греческий главнокомандующий, о котором упоминал Гюйгенс, тоже никогда не был женат и не имел детей, из-за чего фиванцы упрекали его, говоря, что он плохо заботится о родине, если лишает государства своих потомков. Но, в отличие от Эпаминонда, Гюйгенс был обеспокоен сложившейся ситуацией. В его переписке встречаются упоминания о каких-то романтических отношениях и даже ведутся разговоры о браке, но, как это было свойственно ученому, эти разговоры так и не получили воплощения. Гюйгенс остался одинок до конца своих дней.
Если первая депрессия настигла его внезапно, то причин для ее возвращения становилось все больше. По мере того как Франция убеждалась в невозможности захватить Нидерланды, ситуация при Версальском дворе становилась все деликатнее. Предполагалось, что война станет краткой и победоносной, но как это часто бывает, жизнь откорректировала эти планы.
Отец ученого, Константин Гюйгенс, был так увлечен микроскопией, что всегда носил с собой мощное увеличительное стекло. Эта привычка появилась у него во время работы послом в Лондоне, где он познакомился с изобретателем Корнелиусом Дреббелем. Константин приложил немало усилий для распространения сочинений Антони ван Левенгука, который не знал латынь. Левенгук был самоучкой, но обладал невероятным талантом в создании микроскопов с одной линзой, диаметр которой измерялся в миллиметрах. После прочтения «Микрографии» Роберта Гука и благодаря своему любопытству, прозорливости, дисциплине он стал первым великим исследователем жизни в микроскопическом масштабе. В воде из пруда, слюне Левенгук находил мириады крошечных организмов, «зверюшек», как он их называл, которые имели весьма необычные формы. Самым известным его открытием стали сперматозоиды, и это произвело революцию в теориях о размножении живых существ. Однако Гюйгенс не мог ограничиться переводами текстов Левенгука и копированием его рисунков. Он использовал свои исследования по сферической аберрации и математические знания о преломлении, чтобы улучшить форму линз микроскопов и освещение образцов, а также наблюдал инфузории (одноклеточные организмы, живущие в воде) и бактерии.
Микроскопы, нарисованные Левенгуком.
Голландцы показали себя прекрасными учениками Симона Стевина: они открыли плотины, превратив страну в неприступный остров, и с большим искусством возводили укрепления. Понять, до какой степени эта война вызвала ненависть французов к голландцам, можно по тем следам, которые она оставила в фольклоре. Во время осады Маастрихта погиб Д’Артаньян (персонаж Дюма и капитан отряда мушкетеров, которые вдохновили писателя), а в народе появилась песня, известная до сих пор — «Aupres de та blonde» («Рядом с моей белокурой»), в которой молодая женщина оплакивает мужа, «погибшего от руки голландцев». В обществе имя Гюйгенса тесно ассоциировалось с ненавистным Оранским двором, и симпатии Людовика XIV к голландскому председателю его Академии не могли не таять. Гюйгенс смог остаться в Париже только благодаря протекции Кольбера.
В конце февраля 1676 года Константин снова выражал свое беспокойство в письме к другу: «Меня не покидает большое волнение за моего любимого брата в Париже, чья меланхолия длится уже долгое время». Неделю спустя он в отчаянии писал: «Я не знаю, что означает эта болезнь, что о ней думать. У него нет температуры, и врачи уверяют меня, что я не должен питать серьезных опасений. Но его болезнь проникла так глубоко [...]».
В марте Гюйгенс поторопился вернуться в Гаагу. На сей раз он продлил пребывание здесь как можно дольше, поскольку сомневался, стоит ли ему вообще возвращаться во Францию. Возможно, он обнаружил свои старые рабочие инструменты, с помощью которых создавал свои телескопы, и вспомнил об увлечении диоптрикой. Ученый отвлекался от своих волнений и страхов, проводя время за проектированием микроскопов.
Только в июне 1678 года Гюйгенсу удалось собрать всю силу воли, чтобы вернуться в Париж. Депрессия находила на него, как туча, нападала, как лихорадка, пропадала и сразу же возвращалась. Каждую зиму из-за холодов и нехватки света ученый переживал кризис. В начале 1681 года он снова уехал на родину и медленно там выздоравливал, уверенно заявляя: «Я не хочу оставаться во Франции, потому что там я заболевал уже три раза и боюсь, как бы не заболеть опять». Возможно, Гюйгенс почувствовал некую связь между Парижем и своим недомоганием и считал, что если вернется на берега Сены, то там и умрет. Казалось, французы тоже были заинтересованы в том, чтобы ученый как можно дольше оставался на родине. В 1683 году умер Кольбер, один из главных сторонников Гюйгенса, а два года спустя был отменен Нантский эдикт, охранявший религиозную свободу подданных-протестантов. Так закончился непростой французский период в жизни ученого.
Я посвящаю часть того немногого времени, которое мне осталось, решению задач моего любимого Архимеда.
Христиан Гюйгенс в письме Анри де Берингену
В отличие от хрупкого Христиана, его отец отличался крепчайшим здоровьем. Лишь в 80 лет он начал постепенно отходить от государственных дел, передав свое место старшему сыну. Из-за подагры Константин не мог играть на музыкальных инструментах и утешал себя, сочиняя поэму о старости, в которой, казалось, больше говорил с мертвецами («с немыми тенями», как он их называл), чем со своими друзьями. В итоге 60 лет активной деятельности, постоянной защиты интересов короля и принцев оставили после себя горький привкус, который чувствуется в эпитафии, сочиненной Гюйгенсом-старшим на смерть своей собаки: «Лучше бы (и если бы было так, мир не стал бы хуже), чтобы мой пес был жив, а умерли все великие мира сего». Теперь его волновали не вопросы государственной важности, а здоровье сына. Константин предложил Христиану должность, которую занимал при дворе Вильгельма III, но ученый чувствовал усталость от придворного рабства. В этой атмосфере интриг, где отец чувствовал себя как рыба в воде, его сын задыхался и тонул. Тогда Константин сделал так, чтобы Христиан получал часть жалованья, которое полагалось ему от Оранских.
Константин Гюйгенс до самой смерти сохранял ясность разума и умер незадолго до своего 91-го дня рождения, в страстную пятницу 1687 года. Траурный кортеж состоял из 15 карет, перекрывших все движение в Гааге. Казалось, хоронят главу государства. По завещанию дом на площади Плейн перешел старшему сыну, а Христиан переехал в Хофвик, летнюю резиденцию семьи. Там, в уединении, он переживал потерю отца. Через пять дней после переезда Гюйгенсу стало казаться, что он в ссылке:
«За это время я еще ни разу не съездил в Гаагу и не получил из города никаких новостей. Это кажется мне преддверием одинокого существования, с которым мне надо начинать сживаться».
