Кузнецов Б.Ф., Пинхусович Р.Л., Пудалов А.Д.
В настоящее время большинство технологических процессов в химической и нефтехимической промышленности оснащаются автоматическими системами управления (АСУТП), неотъемлемой частью которых являются информационно-измерительные системы (ИИС). Основной особенностью функционирования измерительных каналов ИИС при работе в составе АСУТП является то, что здесь реализуются динамический режим измерений.
Отклонение значений параметров технологических процессов от заданных может привести к значительным экономическим потерям, т. е. снижению эффективности функционирования АСУТП [1]. При этом одним из основных факторов определяющих эффективность работы систем автоматического управления является точность измерения значений параметров технологических процессов, на основе результатов которых вырабатывается управляющее воздействие. В данных условиях, преобладающими являются такие составляющие как динамическая и дополнительные погрешности измерительных преобразователей (ИП), и в совокупности могут составлять до 90 % от суммарной погрешности измерительного канала ИИС.
Появление дополнительных погрешностей обусловлено воздействием на ИП совокупности неконтролируемых факторов, например, температуры окружающей среды, влажности атмосферного воздуха, изменения параметров питающей сети и др..
Существующие в настоящее время методики расчета дополнительных погрешностей позволяют производить вычисления только для случая, когда измерения осуществляются в установившемся режиме, тогда внесение поправок на результат измерений не представляет трудности. Анализ дополнительной погрешности измерительного канала в динамическом режиме требует иного подхода, разработка которого и является целью данной работы.
Модель измеряемого сигнала на входе канала ИИС x(t) может быть представлена в виде суммы математического ожидания измеряемого параметра μx = M{x{t)}, стационарного центрированного случайного процесса гауссовского типа x0(t) и гармонической составляющей xh(t) [2–4]:
x(t) = μx + x0(t) + xh(t). (1)
Модель влияющих величин ε(t) также может быть описана выражением подобным выражению (1), т. е. [2–4]:
ε(t) = με + e0(t) + eh(t), (2)
где με — математическое ожидание влияющей величины; e0(t) — стационарный центрированный случайный процесс гауссовского типа; eh(t) — гармоническая составляющая.
При учете инерционности измерительного канала и канала влияния необходимо также иметь информацию о таких характеристиках сигналов как спектральная плотность мощности (СПМ) или соответствующая ей автокорреляционная функция (АКФ).
В общем случае выходной сигнал измерительного канала y(t) есть некоторый функционал от измерительного сигнала и влияющей величины (или величин) т. е. y(t) = Ψ{x(t),ε(t)}, но при нормировании дополнительной погрешности обычно сводят к одному из следующих видов:
— мультипликативная погрешность;
— аддитивная погрешность;
— аддитивно-мультипликативная погрешность (при нескольких влияющих величинах).
В зависимости от количества влияющих величин и их взаимной зависимости, а так же зависимости между ними и измеряемой величиной могут быть выделены следующие модели погрешности измерительного канала:
— скалярная модель с независимыми сигналами (одна влияющая величина ε{t), pxε = 0, xh(t) = 0, εh(t) = 0);
— скалярная модель с зависимыми сигналами (одна влияющая величина ε(t), pxε не = 0, xh(t) = 0, εh(t) = 0);
— скалярная модель с учетом гармонических составляющих (одна влияющая величина ε(t), pxε не = 0, xh(t) не = 0, εh(t) не = 0);
— векторная модель с независимыми составляющими (вектор влияющих величин [ε] = [ε1(t),ε2(t),ε3(t)….εn(t)], матрица корреляции вектора [ε] нулевая);
— векторная модель с зависимыми составляющими (вектор влияющих величин [ε] = [ε1(t),ε2(t),ε3(t)….εn(t)] матрица корреляции вектора [ε] ненулевая);
Рассмотрим основные случаи, при этом опустим громоздкие математические выкладки и промежуточные вычисления.
Суммарная погрешность измерительного преобразователя, при статистической независимости между составляющими, может быть определена по формуле [4]:
(3)
где Δосн — основная погрешность средства измерений; Δдин — динамическая погрешность; Δдоп — дополнительная погрешность; n — число влияющих величин.
Выражение (3) также может быть представлено в следующем виде:
(4)
где Ψ(εi) — функция влияния, или коэффициент влияния, когда она линейна, или функция совместного влияния нескольких влияющих величин Ψ(εi,εj); εi — i-тая влияющая величина; μ0i — значение влияющей величины принятое при градуировке ИП; i = 1,2…n; j = 1, 2…n, при i не = j.
