Янковский Н.К. с сотоварищами
Тема лекции — деление клетки (митоз, мейоз и их отличиях) и индивидуальное развитие (образовании гамет и оплодотворения и краткий обзор эмбрионального развития).
Клетка в своей жизни проходит разные состояния: фазу роста и фазы подготовки к делению и деления. Клеточный цикл — переход от деления к синтезу веществ, составляющих клетку, а затем опять к делению — можно представить на схеме в виде цикла, в котором выделяют несколько фаз.
Клеточный цикл
После деления клетка вступает в фазу синтеза белков и роста, эту фазу называют G1. Часть клеток из этой фазы переходит в фазу GO, эти клетки функционируют и потом погибают без деления (например, эритроциты). Но большинство клеток, накопив необходимые вещества и восстановив свой размер, а иногда и без изменения размеров после предыдущего деления, начинают подготовку к следующему делению. Эта фаза называется фаза S — фаза синтеза ДНК, затем, когда хромосомы удвоились, клетка переходит в фазу G2 — фазу подготовки в митозу. Затем происходит митоз (деление клетки), и цикл повторяется заново. Фазы G1, G2, S вместе называются интерфазой (т. е. фазой между делениями клетки).
Жизненный цикл клетки регулируется белками циклинами, концентрация которых меняется на разных фазах цикла. Толщина цветных секторов соответствует концентрации циклинов.
Жизнь клетки и переход от одной фазы клеточного цикла к другой регулируется изменением концентраций белков циклинов, как это показано на рисунке.
При подготовке к делению происходит репликация ДНК, на каждой хромосоме синтезируется ее копия. Пока эти хромосомы после удвоения не расходятся, каждая хромосома в этой паре называется хроматидой. После репликации ДНК конденсируется, хромосомы приобретают более компактную укладку, и в таком состоянии их можно увидеть в световом микроскопе. Между делениями эти хромосомы не столь конденсированы и в большей степени расплетены. Понятно, что в конденсированном состоянии им трудно функционировать. Хромосома имеет вид в виде буквы X только во время одной из стадий митоза. Раньше считалось, что между делениями клетки хромосомная ДНК (хроматин) находится в полностью расплетенном состоянии, но сейчас выясняется, что структура хромосом достаточно сложная и степень деконденсации хроматина между делениями не очень велика.
Процесс деления, при котором исходно диплоидная клетка дает две дочерние, также диплоидные, клетки, называется митозом. Имеющиеся в клетке хромосомы удваиваются, выстраиваются в клетке, образуя митотическую пластинку, к ним прикреплены нити веретена деления, которые растягиваются к полюсам клетки и клетка делится, образуя две копии исходного набора.
При образовании гамет, т. е. половых клеток — сперматозоидов и яйцеклеток — происходит деление клетки, называемое мейозом. Исходная клетка имеет диплоидный набор хромосом, которые затем удваиваются. Но, если при митозе в каждой хромосоме хроматиды просто расходятся, то при мейозе хромосома (состоящая из двух хроматид) тесно переплетается своими частями с другой, гомологичной ей хромосомой (также состоящей из двух хроматид), и происходит кроссинговер обмен гомологичными участками хромосом. Затем уже новые хромосомы с перемешанными «мамиными» и «папиными» генами расходятся и образуются клетки с диплоидным набором хромосом, но состав этих хромосом уже отличается от исходного, в них произошла рекомбинация. Завершается первое деление мейоза, и второе деление мейоза происходит без синтеза ДНК, поэтому при этом делении количество ДНК уменьшается вдвое. Из исходных клеток с диплоидным набором хромосом возникают гаметы с гаплоидным набором. Из одной диплоидной клетки образуются четыре гаплоидных клетки. Фазы деления клетки, которые следуют за интерфазой, называются профаза, метафаза, анафаза, телофаза и после деления опять интерфаза.
При мейозе фазы называется также, но указывается, к какому делению мейоза она относится. Кроссинговер — обмен частями между гомологичными хромосомами — происходит в профазе первого деления мейоза (профаза I), которая включает следующие этапы: лептотена, зиготена, пахитена, диплотена, диакинез. Процессы, происходящие при этом в клетке, подробно описаны в учебнике Макеева, и их следует знать.
Кроссинговер — обмен частями между гомологичными хромосомами (отцовскими и материнскими) происходит в профазе I мейоза.