В своем заточении Гюйгенс утешался чтением объемного бестселлера — Philosophiae naturalis principia mathematica {«Математические начала натуральной философии») Исаака Ньютона. Перед тем как передать ученому копию этого сочинения, Эдмунд Галлей предупредил его, что Ньютон осмеливался оспаривать Декарта. Но Гюйгенса мало волновало, что другие занимались его любимым хобби: «Мне не важно, что он не следует за Декартом, если при этом он не говорит всяких глупостей, например о притяжении». Ученый имел в виду действие на расстоянии, то есть возможность того, что два тела влияют друг на друга без механического взаимодействия, такого как столкновение. Гюйгенс на несколько месяцев удалился от мира. В ноябре он возобновил переписку и первым делом написал брату Константину о небольшой перемене в своем настроении:
«Я провел всю зиму в Хофвике, где на мою долю выпало несколько ужасных ночей из-за ненастья. Но в конце концов ко всему привыкаешь. [...] Мне хотелось бы посетить Оксфорд [на самом деле Кембридж), хотя бы и только для того, чтобы познакомиться с Ньютоном. Прочитав сочинение, которое он мне прислал, я остался в восхищении перед его потрясающими открытиями».
Ньютон и Гюйгенс могли придерживаться разных мнений по многим научным вопросам, но уважали друг друга. Ньютон особенно хвалил физическую геометрию Гюйгенса, его подход. Когда Ричард Бентли, выдающийся гуманист Оксфордского университета, попросил у Ньютона совета, прежде чем погрузиться в чтение его книги, тот ответил: «Если вам удастся раздобыть «Маятниковые часы» Гюйгенса, то внимательное изучение этой работы позволит вам основательно подготовиться к прочтению моей». Как свидетельствует Генри Пембертон, готовивший третье издание «Начал», Ньютон считал нидерландского ученого «самым изящным из всех современных писателей о математике и самым совершенным последователем древних».
В работе Ньютона Гюйгенс оценил великолепные математические описания, но не видел их физического значения. Например, откуда бралась сила земного притяжения? В этом смысле Гюйгенс был гораздо ближе к Декарту, который пытался объяснить ее как столкновение частиц эфира, отклоняющих тела и сближающих их. Для Христиана было немыслимо, что материя осуществляет мгновенное притяжение просто по факту своего наличия. Это походило на трюк фокусника, который потрясает волшебной палочкой, чтобы приподнять своего помощника. Любое физическое возмущение должно было передаваться посредством прямого контакта между массами, как это происходило в его теории света. Гюйгенс пишет о «Началах» со смесью восхищения и скепсиса:
«Я высоко ценю его проницательный ум и его тонкость, но считаю, что по большей части автор применяет их, чтобы прийти к ошибочной цели, изучая темы, не представляющие большой пользы, или опираясь на невероятный принцип притяжения».
Однако в этом труде Гюйгенс увидел ясное подтверждение возможностей выдающегося ума Ньютона. Он признавал, что «об этих материях не было написано ничего лучшего и более умного».
В середине июня ученый приехал в Лондон и почувствовал себя так хорошо, как никогда ранее в путешествиях за границу. За два месяца в Вестминстерском аббатстве состоялась коронация жителя Гааги Вильгельма III. В его свите, приехавшей из Нидерландов, был и брат Гюйгенса Константин. Христиан не должен был выполнять никаких государственных поручений, поэтому просто наслаждался своим пребыванием в столице. В этот раз в Грешем-колледже прошли самые необычные лекции в истории науки: по иронии судьбы Гюйгенс прочитал доклад о земном притяжении, а Ньютон — о двойном лучепреломлении в исландском шпате. Ученые много беседовали тем летом, но мы не знаем подробностей их разговоров. Впоследствии Гюйгенс кратко упоминал Лейбницу, что Ньютон рассказывал ему о «некоторых великолепных экспериментах». Ученый также постарался использовать влияние своей семьи на нового короля, чтобы помочь Ньютону занять место директора Королевского колледжа в Кембридже, но безуспешно. Кроме этого, Гюйгенс встретился с Бойлем, который принял его в своей лаборатории со всеми почестями.
После некоторого времени в Лондоне, в обществе блестящих ученых, Гюйгенсу показалась невыносимой жизнь отшельника в Хофвике. «Я не могу даже думать о том, чтобы провести зиму здесь, в этом одиночестве», — писал ученый брату Константину. Его дух метался: ученый не выносил напряженной и угодливой атмосферы академии, но и уединенная жизнь была не для него. Душа Гюйгенса не могла обрести гармонии ни в Версале, ни в голландской деревне. В конце года он предпринял еще одну попытку достичь душевного равновесия и снял квартиру в Гааге, в Нордейнде. С этого момента ученый стал проводить полгода в деревне и полгода — в городе.
В феврале 1690 года он возобновил переписку с Лейбницем и отправил тому свой «Трактат о свете». Бывший ученик отвечал, что изобрел революционный инструмент — математический анализ. Сначала Гюйгенс честно ответил, что этот метод показался ему «довольно неясным». Но все же Лейбниц смог разбудить его любопытство и даже устроил своему наставнику ускоренный курс по переписке. Однако даже после объяснений Лейбница Гюйгенс не увидел в анализе большого смысла. Ученый был в состоянии решить любую задачу, поставленную Лейбницем, с помощью геометрического подхода. В ответе на письмо французского математика Гийома Лопиталя, в котором обсуждался тот же вопрос, Гюйгенс писал: «Я не вижу необходимости в методе исчисления господина Лейбница и не считаю его таким полезным, как утверждает он сам». Однако для остальных, тех, кто не обладал виртуозностью Гюйгенса, этот новый язык, посредством которого физика выражалась вплоть до XX века, показался подарком небес. Если, используя геометрический метод, приходилось вырабатывать уникальную стратегию в зависимости от каждой задачи, то математический анализ предлагал единую технику и системный подход. Изобретение Лейбница (и Ньютона — между этими учеными развернулась настоящая война за право первенства) дало сильнейший толчок к развитию математической физики. Оно позволило легко получать результаты, для которых в противном случае необходимы были тщательные расчеты или гениальные озарения. Но то, что все считали главным достоинством нового метода, по мнению Гюйгенса, было его большим недостатком: он заявлял, что использование готовых формул нарушает связь между физической интуицией и явлениями.
Пока разум Гюйгенса оставался ясным, он продолжал питать его научное любопытство. Возможно, чтобы отдалиться от Земли, которая казалась все менее гостеприимной, в последней своей работе ученый решил заняться сферой, скрытой за облаками. В «Космотеоросе» он совершает космическое путешествие, в котором люди и их невзгоды находятся на втором плане. На страницах этого сочинения Гюйгенс подробно разбирает свои астрономические открытия, а также описывает видение мира с точки зрения физики, не упуская возможности вновь покритиковать Декарта и, наконец, отдаваясь удовольствию строить простые предположения. Ученый принял за истину, что на других планетах существует разумная жизнь, и попытался представить анатомию их обитателей и устройство их общества. Он фантазировал о животных в 15 раз крупнее слонов, которые пересекали равнины Юпитера, и о жителях Венеры, гораздо более одаренных в музыке, чем земляне. «Космотеорос» стал предвестником научной фантастики: фантазия в нем едва не переходила за границы имевшихся тогда знаний.
