ОТ ТЕОРИИ К ПРАКТИКЕ

Размышления на вечную тему (переработка домашнего мусора)



Проблема домашних отходов беспокоила еще неандертальцев и кроманьонцев. Решали они ее очень просто — замусорив все вокруг, меняли свою пещеру на другую, в соседнем районе. Ну а в замусоренных местах сейчас копаются археологи. Они почему-то называют такие древние мусорки культурным слоем. Шло время. Все изменялось. Изменялся состав отходов. Только проблема их утилизации оставалась неизменной. Нет, кое-какие подвижки в этой области конечно были и есть. С приручением огня мусор стали сжигать, по возможности. Так, например, возле древнего Иерусалима был овраг, Геенна, в котором сжигали мусор. «Гореть тебе в Геенне огненной» стало распространенным ругательством. Видимо в той местности огнепоклонники не были в почете. Равно как и обычай предания огню умерших. Так скромный овраг по сжиганию мусора попал сначала в Библию, а затем сделал неплохую карьеру, став адом в паре-тройке религий. Его менее известные собратья до сих пор трудятся, в дыму и пламени, по всему миру. Правда, в большинстве развитых стран их сменили заводы по сжиганию мусора, но суть от этого ведь не меняется, не правда ли. Альтернативный способ погребения умерших — захоронение их в земле, тоже был использован для разрешения мусорной проблемы. Мы так и говорим: «Захоронение мусора». Плохо горит мусор, и не всякий мусор горит. Это еще неандертальцы знали. Что не сгорит, то сгниет. Даже в самых развитых странах, вы обязательно обнаружите, невдалеке от завода по сжиганию мусора, его скромного напарника — мусорный овраг. Туда сваливают мусор. Затем его засыпают грунтом. А что будет, когда вся доступная земля окажется уже использованной для захоронения мусора. Такая ситуация кажется чем-то знакомой. Голос предков о чем-то таком бубнит.

А нельзя ли получить от мусора хоть какую-нибудь ощутимую пользу. Или прибыль. Заветная мечта человечества. Давайте абстрагируемся от проблем больших городов, с их мусоросжигающими заводами и свалками, и ограничимся рамками одного дома. Коттеджа, дачи или мичуринского участка. Нашим маленьким миром. Для начала давайте посмотрим, а что придумали для обработки хозяйственного мусора в мире большом.


Реферат «Проблема утилизации и переработки промышленных отходов»

3. Термическое обезвреживание токсичных промышленных отходов

На современном этапе открывается всё больше возможностей существенно сократить количество не утилизируемых отходов, которые имеют сложный химический состав, и, как правило, их переработка в полезные продукты или весьма затруднительна современном этапе, или экономически нецелесообразна.


3.1. Жидкофазное окисление

Жидкофазное окисление токсичных отходов производства используется для обезвреживания жидких отходов и осадков сточных вод. Суть его заключается в окислении кислородом органических и элементоорганических примесей сточных вод при температуре 150–350 °C и при давлении 2-28 МПа [4, 23].

Интенсивность окисления в жидкой фазе способствует высокая концентрация растворенного в воде кислорода, значительно возрастающая при высоком давлении. В зависимости от давления, температуры, количества примесей и кислорода, продолжительности процесса органические вещества окисляются с образованием органических кислот (в основном СН3СООН и НСООН) или с образованием СО2, Н2О и N2 [4].

Элементоорганические соединения в щелочной среде окисляются с образованием водных растворов хлоридов, бромидов, фосфатов, нитратов и оксидов металлов, а при окислении азотосодержащих веществ, помимо нитратов, образуется значительное количество аммонийного азота [23].

Для жидкоплазменного окисления требуется меньше энергетических затрат, чем другие методы, но является более дорогостоящим, кроме этого к недостаткам метода относится высокая коррозионность процесса, образование накипи на поверхности нагрева, неполное окисление некоторых веществ, невозможность окисления сточных вод с высокой теплотой сгорания [4].

Применение метода целесообразно при первичной переработке отходов.

Это явно не для нас. Как-то не очень хочется связываться с жидкими отходами домашнего хозяйства и тем более с их осадками. Особенно из туалета.


3.2. Гетерогенный катализ

Метод применим для обезвреживания газообразных и жидких отходов. Существуют три разновидности гетерогенного катализа промышленных отходов.

Термокаталитическое окисление можно использовать для обезвреживания газообразных отходов с низким содержанием горючих примесей. Процесс окисления на катализаторах осуществляется при температурах меньших, чем температура самовоспламенения горючих составляющих газа. В зависимости от природы примесей и активности катализаторов окисление происходит при температуре 250–400 °C и в установках различных размеров [4].

В термокаталитических реакторах успешно окисляются СО, Н2, углеводороды (УВ), NH3, фенолы, альдегиды, кетоны, пары смол, канцерогенные и др. соединения с образованием СО2, Н2О, N2. Степень окисления вредных веществ 98–99.9 %. Для увеличения удельной поверхности катализации используется пористые керамические устройства из Аl2О3 и оксидов других металлов, тоже обладающих каталитической активностью [24].

Современные промышленные катализаторы глубокого окисления при температуре до 600–800 °C не следует применять при большом содержании пыли и водяных паров. Неприменим метод и для переработки отходов, содержащих высококипящие и высокомолекулярные соединения, вследствие неполноты окисления и забивания поверхности катализаторов. Нельзя применять термокаталитическое окисление при наличии в отходах даже в небольших количествах Р, Pb, As, Hg, S, галогенов и их соединений, так как это приводит к дезактивации и разрушению катализаторов [4].

Термокаталитическое восстановление используется для обезвреживания газообразных отходов, включающих в себя нитрозные газы — содержащие NOx [4].

Профазное каталитическое окисление применимо для перевода органических примесей сточных вод в парогазовую фазу с последующим окислением кислородом. При содержании в сточных водах неорганических и нелетучих веществ возможно дополнение данного процесса огневым методом или другими видами обезвреживания отходов [4].

В целом методы гетерогенного катализа нецелесообразно использовать в качестве самостоятельного способа обезвреживания токсичных отходов, а только как отдельную ступень в общем, технологическом цикле.

Аналогично.


3.3 Пиролиз промышленных отходов

Существует два различных типа пиролиза токсичных промышленных отходов.

3.3.1 Окислительный пиролиз

Окислительный пиролиз — процесс термического разложения промышленных отходов при их частичном сжигании или непосредственном контакте с продуктами сгорания топлива. Данный метод применим для обезвреживания многих отходов, в том числе "неудобных" для сжигания или газификации: вязких, пастообразных отходов, влажных осадков, пластмасс, шламов с большим содержанием золы, загрязненную мазутом, маслами и другими соединениями землю, сильно пылящих отходов. Кроме этого, окислительному пиролизу могут подвергаться отходы, содержащие металлы и их соли, которые плавятся и возгорают при нормальных температурах сжигания, отработанные шины, кабели в измельченном состоянии, автомобильный скрап и др.[4].

Метод окислительного пиролиза является перспективным направлением ликвидации твердых промышленных отходов и сточных вод.

Насчет шин и пластмасс надо подумать, но в другой раз.


3.3.2 Сухой пиролиз

Этот метод термической обработки отходов обеспечивает их высокоэффективное обезвреживание и использование в качестве топлива и химического сырья, что способствует созданию малоотходных и безотходных технологий и рациональному использованию природных ресурсов.

Вот это уже что-то.

Сухой пиролиз — процесс термического разложения без доступа кислорода. В результате образуется пиролизный газ с высокой теплотой сгорания, жидкий продукт и твердый углеродистый остаток.

В зависимости от температуры, при которой протекает пиролиз, различается [4]:

1. Низкотемпературный пиролиз или полукоксование (450–550 °C). Данному виду пиролиза характерны максимальный выход жидких и твердых (полукокс) остатков и минимальный выход пиролизного газа с максимальной теплотой сгорания. Метод подходит для получения первичной смолы — ценного жидкого топлива, и для переработки некондиционного каучука в мономеры, являющиеся сырьем для вторичного создания каучука. Полукокс можно использовать в качестве энергетического и бытового топлива.

2. Среднетемпературный пиролиз или среднетемпературное коксование (до 800 °C) дает выход большего количества газа с меньшей теплотой сгорания и меньшего количества жидкого остатка и кокса.

3. Высокотемпературный пиролиз или коксование (900-1050 °C). Здесь наблюдается минимальный выход жидких и твердых продуктов и максимальная выработка газа с минимальной теплотой сгорания — высококачественного горючего, годного для далеких транспортировок. В результате уменьшается количество смолы и содержание в ней ценных легких фракций.

А вот это совсем хорошо.

Метод сухого пиролиза получает все большее распространение и является одним из самых перспективных способов утилизации твердых органических отходов и выделении ценных компонентов из них на современном этапе развития науки и техники.


3.4 Огневая переработка

В основу огневого метода положен процесс высокотемпературного разложения и окисления токсичных компонентов отходов с образованием практически нетоксичных или малотоксичных дымовых газов и золы. С использованием данного метода возможно получение ценных продуктов: отбеливающей земли, активированного угля, извести, соды и др. материалов. В зависимости от химического состава отходов дымовые газы могут содержать SОX, Р, N2, H2SO4, НСl, соли щелочных и щелочноземельных элементов, инертные газы.

Огневой метод переработки токсичных промышленных отходов классифицируется в зависимости от типа отходов и способам обезвреживания [4]:

1. Сжигание отходов, способных гореть самостоятельно — наиболее простой способ; горение происходит при температурах не ниже 1200–1300 °C. (следует отметить, что данный способ не является целесообразным ввиду некоторой (большей или меньшей) ценности горючих отходов и возможности их использования в данное время или в будущем).

2. Огневой окислительный метод обезвреживания негорючих отходов — сложный физико-химический процесс, состоящий из различных физических и химических стадий. Огневое окисление применимо в большей степени по отношению к твердым и пастообразным отходам.

3. Огневой восстановительный метод используется для уничтожения токсичных отходов без получения каких-либо побочных продуктов, пригодных для дальнейшего использования в качестве сырья или товарных продуктов. В результате образуются безвредные дымовые газы и стерильный шлак, сбрасываемый в отвал. Так можно обезвреживать газообразные и твердые выбросы, бытовые отходы и некоторые другие.

4. Огневая регенерация предназначена для извлечения из отходов какого-либо производства реагентов, используемых в этом производстве, или восстановления свойств отработанных реагентов или материалов. Эта разновидность огневого обезвреживания обеспечивает не только природоохранные, но и ресурсосберегающие цели.

