(Сталкер)
Схема этого генератора на лампе представляет из себя автогенератор, выполненный по схеме блокинг-генератора на тетроде 6П45С от цветных ламповых телевизоров. Вся схема напитывается от удвоителя, на аноде при этом получается примерно 600. С одной лампы я выжимал 4,5 см стример/искру в предмет. При этом лампа работает в перегруженном режиме, чтобы нормализовать параметры работы лампы воспользуйтесь запараллеливанием нескольких таких ламп. При хорошей настройки резонанса с одной лампы можно выжать 10 см стример, я не смог получить 10 см т. к. у меня нет КПЕ, и мне пришлось перебирать десятки капов. Накал одной лампы берёт 2,3 А. Все резисторы как минимум 10 Вт, Вторичку надо обязательно заземлять, т. к. когда она не заземлена, в генераторе начинают прошиваться близ лежащие между собой провода. Не вздумайте лампу садить на фольгированный текстолит — его прошьёт, у меня из-за этого две сетки склеились. Пока подбираете резонанс — питайте схему от 220 В, когда найдёте — смело подсоединяйте удвоитель… И ещё одно, ПИТАЙТЕ СХЕМУ ЧЕРЕЗ БАЛЛАСТ!!!!!!
(Сталкер)
Это очередной ламповый генератор, собранный на военных лампах ГУ50. В этом генераторе запаралелены 4 лампы (это сделано для увеличения мощности). Аноды ламп питаются от учетверителя без балласта (на выходе 1200 В). Схема работает стабильно. Нигде ничего не стреляет. С этого генератора я смог выжать только 12 см, из-за того, что у меня нет КПЕ, но в идеале с 4-х ламп можно до 25 см стример получить. Параметры первички/обратной связи стандартные: первичка витков 20, обратная связь ~27.
(Сталкер)
Это очередной ламповый генератор. На этот раз я использовал лампу ГК71, лампа очень хорошая, при питании в 2 кВ с неё можно выкачать до 30 см искры. У меня не было нормального питания и я спаял умножитель на электролитах, который давал 1.6 кВ 0.6 А, в результате я смог выкачать ~13 см искру, результат плоховатый из-за отсутствия нормального питания (мота) и КПЕ. Теперь к деталям: все резисторы надо брать по мощности как минимум на 10 Вт. Конденсаторы на напряжение в полтора раза большее, чем само питание. Накал надо включать постепенно (последовательно питанию накала подключаем резистор на 5 Ом, затем, когда лампа немного прогреется его коротим), так продлеваем срок службы лампы. Генератор работает устойчиво. Схема включения и параметры обмоток стандартные.
(Пружина)
На рис. изображена схема автогенератора на 2-х транзисторах.
Питание схемы — трансформатор ТС180, перемотанный на 28 В, с выпрямителем. Включаю через мощный балласт в несколько Ом. Им же регулирую мощность. С максимальным сопротивлением ток при дуге 4. 5 А. Дуга зажигается с 2 см и растягивается почти до 5 см.
В схеме используются транзисторы КТ825 (тот же КТ827, только р-n-р) т. к. более подходящих не было. В принципе можно ставить любые, но мощность схемы будет напрямую зависеть от их параметров. К примеру, КТ825 и КТ827 обладают мощностью 125 Вт. Можно использовать транзисторы структуры n-р-n, но для этого необходимо поменять полярность питания.
Надо сказать что у схемы весьма неплохой КПД. На холостом ходу строчник потребляет около 2.5 А, а при дуге может и более 10 А. Однако транзисторы сильно греются. Их нужно устанавливать на большие радиаторы. При токе 7…10 А необходимо поставить кулера или другие устройства принудительного охлаждения.
Резистор R1 может быть 200…2000 Ом (на требуемую мощность), R2 — 20…100 Ом. Их параметры некритичны и могут быть практически любыми.
В обмотках связи может быть любое (в разумных пределах) число витков, но 2-х вполне достаточно. Их количество не влияет на мощность схемы (хотя незначительно влияет на частоту генерации). Катушки связи можно мотать любым проводом (у меня 0.5 мм).
Питать схему без балласта следует от 12…15 В, а при большем напряжении он необходим. Для данных транзисторов ток схемы не должен превышать 10 А, иначе есть риск загубить транзисторы.
Первичная обмотка содержит 2*5 вит. провода 1.5 мм. Можно подобрать более удачное число под требуемое напряжение.
Вторичные обмотки строчника (их 2 на одном феррите) следует соединять последовательно.
(Пружина)
На рис. изображена схема устройства. Этот строчник позволяет получать дугу, зажигающуюся с 4 см (с 2-мя вторичками) и выдаёт достаточную мощность для питания Лесницы Якова, плазменных шаров, ионных моторов (нужен выпрямитель или умножитель) и др. устройств. Конечно в сравнении со строчниками на полевиках (мосфетах) и тем более ИГБТ он значительно слабее, но для столь простой схемы этого вполне достаточно.
Схема представляет собой стандартный генератор на 3-х триггерах Шмидта — инверторах (можно использовать простые инверторы без гистерезиса переключения например микросхему К155ЛАЗ, но стабильность генератора сильно упадёт и максимальная частота будет ниже. К тому же в этом случае питание микросхем нужно делать не ниже 5.5 В, тогда как с триггерами Шмидта схема работоспособна даже при 3.5 В).