Книга написана в виде двух длинных писем брату Константину. Когда читаешь их, кажется, что присутствуешь при одном из разговоров, которые братья вели в юности, рассматривая небо звездными ночами в созданные ими телескопы.
Если говорить кратко, он был одним из главных украшений нашей эпохи.
Лейбниц о Гюйгенсе
Гюйгенс вернулся из Лондона с ощущением, что попрощался со всеми. В своей тетради он записал что-то вроде внутреннего диалога, в котором говорил о своих страхах:
«Тебе хотелось бы быть бессмертным? Почему бы и нет, если у тебя останется сильное и здоровое тело и сильный и здоровый рассудок? Но если старость принесет с собой физический упадок и слабоумие, разве ты не предпочтешь умереть или найти выход самостоятельно?»
В 65 лет Гюйгенс уже и не надеялся на бессмертие. Слабое здоровье отнимало у него все больше дней и часов, и ученый смирился с этим постепенным угасанием: «Я вижу, что в конце концов человек привыкает ко всему этому». Его ум, главный союзник в невзгодах, стал главным врагом исследователя: «Разум заражает все, с чем имеет дело, своей мерзкой болезнью». В марте 1695 года Гюйгенс позвал своего адвоката, чтобы составить завещание. В нем он выразил желание, чтобы Константин занялся изданием «Космотеороса», будучи уверенным, что сам не успеет опубликовать книгу. В середине весны Константин покинул дворец в Уайтхолле и пересек море, чтобы увидеться с братом в его апартаментах в Нордейнде, в Гааге. В последние дни Гюйгенс всерьез опасался потерять рассудок. Ему казалось, что его хотят отравить; у него появилась привычка наносить себе раны кусками стекла. В ночь на 9 июля ученый наконец освободился от всех тревог и волнений.
Пытаясь физически описать движение тел, Галилей столкнулся с проблемой измерения времени. Он должен был регистрировать расположение тел в каждый момент времени с достаточной точностью, чтобы затем адаптировать свои наблюдения к математическим моделям. Расстояние определялось довольно точно, но вот временная составляющая была более неуловимой. На палке можно сделать зарубки на одинаковом расстоянии друг от друга, но каким образом можно обозначить равные интервалы времени, которое мы не можем потрогать? Какие природные явления имели требуемую регулярность и могли служить точкой отсчета?
Возможно, неслучайно великие достижения древних в механике ограничивались областью статики и изучением ситуаций равновесия, в которых системы не меняются с течением времени. Историки науки долгое время пытались установить, какие часы мог использовать Галилей для формулировки первых законов о движении. Некоторые считают, что это были клепсидры, или водяные часы; другие — что поскольку ученый прекрасно играл на лютне, то для получения очень коротких и почти одинаковых промежутков времени он использовал музыку. Были и те, кто вообще ставил под сомнение тот факт, что ученый действительно проводил свои опыты, утверждая, что все открытия Галилея были плодом успешных умопостроений.
Чтобы найти любую точку Р на поверхности Земли, достаточно двух чисел. Первое получается, когда мы делим планету на несколько дисков, параллельных экватору. Каждый из них определяется при помощи угла — широты. После того как мы выбрали диск, остается установить, на какой точке его окружности находится Р. Для этого необходимо воспользоваться вторым углом, долготой. В случае с широтой естественной точкой отсчета для измерения углов служит экватор, а вот для долготы нужно назначить условную точку. Ею стал Гринвичский меридиан, который проходит от полюса к полюсу через английский городок Гринвич, рядом с Лондоном. На земном шаре с его множеством географических объектов и располагая хорошей картой потеряться довольно сложно. Во всяком случае на суше. А вот на пустой поверхности без каких-либо ориентиров, например на море, начинаются проблемы. Каким образом моряки могли понять, где они находятся, во время долгого опасного плавания?
У Земли есть естественные полюса — Северный и Южный — и экватор. Из-за ее движения для наблюдателей-землян небесные тела тоже кажутся движущимися и, таким образом, могут служить ориентирами. Измерив угол между горизонтом и Солнцем (днем) или Полярной звездой (ночью в Северном полушарии) либо Южным Крестом (ночью в Южном полушарии), можно определить широту. С долготой же надо действовать по-другому. Земля полностью оборачивается вокруг своей оси каждые 24 часа, то есть каждый час она поворачивается по часовой стрелке на 15° (24 · 15° = 360°). Мы можем начать наблюдение, когда Солнце стоит над Гринвичем (G). В этот момент там будет полдень, и для его жителей Солнце будет стоять в самой высокой точке горизонта. В каждый последующий час Гринвич будет отдаляться от этой точки на 15°. По мере вращения нашей планеты все ее точки пройдут через свой зенит (мы не будем учитывать эффект, вызванный наклоном оси). В точке А, расположенной на 15°, это произойдет через час после точки G; в точке В, на 30°, через два часа; в точке N, на 225°, через 15 часов. Таким образом, моряк, у которого есть часы, показывающие время Гринвича, сможет определить свое местонахождение. Когда Солнце достигнет самой высокой точки над линией горизонта (зенита), часы покажут разницу во времени с Гринвичем, а значит, и количество градусов, отделяющих его от этого меридиана, то есть долготу места.
В 1961 году студент Корнелльского университета Томас Сеттл в гостиной квартиры, в которой он снимал комнату, повторил опыты, описанные Галилеем в третьем дне его «Бесед». Он засек время, за которое бильярдный шар катился по наклонной плоскости, с помощью простых водяных часов, сделанных из сосуда и трубки. Собранные им данные не отклонялись и на десятую долю секунды от теоретических значений.
Но вернемся в XVII век. Развитие механики и астрономии требовало использования более точных часов. Эта проблема, имевшая важное значение для навигации, привлекла внимание и государственных деятелей, которые обычно не очень интересовались наукой. Чтобы мотивировать ученых, правители стали предлагать им щедрое вознаграждение. Корабли уже следовали по опасным торговым маршрутам, пересекали Атлантический океан, огибали Африку, чтобы попасть в Индию, но у моряков все еще не было надежной системы, с помощью которой они могли бы определить свое положение в открытом море. Суда часто терялись, их экипажи умирали от голода, цинги или гибли в кораблекрушениях. Практическим решением так называемой проблемы долготы должно было стать измерение времени посредством инструмента, который, как компас, сохранял бы свою точность, несмотря на все сложности, возникающие в пути.
Гюйгенс начал заниматься часами по той же причине, по которой до этого заинтересовался телескопами: он хотел сконструировать совершенное устройство. Для этого ученый рассмотрел задачу со всех сторон — с технической, физической и математической. Во время работы его любознательность неизбежно отвлекала его, так что Гюйгенс детально рассмотрел несколько сопутствующих вопросов. В этом проекте он применил результаты некоторых своих исследований, в частности исследование кругового движения.