Для достижения требуемой санитарно-гигиенической полноты обезвреживания отходов необходимо, как правило, экспериментальное определение оптимальных температур, продолжительности процесса, коэффициента избытка кислорода в камере горения, равномерности подачи отходов, топлива и кислорода [1]. Протекание процесса обезвреживания в неоптимальных условиях приводит к появлению компонентов в продуктах сгорания и, в первую очередь, в дымовых газах.

При сжигании на свалках пластмасс, синтетических волокон, хлороуглеводородов в дымовых газах могут образовываться токсичные вещества: СО, бензапирен, фосген, диоксины.

По мнению авторов [15] огневое обезвреживание (чисто термическое или с применением катализаторов) промышленных отходов приводит к уничтожению органических веществ, которые могли бы явиться ценным сырьем целевых продуктов.

Короче, та же «Геенна огненная».


3.5. Переработка и обезвреживание отходов с применением плазмы

Для получения высокой степени разложения токсичных отходов, особенно галоидосодержащих, конструкция сжигающей печи должна обеспечивать необходимую продолжительность пребывания в зоне горения, тщательное смешение при определенной температуре исходных реагентов с кислородом, количество которого также регулируется. Для подавления образования галогенов и полного их перевода в галогеноводороды необходим избыток воды и минимум кислорода, последнее вызывает образование большого количества сажи. При разложении хлорорганических продуктов снижение температуры ведет к образованию высокотоксичных и устойчивых веществ — диоксинов [7, 26]. Как утверждает автор работы [15], недостатки огневого сжигания стимулировали поиск эффективных технологий обезвреживания токсических отходов.

Применение низкотемпературной плазмы — одно из перспективных направлений в области утилизации опасных отходов. Посредством плазмы достигается высокая степень обезвреживания отходов химической промышленности, в том числе галлоидосодержащих органических соединений, медицинских учреждений; ведется переработка твердых, пастообразных, жидких, газообразных; органических и неорганических; слаборадиоактивных; бытовых; канцерогенных веществ, на которые установлены жесткие нормы ПДК в воздухе, воде, почве и др.

Плазменный метод может использоваться для обезвреживания отходов двумя путями [12]:

— Плазмохимическая ликвидация особо опасных высокотоксичных отходов;

— Плазмохимическая переработка отходов с целью получения товарной продукции.

Наиболее эффективен плазменный метод при деструкции углеводородов с образованием СО, СО2, Н2, СН4. Безрасходный плазменный нагрев твердых и жидких углеводородов приводит к образованию ценного газового полуфабриката в основном водорода и оксида углерода — синтез-газ — и расплавов смеси шлаков, не представляющих вреда окружающей среде при захоронении в землю, а синтез-газ можно использовать в качестве источника пара на ТЭС или производстве метанола, искусственного жидкого топлива. Кроме этого, путем пиролиза отходов возможно получение хлористого и фтористого водорода, хлористых и фтористых УВ, этанола, ацетилена [15]. Степень разложения в плазмотроне таких особо токсичных веществ как полихлорбифенилы, метилбромид, фенилртутьацетат, хлор- и фторсодержащие пестициды, полиароматические красители достигает 99.9998 % [12] с образованием СО2, Н2О, НСl, HF, Р4О10.

Разложение отходов происходит по следующим технологическим схемам:

— Конверсия отходов в воздушной среде;

— Конверсия отходов в водной среде;

— Конверсия отходов в паро-воздушной среде;

— Пиролиз отходов при малых концентрациях.

Выбор того или иного способа переработки, возможность вариаций по количественному соотношению реагентов позволяют оптимизировать работу установки для широкого спектра отходов по их химическому составу.

Существуют самые разнообразные модификации плазмотронных установок, принцип их конструкции и порядка работы заключается в следующем: основной технологический процесс происходит в камере, внутри которой находятся два электрода (катод и анод), обычно из меди, иногда полые. В камеру под определенным давлением, в заранее установленных количествах поступают отходы, кислород и топливо, может добавляться водяной пар. В камере поддерживается постоянное давление и температура. Возможно применение катализаторов. Существует анаэробный вариант работы установки [15]. При переработке отходов плазменным методом в восстановительной среде возможно получение ценных товарных продуктов: например, из жидких хлорорганических отходов можно получать ацетилен, этилен, НСl и продуктов на их основе [4]. В водородном плазмотроне, обрабатывая фторхлорорганические отходы, можно получить газы, содержащие 95–98 % по массе НСl и HF [27].

Для удобства возможно брикетирование твердых отходов и нагрев пастообразных до жидкого состояния [15].

Высокая энергоемкость и сложность процесса предопределяет его применение для переработки только отходов, огневое обезвреживание которых не удовлетворяет экологическим требованиям.

Этот способ надо посоветовать Вельзевулу, на замену «Геенны огненной».

Вот и все. Не густо. Самое разумное — высокотемпературный пиролиз с получением пиролизного газа. А каков состав пиролизного газа?

www.waste.org.ua

3. Пиролизный газ. Представляет собой горючее топливо с теплотой сгорания от 8 до 27 МДж/кг (в зависимости от технологического процесса). Примерный состав: метан — 30…60 %, этан — 3… 14 %, пропан — 1…5 %, водород — 17…25 %, азот — 5…40 %, оксид углерода — 4… 15 %, диоксид углерода — 5… 10 %.

Понятно. Его можно его накапливать в самодельном газгольдере и позже использовать для целей отопления. До эры электричества таким газом питались газовые фонари на улицах больших городов. Производился он на газовых заводах.

www.cultinfо. ru

Газгольдер (англ. gasholder, от gas — газ и holder — держатель), стационарное стальное сооружение для приёма, хранения и выдачи газов в распределительные газопроводы или установки по их переработке и применению. Различают Г. переменного (мокрые) и постоянного (сухие) объёма. Г. переменного объёма состоит из цилиндрического вертикального резервуара (бассейна), наполненного водой, и колокола (цилиндрический вертикальный резервуар без нижнего днища). Сверху этот резервуар снабжён сферической крышей. Через дно бассейна под колокол подводится газопровод. При заполнении внутреннего пространства Г. газом колокол поднимается; при отборе газа — опускается.

Большие расходы металла, увлажнение газа, переменный режим давления и трудности эксплуатации в зимнее время — основные недостатки мокрых Г. Этих недостатков в значительной степени лишены так называемые сухие, или поршневые, Г., которые представляют собой неподвижный корпус с поршнем. Как и в мокром Г., при наполнении газом поршень поднимается, а при выдаче газа опускается.

Для чего еще можно использовать пиролизный газ? В Интернет нашлась любопытная статья. Вот выдержка из нее.


КОНВЕРСИЯ ПРИРОДНОГО ГАЗА В ЖИДКОЕ ТОПЛИВО

Н. И. Курбатов, А. К. Зайцев


Метод Фишера — Тропша по превращению метана в более тяжелые углеводороды был разработан в 1923 г. и реализован в промышленности Германии в 1940-х го-

Почти все авиационное топливо в этой стране во время второй мировой войны производилось с помощью синтеза Фишера-Тропша из каменного угля. Впоследствии от этого способа изготовления моторных топлив отказались, так как топливо, получаемое при переработке нефти, до последнего времени было экономически более выгодным.

Сегодня конверсия природного газа в жидкие продукты (моторное топливо и более ценные продукты тонкого органического синтеза) — одна из наиболее динамично развивающихся областей химической и газохимической промышленности.

При получении жидкого топлива на основе синтеза Фишера-Тропша разнообразные соединения углерода (природный газ, каменный и бурый уголь, тяжелые фракции нефти, отходы деревообработки) конвертируют в синтез-газ (смесь СО и Н2), а затем он превращается в синтетическую «сырую нефть» — синтнефть. Это — смесь углеводородов, которая при последующей переработке разделяется на различные виды практически экологически чистого топлива, свободного от примесей соединений серы и азота. Достаточно добавить 10 % искусственного топлива в обычное дизельное, чтобы продукты сгорания дизтоплива стали соответствовать экологическим нормам.

Еще более эффективной представляется конверсия газа в дорогостоящие продукты тонкого органического синтеза.

Конверсию газа в моторное топливо можно в целом представить как превращение метана в более тяжелые углеводороды:

2nСН4 + 1/2nO2 = СnН2n + 2О (реакция 1)

Из материального баланса брутто-реакции следует, что массовый выход конечного продукта не может превышать 89 %.



Реакция (1) напрямую неосуществима. Конверсия газа в жидкое топливо (КГЖ) проходит через ряд технологических стадий (рис. 1). При этом в зависимости от того, какой конечный продукт необходимо получить, выбирается тот или иной вариант процесса.


ПОЛУЧЕНИЕ СИНТЕЗ-ГАЗА

Все технологически реализованные процессы КГЖ объединяет первая стадия — стадия получения синтез-газа, который представляет собой смесь оксида углерода СО и водорода Н2. Такое название он получил потому, что служит ценным сырьем для синтеза разнообразных продуктов. Критерием качества синтез-газа являются объемное (мольное) соотношение СО и Н2 и наличие примесей (азота, углекислоты, сернистых соединений и др.).

Синтез-газ из природного газа получают с помощью технологических процессов, которые можно разделить на две большие группы:

парциальное окисление метана

СН4 + 1/2O2 = СО +210,62 ккал/моль (реакция 2)

и паровой риформинг

СН4 + Н2O = СО +2 + 54,56 ккал/моль (реакция 3)

Реакции (2) и (3) могут протекать в термическом и термокаталитическом режимах. Как правило, термокаталитические процессы дают более качественный конечный продукт с меньшим числом таких побочных продуктов, как вода и диоксид углерода.

В каждой из этих реакций образуется СO2, который вступает в реакцию с мета-

СН4 + СO2 = 2СО + 2 + 62,05 ккал/моль (реакция 4)

Этот процесс, с одной стороны, позволяет использовать избыток СO2, образующийся в других технологических процессах, и, с другой стороны, служит рычагом управления составом синтез-газа, получаемого при реакциях (2) и (3).

Для производства ценных продуктов на следующих стадиях необходим синтез-газ с соотношением оксида углерода и водорода, равным приблизительно 1:2, и минимальным количеством балластных газов (СО2, азота и др.).