Краткий обзор этапов гаметогенеза
Гаметогенез подразделяется на сперматогенез (процесс образования сперматозоидов у самцов) и оогенез (процесс образования яйцеклетки). По тому, что происходит с ДНК, эти процессы практически не отличаются: одна исходная диплоидная клетка дает четыре гаплоидные. Однако, по тому, что происходит с цитоплазмой, эти процессы кардинально различаются.
В яйцеклетке накапливаются питательные вещества, необходимые в дальнейшем для развития зародыша, поэтому яйцеклетка — это очень крупная клетка, и когда она делится, цель — сохранить питательные вещества для будущего зародыша, поэтому деление цитоплазмы несимметрично. Для того чтобы сохранить все запасы цитоплазмы и при этом избавиться от ненужного генетического материала, от цитоплазмы отделяются полярные тельца, которые содержат очень мало цитоплазмы, но позволяют поделить хромосомный набор. Полярные тельца отделяются при первом и втором делении мейоза (подробнее о том, что происходит с полярными тельцами растений — в Макееве)
Исходная клетка, из которой в последствии образуется зрелая яйцеклетка, называется ооцитом первого порядка. После деления из него образуется ооцит второго порядка и первое полярное тельце. Затем происходит второе деление мейоза, в результате образуется гаплоидный оотид и второе полярное тельце. Первое полярное тельце за это время тоже успевает поделиться, таким образом всего получается три гаплоидных полярных тельца. В оотиде происходят некоторые процессы созревания и он превращается в яйцеклетку. Она содержащая почти всю цитоплазму исходного ооцита, но гаплоидный набор хромосом. Эти хромосомы уже прошли рекомбинацию, т. е. если исходно клетки содержат одну хромосому от мамы, одну от папы, то в зрелой яйцеклетке в каждой хромосоме чередуются куски, полученные от одного и второго родителя.
При сперматогенезе цитоплазма исходного сперматоцита первого порядка делится (первое деление мейоза) поровну между клетками, давая сперматоциты второго порядка. Второе деление мейоза приводит к образованию гаплоидных сперматоцитов второго порядка. Затем происходит созревание без деления клетки, большая часть цитоплазмы отбрасывается, и получаются сперматозоиды, содержащие гаплоидный набор хромосом очень мало цитоплазмы. Ниже представлена фотография сперматозоида человека и схема его строения.
Сперматозоиды животных имеют одинаковое принципиальное строение, но могут отличаться формой и размером. Сперматозоид имеет головку, в которую плотно упакована ДНК. Головка сперматозоида окружена очень тонким слоем цитоплазмы. На ее переднем конце находится структура, называемая акросомой. Эта структура содержит ферменты, позволяющие сперматозоиду проникнуть через оболочку яйцеклетки. Сперматозоид имеет хвостик. Часть хвостика, прилегающая к головке ("шейка"), окружена митохондриями. Они необходимы, чтобы обеспечить биение хвостика и движение сперматозоида в желательном ему направлении. На сперматозоиде имеется для выбора направления движения хеморецепторы, сходные с обонятельными клетками.
Созревание спермиев происходит в семенных канальцах тестикул. При превращении исходной клетки, сперматогония, в сперматоцит, сперматиды и зрелый сперматозоид происходит перемещение клетки от базальной мембраны семенного канатика к его полости. После созревания сперматозоиды отделяются, попадая в просвет семенных канальцев, и готовы к движению в поисках яйцеклетки и оплодотворению. Процесс созревания длится примерно три месяца. У млекопитающих у особей мужского пола процесс созревания сперматозоидов — сперматогенез — начинается с возраста половой зрелости и продолжается затем до глубокой старости.
Существенно отличается процесс созревания яйцеклетки — оогенез. Во время эмбрионального развития млекопитающих возникает большое количество яйцеклеток, и к рождению самки в ее яичниках уже находится порядка 200–300 тысяч яйцеклеток, остановившихся на первой стадии деления мейоза. В период полового созревания яйцеклетки начинают реагировать на половые гормоны, Регулярные циклические изменения гормонов впоследствии вызывают созревание яйцеклетки, обычно одной, иногда двух или больше. Когда для лечения бесплодия женщине делают инъекции половых гормонов, чтобы индуцировать созревание яйцеклеток, избыток этих гормонов может привести к созреванию нескольких яйцеклеток, и как следствие этого — многоплодной беременности. Яйцеклетка созревает в пузырьке, называемом фолликулом.