В часах, которые отсчитывали часы и минуты фараонов и римских императоров, использовались природные явления, совершающиеся в регулярном ритме, такие как движение Солнца и догорание свечи, или же такие, чье постоянство помогало измерить одинаковые отрезки времени: например, пересыпание порции песка из одного сосуда в другой под действием силы тяжести. Маятниковые часы завершили переход к использованию периодических явлений, сущность которых состоит в повторении одного и того же процесса.
Найти периодическое явление — значит обнаружить в природе линейку, которая сама по себе отмечает равные временные отрезки. Хорошим примером является частота света или звука. Картину периодических явлений увенчала атомная шкала, но до XX века она была недоступна. Сегодня большая часть часов в мире следует ритму вибраций кристалла кварца, находящегося под небольшим напряжением.
Ученым XVII века приходилось в поте лица искать периодические движения. По легенде, молодой Галилей, пришедший на мессу в Пизанский собор, заметил, как раскачивается горящая лампада, подвешенная к потолку. Используя свой пульс как хронометр (еще одно более или менее периодическое природное явление), он пришел к выводу, что колебания совершались за равные промежутки времени, хотя трение воздуха и уменьшало их радиус. Галилею потребовалось несколько десятков лет, чтобы связать это открытие с часами. Как рассказывал его ученик Винченцо Вивиани, озарение пришло к ученому только на последнем году жизни:
«Помню, в один день 1641 года, когда я еще жил с ним на вилле Арчетри, ему пришла в голову идея сделать маятник с весами или пружинами [...]. Он надеялся, что естественное и довольно регулярное движение маятника восполнит любой недостаток при создании часов. Поскольку из-за слепоты он не мог рисовать и создавать нужные модели, когда его сын Винченцо приехал к нему однажды из Флоренции в Арчетри, Галилей рассказал ему о своей идее, и они долго разговаривали об этом».
Мы точно не знаем, о чем они дискутировали. Скорее всего, Винченцо Галилей постарался воплотить проект своего отца, но, видимо, механизм не работал как надо, поскольку он не обнародовал это изобретение. Гюйгенс решил положить конец спорам о первенстве открытия во введении в свое сочинение «Маятниковые часы»: «...несколько лиц желают быть изобретателями или же претендуют на эту честь... Я считаю необходимым выступить, наконец, здесь против этих несправедливых притязаний».
В чем смысл изобретения, о котором велись эти споры? Начнем с самой простой модели часов. Они состоят из барабана, на который мы наматываем веревку, привязанную к весу. Можно вставить и стрелку на ось или на диск, связанный с цилиндром посредством шестеренок. Когда мы освобождаем вес, под действием силы притяжения он упадет вниз и заставит стрелку сдвинуться. Действие этих часов будет очень коротким, так как вращение остановится, едва только вес достигнет земли или веревка полностью размотается.
РИС.1
Таким образом, первое улучшение, которое можно привнести, состоит в замедлении падения. Для этого можно воспользоваться самым простым способом торможения — трением. Но его трудно отрегулировать так, чтобы барабан поворачивался, например, ровно за одну минуту. С другой стороны, само трение способствует большому износу механизма, который не смог бы работать равномерно, поскольку очень чувствителен к таким атмосферным условиям, как температура и влажность.
В конце XIII века в часах стала использоваться новая техника, позволявшая замедлить падение веса и придать вращению барабана регулярность, — спусковой механизм. Некоторые приписывают это изобретение Виллару де Оннекуру, персонажу, окутанному легендой. Единственный источник информации о его жизни сводится к нескольким комментариям, оставленным на 30 страницах пергамента, испещренных изображениями механизмов и машин перпетуум-мобиле. Первоначально спусковой механизм состоял из зубчатого колеса, зубчатого венца и оси с двумя лопатками, на которую монтировался горизонтальный станок или балансир с двумя противовесами (см. рисунок 1). Лопатки установлены под углом примерно в 90°, то есть контактируют с венцом по одной. Венец и ось с противовесами вращаются в перпендикулярных направлениях и сталкиваются друг с другом. Вертикальная ось меняет направление вращения под воздействием последовательных ударов, которые зубцы передают лопаткам, в то время как гиря всегда двигается вниз, увлекая за собой цилиндр. Каждый удар зубца по лопатке в свою очередь моментально тормозит вращение венца и, следовательно, цилиндра.
Зубцы венца имеют одну прямую сторону и одну наклонную. Прямая сторона обеспечивает вращение оси. Ударяя по верхней лопатке, зубцы толкают ось в одном направлении, по нижней — в противоположном. Тот же удар, который отдаляет лопатку от траектории венца, ставит вторую лопатку перпендикулярно. Противовесы должны тормозить инерцию этих вращений, чтобы при ударах не терялось слишком много энергии. Спусковой механизм одновременно выполняет две функции: поддерживает ось в движении и тормозит переменными импульсами вращение барабана. Сила тяжести (и рука, которая поднимает гирю, когда веревка раскручивается полностью) дает всю энергию, в которой нуждаются часы: двигает венец и лопатки, контролирует колебание оси.
Этот искусный механизм осуществлял деление времени, диктуемое столкновениями лопаток с венцом. Но этот ритм — «тик-так» — не позволял делить время на абсолютно равные промежутки. Достаточно было того, чтобы зубцы износились (что происходило часто) или чтобы между противовесами хотя бы немного нарушилось равновесие, чтобы поворот лопаток терял равномерность. Каждый удар начинал провоцировать довольно случайное отдаление венца, сложно поддающееся регулировке. Самые лучшие часы с этой моделью спускового механизма под названием билянец, или фолио, работали с отставанием 15 минут в день.
РИС. 2
РИС.З
Модель часов Гюйгенса появилась не как попытка решить проблему несовершенного взаимодействия между двумя элементами механизма, а вводила новый элемент — маятник. По своей физической природе он дает нам чистое периодическое колебание, которое можно использовать для деления времени на равные промежутки. Маятник сообщает регулярность своего движения лопаткам и исправляет их асимметрию. Если, как думал Галилей, ширина колебаний не влияет на период, то он останется неизменным, если только не получит удары разной интенсивности от зубцов венца, которые имеют тенденцию менять размах колебаний. Маятник также позволяет сделать движение более плавным по сравнению с колебанием противовесов, уменьшая износ шестеренок.
Ориентация венца и оси меняется, но они продолжают вращаться в перпендикулярных направлениях (см. рисунок 2).
Как и в модели со спусковым механизмом, столкновение с зубцами дает маятнику энергию, которую тот теряет из-за трения с воздухом. Маятниковые часы распределяют падение тела под действием силы притяжения на регулярные интервалы. Главная проблема заключалась в том, что, в отличие от догадок Галилея, период колебания маятника зависел от его широты (см. рисунок 3).
Другими словами, чем больше угол а, тем больше времени гиря затрачивает на завершение колебания. Хотя на практике при небольших углах эта зависимость исчезает, для нормального функционирования механизм требовал широких колебаний. Гюйгенс принял вызов и решил сконструировать маятник, период которого не зависел бы от размаха колебаний.