Конденсатор нужно ставить на 5…15 нф (в зависимости от нужной частоты), а резистор желательно не менее 35…40 Ом (т. к. при слишком низком сопротивлении может произойти срыв генерации, что станет причиной выхода из строя транзисторов, и возможно микросхемы). Более 700 Ом его делать тоже не стоит(хотя схема сохраняет работоспособность) из-за слишком низкой частоты.
После генератора на триггерах Шмидта стоят 2 D-триггера. Первый подключён в режиме последовательного счёта (для сдвига фаз на 180 градусов) и он делит частоту генератора на 2. Двухнаправленный светодиод служит для контроля генерации (если горят оба сегмента — всё ОК), а также питания. Он необязателен. Второй D-триггер повторяет сигнал с первого и развязывает его вход от выхода (на всякий случай).
Выходы второго D-триггера подключены к базам КТ827 (они составные и тока микросхемы им вполне достаточно). Дальше строчник (у меня с двумя вторичками от TBC-110ЛA, соединёнными последовательно). Первичка у меня 5 витков, намотана в 2 провода с шагом в несколько мм. Важно правильно сфазировать обмотки, иначе схема работать не будет. Стабилитрон питания микросхемы лучше выбирать с возможно большим током стабилизации и на 5…6 В (я использую КС156, хотя можно и КС147 или вообще заменить его КРЕН-кой). Резистор следует подбирать для требуемого стабилитрона по току стабилизации в зависимости от напряжения питания. Ток стабилизации должен быть больше тока потребления микросхем в 1.5…2 раза (или больше), желательно более 40 мА.
При напряжении более 12 В нужно использовать балласт иначе могут сгореть транзисторы. Ток выше 12 А поднимать опасно.
(Пружина)
Здесь я постараюсь подробно описать постройку и работу катушки Тесла на лампе ГУ80, собранной мной.
Для начала скажу что лампы ГУ80, ГУ81, ГУ80М и ГУ81М совершенно одинаковые, отличаются лишь на вид, датой изготовления а также цоколёвкой.
При первом включении возник стример примерно 2 см, потом, когда я поймал резонанс, стример вырос до 6…8 см. Питание 2.4 кВ переменного напряжения (трансформатор поджига ксеноновых ламп, снял с мачты освещения). Контурный конденсатор был составлен параллельно из двух К15-4 (от старых ламповых телеков) 470 пф, 30 кВ. Надо сказать, что К15-4 очень плохие конденсаторы. Они сильно греются при работе и ёмкость у них сильно плавает.
Потом я их заменил на К15-5 (такие оранжевые диски) 4700 пф, 3 кВ, 3 шт последовательно. Резонанс ловил двумя способами:
1. Изменением числа витков первички (она была с отводами от каждого витка);
2. Конденсаторами КВИ-2 (от старых ламповых телевизоров, они припаяны к первичкам строчников TBC-110ЛA) 47, 100 и 150 пф, 10кВ.
Следует заметить, что КВИ-2 хорошие конденсаторы, в контуре работают гораздо лучше К15-4 и К15-5 (греются меньше), только их нужно много.
Вторичка 37x275 мм намотана проводом 0.14 мм (в изоляции 0.155). Резонансная частота примерно 650кГц. Конечно, для такой мощности провод сильно тонкий, но другого просто не было. Каркас от катушки с фольгой, картонный. Сверху вторичка покрыта эпоксидной смолой, она намного лучше всяких лаков держит большую температуру и кратковременно выдерживает дугу.
Первичка была диаметром 68 мм, на каркасе из оргстекла (30 витков провода 1.06 мм (в изоляции 1.3), с отводами от каждого витка), как на фотографии, только с отводами. Катушка обратной связи 17 витков (не особо критично). Располагать первичку и катушку связи нужно на расстоянии 10…15 мм, иначе между ними возникает дуга. Сеточный резистор нужен большой мощности, у меня 8 шт 4.7 кОм, 10 вт, параллельно и все равно они сильно греются. Он не особо влияет на длину разряда (плюс/минус 2…3 см), но от него зависит мощность. Для начала нужно ставить большее сопротивление иначе может расплавится сетка лампы. Ёмкость сеточного конденсатора не особо критична (от 1 нф и более, однако больше 10 нф нет смысла ставить).
Потом подключил диодный мост (составленный из 16 диодов КД206В) и конденсатор на 1 мкф, 3 кВ. Применял небольшой тороид из металрукава. Стример вырос до 10…12 см. Очень жирный. Намотал новую первичку (на пластиковой трубе) 10 см диаметром 25 витков с отводами от каждого (фото), таким же проводом как и у предыдущей (уменьшение коэффициента связи первички со вторичкой увеличивает длину разряда). Обмотка связи аналогична предыдущей. Заменил контурный конденсатор на секцию из КВИ-2 (14 шт) плюс самодельный КПЕ (Конденсатор Переменной Емкости) на 200 пф. Суммарно 1200 пф.
Ёмкость конденсатора выпрямителя влияет на длину разряда. Слишком маленький конденсатор (или его отсутствие) уменьшает длину стримера, а большая ёмкость тоже укорачивает его, но делает мощнее. Для моей катушки оптимальной оказалась ёмкость от 0.33 до 0.6 мкф (я ставил 0.5). Стример увеличился до 15…16 см (фото). Лампа сильно грелась, анод краснел через минуту. При увеличении сеточного резистора перегрузка пропадала, но стример уменьшался на 1.5…2 см.