Мгновенное значение дополнительной погрешности может быть определено из разности сигнала с выхода преобразователя и входного сигнала:
Δдоп(t) = (y(t) — x(t)) = ax(t)[ε(t) — μ0]. (5)
Так как в выражение (4) дополнительная погрешность входит в виде квадрата своего значения, то более удобно определять сразу ее квадрат, поэтому (5) запишем в виде:
Δ2доп(t) = a2x2(t))[ε(t) — μ0]2.
В технологических измерениях, как правило, интерес представляет не мгновенное, а среднее значение измеряемого параметра, а, следовательно, и расчет дополнительной погрешности необходимо проводить в «среднем» за период времени.
Выражение для расчета математического ожидания квадрата мультипликативной дополнительной погрешности без учета динамических характеристик каналов воздействия измеряемой и влияющих величин имеет вид [10]:
M{Δ2доп} = a2[μ2xμ2ε + σ2xσ2ε(1 + 2p2xε) + μ2xσ2ε + μ2εσ2x + 4μxμεσxσεpxε]. (6)
где pxε — коэффициент корреляции между измеряемой и влияющей величинами.
Здесь и в дальнейшем под обозначением με, будем понимать смещение математического ожидания влияющей величины относительно значения μ0, которое принято при градуировке измерительного преобразователя.
В том случае, когда в сигналах входной и влияющей величин присутствуют гармонические составляющие, определяемые соответственно как:
xh(t) = Cxsin(ωxt),
εh(t) = Cεsin(ωεt).
где Cx и Cε — амплитуды гармонических составляющих соответственно входного и влияющего воздействий; ωx и ωε — их частоты.
Выражение для расчета квадрата мультипликативной дополнительной погрешности с учетом гармонических составляющих коррелированных сигналов измеряемой и влияющей величин имеет вид [5]:
В том случае, когда гармонические составляющие случайных процессов xh(t) и εh(t) коррелированы, т. е. ωx = ωε, выражение (7) усложняется:
где ф — сдвиг фаз между гармоническими составляющими.
При воздействии на измерительный преобразователь n статистически независимых влияющих величин (рис. 1), не коррелированных с входным воздействием, выражение для расчета квадрата мультипликативной дополнительной погрешности имеет вид
где ai — коэффициент влияния i-той влияющей величины.
Рис. 1. Структура модели возникновения дополнительной погрешности при наличии множества влияющих воздействий.
При воздействии на ИП n статистически зависимых влияющих величин, которые коррелированы с входным воздействием, выражение (9) существенно усложняется и принимает вид:
Во всех предыдущих расчетах предполагалось, что тракты прохождения измеряемой и влияющей величин являются безинерционными, или, искажениями формы сигналов за счет инерционности можно пренебречь. В том случае, когда в каналах присутствует инерционность (рис. 2), расчет математического ожидания квадрата мультипликативной дополнительной погрешности осуществляется по иной схеме.
Рис. 2. Структура модели образования динамической и мультипликативной дополнительной погрешностей при учете динамических свойств каналов сигналов входного и влияющего воздействий
При наличии в измерительном канале инерционности в результат измерения помимо дополнительной погрешности вносится еще и динамическая погрешность. Существующие методы расчета позволяют вычислить отдельно каждую составляющую, а затем, произвести геометрическое суммирование. При этом, как правило, предполагается, что эти составляющие статистически независимы. В действительности, это допущение не совсем корректно, т. к. не учитывает наличие корреляционной связи между составляющими суммарной погрешности, возникающей при прохождении измерительного сигнала и сигнала влияющей величины через тракт ИП.
Суммарная погрешность ИП, будет определяться из соотношения:
Δ(t) = x(t) — y1(t) = x(t) — [a∙y(t)e(t) + y(t)].
Определим квадрат суммарной погрешности:
Δ2(t) = [x(t) — y(t) — ay(t)e(t)]2 = [x(t) — y(t)]2 + a2y2(t)e2(t) — 2ay(t)[x(t) — y(t)].
В выражении (11) присутствуют 3 составляющие. Первая определяет квадрат динамической погрешности Δ2дин; вторая — квадрат дополнительной погрешности Δ2доп; третья — член, обусловлен наличием корреляционной связи между дополнительной и динамической погрешностями.
Рассмотрим, в качестве примера, случай, когда случайный процесс на входе измерительного канала имеет спектральную плотность мощности вида:
Sx(ω) = 2σ2xα/π(α2 + ω2),
где α — параметр функции СПМ, а передаточная функция каналов воздействия сигналов ИП описываются инерционным звеном первого порядка:
W(jω) = 1/(1 + jωT))
где Т — постоянная времени.
Дисперсии измеряемой и влияющей величин соответственно равны [12]:
σ2y = σ2x/(1 + αT1),
σ2e = σ2ε/(1 + αT2),
Примем так же, как наиболее характерный случай, что корреляционная матрица входного воздействия и влияющей величины определена как:
где ах, аε и ахε, аεх, с = σxσεpxε — параметры соответственно корреляционных и взаимных корреляционных функций измеряемого и влияющего воздействий.