В маятнике соотношение между вертикальным направлением действия силы притяжения, которая влечет гирю вниз, и сопротивлением веревки, которая не дает гире отдалиться дальше, чем на свою длину, заставляют его описывать дугу окружности. Таким образом, у нас есть два элемента: сила тяжести и ограничение, которое мы накладываем на естественную траекторию массы. Из этих двух элементов легче манипулировать со вторым. Пока мы можем забыть о веревке в надежде, что найдется другой способ, ограничивающий движение гири и заставляющий ее колебаться по траектории, которая не будет круговой. Например, гирю можно закрепить в хорошо смазанном тросе или катать по изогнутой поверхности. То есть, рассматривая эту ситуацию без каких-либо ограничений, можем ли мы придать гире циклическую траекторию, которую она будет проходить под действием силы тяжести и независимо от широты?
С точки зрения физики вопрос можно поставить по- другому: существует ли траектория, проходя по которой, тело затрачивает столько же времени, чтобы достигнуть самой низкой точки, как при падении, вне зависимости от того, откуда оно начало падать? Интуиция подсказывает нам, что нет. Главный герой «Моби Дика» Измаил находит ответ случайно,
На рисунке 1 показан простой маятник и главные элементы, отвечающие за его движение: вес Р, возникающий в связи с силой притяжения, и натяжение веревки Т. В классическом ньютоновом анализе вес раскладывается на сумму двух сил, одна действует перпендикулярно траектории (Рp = Р · cosα), другая — по окружности (Pt = Р · sinα). Это разделение ведет к двум уравнениям. В одном из них Рр равно натяжению (Рр= T) на двух концах колебания. Если Рр было больше T, веревка порвалась бы. Если бы оно было меньше, веревка растягивалась бы массой m. Поскольку L остается постоянной, первое уравнение ограничивает движение гири дугой окружности. Второе уравнение описывает его динамику, как оно ускоряется и тормозится, когда колебания идут по кругу: m · at = Pt = -Р · sinα (где at — круговое ускорение). Отрицательный знак появляется, так как когда а положителен (sinα тоже положителен при α < 180°), то сила направлена влево, по направлению, которое мы считаем отрицательным, и наоборот. Если мы немного разовьем выражение, то получим:
m · d²s/dt² = -m · g · sinα,
где s представляет собой расстояние, пройденное вдоль окружности (S = L · α).
d²s/dt² = g · sinα, d²s/dt² = -g · sin s/L.
Решением этого уравнения будет функция s(t), которая позволяет получить для каждого момента t положение массы s, то есть определяет ее траекторию. Обычно это непериодическая функция. Когда значение а очень мало (то есть когда L гораздо больше s), синус и угол становятся почти одинаковыми (α ≈ sin а), и уравнение упрощается:
d²s/dt² = -g · s/L.
Решение этого уравнения соответствует периодической функции:
s(t) = smax · sin(√(g/L) · t).
Чем больше угол а, тем больше отдалится значение его синуса и хуже будет периодическая апроксимация. Это расхождение называется круговым отклонением. На рисунке 2 черная кривая обозначает функцию sin α, а серая — функцию α. Видно, что они совпадают только при маленьких углах, а от 15° градусов начинается расхождение.
РИС. 1
РИС. 2
когда чистит огромную кастрюлю, в которой очищался жир кита. Он понимает, что с какой бы высоты ни падало мыло, у него всегда уходит одинаковое количество времени, чтобы дойти до дна. Какой математической модели следовал изгиб дна кастрюль «Пеко»? За двести лет до появления Измаила, в декабре 1659 года, Гюйгенс открыл, что речь шла о перевернутой циклоиде.
Циклоида была одной из наиболее хорошо изученных кривых для математиков того времени. Из-за споров вокруг нее циклоиду даже называли Еленой геометров и яблоком раздора. Говорят, что Паскаль начал заниматься этой кривой, чтобы отвлечься от зубной боли. Способ сработал, и ученый счел его знаком свыше, говорящим, что ему следует глубже изучить свойства циклоиды. И здесь на сцене опять появляется Галилей, поскольку именно он дал кривой это название, восхищенный ее «изящнейшим изгибом, так хорошо подходящим для арок мостов».
Самый простой способ нарисовать циклоиду состоит в том, чтобы отметить на окружности точку и сделать так, чтобы окружность катилась без скольжения. Траектория, по которой будет двигаться точка, и будет циклоидой (см. рисунок 4). Эта кривая имеет особые отношения с силой тяжести. В 1696 году Якоб Бернулли бросил научному сообществу вызов: если соединить две точки А и В линией и запустить по ней шар, то какую форму должна принять линия, чтобы шар затратил как можно меньше времени на то, чтобы пройти от А к В? Ответом опять была перевернутая циклоида.
РИС. 4
РИС. 5
РИС. 6
РИС. 7
РИС. 8
Гюйгенса больше всего интересовало такое свойство кривой, как ее изохронность: вне зависимости от того, с какой высоты падает тело, если оно падает по циклоиде, то всегда затратит одинаковое количество времени, чтобы дойти до нижней точки. Падение составляет половину движения маятника, потому что после того как тело достигает нижней точки, полученный импульс заставляет его вернуться наверх. Если ограничение его восхождения симметрично тому, что влияет на его падение (не учитывая трение), то тело поднимется на ту же высоту, с которой упало, и опять спустится. Таким образом, одинаковые временные промежутки падения для всех высот становятся одинаковыми промежутками восхождения. Период — это сумма двух симметричных восхождений и падений. Если время не зависит от высоты, то период не будет зависеть от ширины колебаний. Гюйгенс нашел теоретическое решение своей задачи — идеальный маятник, колебания которого происходят по циклоиде. Теперь ему надо было дополнить это решение элементами, которыми он уже располагал. Ученый перевел задачу из физической плоскости в геометрическую. Он должен был найти способ нарисовать дугу циклоиды при помощи циркуля, поскольку маятник описывает именно часть окружности. Для этого Гюйгенс начал играть с длиной веревки. Достаточно было поставить на ее пути гвоздь, чтобы, начиная с этой точки, происходило маятникообразное движение меньшей длины. Несколько гвоздей, расставленные друг за другом на разной высоте, заставили бы гирю описывать окружность все меньшего радиуса, который укорачивается следующим гвоздем и так далее (см. рисунок 5).
С математической точки зрения любую кривую можно разделить на отрезки, каждый из которых будет представлять собой приближение к очень короткой дуге окружности. Радиус каждой окружности будет зависеть от изгиба отрезка: там, где изгиб небольшой, необходимо будет расставлять ножки циркуля шире, там, где изгиб меньше, наоборот, циркуль надо будет раздвигать не так широко (см. рисунок 6).
Проделывая эту операцию на листе бумаги и отмеряя циркулем дуги окружностей, мы получим ряд дырок, которые оставит циркуль. Соединив их, мы получим еще одну кривую, связанную с первой, которая называется ее эволютой (см. рисунок 7). Гюйгенс сделал удивительное открытие: эволютой циклоиды является еще одна циклоида (см. рисунок 8).