(Vcoder)
Без дросселя L1 преобразователь работал крайне скверно: огромный ток на холостом ходу, пронзительный свист… Я почти было разочаровался в этой схеме, но решил поставить дроссель — и схема заработала как надо. Дроссель не дает моментально расти току при насыщении трансформатора и это здорово снижает ударные токовые нагрузки на транзисторы.
Частота генерации на холостом ходу — 22.6 кГц, с дугой — вплоть до 88 кГц.
Ток потребления на холостом ходу 2 А, с дугой — до 10 А. Сила тока прямо пропорциональна длине дуги: длиннее дуга — больше ток.
Дуга зажигается примерно с 2. 3 мм и растягивается до 2 см. Дуга белая и горячая. Если поймать дугу на нихром от 1 кВт спирали, он плавится.
Если к выходной обмотке подключить лампочку 220 В, 15 Вт, она светится в полный накал. Это означает, что ток короткого замыкания порядка 60…70 мА. По мере растягивании дуги ток вторичной обмотки уменьшается.
Замеченные недостатки:
• Стабилитроны D1 и D2 сильно нагреваются. Нужно либо увеличивать сопротивление резисторов R1 и R2 (что нежелательно, т. к. замедлит переключение транзисторов), либо применять вместо стабилитронов ограничители напряжения на транзисторах, которые ставить на небольшой радиатор.
• Конденсатор С1 несильно, но греется. В данной конкретной схеме стоит марки К73-17. Желательно поставить более высокочастотный.
(Vcoder)
Когда у меня появилась радиолампа ГИ-30, я решил сделать на ней маленькую катушку Теслы. В качестве каркаса для вторички взял картонную трубку от фольги. Каркас первички — от закончившегося скотча. Схема немудреная — обычный автогенератор:
На рисунке не показан балласт — две осветительные лампочки по 150 Вт в параллель, включенные в разрыв сетевого провода.
Без балласта схему почти не включал. И это спасло лампу: иногда генерация запускается на какой-то паразитной частоте, в результате чего сильно возрастает потребляемый ток (лампочки вспыхивают почти в полный накал) и задыхаются в помехах все теле/радиоприемные устройства в квартире.
Настройку первичного контура в резонанс со вторичным производил путем изменения числа витков первой обмотки: грубо — доматыванием нескольких витков новым куском провода либо отматыванием с обрезанием лишнего провода. Точно — отматывая конец провода с катушки. При этом конец провода складывал зигзагом — это уменьшает его индуктивность, что улучшает работу схемы и уменьшает наводки.
В связи с малой мощностью лампы ГИ-30 (2x20 Вт) больших разрядов мне получить не удалось. Максимум 2–2.5 см.
Антонов А. Ю.
Устройство представляет собой генератор частоты с усилителем мощности на полевом транзисторе (MOSFETe). Частоту можно менять, меняя конденсатор С2. Чем меньше его ёмкость, тем выше частота. Блок питания выполнен по стандартной схеме на мощном диодном мосте VD1-VD4. Он устанавливается на небольшом радиаторе с площадью поверхности около 100 кв. см. Конденсатор фильтра С1 должен иметь ёмкость не менее 10000 мкф, чем больше тем лучше. От него во многом зависит стабильность выходного напряжения генератора.
Теперь к конструкции генератора. Некоторые думают, что MOSFET очень слабо нагревается во время работы. Это не так. Он нагревается слабее биполярного транзистора, но всё равно требует большого радиатора. Поэтому транзистор VT1 необходимо поставить на радиатор с полезной площадью не менее 500 кв. см. Микросхема и резисторы R1, R2, R3 монтируются на печатной плате из стеклотекстолита или гетинакса. Радиатор с транзистором привинчивается к корпусу. Также не рекомендую ставить строчник в один корпус с генератором, ведь применение устройства не ограничивается питанием строчника. От него можно запитать катушку зажигания или любой трансформатор на феррите. Этот прибор может работать только от 12 В, поэтому его можно использовать как источник резервного электропитания. При этом выходная мощность достигает 100 Вт (30Вт у строчника на одном транзисторе). Конечно, надо будет изготовить соответствующий трансформатор с обмоткой на 220 В и выбором конденсатора С2 подобрать частоту генерации.
Если же никакого применения, кроме питания строчника не найдётся, то можно разместить строчник в одном корпусе с генератором. При этом нельзя допускать, чтобы высоковольтные провода от строчника касались низковольтной части — их пробьёт и вся схема выйдет из строя. На этот случай следует предусмотреть установку панели для микросхемы для её быстрой замены.
1) Что понадобится:
2) Трансформатор на 12В 5А (100Вт);
3) Диодный мост;
4) Конденсаторы;
5) Микросхема NE555;
6) Резисторы 1 кОм — 2 штуки и 100 Ом — 1 штука;
7) Транзистор IRF540;
8) Радиатор для транзистора;
9) Радиатор для диодного моста (необязательно, если используются просто мощные диоды типа Д242);
А также провода, винты, гайки и прочая мелочь для сборочных работ, и конечно же, мозги! Надо понимать, что ты собираешь!
В последней версии генератора я использую транс ТН57-220-50 с выходным напряжением 12,6 В при силе тока 5,5 А.