Зрелый фолликул перед овуляцией
За всю жизнь у женщин современных индустриализованных стран созревает всего 400–500 яйцеклеток, у женщин традиционной культуры — в племенах охотников-собирателей — менее 200 штук. Это связано с различиями в традиции деторождения: у европейских женщин рождается в среднем 1–2 ребенка, которых она кормит в среднем 3–5 месяцев, (а известно, что лактация тормозит восстановление месячных циклов после родов), то есть у нее больший период времени остается для созревания яйцеклеток и прохождения менструальных циклов; в это же самое время у бушменов женщины рожают в среднем по 5 детей, они не делают абортов, в отличие от западных женщин, и они кормят грудью по 3–4 года, при этом овуляция тормозится, поэтому месячных циклов у них в 2 раза меньше, чем у западных женщин. Большее количество овуляторных циклов ведет к повышению риска заболевания репродуктивных органов у женщин, так как каждая овуляция связана с делением клеток, а чем больше делений — тем больше может возникнуть мутаций, ведущих к появлению злокачественных образований.
Месячные циклы у женщины регулируются изменением концентрации гормонов (верхний график на рисунке). Под действием гормонов один из покоящихся фолликулов (пузырьков) с яйцеклеткой начинает развиваться. Через несколько дней фолликул лопается и из него выходит зрелая яйцеклетка. Этот процесс называется овуляцией. Слизистая оболочка матки (эндометрий) при этом разрастается, готовясь принять оплодотворенную яйцеклетку. Если беременность не наступает, происходит дегенерация и отторжение верхнего слоя эндометрия, сопровождающееся кровотечением. Во время овуляции у женщины происходит повышение так называемой базальной температуры (то есть температуры, измеряемой ректально и вагинально сразу после пробуждения) на несколько десятых градуса (нижний график на рисунке), потом она может упасть или остаться слегка повышенной до начала менструации. У каждой женщины колебания базальной температуры индивидуальны, но более или менее постоянны при установившемся месячном цикле. Таким образом по изменению температуры можно примерно судить, когда происходит овуляция.
Ошибки при определении сроков овуляции по базальной температуре могут возникать из-за не связанных с месячным циклом изменений температуры (например, при гриппе или другом заболевании, дающем подъем температуры) или из-за сбоев цикла, которые могут возникнуть у женщины при перемене климата, стрессе или под влиянием других факторов. Пример изменения температуры в одном месячном цикле представлен на рисунке:
Яйцеклетка жизнеспособна 24–48 час. Спермий активен до 2–3 суток.
Яйцеклетка после выхода из фолликула сохраняет жизнеспособность примерно 24–48 часов. Спермии же после попадания в половые пути женщины жизнеспособны до 2–3 суток, далее они могут быть подвижны, но не способны к оплодотворению. Поэтому оплодотворение возможно в течение 2–3 дней до и 1–2 дней после овуляции. В остальное время зачатие произойти не может. Но на самом деле скачок температуры происходит не точно при овуляции, а при изменении концентрации гормонов, овуляцию вызывающих, поэтому точность определения дня овуляции по температурному графику составляет примерно 2 дня. Поэтому оплодотворение может произойти в 3 + 2 = 5 дней до овуляции и 2 + 2 = 4 дня после овуляции дней цикла. Осторожные люди прибавляют еще по 1–2 дня с каждой стороны. Остальные дни считаются "безопасными". Хотелось бы отметить, что цикл подчиняется эмоциональной регуляции, например, во время войны из-за тяжелой жизни, недоедания у женщин прекращались менструации, это явление называется "аменорея военного времени". Однако описаны случаи, когда муж приезжал домой с фронта на 2 дня, за эти 2 дня у женщины происходила овуляция независимо от фазы цикла, и впоследствии рождался ребенок. О том, что физиологические процессы достаточно сильно могут регулироваться нервной системой, показывает процесс родов у обезьян. У человека первые роды длятся примерно 24 часа, а у обезьян всего несколько часов, причем начинаются они обычно во время, когда стадо находится на стоянке. То есть к утру, когда стадо собирается отправляться в путь, мама готова путешествовать дальше с новорожденным. Если по каким-то причинам процесс родов к утру не завершился, а стадо уже готово идти дальше, то роды останавливаются, так как стадные животные не должны отставать от своих сородичей, и уже потом при новой остановке, роды возобновляются.
Процесс проникновения сперматозоидов в яйцеклетку называется оплодотворением. Яйцеклетка окружена несколькими оболочками, структура которых такова, что только сперматозоид собственного вида может попасть в яйцеклетку. После оплодотворения оболочки яйцеклетки меняются и другие сперматозоиды уже не могут в нее проникнуть.