Таким образом, если мы повесим маятник в точке С1 и разместим несколько гвоздей от С2 до С6, круговая естественная траектория веса Р будет исправлена пять раз, пока не будет направлена по циклоиде. Апроксимация будет тем лучше, чем больше гвоздей размещены вдоль циклоиды-эволюты. На практике Гюйгенс вместо гвоздей использовал две металлические пластины, которым он придал форму дуг циклоиды. Таким образом ученый мог влиять на колебание маятника, укорачивая и удлиняя веревку в зависимости от размаха колебаний.
Гюйгенс играл с природой в математические игры, чтобы получить настоящее периодическое движение там, где его не было, и это стало поворотным моментом в истории науки. Ученый писал своему старому учителю ван Схотену, делясь с ним радостью изобретения: «Без сомнения, это мое лучшее открытие».
Можно рассмотреть работу маятника Гюйгенса и с другой точки зрения. В классическом маятнике гиря очерчивает дуги окружности. На ее период, начиная с определенного угла, начинает оказывать влияние размах колебаний. Чем больше угол, тем больше период. С другой стороны, Галилей говорил, что длина веревки также влияет на время, затраченное гирей для завершения каждого цикла. Чем длиннее веревка, тем больше период. Следовательно, мы видим две противоположные тенденции. Увеличение размаха удлиняет период. Уменьшение длины веревки уменьшает его. Что произойдет, если, по мере того как увеличивается угол, веревка будет укорачиваться, и вышеупомянутые влияния компенсируют друг друга? В этом и состояла задача пластины в виде циклоиды.
Гравюра на странице 149 (ниже по тексту), взятая из первой части «Маятниковых часов», показывает полный проект часов Гюйгенса.
Колебание маятника имеет постоянный период и не зависит от размаха колебаний, передавая венцу равномерный ритм.
В то время часы Гюйгенса установили рекорд точности: ошибка была меньше одной минуты в день. Разумеется, изобретение ученого было не единственным в области часового дела. Более прозаические альтернативы вскоре затмили блеск его гениальной находки. С 1670 по 1680 год были созданы спуск с якорем и спуск Грэхема, которые были совместимы с маленькими колебаниями обычного маятника.
Я прочел его с большим удовольствием, найдя в нем множество остроумных и полезных рассуждений, достойных своего автора.
Ответ Ньютона после прочтения «Маятниковых часов» Гюйгенса
Пятая часть «Маятниковых часов» оканчивается 13 теоремами без доказательств о центробежной силе. Из них выводится, что ускорение, которое постоянно действует на тенденцию тела следовать по прямой линии и заставляет его описывать окружность, подтягивая его к своему центру, равно υ2/r (где υ — скорость тела, а r — радиус окружности). Ньютон пришел к такому же выводу, следуя другим путем, но он не опубликовал свой результат, так что эту партию выиграл Гюйгенс.
В «Маятниковых часах» содержится также небольшой трактат по геометрии. После того как ученый занялся эволютами, искушение создать их общую теорию было слишком велико, и, разумеется, Гюйгенс не мог ему не поддаться. Он разработал метод определения эволюты любой кривой и применил его к параболе, эллипсу и гиперболе, а также связал квадратуру кривых с их эволютами.
Измерение времени завладело воображением Гюйгенса, став его вторым большим наваждением. Маятниковые часы прекрасно работали в гостиных Людовика XIV, но для того чтобы помочь капитану корабля определить его положение после шторма, механизм должен быть способным переносить постоянную тряску. К сожалению, это испытание часы не прошли. Они останавливались или падали на землю, хотя их и пытались крепко привязывать к потолочной балке. Гюйгенс был очень огорчен уязвимостью маятников во время морских путешествий и пересмотрел свой подход. Зная, что хорошие часы должны управляться периодическим движением, он попробовал другой способ: вращение венца подчинялось ритму сжатия и распрямления металлической пружины, закрученной в спираль. У этой модели было еще одно преимущество: она позволяла создавать наручные часы — нечто невообразимое для того времени. Но эйфория пропала, когда при попытке запатентовать свое открытие в Лондоне Гюйгенс столкнулся с гневной реакцией Роберта Гука. Плодовитость и разносторонние интересы этого ученого вызывали удивление, но иногда служили прекрасным примером поговорки «За двумя зайцами погонишься — ни одного не поймаешь». Гук часто замечал разные научные возможности, но из-за нехватки времени или из-за того, что его знания математики не соответствовали физической интуиции, не воплощал их на деле. Однако он заявил, что изобрел часы с пружиной еще 16 лет назад, а открытие Гюйгенса «не стоило и пенни». Нидерландский ученый был шокирован тоном оппонента и с досадой жаловался на «эгоистические уверения» Гука, что «все изобрел только он».
Портрет Г юйгенса кисти Каспара Нечера, сделанный в период выздоровления ученого в Гааге в 1671 году.
Часы, созданные Гюйгенсом (Музей науки в Лондоне).
Обложка «Маятниковых часов» и гравюра из книги, на которой изображен чертеж часов Гюйгенса.
Чтобы закончить краткое описание вклада Гюйгенса в науку, вернемся на 40 лет назад и рассмотрим одну из его первых работ, в которой особенно хорошо заметен его изящный стиль. Христиану было тогда 23 года, и ни время, ни шлифование линз, ни свет еще не захватили его внимание. Несмотря на молодой возраст, к тому времени он уже успел зарекомендовать себя как одаренный последователь Архимеда, сделав анализ стабильности тел в воде, и прославился математической виртуозностью своих квадратур. Гюйгенс впервые громко опроверг теорию Декарта, в частности его законы об упругом столкновении тел (вскоре за Христианом последуют и другие ученые). Первые важные результаты Гюйгенс получил в 1652 году, но не стал публиковать их, намереваясь завершить более амбициозный проект, которым с перерывами занимался на протяжении нескольких лет. В 1656 году он начал писать трактат, который обрел законченный вид в 1667 году (De motu corporum ex percussione — «О движении тел под влиянием удара») и был издан после смерти исследователя. Он поторопился обнародовать часть результатов даже без доказательств и сделал это в 1669 году сначала в Journal des Savants, а затем в Philosophical Transactions — после того как узнал, что Джон Валлис и Кристофер Рен в январе издали статью на ту же тему. Как часто это бывало с Гюйгенсом, его открытия, долго пролежав в столе, начинали устаревать.
Декарт сформулировал свои законы о столкновении в «Началах философии» в 1644 году. «Начала» были одной из основ его представлений о механике, по которым различные физические взаимодействия, такие как сила тяжести, свет или магнетизм, сводились к столкновению частиц эфира. Французский философ, будучи автором обширной системы, способной объяснить устройство мироздания, имел четкое представление о том, как должна вести себя природа. Если же результаты экспериментов противоречили этому представлению, он просто игнорировал такую дерзость:
«Доказательства всего этого настолько точны, что даже если опыт, как нам кажется, показывает обратное, мы тем не менее обязаны больше доверять нашему уму, нежели органам чувств».