Диодный мост типа КВРС2510 на 25 А, 50 В, конденсатор фильтра 15000 мкф 25 В. Вся схема размещена сзади радиатора, на нём стоят диодный мост и полевик. Радиатор охлаждается вентилятором 80*80*25 мм на 12 В. Строчник типа TBC-110ЛA. Длина дуг около 4,5 см, при этом горячие дуги до 3 см длиной.
В ходе сборки возникали проблемы: полевик часто сдыхал. Выяснилось, что это происходит тогда, когда сердечник разомкнут и отсутствует конденсатор параллельно первичке. При питании от 5 ваттного трансформатора на выходе была хилая искра длиной чуть больше 1 мм. Из-за этого источник питания должен иметь мощность не менее 30 ватт, а сердечник строчника не должен быть разомкнут. Также не стоит ставить кондёр больше 0,1 мкф, возникнет риск выхода из строя транзистора. Самые лучшие результаты у меня были при 0,01 мкф ёмкости, что примерно соответствует частоте 30–40 КГц.
ОБНОВЛЕНИЯ
После испытаний сразу выявились недостатки устройства. Высокий ток холостого хода, сильный нагрев, низкая частота и невозможность регулировки, ненадёжность ключевого транзистора. Транзистор IRF540N, который стоял в приборе, похоже не был расчитан на тот ток, который он должен был держать по паспортным данным. К тому же, его корпус типа Т0-220 не мог обеспечить достаточный отвод тепла на радиатор. После 5 взорванных от перегрева или просто от перенапряжения транзисторов, я начал искать ему замену. По параметрам подошёл IRFP240, расчитанный на 20 А при 200 В, в корпусе типа ТО-247АС. Несмотря на меньший паспортный ток, он имел меньшую ёмкость затвора и меньшее внутреннее сопротивление. Рассеиваемая им мощность в 150 вт, в отличии от IRF540N полностью передовалась на радиатор и транзистор не сдыхал от перегрева. Теперь нужна была регулируемая частота.
Проблему регулировки частоты в широких пределах я решил путём замены времязадающих резисторов R1 и R2 резисторами с меньшим сопротивлением, а последовательно резистору R1 был установлен переменный, посредством которого и регулировалась частота. Таким образом, частота стала регулироваться от 3 до 100 +/- 20 кГц.
Длина дуги увеличилась до 6–6,5 см при максимальной частоте. Однако регулировать частоту при строчнике в качестве нагрузки категорически не рекомендуется, т. к. при попадании в резонанс вынесет вторичку строчника.
1) Плазменный шар. Для этого опыта понадобится обычная лампочка. Один вывод заземляется, другой подсоединяется к лампочке, при этом внутри неё образуются красивые разряды.
ВНИМАНИЕ: При большой мощности разряды могут сильно нагреть лампу и привести к ожогам. Также не следует касаться лампы металлическим предметом, т. к. дуга расплавит стекло и испортит лампу.
2) Лестница Иакова. Это два электрода, расположенные рядом, но расходящиеся к верху. В нижней точке возникает дуга, воздух нагревается и поднимается вверх, дуга тоже поднимается наверх и гаснет, затем процесс повторяется.
3) Умножитель. Он подключается, как на рисунке. Лучше взять умножитель УН 9-27. На выходе умножителя разряд будет ярко-синего цвета и раза в три длиннее, чем без него.
ВНИМАНИЕ: На выходе строчника напряжение высокое, но сила тока небольшая. От него тебя может сильно ударить током и ты получишь ожоги. Тем не менее, тебя никогда не убьёт ток строчника. А вот конденсаторы умножителя выдают ток, достаточный для твоей смерти.
Применение у этого прибора весьма обширное. Оно не ограничивается питанием плазменных шаров и лестниц Иакова. Его можно использовать в качестве зажигалки для газа (при этом не требуется большая мощность), ионизатора воздуха (придётся собрать умножитель для отрицательного напряжения, УН 9-27 не пойдёт, там положительное напряжениё на выходе).
Некоторые говорят, что в этой схеме работают не все строчники. Этоне так. Работать будут не только строчники, но и любые трансформаторы с ферритовым сердечником. Нужно лишь знать, что сейчас продаются строчники со встроенным умножителем. Устройство будет работать, но плазменный шар или лестницу Иакова от него не запитаешь. Но если это и не нужно, то можно использовать этот аппарат в качестве преобразователя 12 В — 220 В небольшой мощности, например для питания электробритвы или лампочек (на случай отключения света). Для этого надо заменить строчниковую обмотку на самодельную. При этом для электробритвы необходим постоянный ток, необходимо поставить диодный мост для выпрямления тока на выходе.
Кроме того, можно использовать генератор для питания индукционного нагревателя — катушки, в которую помещается нагреваемое тело, сделанное из железа.
Антонов А. Ю.
Это устройство представляет собой полумостовой инвертор с питанием от сети. Он отличается простотой конструкции и не требует налаживания. Задающий генератор инвертора выполнен на микросхеме IR2153, представляющей собой полумостовой драйвер. Напряжение питания на микросхему поступает через резистор R1 и сглаживается конденсатором С2. Напряжение на выводе 1 микросхемы не может быть выше 15,6 вольт, так как внутри микросхемы между выводами 1и 4 установлен стабилитрон. Цепочка R2, С4 задает частоту работы задающего генератора и равна 40–50 кГц, при необходимости может изменяться от 80 гЦ до 1 мГц при условии что минимальные значения R2 и СЗ должны находиться в пределах 10 кОм и 330 пФ соответственно.