СИНТЕЗ ФИШЕРА-ТРОПША

Синтез Фишера-Тропша можно рассматривать как восстановительную олигомеризацию моноксида углерода в результате сложной комбинации реакций, которая в брутто-форме имеет следующий вид:

nСО + (2n + 1)Н2 = СnН2n + 2 +2O; (реакция 5)

2nCO +2 = СnН2n + nСO2

Состав конечных продуктов зависит от катализатора, температуры и соотношения СО и Н2.

На металлоокисном катализаторе получают метанол с примесью этанола и диметилового эфира. Это основной процесс получения метанола в мире, обычная мощность метанольных заводов составляет около 0,5 млн. т в год (Новомосковское ПО «АЗОТ»; кобальтовый катализатор). Для производства моторных топлив метанол перерабатывается в диметиловый эфир и далее в смесь разветвленных предельных углеводородов (процесс Mobil GTG в Мауи, Новая Зеландия; кобальтовый катализатор).

На кобальтово-цинковых катализаторах, обладающих гидрирующей активностью, получают смесь линейных алканов (процесс AGC-211 в Бинтулу, Малайзия).

На железном катализаторе получают смесь линейных и разветвленных алканов и алкенов (перспективный процесс Рентех).

На кобальтовых или родиевых катализаторах при давлении выше 10 МПа и температуре в диапазоне 140–180 °C алкены взаимодействуют с синтез-газом и превращаются в альдегиды — важнейшие полупродукты в производстве спиртов, карбоновых кислот, аминов, многоатомных спиртов и др. Мировое производство альдегидов по такой технологии (оксо-синтез) достигает 7 млн т в год.

Одно из важных современных направлений научного поиска в области синтеза Фишера-Тропша состоит в получении кислородсодержащих продуктов. Введение таких соединений в количестве 1 % в дизельное топливо снижает содержание сажи в продуктах сгорания на 4-10 %.

Обратите внимание, что все необходимые газы для этого синтеза, как исходный метан, так и основные компоненты синтез-газа, содержатся в пиролизном газе. И даже соотношение их подходит. Собственно говоря, во время войны, в Германии, синтез-газ и получали пиролизом древесины и угля, поскольку в конце войны Германия была отрезана от источников нефти и природного газа. Ну, уголь, не уголь, а куски древесины, опилки, сучья, обрезки кустарника, являются составной частью отходов многих домашних хозяйств и мичуринский участков. Топить ими неудобно, их в основном сжигают. Бумажные отходы и упаковочный картон тоже не повредят, поскольку изготовляются из древесины. Пойдут в дело все отходы, содержащие ткани из природных волокон, например хлопчатобумажных. С прочими отходами, в том числе и пищевыми, по-видимому, следует поэкспериментировать, добавляя их в той или иной пропорции к древесным отходам. Сомнения вызывают только пластмассы, поскольку трудно предсказать какие компоненты они могут добавить в состав пиролизного газа. Для пиролиза мусора и получения пиролизного газа потребуется кое-какой агрегат, газогенератор.

www.cultinfо. ru

Газогенератор, аппарат для термической переработки твёрдых и жидких топлив в горючие газы, осуществляемой в присутствии воздуха, свободного или связанного кислорода (водяных паров). Получаемые в Г. газы называются генераторными[51]. Горение твёрдого топлива в Г. в отличие от любой топки осуществляется в большом слое и характеризуется поступлением количества воздуха, недостаточного для полного сжигания топлива (например, при работе на паровоздушном дутье в Г. подаётся 33–35 % воздуха от теоретически необходимого). Образующиеся в Г. газы содержат продукты полного горения топлива (углекислый газ, вода) и продукты их восстановления, неполного горения и пирогенетического разложения топлива (угарный газ, водород, метан, углерод). В генераторные газы переходит также азот воздуха. Процесс, происходящий в Г., называется газификацией топлива.



Рис. 1. Схема прямого процесса образования газа в газогенераторе.


Г. обычно представляет собой шахту, внутренние стенки которой выложены огнеупорным материалом. Сверху этой шахты загружается топливо, а снизу подаётся дутьё. Слой топлива поддерживается колосниковой решёткой. Процессы образования газов в слое топлива Г. показаны на рис. 1. Подаваемое в Г. дутьё вначале проходит через зону золы и шлака О, где оно немного подогревается, а далее поступает в раскалённый слой топлива (окислительная зона, или зона горения 1), где кислород дутья вступает в реакцию с горючими элементами топлива. Образовавшиеся продукты горения, поднимаясь вверх по Г. и встречаясь с раскалённым топливом (зона газификации II), восстанавливаются до окиси углерода и водорода. При дальнейшем движении вверх сильно нагретых продуктов восстановления происходит термическое разложение топлива (зона разложения топлива III) и продукты восстановления обогащаются продуктами разложения (газами, смоляными и водяными парами). В результате разложения топлива образуются вначале полукокс, а затем и кокс, на поверхности которых при их опускании вниз происходит восстановление продуктов горения (зона II). При опускании ещё ниже происходит горение кокса (зона 1). В верхней части Г. происходит сушка топлива теплом поднимающихся газов и паров.

В зависимости от того, в каком виде подаётся в Г. кислород дутья, состав генераторных газов изменяется. При подаче в Г. одного воздушного дутья получается воздушный газ, теплота горения которого в зависимости от перерабатываемого топлива колеблется от 3,8 до 4,5 Мдж/м3 (900—1080 ккал/м3). Применяя дутьё, обогащенное кислородом, получают т. н. парокислородный газ (содержащий меньшее количество азота, чем воздушный газ), теплота горения которого может быть доведена до 5–8,8 Мдж (м3 (1200–2100 ккал/м3).

При работе Г. на воздухе с умеренной добавкой к нему водяных паров получается смешанный газ, теплота сгорания которого (в зависимости от исходного топлива) колеблется от 5 до 6,7 Мдж/м3 (1200–1600 ккал/м3). И, наконец, при подаче в раскалённый слой топлива Г. водяного пара получают водяной газ с теплотой сгорания от 10 до 13,4 Мдж/м3 (2400–3200 ккал/м3.

Несмотря на то, что идея Г. была выдвинута в конце 30-х гг. 19 в. в Германии (Бишофом в 1839 и Эбельманом в 1840), их промышленное применение началось после того, как Ф. Сименсом (1861) был предложен регенеративный принцип отопления заводских печей, позволивший эффективно применять генераторный газ. Изобретателями первого промышленного Г. были братья Ф. и В. Сименс. Их конструкция Г. получила повсеместное распространение и просуществовала в течение 40–50 лет. Только в начале 20 в. появились более совершенные конструкции.

В зависимости от вида перерабатываемого твёрдого топлива различают типы Г.: для тощего топлива — с незначительным выходом летучих веществ (кокс, антрацит, тощие угли), для битуминозного топлива — со значительным выходом летучих веществ (газовые и бурые угли), для древесного и торфяного топлива и для отбросов минерального топлива (коксовая и угольная мелочь, остатки обогатительных производств). Различают Г. с жидким и твёрдым шлакоудалением. Битуминозные топлива обычно газифицируются в Г. с вращающимся водяным поддоном, а древесина и торф — в Г. большого внутреннего объёма, т. к. перерабатываемое топливо имеет незначительную плотность. Мелкое топливо перерабатывается в Г. высокого давления и во взвешенном или кипящем слое.

По назначению Г. можно разделить на стационарные и транспортные, а по месту подвода воздуха и отбора газа на Г. прямого, обращенного и горизонтального процесса. В Г. прямого процесса (рис. 2) движение носителя кислорода и образующихся газов происходит снизу вверх. В Г. с обращенным процессом (рис. 3) носитель кислорода и образующийся газ движутся сверху вниз. Для обеспечения обращенного потока средняя часть таких Г. снабжается фурмами, через которые вводится дутьё. Так как отсасывание образовавшихся газов осуществляется снизу Г., то зона горения 1 (окислительная) находится сразу же под фурмами, ниже этой зоны следует зона восстановления II, над зоной горения 1 располагается зона III — пирогенетического разложения топлива, происходящего за счёт тепла раскалённого горящего кокса зоны 1. Сушка самого верхнего слоя топлива в Г. происходит за счёт передачи тепла от зоны III. В Г. с горизонтальным процессом носитель кислорода и образующийся газ движутся в горизонтальном направлении.



Рис. 2. Газогенератор прямого процесса для получения смешанного газа:

1 — загрузочное устройство; 2 — шахта; 3 — водяная рубашка; 4 — колосниковая решётка; 5 — фартук; 6 — чаша с водой, образующая гидравлический затвор; 7 — выгребной нож; 8 — конвейер для удаления золы; 9 — дутьевая коробка.


При эксплуатации Г. соблюдается режим давления и температуры, величина которых зависит от перерабатываемого топлива, назначения процесса газификации и конструкции Г.

Бурное развитие газовой промышленности в СССР привело к почти полной замене генераторных газов природными и попутными, т. к. себестоимость последних значительно ниже. В зарубежных странах, где мало природного газа, Г. широко применяются в различных отраслях промышленности (ФРГ, Великобритания).



Рис. 3. Схема газогенератора с обращённым процессом газификации топлива.


Раз мы коснулись истории этого агрегата, то не помешает сделать более подробный экскурс в прошлое. Не любопытства ради, а с целью знакомства с различными конструкциями газогенераторов. Путь вас не смущает, что речь в нижеследующей статье идет о транспортных газогенераторах. Едет газогенератор на автомобиле ГАЗ-42 или не едет на нем, газ он все равно производит.


СТАНОВЛЕНИЕ И КОНСТРУКТИВНОЕ РАЗВИТИЕ ТРАНСПОРТНЫХ ГАЗОГЕНЕРАТОРОВ

Н. М. Цивенкова, а. А. Самылин


Транспортный газогенератор и автомобиль — почти ровесники. Но история газогенератора начинается значительно раньше. Когда начали строить транспортные газогенераторы, традиции стационарной техники были полностью перенесены на новую установку, надолго определив характер ее развития. Способы охлаждения и очистки газа, теория процесса, методика теплового расчета, оптимальное соотношения основных размеров — все, что было получено в результате опыта почти вековой эксплуатации, было использовано при конструировании новых машин.

Такая преемственность имела как свои положительные, так и отрицательные стороны. Специфические требования к транспортным газогенераторам (малые габариты, неустойчивость процесса газификации, переменный режим и необходимость более тщательной очистки и охлаждения газа) очень скоро заставили конструкторов выйти за рамки стационарной техники. Ряд вопросов, связанных с переводом двигателей с жидкого топлива на генераторный газ, потребовал дополнительных нестандартных решений. Однако сама методология расчета и конструирования автомобильных газогенераторных установок существенно не менялась с середины прошлого века. Она уже морально устарела и требует всестороннего анализа и доработки для дальнейшей конструктивной оптимизации газогенераторов.