Такой подход был скорее в духе последователей Аристотеля, с которыми Декарт сражался, и не очень вписывался в то, что мы называем наукой. В результате природа, описываемая Декартом, выглядела немного фантастично, из-за чего Лейбниц назвал «Начала» «красивым романом о физике». В книге описываются восемь правил, объясняющих механизм столкновений и описывающих удивительные явления. Согласно одному из них, когда тело сталкивается с другим, более крупным, в состоянии покоя, то подпрыгивает на своей же скорости, не сдвигая более крупное ни на один сантиметр. Если бы это было правдой, то взрослые не падали бы, когда в них на всей скорости врезаются бегущие дети.
Скорее всего, Гюйгенс читал «Начала», изумленно вздымая бровь. В январе 1652 года он выразил свои сомнения Герарду ван Гутсховену из Лёвена. Затем он выждал еще девять месяцев, чтобы окончательно утвердиться в своей правоте, и написал своему учителю ван Схотену, профессору Лейденского университета и одному из главных сторонников Декарта. Учитель посоветовал Христиану не терять времени на подобную ересь, но юноша упорствовал:
«Если все правила Декарта, за исключением первого, не ошибочны, значит, я не в состоянии больше отличить правду от лжи».
Разумеется, Гюйгенс прекрасно видел разницу. Он не стал слушать ван Схотена, а последовал совету своего первого учителя, Яна Стампиоэна, и попытался прийти к собственным выводам, не позволяя другим влиять на себя. В его подходе сочеталось влияние античных и современных ученых. Античных — потому что Гюйгенс пользовался физикой, еще не обновленной Ньютоном, а современных — потому что большая часть его аргументации вращается вокруг симметрии, что было типично для физики того времени. Гюйгенс взял за основу своего анализа принцип, описанный Галилеем в его знаменитых «Беседах» в 1638 году. Тогда ученый заметил, что человек, сидящий в трюме корабля и проводящий механические эксперименты, не мог сказать, стоит судно на месте или же движется с постоянной скоростью. Действительно, если корабль не ускоряется, то его передвижение не влияет на динамику предметов, находящихся в трюме. В своем исследовании столкновений Гюйгенс постоянно меняет перспективу, но поскольку все они взаимодействуют друг с другом на постоянных скоростях, сущность исследуемого взаимодействия не меняется. Инстинкт подсказал ученому, что в столкновении важнее относительная скорость между телами — та, на которой каждый понимает, что приближается к другому, вне зависимости от позиции наблюдателя.
Рассматриваемые столкновения являются упругими, то есть удар при них не отнимает энергию движения тел. Гюйгенс отталкивался от единственного уцелевшего от его критики правила Декарта: если две массы сталкиваются на одинаковой скорости, то подпрыгивают, а их скорости направляются в противоположные стороны. Симметрия ситуации приводит к еще одному интуитивному результату. Обозначим массы тел m1 и m2 и примем их скорости за положительные, когда они направлены вправо (→), и за отрицательные, когда они направлены в обратную сторону (←). Меняя направление скорости, m1 переходит от υ к -υ, а m2 — от -υ к υ.
Гюйгенс стал искать симметрию этого элементарного столкновения во всех других, но для этого ему пришлось менять свой угол зрения, как зритель пересаживается в другое кресло в театральном зале, желая лучше видеть симметрию, незаметную другим зрителям, однако тот факт, что он сидит на более удобном месте, не влияет на сам спектакль. Все изменения угла зрения, рассмотренные Гюйгенсом, не влияют на скорость тел.
Рассмотрим два примера. Пусть второе тело m2 находится в покое, а m1 движется по направлению к нему на скорости υ. Каким будет результат столкновения? Масса m1 изменит свое направление и превратится в -υ? Остановится и передаст всю свою скорость m2? Передаст ему только часть импульса, и они вместе покатятся вправо с разными скоростями?
Сначала мы не имеем симметрии, как в предыдущем случае, и лишь гадаем, что произойдет. Затем Гюйгенс рассматривает это столкновение на борту корабля, который движется вправо со скоростью υ/2. Чтобы прояснить ситуацию, он прибегает к помощи двух наблюдателей. Один из них неподвижен (Or) и стоит на берегу канала, а второй находится на корабле (Ob), который плывет в направлении m1 с постоянной скоростью υ/2. Ob движется вместе с кораблем, поэтому для него масса m2 не стоит на месте: она приближается к нему со скоростью υ/2. С другой стороны, так как Ob движется в том же направлении, что и m1, для него эта масса будет двигаться медленнее. Это тот же эффект, что мы замечаем, когда едем в автомобиле. Нам кажется, что неподвижные фонари приближаются к нам со скоростью нашей машины, а машины, которые едут по соседним полосам, едут медленнее, чем когда мы смотрим на них с тротуара. Итак, Ob присутствует при следующем столкновении:
Наша интуиция может подсказать, как произойдет столкновение: скорости каждой массы поменяются на обратные.
С точки наблюдения Ob можно оценить эту симметрию. Чтобы сказать, что наблюдал бы Or, мы должны отделить от двух масс часть движения, вызванного передвижением корабля. Возвращаясь к примеру с автомобилем, если мы остановимся на обочине, машины, которые ехали в нашем направлении, приобретут нашу скорость, а те, что двигались в противоположном, потеряют ее. То есть m2 и m1 приобретут и потеряют υ/2 соответственно. После столкновения Or увидит, что m1 остается в неподвижности, а m2 удаляется вправо со скоростью υ.
Подход, применимый к этому конкретному случаю, легко позволяет предугадать результат любого столкновения между двумя телами, имеющими равную массу, которые движутся с разной скоростью. Что же происходит, когда массы не равны друг другу? Это условие, казалось бы, нарушает симметрию, но Гюйгенс сумел восстановить ее. Для каждой скорости лодки существует скорость, позволяющая нам иметь удобную точку наблюдения, в которой каждое тело меняет свое направление после столкновения. Это
(m1 υ1 - m2 υ2)/(m1 + m2)
В числителе этого выражения скорость умножается на массу и получается физическая величина, которая называется моментом (момент р тела массы m равен р = m · υ). Разделив его опять на массу, получаем скорость. Рассмотрим следующую ситуацию.
Теперь массы отличаются: m2 больше, чем m1. Чтобы лучше описать столкновение, предположим, что υ1 больше υ2 (или еще лучше: m1 · υ1 > m2 · υ2). Если мы присутствуем при столкновении корабля, который движется вправо с постоянной скоростью, то:
(m1 υ1 - m2 υ2)/(m1 + m2)
Мы будем наблюдать следующее:
Поскольку m2 больше, чем m1 для наблюдателя на борту корабля маленькая масса будет двигаться быстрее, чем большая. Из своей смотровой башни Ob заметит, что m1 после столкновения начинает двигаться в обратном направлении, как и m2.