Верхний транзистор открывается с выхода 7, нижний — с выхода 5, между включениями одного и другого транзистора выдерживается пауза 1,2 мкс благодаря чему предотвращается протекание сквозных токов через транзисторы. Конденсатор С4 заряжается через диод VD5 при включении VT2.
Теперь к конструкции. Микросхема и малогабаритные детали установлены на небольшой печатной плате из стеклотекстолита. Транзисторы VT1 и VT2 устанавливаются на радиаторы с площадью поверхности, которая зависит от выходной мощности преобразователя. Мощность же зависит от количества витков первичной обмотки трансформатора Т1 и находится в диапазоне от 50 Вт при 100–150 витках до 500 Вт при 15–20 витках.
Площадь радиаторов колеблется от 50 кв. см до 500 кв. см. Строчник лучше взять типа TBC-110ЛA, вместо первички намотать 30–35 витков провода толщиной 0,5 мм. Меньше мотать не рекомендую, если не хочешь сжечь вторичку строчника. Длина дуг от такого преобразователя около 7 см, дуги толстые и горячие. Прибор идеально подходит для питания лестницы Иакова! Если же мало 7 см дуги, то можно намотать самодельную вторичку, состоящую из 500–700 витков провода толщиной 0,35 мм. Дуга с такого трансформатора достигает 15 и более сантиметров в длину!
Стабильность работы полумоста сильно зависит от разводки платы. Вот хорошая разводка платы:
Печатку следует развести именно так, как на рисунке, иначе взрывы вам обеспечены! Полевики прикручиваются к радиаторам площадью не менее 50 кв. см. каждый, хотя я не заметил нагрева даже с дугой.
ВАЖНО! Не мотать в первичку менее 35 витков провода, только с этим числом витков схема работает очень стабильно. Можно уменьшить число витков до 30, но меньше категорически не рекомендуется во избежание взрыва полевиков.
Также это устройство может быть использовано как обычный импульсный БП, для этого наматывается вторичная обмотка на необходимое напряжение и силу тока. Выпрямитель должен состоять из мощных высокочастотных диодов, например Д213 или КД2997, установленных на радиатор.
Антонов А. Ю.
Это устройство представляет собой релаксационный генератор. А работает он так. Сетевое напряжение выпрямляется диодами VD1, VD2 и заряжает конденсаторы C1, С2. Конденсатор С3 через резистор R2 заряжается до напряжения срабатывания динистора VS1. Когда конденсатор зарядится, динистор срабатывает и открывает симистор VS2. Конденсаторы С1 и С2, заряженные до напряжения 600 В быстро разряжаются в первичную обмотку трансформатора Т1. Во вторичной обмотке возникает импульс тока высокого напряжения. Затем весь процесс повторяется.
Теперь к конструкции. Вся схема, кроме резистора R1 размещена на печатной плате из стеклотекстолита. Резистор R1 должен иметь мощность не менее 5 вт, иначе он сгорит. Категорически не рекомендуется исключать его, схема может сдохнуть. Симистор не нуждается в теплоотводе. Строчник взят от цветного телевизора, типа ТВС-110ПЦ5, использована одна из его первичных обмоток. Также можно самому намотать первичку — 30 витков провода толщиной 0,3 мм.
В отличие от всех предыдущих схем строчников, эта выдаёт искру, а не дугу, её мощность очень мала (5 вт), она имеет большой уровень шума.
Несмотря на все недостатки, схема может быть использована в качестве зажигалки для газа, для питания плазменных шаров. Ничтожная сила тока делает этот строчник самым безопасным. Однако из-за низкой частоты от него будет ощутимо бить током. Так что лучше не совать пальцы в искру, это хоть и не приведёт к ожогам, но будет неприятно.
Антонов А. Ю.
Это устройство представляет собой автогенератор, выполненный по схеме блокинг-генератора на тетроде 6П45С от цветных ламповых телевизоров. Особенностью этого тетрода является довольно большая мощность анода, способность выдерживать в импульсе напряжение до 7 кВ.
Сетевое напряжение подаётся на удвоитель напряжения, выполненный на диодах VD1-VD2 и конденсаторах С1-С2. От полученного напряжения 600 В питаются анодные цепи генератора. Накал лампы питается от отдельного трансформатора на 6,3 вольта, при силе тока не менее 2,5 ампер. Конденсатор С3 задаёт частоту генератора, он должен быть рассчитан на напряжение не менее 1500 вольт. Элементы C4-R2-L2 образуют цепь обратной связи, необходимой для работы генератора.
Строчник использован типа TBC-110Л1, намотаны новые первичные обмотки. Анодное напряжение можно подавать одновременно с накальным. Длина дуги при правильно собранном генераторе составляет 10–12 см, дуги толстые и горячие. При этом выходная мощность устройства 200–300 ватт.
ОБНОВЛЕНИЯ
Был собран нормальный макетный вариант строчника на лампе 6П36С. Схема отличается небольшой мощностью (150–200 ватт), но очень стабильной работой. Без дуги можно гонять часами. Дуга от этого генератора составляет 9-10 см, толстая и горячая. Идеальный БП для лестницы Иакова! Кроме того, конденсатор контура был использован ёмкостью 4700 пФ.
Антонов А. Ю.