Математическое ожидание квадрата динамической погрешности равно:
M{Δ2дин} = σxВ1/(1 + B1)
где В1 = аxТ1.
Математическое ожидание квадрата мультипликативной дополнительной погрешности:
где В2 = аεТ2.
Математическое ожидание корреляционной составляющей суммарной погрешности определяется из следующего выражения:
(14)
где B3 = axεT1; B4 = axεT2.
Максимальное увеличение суммарной динамической и дополнительной погрешности, при учете корреляционной связи между этими погрешностями, в рассмотренном примере, не превышает 20 %. Такое увеличение суммарной погрешности является несущественным и, поэтому, во многих случаях, корреляционной составляющей можно пренебречь.
В том случае, если дополнительная погрешность является чисто аддитивной, то математическое ожидание ее квадрата определяется только статистическими параметрами влияющей величины:
M{Δ2доп} = b2[μ2ε + σ2ε]. (15)
где b — коэффициент влияния аддитивной дополнительной погрешности.
На рис. 3 представлена структура модели образования мультипликативно-аддитивной дополнительной погрешности.
Рис. 3. Структура модели образования мультипликативно-аддитивной дополнительной погрешности измерительного преобразователя
Дополнительная погрешность на выходе ИП равна:
Δдоп(t) = ax(t)ε(t) + bε(t).
Математическое ожидание квадрата мультипликативно-аддитивной дополнительной погрешности, при учете корреляции между измеряемой и влияющей величиной, равно:
Выражение (16) состоит из трех частей, образующих три слагаемых суммарной погрешности. Первая часть характеризует мультипликативную составляющую, которая совпадает с (6). Вторая часть — аддитивную, совпадающую с (15). Третья — характеризует статистическую зависимость между аддитивной и мультипликативной составляющими суммарной погрешности:
M{Δp} = 2ab[μxμ2ε + μxσ2ε + 2μεσxσεpxε]. (17)
Максимальное увеличение суммарной дополнительной погрешности, при учете корреляционной связи достигает 100 %. Такое увеличение суммарной погрешности за счет корреляционной составляющей является существенным и поэтому ее следует обязательно учитывать при расчетах аддитивно-мультипликативной дополнительной погрешности.
Рассмотренная в качестве примера структура измерительного канала, имеющая инерционные звенья, является лишь частным случаем более сложных динамических структур. Наличие в каналах измеряемой и влияющей величин сложных динамических структур не позволяет представлять результаты в аналитическом виде. В этих случаях следует использовать численное моделирование.
Литература
1. Миф Н.П. Оптимизация точности измерений в производстве. — М.: Издательство стандартов, 1991. - 136 с.
2. Нормирование и использование метрологических характеристик средств измерений. Нормативно-технические документы. ГОСТ 8.009-84, методический материал по применению ГОСТ 8.009-84, - М.: Изд-во стандартов, 1985.
3. Волгин В.В. Модели случайных процессов для вероятностных задач синтеза АСУ. Генеральная совокупность реализаций. Эргодичность. Единственная реализация. — М.: Издательство МЭИ, 1998. - 64 с.
4. Волгин В.В., Каримов PH. Оценка корреляционных функций в промышленных системах управления. — М.: Энергия, 1979. - 80 с.
5. Сергеев А.Г., Крохин В.В. Метрология. — М.: Логос, 2000.
6. Пинхусович P.Л, Кузнецов Б.Ф., Пудалов А.Д. Метод расчета дополнительной погрешности измерительных преобразователей при коррелированных воздействиях. // Измерительная техника, 2002, № 9, с. 12–14.
7. Пинхусович P.Л, Кузнецов Б.Ф., Пудалов А.Д. Модель дополнительной погрешности измерительных преобразователей от множества влияющих воздействий. // Математические методы в технике и технологиях: Сборник трудов XV Международной научной конференции. В 10-и т. Том 7. Секция 7/ Под общ. Ред. B.C. Балакирева. Тамбов: Изд-во ТГТУ, 2002, с. 13–16.
8. Пинхусович P.Л, Кузнецов Б.Ф., Пудалов А.Д. Расчет дополнительной погрешности измерительных преобразователей с учетом динамики канала влияния. // Датчики и системы: Сборник докладов международной конференции. Том 3. СПб.: Изд-во СПбГПУ, 2002, с. 173–177.
9. Кузнецов Б.Ф., Пинхусович P.Л. Методы расчета дополнительной погрешности измерительных преобразователей стохастических сигналов // Измерительная техника № 4, 2002 г.
10. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. — М.: Наука, 1968.-720 с.