Интересно исследовать историю конструктивного развития стационарных, силовых и транспортных газогенераторных установок, чтобы определить направления для их дальнейшей оптимизации.

Еще в средние века было замечено, что при ограничении доступа воздуха под угольный слой из твердого топлива получается газ. Этот газ может быть сожжен после выделения его из топлива путём подвода вторичного воздуха. Газодобывание и собственно газогенератор, однако, возникли только тогда, когда использование газа было полностью отделено от процесса его добывания.

Создателем первого газогенератора принято считать французского инженера Филиппа Лебона, родившегося в Браше 29 мая 1767 г. Однажды, в 1788 г., бросив горсть древесных опилок в стоявший перед ним на огне сосуд, Лебон увидел, что из сосуда поднялся густой дым, который вспыхнул на огне и дал яркое светящееся пламя. Лебон понял, что случай помог ему сделать открытие чрезвычайной важности. Продолжая свои опыты, он создал в миниатюре первый газовый завод, на постройку которого в 1799 г. получил патент. Он принялся за дело с величайшей энергией, разрабатывая проекты самого разнообразного использования генераторного газа. Был придуман проект газового двигателя, на который Лебон в 1801 г. получил патент. Этот двигатель должен был работать по принципу парового двигателя. Вместо пара подавался газ, зажигаемый поочередно поту и другую сторону поршня. После трагической гибели Лебона в декабре 1804 г. его работы были продолжены В. Мурдохоми в Англии и С. Минкедерсом в Бельгии.

В первые десять лет XIX века число полученных в Англии и Франции патентов на газогенераторные установки и двигатели было совсем незначительным. Ни одна из изобретенных установок этого рода не нашла практического применения, хотя в общих чертах они были близки к последующим разработкам. Особо стоит отметить интересные работы французов Фабер де Фор и Оберто (1837–1839). Они предложили пользоваться колосниковыми газами доменных печей для нагревательных целей. Их опыты относились скорее к работам по утилизации отходов доменного процесса и могут рассматриваться лишь как рационализаторские мероприятия. Хотя они были весьма близки к идее самостоятельной газогенераторной установки.

Вероятно, первый промышленный газогенератор был построен в начале 1839 г. в Лаухгаммере инженером Бишофом. Поданным самого Бишофа, он пытался создать пламенную печь с полугазовой топкой. Бишоф хотел достичь экономии в расходовании кокса и угля путём обращения необработанного топлива (в первую очередь торфа) непосредственно в газ, чтобы использовать его для плавильного процесса. На рис. 1 показан усовершенствованный газогенератор Бишофа, применявшийся им в Мегдешпрунге в 1844 г. Устройство представляло собой простой шахтный генератор.



Рис. 1. Газогенератор Бишофа



Рис. 2. Газогенератор Эдельмана


В газогенераторе, построенном в 1840 г. в г. Аудикурт (Австрия) на заводе С.-Стефан инженером Эбельманом, впервые был применен принцип обратного горения (рис. 2). Впоследствии этот принцип получил широкое распространение на транспортных установках. Эбельман чрезвычайно удачно разрешил вопрос о разложении паров воды и сжигании смолистых веществ, которые образуются при газификации древесного топлива. Однако появление первого газогенератора промышленного типа и прочное внедрение его в заводскую практику произошло после изобретения регенеративной печи Ф.Сименсом в 1856 г. (рис. 3).



Рис. 3. Газогенератор системы Сименса


Ф.Сименс в сотрудничестве со своим братом В. Сименсом сумел дать своей идее настолько совершенное для того времени практическое оформление, что газогенератор, названный его именем, получил почти повсеместное распространение за последующие 40–50 лет. Изобретенный Сименсом газогенератор стал необходимым элементом стеклоплавильных, пудлинговых, сталеплавильных (Сименс-Мартеновских), сварочных и нагревательных печей, работающих на основе регенеративного принципа.

Стоит отметить также такие важные конструктивные усовершенствования газогенератора, как косая реторта Гребе-Лермана (1877 г.) и газогенераторы Незе (1878 г.) и Ольшевского (1880 г.). По сути, они представляли собой газогенераторы с обратным горением. Но их конструкция приводила к полному разложению дистилляционных составных частей генераторного газа. На практике они применялись редко, так как для печного отопления разложение дистилляционных составляющих не было необходимым, а разложение смол было желательно лишь для уменьшения нагара.

Только после появления газомоторов Лангена-Отто (1867 г.) и усовершенствований газогенераторов Твайдом (1880 г.) и Сетзерлендом (1883 г.) последние получили большое значение для использования газа в силовых целях. Бурное развитие силовых газогенераторных установок началось после награждения золотой медалью газогенераторного двигателя немецкой фирмы «Отто Дейц» на Парижской всемирной выставке в 1867 г. В результате фирма получила большое количество заказов. Но заказчики хотели использовать эти двигатели в других отраслях промышленности, требуя от фирмы выпуска дешевого и не громоздкого газогенератора. Особенно остро вопрос усовершенствования газогенераторных установок стал после Парижской всемирной выставки 1878 г. Фирмой «Отто Дейц» был представлен первый четырехтактный газогенераторный двигатель, имевший огромный международный успех. После этого развитие двигателей и газогенераторов шло параллельно по пути увеличения мощности. Причем резко возросший выпуск газогенераторных двигателей инициировал всестороннее усовершенствование газогенераторных установок. Стоимость газогенераторов с увеличением мощности превышала стоимость двигателей. Кроме этого, распространению газогенераторных двигателей препятствовала необходимость обзаводиться громоздкой газогенераторной установкой. Поэтому уже с самого начала появления двигателей внутреннего сгорания зародилось стремление к созданию легких, удобных и простых газогенераторов. Таким образом, развитие двигателей внутреннего сгорания шло параллельно с развитием стационарных газогенераторов, эти процессы дополняли друг друга, эволюция одного стимулировала эволюцию другого. Решающими в этом развитии были работы Даусона (1883 г.), впервые создавшего концепцию сочетания газогенератора и двигателя внутреннего сгорания в одной установке, которую можно было применить на практике, (рис. 4). Значение этой работы было столь велико, что в течение какого-то времени генераторный газ назывался газом Даусона.



Рис. 4. Газогенераторная система Даусона


Воспользовавшись опытами Даусона, завод Крослей в 1889 г., аза ним и Отто-Дейц взялись за разработку установки, сочетающей газогенератор с двигателем. Обе эти фирмы были пионерами в применении газ-моторов. Существенное нововведение осуществил Бенье (1892 г.), присоединивший к мотору насос. С помощью насоса всасывался генераторный газ, и подача воздуха при этом происходила под давлением. Таким образом, был придуман способ получения газа с всасыванием, который оказался особенно пригодным для установок малой мощности. С реализацией этой идеи все устройство упростилось, стало дешевле, и процесс стал саморегулируемым.

С момента появления силовых газогенераторов их разработка велась в двух направлениях — газификация твердых и жидких топлив. Однако в 1883 г. Готлиб Даймлер опубликовал два патента. Один из патентов был на простейший газогенератор жидкого топлива под названием «Калильная трубка для зажигания горючей смеси в моторе», другой — на мотор для экипажа, где эта калильная трубка была уже усовершенствована до прибора. Прибор был назван карбюратором и впоследствии получил широчайшее распространение. В усовершенствованном виде разработка Даймлера используется до сих пор, являясь, по сути, газогенератором для жидких топлив.

В последующие 15 лет разработки автомобильных газогенераторов для газификации твердых топлив были практически полностью прекращены.

На выставке в 1892 г. в Париже О. Дизель представил свой новый двигатель, непосредственно использовавший твердое топливо в высоко дисперсном состоянии. Подавляющее большинство исследовательских работ после этого было сосредоточено на разработке технологии использования измельченного твердого топлива в моторах. Путем очень тщательного измельчения удавалось превратить топливо в столь тонкую пыль, что скорость её сгорания была достаточна высока, а стоимость получения приемлемой. Неразрешимой проблемой, вставшей на пути этого направления развития дизельных двигателей, стала проблема удаления золы. Золы даже в самых лучших сортах твердого топлива содержится во много раз больше, чем в любом жидком топливе. Присутствие в золе каменных углей, соединений железа и кремния, сплавляющихся в твердые силикаты, способствовало быстрому накоплению в цилиндре двигателя шлифовального порошка. Образующийся при этом порошок не удавалось удалить ни самым энергичным продуванием, ни промывкой. Непрерывное истирание стенок цилиндра и поршня, а также проникновение зольных частей в картер приводило к быстрому износу наиболее ответственных деталей и выходу двигателя из строя. Подобная же картина наблюдалась при попытках сжигать коллоидальный раствор угля и нефти. С тем лишь отличием, что меньшее содержание твердого компонента в горючем пропорционально уменьшало скорость износа. Возникшую проблему пытались решить путем изготовления гильзы цилиндра двигателя из сверхтвердых или специально обработанных материалов, а также поиском соответствующего состава топлива. Были предприняты попытки измельчения дерева в порошок, пригодный для непосредственного использования его в двигателе внутреннего сгорания. Но технология не получила широкого распространения, т. к. получаемый таким образом порошок имел очень высокую себестоимость. В результате это направление было признано тупиковым, а применение твердого топлива для двигателей внутреннего сгорания стали изучать лишь в аспекте проведения его предварительной газификации. В прошлом столетии было изобретено несколько синтетических твердых топлив, пригодных для такого применения, но все они были намного дороже горючего нефтяного происхождения. Проблема же ожижения твердых топлив активно изучается и ныне.

Кроме того, именно в прошлом веке начались активные исследования, направленные на создание синтетического аналога бензина. Первые автомобили на этаноле появились еще в 20-х гг. прошлого столетия. Но такое топливо, как «Агрол» (90 % бензина + 10 % безводного спирта), впервые было создано в США лишь в 1935 г. Тогда и началось его массовое использование. В 40-е годы в Германии теоретические исследования школы Фишера-Троппа позволили создать целую отрасль промышленности. Объёмы производства измерялись миллионами тонн горючего для танков и самолетов. В 1936 г. правительство Бразилии издало постановление о введении спиртовой добавки к импортному бензину. Это было сделано в качестве меры спасения сахарной промышленности, переживавшей тогда спад. С тех пор Бразилия — признанный лидер в такой технологии. В соответствии с государственной программой 5 % сельскохозяйственных угодий страны используются под сахарный тростник, который выращивается специально для производства топливного спирта.