Я далеко не первый, кто собрал такое устройство. Само устройство представляет собой мощный высокочастотный автогенератор, выполненный на мощном прямонакальном пентоде ГУ-81М, колебательный контур которого индуктивно связан с вторичным контуром, настроенным в резонанс. Конденсатор С2 задаёт частоту генератора. При данном его значении частота составляет около 400 кГц. Этот конденсатор обязательно должен быть высокочастотным керамическим (КВИ-2, КВИ-3, К15У-1), другие типы не подходят! Рабочее напряжение конденсатора должно быть не менее 10 кВ. У меня стоят 2 параллельно соединённых конденсатора КВИ-3 на 16 кв, ёмкостью 470 пф каждый, при этом они сильно греются при длительной работе (вот зачем лучше ставить К15У на многие КВАРы).
Питается генератор от трансформатора от микроволновки (МОТа), к которому подключён удвоитель на конденсаторе С1 и диоде VD1. На выходе получается напряжение около 5 кВ, которое проседает под нагрузкой до 4 кВ.
Вся конструкция собрана на основе из фанеры. Первичная обмотка L1 и обмотка обратной связи L2 намотаны на каркасе из полиэтиленовой трубы диаметром 11 см и высотой 16 см.
Первичная обмотка L1 наматывается первой и находится внизу. Она содержит 35 витков медного провода диаметром 1–1,5 мм и наматывается виток к витку. Обмотка обратной L2 связи наматывается выше на расстоянии от первички не менее 2 см, во избежание пробоя, и содержит 22 витка 0,5 мм провода, намотка также виток к витку. Вторичка L3 намотана на трубе диаметром 5,5 см и высотой 4 0 см проводом 0,16 мм. Наверху вторички необходимо установить разрядный терминал в виде металлического штыря. Можно также поэкспериментировать с формой электрода.
Сначала включают накал лампы и только через 10 секунд подают анодное. Подносят к вторичной обмотке лампу дневного света. Если генератор собран правильно, то с металлического штыря должен бить стример длиной не менее 15 см, а лампа дневного света должна ярко светиться. При отсутствии генерации меняют местами выводы обмотки L2. Для более точной настройки под конкретную вторичку изменяют ёмкость конденсатора и витков первички до получения максимально длинной искры.
Сам я получил искры сначала 25 см длиной при 25 витках первички. Потом, когда изменил количество витков первички до 35, искра увеличилась до 30–35 см.
!!!ВНИМАНИЕ!!! BO-ИЗБЕЖАНИЕ ОЖОГОВ НЕ ТРОГАЙТЕ ИСКРЫ РУКАМИ! ИСПОЛЬЗУЙТЕ ТОЛЬКО ЗАЗЕМЛЁННЫЙ МЕТАЛЛИЧЕСКИЙ ПРЕДМЕТ!!!
ОБНОВЛЕНИЯ
После того, как вторичка развалилась из-за отсутствия нормального покрытия, я решил заодно переделать катушку под более высокую резонансную частоту, около 600 кГц. Сделать это я решил из-за отсутствия нормального контурного конденсатора и у меня был всего один нормальный К15У-1 на 470 пФ, 40 кВар, 15 кВ. Вторичка была перемотана проводом 0,22 мм и покрыта эпоксидкой. Количество витков первичной обмотки после проведения многочисленных экспериментов было заменено на 38 витков 1–1,5 мм эмалированного провода. Конденсатор контура — тот самый К15У-1. При этом стример с катушки составил около 30–35 см, конденсатор контура совершенно холодный при работе! Расположение лампы на макете оказалось довольно неудачным, т. к. она рассеивает очень много тепла и каркас первички немного оплавился. В окончательном варианте я планирую установить лампу на отдельную площадку, отгороженную от первички куском фанеры.
Также китайские конденсаторы удвоителя и диод были заменены советскими конденсаторами К75-53 и диодным столбом КЦ201Е, что значительно улучшило надёжность устройства.
!!!ВНИМАНИЕ!!! ПРИКОСНОВЕНИЕ К НЕИЗОЛИРОВАННЫМ ЧАСТЯМ ГЕНЕРАТОРА СМЕРТЕЛЬНО
Антонов А. Ю.
Эта катушка, также как и катушка на ГУ-81М, представляет собой LC-автогенератор. Но в отличии от схемы на ГУ-81М, лампа тут включена пентодом. Т. е. на 2 сетку через резистор R1 подаётся некоторое напряжение. Такое включение позволяет довольно сильно увеличить эффективность устройства и при относительно низковольтном питании (всего 1800–2000 В) получить весьма внушительные разряды.
Конденсатор С1 нужен для создания мощных импульсов тока. Он состоит из двух последовательно соединённых конденсаторов от микроволновки (1 мкф, 2 кВ каждый). Катушка L4 представляет собой анодный дроссель, защищающий лампу от паразитной генерации. Он намотан проводом 0,5 мм и содержит 10 витков.
Непосредственно в колебательном контуре применён конденсатор типа КВИ-3 номиналом 470 пФ. Катушка L1 намотана проводом 0,5 мм на каркасе диаметром 9-10 см. Катушка обратной связи намотана ниже и содержит 22–25 витков такого же провода. Резистор R2 типа ППБ, переменный, мощностью 25 ватт. Как показали испытания, его мощность может быть даже 5 ватт, он очень слабо греется.
Вторичная катушка L3 намотана на тюбике от силикона размером 5х22 см (ширина намотки 20 см) и содержит ~1300 витков 0,15 провода. Наверху установлен заточенный электрод в виде конуса. Тороид — или отсутствует, или небольшой диск (я использую основу от велосипедного зеркала).