Чтобы понять, что наблюдает Or, стоящий неподвижно на берегу, мы должны прибавить
(m1 υ1 - m2 υ2)/(m1 + m2)
к массе, которая двигается в направлении корабля (m2), и отнять самую большую скорость от массы, которая двигается в обратном направлении, m1 Так мы получим результат, очень далекий от интуитивного:
На первый взгляд довольно произвольное выражение скорости корабля соответствует так называемому центру масс. Это абстрактное понятие, очень полезное для изучения поведения многих физических систем. Для двух тел m1 и m2, расположенных в х1 и х2, отмечается точка на прямой, соединяющей их. Ее положение хcm определяется как:
xcm = (m1 · x1 + m2 · x2)/(m1 + m2).
Центр масс обозначает точку равновесия, на которую можно поставить доску, уравновешивающую оба тела (см. рисунок). Если массы двигаются, то двигаться будет обычно и точка xcm. Ее скорость будет равна
vcm = (m1 · v1 + m2 · v2)/(m1 + m2).
Поменяв знак v2, чтобы показать, что эта масса начинает двигаться влево, мы получим выражение для скорости корабля, который, следовательно, находится в центре масс — наилучшем месте, чтобы наблюдать симметрию столкновения. Учитывая закон сохранения момента, мы получаем, что столкновение не меняется при изменении скорости центра масс.
Мы можем подробнее рассмотреть, как меняются скорости для наблюдателей, находящихся на корабле и на берегу. Возьмем переменные V1ba (скорость массы m1, какой она кажется с корабля до столкновения), V2ba (скорость массы m2 с корабля до столкновения), V1oa (скорость массы mv какой она кажется с берега до столкновения), v2oa (скорость массы m2 с берега до столкновения) и Vb (скорость корабля). Для Ob до столкновения скорости тел равны:
V1ba = V1oa - Vb = V1 - (m1 · V1 - m2 · V2)/(m1 + m2) = (m2 · (V1 + V2))/(m1 + m2) ,
V2ba = V2oa - Vb = -V2 - (m1 · V1 - m2 · V2)/(m1 + m2) = (m1 · (V1 + V2))/(m1 + m2).
Из этого выражения можно получить один из ключей симметрии в центре масс: в нем оба тела имеют одинаковый момент (m1· V1ba = m2· V2ba). После столкновения направления меняются, то есть:
V1bd = -(m2 · (V1 + V2))/(m1 + m2), V2bd = (m1 · (V1 + V2))/(m1 + m2),
где индекс d теперь заменяет а, обозначая, что это скорости после столкновения. Чтобы получить скорость с берега, достаточно убрать первое изменение:
V1od = V1bd + Vb = -(m2 · (V1 + V2))/(m1 + m2) + (m1 · V1 - m2 · V2)/(m1 + m2) =
- ((m2 - m1) · V1 + 2 · m2 · V2)/(m1 + m2),
V2od = V2bd + Vb = (m1 · (V1 + V2))/(m1 + m2) + (m1 · V1 - m2 · V2)/(m1 + m2) =
- (2 · m1 · V1 + (m1 - m2) · V2)/(m1 + m2)
От внимательного взгляда Гюйгенса не ускользнули две новые симметрии. Хотя при столкновении скорости тел меняются, есть величины, которые остаются неизменными. Прежде всего это масса, а также сумма произведений каждой массы и ее скорости (момента) до и после столкновения. То есть:
m1 · υ1до + m2 · υ2до = m1 · υ1после + m2 · υ2после
p1до + p2до = p1после + p2после.
Эту симметрию можно наблюдать и в других физических ситуациях. Обобщая, мы можем сказать, что она является одним из столпов физики — законом сохранения углового момента. Гюйгенс отметил наличие еще одной величины — суммы произведения каждой массы на квадрат ее скорости до и после столкновения:
m1 · υ1²до + m2 · υ2²до = m1 · υ1²после + m2 · υ2²после
Здесь нетрудно заметить проявление принципа сохранения энергии, в данном случае кинетической.
Надо уточнить, что Гюйгенс работал в доньютоновой теоретической системе. Он ни разу не использовал понятие силы и, следовательно, ни разу не говорил о силе действия и реакции, чтобы объяснить изменение скорости тел. Сегодня упругие столкновения решаются на уровне элементарной физики, при этом само собой разумеющимися считаются принципы сохранения энергии с двумя уравнениями и двумя неизвестными (конечными скоростями). Но Гюйгенсу было труднее, чем нам, ведь в XVII веке законы сохранения энергии уже созревали, но пока не были четко сформулированы. В некотором смысле ученый превратил задачу из динамической в статическую. Сталкивающиеся тела, разумеется, движутся, хотя он наблюдал их с такой симметричной и предсказуемой перспективы, как будто они не выходили из равновесия.
Анализ столкновений Гюйгенса может считаться революционным, потому что он знаменует рождение математической физики. Когда мы представляем себе физика, поглощенного работой, будь то Альберт Эйнштейн или Шелдон Купер, наше воображение рисует нам доску, покрытую формулами. Но так было не всегда. Галилей описывал законы падения тел словами, помогая себе рисунками геометрических фигур, так же делали Архимед и все его предшественники. Даже Джероламо Кардано решал кубическое уравнение в словесной форме, представляя каждый его член как трехмерный куб, который можно изобразить на рисунке. Начиная с сочинения Франсуа Виета алгебра приобрела гибкий и лаконичный язык, который позволял выразить гораздо больше, нежели слова. Почти сразу же Декарт протянул мост между геометрическими рисунками и уравнениями. Вид книг по механике и астрономии радикально изменился: вместо параграфов, набранных мелким шрифтом и прерывавшихся только рисунками прямых, парабол и окружностей, страницы заполнились алгебраическими выражениями, в которых перемежались буквы и знаки операций. Этот научный переворот, состоящий в математической записи и математическом подходе к физике, был совершен именно Гюйгенсом. Почти со стопроцентной уверенностью можно сказать, что вычисления столкновений, которые он записывал на своих больших листах в 1652 году, были первым примером уравнений, в которых переменные означали скорость и массу — иными словами, физические величины. Разумеется, этот переход был постепенным. Сам Гюйгенс, как и Ньютон, предпочитал традиционный метод записи, восходивший к Архимеду.
Однако перемены, встречающиеся в сочинении «О движении тел под влиянием удара», сделаны в духе теории относительности. Эта деталь не ускользнула от Эйнштейна. В специальной теории относительности точки зрения называются системами отсчета. Те, что остаются в покое или движутся с постоянной скоростью по отношению к другим, названы инерциальными. В 1954 году Эйнштейн писал своему другу, швейцарскому инженеру Мишелю Бессо:
«В сущности, специальная теория относительности всего лишь адаптирует понятие инерциальной системы к твердой уверенности, продиктованной опытом, что скорость света постоянна в любой инерциальной системе. Она не может обойтись без понятия инерциальной системы, невозможной с эпистемологической точки зрения ([Эрнст] Мах ясно показывает несостоятельность этого понятия, хотя о нем уже начинали задумываться Гюйгенс и Лейбниц)».