Другим важным моментом в историческом процессе конструктивного развития газогенераторов явилась задача удаления золы. Опуская первые попытки удаления золы (в виде расплавленного шлака), основными применявшимися ранее типами решеток надлежит считать плоские и слабонаклонные. Сименс впервые предложил сильно наклоненную ступенчатую решетку, которая предшествовала изобретению ступенчатых решеток Одельстьена. Примерно в 1880 г. в качестве новой формы подвода дутья появился центральный дутьевой колпак. Это вскоре привело к созданию Бруком (1884 г.) и Тейлором (1889 г.) газогенераторов с вращающимся дутьевым колпаком и зольной тарелкой. Эти механизмы послужили исходными пунктами для новых конструкций. Из многочисленных последующих предложений для удаления золы следует упомянуть шнеки для золоудаления Зикеля (1877 г.) и Геринга (1879 г.).

Причём последний предложил ещё и шнек для дозированной подачи топлива. Были ещё подвижные зольные тележки Сетзерленда (1883 г.), передвижная лестничная решетка Гребе (1878 г.), вращающийся поддон Гопкрафта (1889 г.) и сдвоенный вращающийся поддон Кетхума (1893 г.), а также своеобразная конструкция для удаления золы Китсона (1893 г.).

Стоит отметить газогенератор Мюллера (1895 г.), который можно считать предшественником газогенератора с вращающейся решеткой, и детальные работы Р. Аккельмана (Швеция), посвященные газификации торфа и дров в газогенераторах с плоской решеткой.

Важным этапом в деле развития конструкции газогенератора был переход на цилиндрическую шахту с конусным затвором шуровочной коробки, а также водяным поддоном и центральным принудительным подводом дутья. Роль колосниковой решетки в этом случае играли куски частично оплавленной золы топлива, заполнявшие нижнюю часть шахты. Представителем этого типа устройств является газогенератор системы Моргана (1896 г.) (рис. 5). Это было большим шагом вперед, а основные особенности его конструкции (водяной затвор, цилиндрическая шахта, центральный подвод дутья, принудительная подача воздуха) сохранились и во всех последующих типах газогенераторов того времени.



Рис. 5. Газогенератор Моргана


В газогенераторах системы Сименса и Моргана совершенно отсутствовала механизация, ставшая впоследствии основой автоматизации газогенераторного процесса. Особо следует отметить конструкцию вращающейся решетки, предложенную де-Лавалем (1896 г.). Это разработка стала отправной точкой для изобретения в 1904 г. первой, удачной в практическом отношении конструкции, решающей вопросы механического измельчения и удаления золы (шлака). Эта задача была блестяще разрешена Керпели (1905 г.), который предложил газогенератор с вращающимся водяным поддоном и с эксцентрично расположенной полигональной колосниковой решеткой (рис. 6).



Рис. 6. Газогенеротор Керпели


Керпели первый предложил делать нижнюю часть шахты газогенератора в виде цилиндрического охлаждаемого водой кессона. Это позволило устранить износ огнеупорной кладки и образование на ней шлаковых настылей, а также предоставило возможность простого получения пара для нужд газогенератора. Такой полумеханизированный газогенератор в то время был крупным шагом вперед и произвел целый переворот в области газогенераторостроения. В различных своих конструктивных видоизменениях он продержался до двадцатых годов прошлого века, пока на смену ему не пришёл полностью механизированный газогенератор.

Последним, важным историческим моментом в развитии газогенераторов является изобретение охлаждения шахтной стенки для предотвращения присадки шлаков. Охлаждаемые стенки были довольно дороги, и их старались не приобретать. Однако при газификации очень многих многозольных топлив охлаждение стенок обеспечивает не только получение лучшего по качеству газа, но и гораздо лучшее выгорание золы, т. к. предотвращается зашлаковывание. Первая разработка такого рода была сделана Кнаудом (1881 г.), продолжена Штапфом (1905 г.) и Турком (1906 г.). Интересные практические разработки были сделаны Сепюлькром и Вюртом (газогенератор с плавлением золы), Бамагом и Колером (веерная зольная решетка), Шавваном (1907-13 гг.), Рамбушом и Лайманом (вращающиеся зольные решетки), Юзом и Чемпманом (шуровочные устройства), а также теоретические решения предложены К. Бунте и Ф. Тренклером и др.

Дальнейшее развитие конструкций газогенераторов шло в направлении их полной механизации при одновременном повышении производительности. Путем увеличения их размера и повышения интенсивности работы. Но этот путь хорош лишь при наличии качественного, правильно сортированного и тщательно подготовленного топлива.

Первый газогенераторный автомобиль был построен Тейлором в 1900 г. во Франции (патент № 5666 выдан в России в 1901 г.). (Рис. 7.). Этот первый патент на автомобильный газогенератор, представляющий в настоящее время лишь чисто исторический интерес, уже предусматривал особую систему регулирования присадки водяного пара к воздуху. Воздух и пар поступали снизу, из-под колосниковой решетки, в снабженную огнеупорной керамической футеровкой (а) шахту.



Генератор работал по принципу прямого процесса газификации топлива. Газ отбирался по трубе (g) и направлялся через охладители (h) и (L) и скруббер (очиститель) (m) к автомобильному двигателю.

Охладитель генераторного газа (h) одновременно служил парообразователем.

Вследствие разрежения, создаваемого автомобильным двигателем в шахте генератора, воздух поступал под колосниковую решетку из атмосферы в трубу (р) через отверстие (s). Отверстие (s) регулировалось краном (t). Через него подсасывался пар из парообразователя (h) через трубку (j) в смеси со вторичным воздухом, поступающим через отверстие (г).

При полностью закрытом кране (t) весь вырабатываемый в парообразователе (h) пар увлекался в генератор воздухом, входящим снаружи через отверстие (г).

При полностью открытом кране (t) воздух поступает через трубку (s) в генератор, а весь пар выходил наружу через трубку (j) и отверстие (г).

В 1905 г. Торникрофтом в Англии была построена первая газогенераторная моторная лодка.

За четырнадцать лет, с 1900 по 1914 гг., с момента появления первого газогенераторного автомобиля в мире было построено несколько десятков газогенераторных автомашин.

Началом развития и широкого применения транспортных газогенераторов можно считать 1914 г., когда экономические предпосылки, вызвавшие к жизни эту новую отрасль техники, стали выступать особенно остро. Рост мирового автотракторного парка в начале прошлого века сильно увеличил потребление жидкого топлива. Неравномерное распределение нефти по земной поверхности поставило ряд стран перед необходимостью искать заменители этого сравнительно редкого ископаемого. В особо тяжелых условиях оказалась Франция. Её энергетические ресурсы были наиболее ограничены по сравнению с другими странами Европы. Успешное применение газогенераторов в металлургии натолкнуло французских инженеров на мысль использовать подобного рода установки для обеспечения автомобильного транспорта дешевым и не дефицитным газообразным топливом. Переход с бензина на национальное топливо во Франции предполагался на следующих условиях: новое горючее в экономическом отношении должно было быть в состоянии конкурировать с бензином; переход на новое топливо не должен вызывать крупных переделок в двигателе.

Исследование первого условия — достаточной дешевизны суррогата — показали, что ни бензол, ни другие углеводороды не могут быть получены достаточно экономично. А лишь генераторный газ из дров, древесного угла и карбонита может дать необходимый экономический эффект. Что касается второго требования — не вносить значительные изменения в двигатель — то оно было вызвано тем обстоятельством, что Франция, располагавшая большим автотракторным парком, не считала реальным решением вопроса путь, требующий крупных конструктивных изменений.

В начале I мировой войны во Франции был организован первый пробег грузового автомобиля с газогенераторной установкой. Пробег состоялся между Парижем и Руаном (126 км.) и не дал положительных результатов. Интересно отметить, что по этому же маршруту в 1894 г. (за 20 лет до пробега грузовика с газогенератором) состоялись первые гонки автомобилей, больше известных тогда как «экипажи без лошадей». Автомобиль Пежо с бензиновым мотором Даймлера также потерпел тогда поражение, уступив первое место паровой коляске Серполе.

В 1916 г. между Парижем и Руаном совершал регулярные рейсы опытный газогенераторный автобус.

Целый ряд конкурсов и пробегов газогенераторных автомобилей, организованный в Европе с 1922 г., очень содействовал развитию нового вида транспорта. Франция и ряд других стран поощряли производство газогенераторных автомобилей правительственными постановлениями, способствующими переводу работающих бензиновых машин на местное топливо. Так, правительство Японии для поощрения введения газогенераторных автомобилей избрало путь материальной заинтересованности владельцев, выдавая им по 300 иен при покупке такого автомобиля. В Италии был издан правительственный закон о переводе автотранспорта к концу 1937 г. на «национальное горючее». Кроме того, автомобили, переводимые с жидкого топлива на генераторный газ, освобождались от государственного налога на 5 лет. Позже для владельцев газогенераторных автомобилей в зависимости от тоннажа были установлены государственные субсидии размером до 9000 лир на покупку автомашины. Германия аналогично поощряла перевод автотранспорта на «национальное топливо», назначив государственную субсидию до 1000 марок при покупке газогенераторных автомобилей и 300 марок при переоборудовании старых бензиновых машин под газогенераторы. Одновременно владельцам бесплатно выдавалась 1 т. топлива и предоставлялись льготы по уплате налогов. Для обслуживания автопарка с газогенераторными установками во Франции и Германии были организованны древесно-угольные и дровяные раздаточные станции.

В 1924 г. во Франции впервые был предложен (герм, патент № 407054 Французского общества сельхоз и пром продукции) способ газификации топлива с малым содержанием летучих компонентов (древесный уголь, антрацит, кокс и т. п.). Суть этого способа в том, что в газогенераторе происходит т. н. опрокинутый процесс горения. Основное же отличие его в том, что присадка водяного пара, необходимого для хорошей газификации топлива, производится за счет добавки к основному топливу определенного количества влажного древесного. Этот способ до сих пор довольно широко распространён ввиду своей простоты и высокой эффективности. В том же году военное министерство Франции испытывало газогенераторные автомобили на манёврах. Особо следует отметить работы В. Фойта (1933 г.) и Е. Розера (1938 г.), посвященные усовершенствованию процесса газификации в транспортных газогенераторах.