Результат — искра длиной до 23 см, довольно горячая.
!!!ВНИМАНИЕ!!! ВСЕГДА ВКЛЮЧАЙТЕ НАКАЛ ЛАМПЫ ДО ПОДАЧИ АНОДНОГО НАПРЯЖЕНИЯ!!!
ОБНОВЛЕНИЯ
После сборки макета было решено оформить устройство по нормальному. Из 20 мм фанеры было сделано двухэтажное шасси. При этом на нижнем этаже был расположен блок питания, включающий анодный и накальный трансы и конденсатор С1, а на верхнем этаже сам генератор.
Вторичная обмотка, пострадавшая после бесчеловечных экспериментов с кривыми первичками вследствие пробоя, была перемотана проводом 0,22 мм и покрыта эпоксидкой. Получилось около 900 витков, что соответствовало резонансной частоте около 900 кГц. Немного высоковато, что и сказалось на внешнем виде разряда, он стал более мечеобразным.
Из-за перемотки вторички пришлось перемотать и первичку. Теперь она стала содержать 22 витка 1 мм эмальпровода, намотанного виток к витку на каркасе диаметром 10 см. Обмотка связи была оставлена без изменений, 20 витков.
Т.к. мощности явно не хватало, то в схему катушки были внесены изменения. Эти изменения касаются резистора R1. Он был заменён на резистор ПЭВ-25 сопротивлением 3,9 К, при этом мощность катушки заметно выросла. Перегрева лампы при этом не наблюдается, надёжность осталась на высоте.
От Антонова А. Ю.
МОТы
МОТ — трансформатор от микроволновки. Представляет собой обычный силовой трансформатор с одной лишь разницей, что его сердечник работает в режиме, близком к насыщению. Это означает, что, несмотря на малые размеры, он имеет мощность до 1,5 кВт. Однако есть и отрицательные стороны у такого режима работы. Это и большой ток холостого хода, около 2–4 А, и сильный нагрев даже без нагрузки, про нагрев с нагрузкой я молчу. Обычное выходное напряжение у МОТа — 2000–2200 вольт при силе тока 500–850 мА.
У всех МОТов первичка намотана внизу, вторичка сверху. Делается это для хорошей изоляции обмоток. На вторичке, а иногда и на первичке намотана накальная обмотка магнетрона, около 3,6 вольт. Причём между обмотками можно заметить две металлические перемычки. Это — магнитные шунты. Основное их назначение — замкнуть на себя часть создаваемого первичкой магнитного потока и таким образом ограничить магнитный поток через вторичку и её выходной ток на некотором уровне. Делается это из-за того, что при отсутствии шунтов при коротком замыкании во вторичке (при дуге) ток через первичку многократно возрастает и ограничивается лишь её сопротивлением, которое и так очень мало. Таким образом, шунты не дают трансу быстро перегреться при подключенной нагрузке. Хотя МОТ и греется, но в печке ставят нехилый вентилятор для его охлаждения и он не сдыхает. Если же шунты удалить, то мощность, отдаваемая трансом, повышается, но перегрев происходит гораздо быстрее. Шунты у импортных МОТов обычно хорошо залиты эпоксидкой и их не так просто удалить. Но сделать это всё-же желательно, уменьшится просадка под нагрузкой. Для уменьшения нагрева могу посоветовать засунуть МОТ в масло.
ВНИМАНИЕ! МОТ ОПАСЕН! НАПРЯЖЕНИЕ НА ВТОРИЧНОЙ ОБМОТКЕ СМЕРТЕЛЬНО! СОБЛЮДАЙТЕ ОСТОРОЖНОСТЬ ПРИ РАБОТЕ С НИМ!
Напряжение хотя и мало по сравнению со строчником, но сила тока, в сто раз большая, чем безопасный предел 10 мА, сделает шансы остаться живым практически равными нулю.
Могу огорчить некоторых людей, сообщив о том, что МОТ, хотя и идеальный источник питания для катушек тесла (малогабаритный, мощный, не сдыхает от ВЧ как NST), но его цена довольно высока. К тому же даже если вы имеете такие деньги, вам придётся изрядно побегать по радиорынкам и магазинам в его поисках. Легче купить новую микроволновку, старую или новую и распотрошить её.
Лично я так и не нашёл импортного МОТа, не нового, не подержанного. Но я нашёл МОТ от советской микроволновки "Электроника". Он обладает гораздо большими размерами, чем импортные и работает как обычный транс. Называется от ТВ-11-3-220-50. Его примерные параметры: мощность около 1,5 кВт, выходное напряжение ~2200 вольт, сила тока 800 мА. Приличные параметры. Причём на нём кроме первички, вторички и накальной присутствует ещё обмотка на 12 В, как раз для питания кулера на искровик теслы.
Однажды, гуляя по радиорынку, я обнаружил у одного мужика почти такой же МОТ, как и у меня. Недолго думая, я купил его, тем более, что стоил он недорого. Соединив последовательно два транса, я получил дуги значительно длиннее, чем от одного. Дуга стала зажигаться с 3–4 мм и растягиваться до 25 см! Такого питания хватит даже для метровой теслы.
Плазменным шаром называется сосуд, наполненный разряженным инертным газом. В центре сосуда расположен электрод в форме шара, иногда изолированный. На него подаётся высокое напряжение при высокой частоте. Типичное напряжение составляет около 10 Кв.