У некоторых видов внутрь яйцеклетки могут проникнуть несколько сперматозоидов, но все равно в слиянии ядер участвует только один из них. При оплодотворении в яйцеклетку проникает только ядро сперматозоида, хвостик же вместе митохондриями отбрасывается, и в клетку не попадает. Поэтому митохондриальную ДНК все животные наследуют только от матери. Оплодотворенное яйцо называют зиготой (от греч. зиготос — соединенный вместе).
После оплодотворения происходит деление клетки, восстановившей диплоидный набор хромосом. Первое и несколько последующих делений яйцеклетки происходят без увеличения размера клеток, поэтому процесс называется дроблением яйцеклетки.
Эмбрион (греч. "зародыш") — ранняя стадия развития живого организма от начала дробления яйцеклетки до выхода из яйца или из материнского организма (в акушерстве, в отличие от эмбриологии, термин эмбрион используют только для первых 8 недель развития, после 8-й недели называют плодом).
Эмбриогенез (эмбриональное развитие) является частью онтогенеза (индивидуального развития) — развития организма от образования зиготы до его смерти. Эмбриогенез — это процесс, в котором презумптивные зачатки занимают свои дефинитивные места.
Из школьного вы помните, что при развитии эмбриона ланцетника образуется бластула (полый клеточный шарик), из которой получается двуслойная гаструла путем инвагинации (впячивания) одной стороны бластулы внутрь.
У млекопитающих процесс происходит несколько иным образом. Дробление яйцеклетки у них приводит к образованию комочка клеток, называемого морулой. Морула подразделяется на внутреннюю часть, из которой потом развивается сам зародыш, и наружную часть, образующую полый пузырек, называемый трофобластом. Дальнейшее развитие приводит к формированию трехслойного зародыша, состоящего из внутреннего слоя — энтодермы, внешнего слоя — эктодермы, и третьего слоя между ними — мезодермы. Из каждого слоя впоследствии образуются определенные ткани и органы.
На фотографии ниже изображен червь нематода Caenorhabd.itis elegans (произносится как "ценорабдитис элеганс"), ближайший родственник аскариды, который интересен тем, что имеет строго фиксированное число клеток. Это дает возможность установить происхождение каждой из клеток, какая клетка из какой получилась. На рисунке показана схема происхождения разных клеток в эмбриональном развитии С. elegans.
Во время развития зародыша происходит дифференциация и перемещение его клеток с образованием тканей и органов. Рассмотрим на примере мухи-дрозофилы этот процесс. В развитии мухи происходит последовательная смена форм, значительно отличающихся друг от друга: яйцо, личинка, куколка и имаго (взрослая особь). Такое развитие называется развитием с метаморфозом (метаморфоз — греч. "изменение формы").
Развитие дрозофилы: личинка, куколка и имаго
Цитоплазма яйцеклетки не гомогенна, в ней асимметрично распределены различные биологически активные компоненты.
У эмбриона уже определены оси тела, число и ориентация сегментов тела, из которых затем развиваются части тела взрослой мухи. Эти процесс контролируются различными наборами генов, которые называются морфогены. Они кодируют белки, которые регулируют экспрессию других генов, отвечающих за формирование органов.
Градиент концентрации белков-морфогенов определяет передне-заднюю и дорсовентральную (спино-брюшную) оси тела. У дрозофилы в определении дорсовентральной оси тела участвуют 12, главный из них ген dorsal. Белок Dorsal сконцентрирован в цитоплазме на той стороне эмбриона, которая станет спинной, и проникает в ядро клеток на брюшной стороне, активируя группы генов, продукты которых необходимы для определения осей тела.
Детерминация передне-задней оси тела контролируется другими генами. Один из них называется bicoid, его мРНК сконцентрирована в цитоплазме передней части яйца (фиксирована своим 3'-концом). В результате при трансляции возникает градиент концентрации белка Bicoid от переднего к заднему концу яйца. Градиент поддерживается продолжительным периодом синтеза белка и его коротким временем жизни. Bicoid, так же как и Dorsal, морфоген, он активирует гены, которые необходимы для развития головы и грудных структур. Его экспрессия ингибируется продуктом гена nanos, сконцентрированного на заднем конце эмбриона.
На следующем этапе включаются гены сегментации. Они контролируют дифференциацию эмбриона на индивидуальные сегменты. После оплодотворения транскрибируется около 25 генов сегментации, их экспрессия регулируется градиентами белков Bicoid и Nanos.