Однако на пути массового применения автомобильных газогенераторов встала техническая сложность: генераторный газ содержал большое количество примесей (в первую очередь смолы). Следовательно, перед подачей в двигатель его надо было фильтровать. Но эту проблему довольно быстро решили в Германии. В 1940 г., когда вермахт оккупировал Францию, в составе его тыловых частей находились грузовики, которые не имели потребности в бензине. Нововведение пришлось весьма кстати — бензин в оккупированных районах в свободную продажу не поступал. А вот угля, дров и других органических отходов хватало: стратегическими материалами они не считались. Осенью 1944 г., когда Советская Армия захватила нефтяные верфи Плоешты (единственного источника моторного топлива Германии), еще полгода там, где это было возможно, функцию моторного топлива в немецкой армии выполнял генераторный газ.

Дальнейшее своё развитие транспортные газогенераторы получили во Франции, Германии и Швеции. Эти страны не имели своих запасов нефти и после второй мировой войны испытывали острую нехватку топлива. Поэтому очень большое значение в послевоенные годы специалисты французской и шведской автомобильной промышленности придавали использованию газового топлива. Наиболее практичным представлялось использование машин не с запасом сжатого или сжиженного газа на борту, а с газогенераторной установкой для газификации органического сырья (дерева, угля, торфа). Организация сети газонаполнительных станций требовала значительных капиталовложений, а производство высокопрочных баллонов для сжатого газа требовало применения легированных сталей, которые в то время были дефицитны. Отсутствие необходимой производственной базы сделало эти причины решающими и поставило в центр внимания создание мобильных транспортных газогенераторов.



Рис. 8. Автомобиль ГАЗ-42 с газогенератором.



Рис. 9. Урал-ЗиС 354. Наиболее известный советский газогенераторный автомобиль.


Забавно то, что автомобили и тракторы с транспортными газогенераторами до сих пор используются, хотя и являются редкостью. Есть самоделки, но в ходу и промышленно выпускаемые образцы газогенераторов.



Рис. 10. Современный газогенераторный грузовой автомобиль (Франция, 2005 г.)



Рис. 10. Прицепная газогенераторная установка типа «Имберт» фирмы VOLVO (Швеция, 2002 г.)


Несомненно, что с настройкой газогенератора на нужный выход придется повозится. Впрочем, управляющих параметров немного — это поток воздуха и его влажность. Необязательно сразу строить большой аппарат, для прикидочных экспериментов, можно сделать небольшой, такой как показанный на следующей фотографии.



Рис. 11. Мотовелосипед с самодельным газогенератором!!!


Что дальше? Дальше было бы неплохо провести синтез ФИШЕРА-ТРОПША. К сожалению, мне не удалось найти в Интернет готовую мини-технологию по конверсии генераторного (пиролизного) газа в жидкое топливо. Это не значит, что ее нет. Просто встретить «не пришлось». Нашлась технология по выработке метилового спирта из метана. Ранее уже упоминалось, что пиролизный газ содержит, как метан, так и уже готовые компоненты синтез-газа: водород и окись углерода. Выход же продуктов синтеза зависит, от применяемого катализатора, температуры, давления и соотношения водорода к окиси углерода. Можно попробовать самостоятельно состыковать процесс получения генераторного газа с процессом получения метанола.


ТЕХНОЛОГИЯ ПОЛУЧЕНИЯ МЕТАНОЛА

По материалам автора-изобретателя Г.Вакса.


МЕТАНОЛ

Для улучшения антидетонационных свойств метанол стали использовать с 80-х годов прошлого века — в качестве 15 %-й добавки к бензинам низких сортов.


Краткие сведения о метаноле.

Метанол, метиловый спирт, древесный спирт, карбинол, СН3ОН — простейший алифатический спирт, бесцветная жидкость со слабым запахом, напоминающим запах этилового спирта. Температура кипения +64,5 °C, температура замерзания — 97,8 °C, плотность — 792 г/л. Пределы взрывоопасных концентраций в воздухе 6,7-36 % по объему. Октановое число больше 110. Температура воспламенения 467 °C, Теплота сгорания 24000 кдж/кг — меньше, чем у бензина (44000 кдж/кг), поэтому расход метанола (в литрах) будет выше примерно в два раза. Как топливо применяется в гоночных машинах, например в "Формуле-1".

МЕТИЛОВЫЙ СПИРТ смешивается в любых концентрациях с водой, органическими растворителями и ЯДОВИТ, выпитые 30 миллилитров метанола могут быть СМЕРТЕЛЬНЫ, если не принять срочных мер! Пары также ядовиты!

Традиционно метанол получали возгонкой древесины. Но более перспективен способ получения метанола — из природного газа. В дальнейшем по мере совершенствования этой технологии возможны и другие источники сырья, например биомасса (навоз). Промышленные способы получения метилового спирта пока недостаточно эффективны для использования метанола в качества топлива, но в ближайшие десятилетия цена на нефть будет только подниматься и ситуация может изменится в пользу спиртового топлива (особенно при использовании автомобилей на топливных ячейках). Природный газ, как известно, почти на 100 % состоит из метана — СН4. Ни в коем случае не надо его путать с баллонным газом пропанбутаном, последний является продуктом крекинга нефти и используется напрямую в качестве автомобильного топлива. Впрочем, это и делают многие автомобилисты, устанавливая соответствующее оборудование. А при использовании метанола никакого дополнительного оборудования не требуется. Используя метанол в качестве топлива, как можно существенно повысить мощность двигателя. Это достигается увеличением диаметра главных жиклеров или уменьшением количества воздуха в топливной смеси.

Итак, о химии процесса получения метанола из природного газа.

Метан при неполном окислении превращается в окись углерода и водорода, реакция эта выглядит следующим образом:

2СН4 + О2 —> 2СО +2 + 16,1 ккал.

Более простой технологически способ проходит по реакции конверсии метана с водяным паром:

СН4 + Н2О —> СО +2 49 ккал.

В первом уравнении стоит +16,1 ккал. Это означает, что реакция идет с выделением тепла. Во втором — с поглощением. Тем не менее, мы остановимся на втором способе получения окиси углерода и водорода. При наличии этих двух компонентов уже можно напрямую синтезировать метанол. Реакция идет по следующей формуле:

СО +2 <=> СНЗОН.

Сложность в том, что конечный продукт получается лишь при высоком давлении и высокой температуре (Р > 20 атм., Т = 350 градусов), но при наличии катализатора этот процесс смещается вправо и при низком давлении. Полученный метанол выводится из реакции охлаждением до конденсации, а не сконденсировавшие газы будем сжигать. При правильном сжигании остатков водорода и СО никаких вредных веществ не выделяется (отходы СО2 и Н2О — безвредны), так что никаких вытяжных устройств не требуется. Дальше метанол заливается через трубку, обязательно с герметизацией (!), в канистру. Как видите, химический процесс очень прост, он основывается на двух реакциях. Сложности есть только технологические и по мерам безопасности. Мы ведь имеем здесь дело с сильно горючими и ядовитыми веществами. Нужно опасаться как взрыва, так и утечки этих газов. Поэтому — необходимо строжайше соблюдать технологию и правила обращения, которые мы будем описывать. Для сборки установки нужно будет приобрести: лист нержавеющей стали (1 мм), трубку из "нержавейки" бесшовную, наружным диаметром 6–8 мм, толщиной стенок не менее 1 мм и длиной около 2 метров, компрессор от любого бытового холодильника (можно со свалок, но рабочий). Ну, и само собой разумеется, нужна будет аргоновая электросварка.


ТЕПЛООБМЕННИКИ

Теплообменники обычно состоят из трубок, окруженных охлаждающей средой. В обиходе их называют "змеевиками". Для жидкостей, теплопроводность которых велика, такой теплообменник может быть приемлем. Но с газами ситуация совершенно другая. Дело в том, что на небольших скоростях поток газа движется ламинарно и практически не обменивается теплом с окружающей средой. Посмотрите на дымок, поднимающийся от горящей сигареты. Эта стройная струйка дыма и есть ламинарный поток. Сам факт, что дымок поднимается вверх, говорит о его высокой температуре. А то, что он остается цельным прутком примерно на высоту до 20 сантиметров подъема, свидетельствует о сохранении им тепла. То есть на этом расстоянии даже при совсем малых скоростях поток газа не успевает охладиться, обменяться теплом с воздухом. Именно вследствие ламинарности потока газовые теплообменники приходится конструировать громоздкими. Внутри их трубок появляются "сквозняки", которые даже на десятках метров практически не дают теплообмена. Это хорошо известно тем, кто когда-либо гнал самогон. (Всякий опыт полезен!) Длинная, интенсивно охлаждаемая трубка, из неё вытекает конденсат, но при этом обязательно идет и пар. Значит, теплообмен недостаточно эффективен. Проблема, однако, имеет решение, и оно может быть несложным. Наполнить трубку, например, медным порошком (см. рис. 1). Для производительности 10 л/час теплообменник может быть длиной 600 мм, а для 3 л/час должно хватить и 200 мм, высота h — 20 мм. Размеры частиц могут варьироваться, оптимум где-то в пределах 0,5–1 мм. Учитывая задачи теплообмена, материалом корпуса могут быть и железо, и медь, и алюминий, материалом набивки — медь, алюминий, — что найдется.



Тогда вокруг каждой частички металла струйка газа будет образовывать завихрения. Тем самым сразу ликвидируются сквозняки, и поток становится турбулентным. Ну и одновременно увеличивается в огромной степени контакт газа с охлаждаемой поверхностью. Набитый в трубку порошок меди постоянно принимает или отдает тепло стенкам, и поскольку теплопроводность меди примерно в 100 тысяч раз выше теплопроводности газа, то газ сравнительно быстро примет температуру стенок, если мы будем их интенсивно охлаждать. Нужно учесть, что с уменьшением размеров частиц и увеличением их количества растет также и сопротивление газовому потоку. Поэтому вряд ли удастся использовать для теплообменника частицы мельче 0,5–1 мм. Проточную охлаждающую воду, конечно, целесообразно пропускать навстречу потоку газа. Это дает возможность в каждый точке теплообменника иметь свою определенную температуру. Поскольку тепловой контакт у нас близок к идеальному, температура на выходе конденсируемой жидкости будет равна температуре охлаждающей жидкости. Вот каков по идее обсуждаемый здесь теплообменник. Приведенный эскиз есть не что иное, как дистиллятор, он же самогонный аппарат, он же теплообменник. Производительность такого дистиллятора прикидочно 10 литров в час.

Его также можно применять практически в любых целях, включая установку для получения обычного этилового спирта. Такие теплообменники при огромной производительности в сотни раз меньше существующих.