В качестве плазменного шара можно применить обычную лампочку на сколько угодно ватт. Правда, в ней вместо электрода стоит нить накала и эффект будет уже не таким красивым. Но для домашних условий и это вполне приемлемо.
В качестве источника питания можно использовать любой из, описываемых на этом разделе, преобразователей на строчнике. Чтобы в лампочке забегали искры, необходимо один вывод строчника заземлить, а другой подсоединить к лампочке. Если же заземлить строчник нельзя (например, в автомобиле), можно поступить проще. Для этого следует один провод взять в руку, а другой присоединить к лампочке.
Стоит только помнить, что при большой мощности питания плазменный шар перестанет быть таким красивым и безопасным. То есть, он станет ещё красивее, но к нему уже не прикоснешься безнаказанно. При касании рукой дуга прожжёт стекло и поджарит руку, а лампочка либо взорвётся, либо просто наполнится воздухом и сгорит при первом же включении. Если же к ней поднести металлический предмет, то и при небольшой мощности питания лампочка будет испорчена.
Поэтому руку следует держать на расстоянии около 1–2 см от лампочки, стараясь не держать лампочку в руке дольше секунды. Хотя иногда и секунды бывает достаточно, чтобы прожечь стекло. В общем, думайте сами, решайте сами, держать или не держать!
Умножителем напряжения называется выпрямитель, который при выпрямлении ещё и увеличивает напряжение в несколько раз. В самом простом случае он состоит из двух конденсаторов и диодов.
На вход умножителя подаётся переменное напряжение, а на выходе получается постоянное увеличенное. Можно подключать умножитель прямо к 220 В, но при этом он может выйти из строя, да и частота в сети маленькая. Лучше всего подключать умножители к строчнику. Но не советую использовать мощный строчник на 555 таймере или полумосте, т. к. умножитель может сгореть через несколько секунд работы. Чтобы этого не произошло, мощность, подаваемая на умножитель должна быть не больше 4 0 Вт.
На рисунке показано, как подключить к строчнику один из самых распространённых телевизионных умножителей УН 9-27. При этом при правильном подключении на выходе сразу же возникнут коронные разряды, которые можно услышать (характерное шипение), а при сближении электродов будет проскакивать искра ярко синего цвета длиной около 4–5 см.
ВНИМАНИЕ! НАПРЯЖЕНИЕ С УМНОЖИТЕЛЯ ОПАСНО ДЛЯ ЖИЗНИ! ВСЕГДА РАЗРЯЖАЙТЕ КОНДЕНСАТОРЫ УМНОЖИТЕЛЯ ПОСЛЕ ВЫКЛЮЧЕНИЯ!
Лестницей Иакова называются два электрода, расположенные как на рисунке. Она скорее всего, является самым красивым применением электрической дуги.
А работает она так: в нижней части электродов возникает дуга, воздух около неё нагревается и поднимается вверх, дуга тоже поднимается вверх и гаснет, затем процесс повторяется. Расстояние между электродами внизу должно соответствовать максимальному расстоянию возникновения дуги, а между электродами наверху — максимальному расстоянию удержания дуги. Сила тока должна быть не меньше 5 мА. Можно использовать преобразователь на строчнике для питания лестницы. Стоит лишь учесть, что строчник на одном транзисторе мало подходит для этой цели, лучше использовать строчник на 555 таймере.
Лазерно-Утюжная Технология (ЛУТ-технология) изготовления плат — это изготовление печатных плат в домашних условиях путём перевода отпечатанного на лазерном принтере рисунка на фольгированный стеклотекстолит.
Это наиболее простой способ довольно точно изготовить дома печатную плату самых различных размеров. Так как же можно изготовить плату при помощи лазерного принтера?
Для рисования печатных плат рекомендую программу Sprint-Layout. С её помощью можно нарисовать практически любую печатную плату! А когда она нарисована, можно приступать к делу.
1. Необходимо распечатать готовый рисунок с помощью лазерного принтера. При этом необходимо поставить как можно более жирную печать. Используйте только высококачественную бумагу типа "Снегурочка".
2. Отпилите кусок стеклотекстолита, по размерам полностью соответствующего размерам будущей печатки. Зачистить фольгу до зеркального блеска, не оставляя заусенцев по краям.
3. Приложив рисунок напечатанной стороной к фольге, прогладьте бумагу утюгом. Регулятор утюга необходимо установить в положение "Лён". Гладить круговыми движениями, не допуская загибов бумаги и её перемещений. При этом подошва утюга должна быть ровной, без заусенцев и царапин. Я использую утюг "Tefal". Малейший заусенец может поцарапать бумагу, испортив будущие дорожки.
4. Когда бумага уже заметно потемнеет и начнут проглядываться контуры дорожек, немедленно кидайте текстолит с прилипшей бумагой в воду (желательно холодную). Это необходимо для прилипания тонера к фольге.
5. Подержав плату в воде некоторое время (пара минут), осторожно отдерите бумагу. На фольге останутся чёрные "дорожки" с торчащими лохмотьями бумаги. Пальцами осторожно снимите остатки бумаги. Не повредите дорожки, ничего, если вы не уберёте всю бумагу. Удалите наплывы тонера, если они присутствуют.
6. Кидайте в раствор хлорного железа. Тонер защитит нужные места от травления. После завершения травления сотрите тонер при помощи ацетона. Теперь останется только просверлить отверстия и плата готова!
Всё, впаивайте детали!