КАТАЛИТИЧЕСКИЙ НАСОС (РЕАКТОР, см. рис. 2)

В существующих химических газовых процессах обычный катализатор идет в гранулах довольно значительного размера от 10 до 30 мм. Площадь контакта газа с такими шариками в тысячи раз меньше, чем если бы мы использовали частицы в 1-1000 микрон. Но тогда проходимость газа весьма затруднится. Кроме того, мельчайшие частицы катализатора довольно скоро выйдут из строя вследствие поверхностного загрязнения. Нами найден способ увеличить площадь контакта газа с катализатором, не затрудняя проходимости его в реакторе, и одновременно непрерывно производить очистку от так называемого "отравления" самого катализатора.



Рис. 2, где смесь: катализатор с ферритовым порошком, может быть в соотношении 1:1. Сетки предназначены для фиксации порошков. Песок — фиксирует сетки


Делается это следующим образом.

Порошковый катализатор смешивается с ферромагнитными частицами — железным либо ферритовым порошком, который можно получить, разбивая магниты от неисправных громкоговорителей (прим. — ферриты теряют магнитные свойства при температуре выше 150 град. С), а так как ферриты очень твёрдое вещество — это их полезное свойство пригодится в дальнейшем (читайте ниже — чтобы специально не добавлять абразивный порошок). Смесь ферромагнитного порошка с катализатором помещается в немагнитную трубку, например, из стекла, керамики, можно и в алюминиевую или медную. Теперь смотрите, какая может быть схема. Снаружи трубки идут обмотки катушек. Каждая из них включена через диоды, так, например, как дано на рис. 3.



Рис. 3. Рассматривается схема включения обмоток. Сопротивление обмотки 1200 Ом. Диаметр провода 0,15 мм (до заполнения катушки). Диоды любой силы тока, не менее 1 А, напряжение не менее 450 В.


При включении в сеть переменного тока обмотки включаются поочередно с частотою 50 Гц. При этом ферромагнитный порошок непрерывно сжимает и расширяет катализатор, обеспечивая пульсирующую проходимость газа. Если же включать электромагниты в трехфазною сеть (см. рис. 4), то в этом случае обеспечивается поступательная пульсация сжатий, и за счет этого непрерывно газ будет сжиматься в продольном направлении вперед. Таким образом, система работает, как насос. При этом — многократно перемешивая газ, сжимая и расширяя его и тысячекратно увеличивая интенсивность процесса на катализаторе. Попутно частички катализатора трутся друг о друга и о ферритовый абразивный порошок, что приводит к их очистке от загрязняющих пленок.



Рис. 4. Смещение фаз на 120 градусов заставляет катушки работать не попеременно как в предыдущей, а поочередно, по принципу "бегущих огней".


Схема работает следующим образом: с частотой 50 Гц происходит смена полярности на питании. Ток попеременно проходит по обмотке 1,3 и 2,4 (см. рис. 2). При этом в них появляется магнитное поле, которое намагничивает ферромагнитные частицы и заставляет их взаимодействовать друг с другом, вовлекая в движение частицы катализатора. Таким образом попеременно возникает для газа проходимость сквозь мелкие частицы, сменяемая большим сопротивлением, оказываемым сдавленной массой частиц. И самое главное: активность катализатора, сжимающего и разжимающего реагирующий газ, по еще не изученным причинам повышается дополнительно в 20–50 раз. Работа описанного каталитического реактора эквивалентна реактору размером метров в 20–30. Увеличить производительность реактора можно, включая обмотки в трехфазную сеть. При этом система работает не как клапаны, а как активный насос, совмещая все положительные эффекты первой схемы и дополнительно принуждая газ перемещаться в направлении смещения сдвига фаз. При таком включении важно правильно выбрать фазировку. Итак, в реакторе, приведенном здесь, работают следующие положительные факторы:

1. Увеличение площади катализатора в 300—1000 раз за счет уменьшения размеров частиц.

2. Происходит постоянная очистка катализатора от поверхностного загрязнения.

3. Постоянные пульсации давления реагирующих газов между частицами катализатора, а во второй схеме дополнительно происходит еще и перекачки газа внутри самого реактора.

Недостаток этого реактора — повышенное сопротивление потоку газа — устраняется попеременным уплотнением — освобождением частиц внутри четных — нечетных катушек. Одна важная деталь: необходимо теплоизолировать катушки от корпуса реактора. В связи с этим, а также из практических соображений автором были внесены следующие изменения (см. рис. ниже):

Из болванки (бронзы или латуни) диаметром 50 мм, выточим корпус реактора. Размеры можно взять прежние — 160 мм общая длина, рабочая реакторная длина около 140мм, внутренний диаметр 33 мм, толщина стенок приблизительно 5…8 мм, т. е. внешний диаметр около 50 мм и того же диаметра — заглушки, их толщина по 20 мм и на каждой нарезана резьба М36х1,0 мм и длиной по 10 мм. Всё это должно быть сделано из одного и того же материала! К заглушкам в отверстия вставляются и привариваются переходные штуцера или просто соединительные бесшовные стальные трубки с внутренним диаметром 6…8 мм и толщиной стенок около 2 мм. Данную конструкцию необходимо снаружи теплоизолировать листовым асбестом и разделить по всей длине на четыре секции с помощью пяти перегородок, также вырезанных из листового асбеста. Для фиксации перегородок, — можно промазать их силикатным клеем, после просушки наматывается медная проволока (d = 0,15 мм) в каждую секцию. Сопротивление, измеренное омметром, для каждой секции должно быть около 1200 Ом. Обмотки включаются по схеме рис. 3 через регулятор напряжения (например: лабораторный трансформатор — ЛATP), чтобы избежать перегрева обмоток, их надо охлаждать, для этого можно проложить под обмотки стеклянные трубочки диаметром 6…8 мм, возможен принудительный обдув катушек, с контролем температуры внутри реактора.

Следует отметить, что подобная схема реактора (рис. 2) была заявлена на патент (автор — Г.Н. Вакс), она может работать в любых каталитических газовых процессах. Поэтому для химиков — это не домашняя разработка, а принципиально новый, еще не совсем изученный, но эффективный реактор. По всей видимости, эффекты усилятся при подаче прямоугольных импульсов или колебаний высокой частоты.

Количество отверстий — сколько поместится на круге Ф35 мм. Диаметр отверстий — 5 мм. Размер ячейки сетки тонкой очистки — 0,05 мм. Сетки соединяются в "бутерброд" при помешу заклёпок. Суммарная толщина "бутерброда" равна 2 мм.



ПРОИЗВОДСТВО СИНТЕЗ-ГАЗА

СИНТЕЗ-ГАЗОМ называется смесь Н2 и СО, необходимая для производства метанола. Поэтому вначале рассмотрим технологию синтез-газа. Традиционные методы получения СО и Н2 из метана (СН4) состоят в том, что метан смешивается с водяным паром и в нагретом состоянии поступает в реактор, где к паро-метанной смеси добавляется дозированное количество кислорода. При этом происходят следующие реакции:

[1] СН4 + 2 <-> СО2 + 2О + 890 кдж;

[2] СН4 + Н2О <-> СО + 3Н2 206 кдж;

[3] СН4 + СО2 <-> 2СО +2 248 кдж;

[4] 2 + О2 <-> 20 + 484 кдж;

[5] СО2 + Н2 <-> СО + Н2О 41,2 кдж.

Как видно, некоторые реакции эндотермические — с поглощением тепла — а некоторые экзотермические — с выделением. Наша задача создать такой баланс, чтобы реакции шли с контролируемым выделением тепла. Итак, вначале требуется дозированное смешение Н2О и СН4. Традиционные методы ведения этого процесса сложны и громоздки. Мы будем насыщать метан водяными парами путем пропускания пузырьков этого газа через нагретую до 100 градусов Цельсия воду, а чтобы пузырьки активно разбивались, размещаем на их пути твердые ферритовые частички размером 1–2 мм. Но в этой массе рано или поздно пузырьки находят дорогу и затем, практически не разбиваясь, проходят по образовавшемуся каналу. Чтобы этого не происходило, частички из феррита и смесительную камеру ставим в соленоид с подачей переменного тока. В этом существенное отличие нашего диспергатора (см. рис 5).



Рис. 5. Диспергатор


Под действием вибрации частиц феррита в пульсирующем магнитном поле пузырьки метана постоянно разбиваются, проходят сложный зигзагообразный путь и насыщаются парами воды. К соленоиду жестких требований нет, поскольку запитывается он от ЛATPa или от регулятора света (в продаже имеются). Регулировка напряжения на соленоиде необходима, чтобы, изменяя магнитное поле, одновременно изменять и степень насыщения метана парами воды. О цели этих изменений будет сказано ниже.

Количество витков в катушке может быть от 500 до 1000. Диаметр провода 0,1–0,3 мм. Труба диспергатора берется из неферромагнитного металла, поэтому в переменном магнитном поле она будет разогреваться. Кроме того, и метан поступает в воду разогретым. Поэтому специального нагревателя для воды не требуется (прим. — ошибочное мнение! Воду предварительно надо нагреть до кипения, например газовой грелкой, иначе не получить нужного количества водяного пара). Ещё необходим бачок для подпитки водой, поскольку она непрерывно расходуется на образование паро-метановой смеси, для этой цели подойдет сливной бачок от стандартного унитаза, чьё сливное отверстие закрывается стальной пластиной, с приваренной сливной трубкой, конец этой трубки вставляется в диспергатор и изгибается вниз на 180°(см. рис. 5), делается это с целью безопасности, чтобы исключить попадание газа-метана в бачок.

Готовая паро-метановая смесь разогревается до температуры 550–600 градусов в теплообменнике.

ВНИМАНИЕ: необходимо расположить бачок таким образом, чтобы уровень воды в смесителе — диспергаторе не поднимался выше 150 мм, т. е. до половины его высоты, это связано с величиной давления в газовой сети (=150 мм водного столба!), иначе вода будет препятствовать проходу газа-метана в диспергатор.

Также воду перед подачей в бачок необходимо очистить от примесей хлора. С этим справятся стандартные средства очистки воды для бытовых целей.

Готовая паро-метановая смесь разогревается до температуры 550–600 градусов в ТЕПЛООБМЕННИКЕ. Устройство теплообменника (рис. 6) уже достаточно подробно было описано выше (см. рис. 1). Поэтому приведем только уточнение размеров. Теплообменник изготавливается из нержавеющей стали, обязательно варится в среде инертного газа. Трубки из нержавеющей стали крепятся к корпусу только сваркой. Наполнитель теплообменника изготовляется из 1–2 миллиметровых частиц керамики. Это может быть, например, дробленая фарфоровая посуда. Наполнять емкость надо достаточно плотно, с обязательным встряхиванием. Возможная ошибка: при недостаточном наполнении теплообменника частицами керамики газ найдет себе дорогу, и потоки будут ламинарными, чем ухудшается теплообмен.

ВНИМАНИЕ: ВСЯ СИСТЕМА. ДОЛЖНА БЫТЬ ГЕРМЕТИЧНА. Никаких утечек! В теплообменнике 3.2 (см. рис. 10) температуры высокие! Никакие уплотнители не применять — только аргонная сварка.



Рис 6. Теплообменник


КОНВЕРТОР-РЕАКТОР

Самым сложным и ответственным узлом установки является КОНВЕРТОР-РЕАКТОР (см. рис. 7), где происходит конверсия метана (превращение его в синтез — газ). Конвертор состоит из кислород-паро-метанового смесителя и реакционных каталитических колонн. Вообще, реакция идет с выделением тепла. Однако в нашем случае, чтобы процесс начался, на подводящих трубках проводим нагрев, поскольку мы осуществляем конверсию метана по реакции [2]:

СН4 + Н2О <-> СО +2 206 кдж,

с потерей тепла, а значит нужно обязательно подводить тепло в конвертор. Для этого паро-метановый газ мы пропускаем через трубки, обогреваемые горелками. Конвертор работает следующим образом.

Паро-метановая смесь поступает в камеру, в которой вварены трубки из нержавеющей стали. Количество трубок может быть от 5 до 20 в зависимости от желательной производительности конвертора. Пространство верхней камеры должно быть обязательно плотно набито крупнозернистым песком, дробленой керамикой или крошкой нержавейки, размеры частиц 0,5–1,5 мм. Это необходимо для лучшего перемешивания газов, а самое главное — для пламягашения. При соединении воздуха с горячим метаном может произойти загорание. Поэтому в верхней камере набивка осуществляется с обязательным встряхиванием и досыпкой. Трубки и сборная камера (на рис. 7 — нижняя), как раз и набиваются частицами, содержащими катализатор — окись никеля.



Рис. 7. Конвертор-реактор


Массовая доля никеля в катализаторе при пересчете на NiO, должна составлять не менее 7,5±1,5 %. Остаточное содержание метана при конверсии с водяным паром природного газа (соотношение пар: газ = 2:1), при температуре 500° — 38,5 %, а при 800° — не более 1,5 %. Массовая доля "вредной" серы в пересчете на SО3, должна быть не более 0,005 %.

Изготовить такой катализатор можно самому (но всё же лучше найти готовый, промышленный катализатор). Для этого нужно на воздухе прокалить частицы никеля. Если чистого никеля нет, то можно его приготовить из никель — содержащих 10–15-20-копеечных монет СССР. Сотрите их на грубом абразивном круге или мелкой фрезой. Попадание абразива в набивку допускается. Полученный порошок прокалите и смешайте в пропорции 1/3 объема порошка с 2/3 объема молотой керамики (0,5 мм) или чистого грубозернистого песка.

Промежуток между верхними частями трубок заполняются на 10 см любым высокотемпературным теплоизолятором. Это делается, чтобы не перегревать верхнюю камеру. Есть простой способ получения такого теплоизолятора. Обычный канцелярский силикатный клей смешивают с 10–15 весовыми процентами тонкомолотого мела или талька или глины. Перемешивают тщательно. Наливают смесь тонким слоем и сразу же прижигают огнем паяльной лампы. Вскипевшая в клее вода образует пемзообразную белую массу. Когда она остынет, опять наливают на нее слой клея с мелом и опять обрабатывают пламенем. И так повторяют до тех пор, пока не получат, необходимый слой теплоизолятора. После окончания сборки конвертора его помещают в стальной короб, которой обязательно теплоизолируют материалом, выдерживающим температуру до 1000 градусов, например, асбестом. Горелки инжекционного типа, могут быть любые, от 5 штук до 8. Чем их больше, тем равномернее нагрев. Возможна также система, использующая одну горелку. Пламя ее имеет несколько выходов через отверстия в трубе. Газовые горелки есть в продаже, например, те, что используются для обработки лыж.

Есть в продаже также газовые паяльные лампы, поэтому мы даем только общую схему. Горелки должны соединяться параллельно и регулироваться стандартным газовым краном, например, от газовой плиты, но лучше взять автоматический регулятор от бытовой газовой плиты — дороговат, но надёжен и удобен — с его помощью можно задать нужную температуру внутри конвертора-реактора, повысив тем самым степень автономности установки в целом.


ЭЖЕКТОРНЫЙ СМЕСИТЕЛЬ

Ещё один из ответственных узлов — это эжекторный смеситель подачи воздуха и метана в камеру конвертора (см. рис. 8).



Рис. 8. Эжекторный смеситель воздуха и метана


Эжекторный смеситель воздуха и метана состоит из двух сопел одно подает метан, насыщенный парами воды, а другое — эжектор воздуха. Воздух поступает от компрессора, количество его регулируется клапаном давления (Рис. 9).



Рис. 9. Клапан давления


Компрессор может быть практически от любого бытового холодильника, давление регулируется от "нуля" до необходимого, которое будет не на много выше давления в газовой магистрали (т. е. >= 150 мм. вод. ст.).

Необходимость подачи воздуха (кислорода) в конвертор обусловлена тем, что по реакции [5] часть водорода должна быть поглощена с выделением СО, тем самым увеличивается количество окиси углерода до пропорции СО: Н2 == 1:2, т. е. число молей (объемов) водорода должно быть в два раза большим объемов окиси углерода (прим. — наличие избыточного воздуха приведёт к синтезу побочных продуктов — кислот, высших спиртов — "сивухи" и прочих вредных компонентов). Но возникновение СО2 произойдет по реакции [1] с выделением большого количества тепла. Поэтому вначале процесса компрессор мы не включаем и винт держим вывернутым. Воздух не подаем. И по мере разогрева камеры и включении всей системы будем постепенно, включив компрессор и вворачивая винт клапана давления, увеличивать подачу воздуха и одновременно уменьшать пламя на горелках, Контроль будем вести по количеству излишков водорода на выходе из конденсатора метанола (теплообменник 3. и 3.1) через фитиль (13 — см. рис. 10), сокращая его. Фитиль для дожига излишка синтез — газа представляет собой 8-миллиметровую трубку, длиной 100 мм, набитую медным проводом по всей длине — чтобы пламя не пошло вниз, в канистру с метанолом. Мы разобрали все узлы установки получения метанола. Как ясно из предыдущего, вся установка состоит из двух основных узлов: конвертора для создания синтез-газа (конверсия метана) и синтезатора метанола. Синтезатор (каталитический насос, см. рис. 2) достаточно хорошо описан выше. Единственно, что следует добавить — это необходимость установки теплоизолятора между трубой и катушкой. Как изготовить теплоизолятор, мы сообщали при описании изготовления конвертора (см. рис. 7).


ОБЩАЯ СХЕМА УСТАНОВКИ

Перейдем к общей схеме установки. Работа общей схемы: из газовой магистрали метан поступает через вентиль (14) в теплообменник (3.1), разогревается до 250–300 °C, затем поступает в фильтрующий реактор (15), который работает по принципу каталитического насоса (см. рис. 2 — только диаметр трубы = 8 см), содержит в себе окись цинка — для очистки газа от примесей серы и лишь затем газ поступает в смеситель — диспергатор (2), где насыщается парами воды. Вода (дистиллированная) добавляется в диспергатор непрерывно из бачка (1). Вышедшая газовая смесь поступает в теплообменник (3.2), где разогревается до 500–600 °C и идет в конвертор (4). На NiO — катализаторе (ГИАП-16) при температуре 800 °C происходит реакция [2]. Для создания этой температуры работают горелки (12). После установления температурных режимов включается компрессор (5) и постепенно подается воздух в смеситель (11). Повышение давления осуществляется путем вворачивания винта в клапане (8). Одновременно уменьшаем пламя на горелках (12) при помощи вентиля (14.2). Полученный на выходе синтез — газ поступает в теплообменники (3.1; 3.2), где охлаждается до температуры 320–350°. Затем синтез — газ поступает в синтезатор метанола (6), где на катализаторе из смеси одинакового количества ZnO, CuO, СоО (например, СМС-4, К-140) происходит превращение его в метанол СН3ОН. Смесь газообразных продуктов на выхода охлаждается в теплообменнике (3.3), который описан выше (см. рис. 1) и поступает в накопительный бачок (10). В верхней его части находится трубка — фитиль (13), где дожигаются продукты, которые не прореагировали в процессах. Поджигание необходимо, обязательно!



Рис. 10. Общая схема установки


НЕСКОЛЬКО СОВЕТОВ

Катализаторы можно готовить самому путем прокаливания порошковых металлов на воздухе. Измерение температуры можно осуществлять при помощи термоиндикаторных красок, которые в настоящее время достаточно распространены. Измерение нужно проводить на входных и выходных трубках. Если термокрасок вы не достанете, можно изготовить сплав олово — свинец — цинк. При определенных, найденных экспериментально пропорциях смешения они будут иметь необходимую температуру плавления. Нанося полученные сплавы на трубки и следя за их плавлением, можно с некоторой погрешностью контролировать температуру. Если вы не допустили образования газовых карманов (т. е. полностью заполнены все полости соответствующей крошкой), если устранили утечки и самое главное — своевременно зажжен и постоянно горит фитиль (11), то установка будет абсолютно безопасна. Подбирая катализаторы можно повышать тепловой КПД, увеличить процент выхода метанола. Для достижения оптимума здесь требуются эксперименты. Они проводят ся во многих институтах разных стран. В России к числу таких НИИ относится, например, ГИАП (Государственный институт азотной промышленности). Следует иметь в виду, что получение метанола из природного газа в компактных установках — новое дело, и многие процессы еще недостаточно изучены. В то же время метанол — одно из самых экологически чистых и практически идеальных топлив. И, самое главное, получение его основано на безграничных и возобновляемых ресурсах — метане.

Вот и все, на этот раз. Выглядит достаточно сложно, но следует помнить, что любую сложную задачу можно решить, разбив ее на маленькие части, решение каждой из которых уже не вызывает проблем. А для чего еще можно использовать метанол? Вот основные синтезы на его основе в промышленности:



Загрузка...