Гомеозисные гены
После сегментации и установления ориентации сегментов активируются так называемые геомеозисные гены. Различные их наборы активируются специфическими соотношениями концентраций белков, упоминавшихся выше.
Продукты гомеозисных генов активируют другие гены, которые определяют сегмент — специфичные особенности. Глаза в норме возникают только на головном сегменте, а ноги — только на грудных сегментах.
Гомеозисные гены кодируют регуляторные белки, связывающиеся с ДНК. Каждый из них содержит кластер нуклеотидов, называемый гомеобоксом, которые сходен во всех гомеотических генах. Он содержит 180 нуклеотидов и кодирует 60 аминокислот, функционирующих как ДНК-связывающий домен.
У дрозофилы имеется два основных кластера гомеотических генов: комплекс
Antennapedia (5 генов у дрозофилы) который определяет развитие головы и передних торакальных сегментов, и комплекс Bithorax (3 гена) который контролирует развитие задних торакальных и брюшных сегментов. Порядок расположения генов тот же, что и сегментов, в которых они экспрессируются.
Впервые мутации гомеозисных генов были идентифицированы в 1894 году, когда Уильям Бэтсон заметил, что у растений иногда части цветка появляются на неправильных местах. Гомеозисные гены как бы определяют адрес клетки в конкретном сегменте, сообщая клеткам, в каком районе они находятся. Когда они мутируют, клетки получают "ложный адрес" и ведут себя так, будто они находятся в другом месте эмбриона
Нарушения в работе гомеозисных генов (вызванные мутациями или внешними воздействиями) нарушают формирование структур тела и могут привести, например, к образованию глаз на лапках у мухи, или к тому, что вместо антенн на голову у нее вырастут ноги (как это показано на рисунке). У человека найдены мутации в гомеозисных генах, приводящие к недоразвитию зубов, например, и к другим, более тяжелым нарушениям.
После того, как были открыты и изучены геомео-гены дрозофилы, сходные гены были найдены у всех других животных от нематоды до человека. У млекопитающих они называются Нох генами (гомеобокс-содержащими генами) и также кодируют белки, регулирующие транскрипции и определяющие структуры тела и их положение в передне-заднем направлении.
Таким образом, в эмбриональном развитии исходный градиент белков и мРНК в яйцеклетке стимулирует локальную экспрессию генов эмбриона, которая ведет дальнейшей дифференциации генной экспрессии и определяет судьбу клеток развивающегося эмбриона. Процесс, в котором формируются конечности, ткани и органы, называется морфогенезом, и определяется последовательностью переключения экспрессии групп генов, однако эти гены пока не столь детально изучены.
В процессе эмбриогенеза осуществление записанной в генах программы развития происходит в конкретных условиях среды. Взаимодействие генов и среды можно описать на следующей модели. Эмбриональное развитие можно сравнить с шариком, катящимся по наклонной поверхности с разными желобками. Такое представление эмбрионального развития, названное эпигенетическим ландшафтом, был предложен Кондратом Уоддингтоном.
Самый глубокий желобок (соответствующий наиболее вероятному пути) определяет нормальное развитие организма. Но у основного желобка есть много разветвлений, менее глубоких, соответствующих патологии, аномальному развитию организма, по ним шарик покатится с меньшей долей вероятности. Мутации меняют соотношение вероятностей разных путей (на рисунке — меняется глубина желобков), и увеличивают вероятность развития по "неправильному" патологическому пути. Однако в части случаев воздействие среды (лечение) может скомпенсировать дефект и вернуть организм на нормальный путь развития. Например, фенилкетонурия — наследственная болезнь, которую можно лечить. Суть болезни заключается в том, что у больных отсутствует фермент фенилаланингидроксилаза, превращающий аминокислоту фенилаланин в другую аминокислоту, тирозин. При блокировании нормальных путей катаболизма фенилаланина его превращение идет другими путями, обычно играющими второстепенную роль. Фенилаланин превращается в кетокислоту фенилпируват (фенилпировиноградная кислота) и другие продукты. Избыточные количества фенилпирувата легко определить по анализу мочи, и такой анализ проводится всем новорожденным в нашей стране. Одним из симптомов этой болезни является развитие умственной отсталости, которое во взрослом состоянии уже необратимо. Лечить болезнь можно в детстве специальной диетой, при которой в организме не из чего будет вырабатывать пировиноградную кислоту. Частота заболевания около 1:10 000 новорожденных, и чем раньше начато лечение — тем лучше результаты. Именно поэтому проводится тотальная диагностика новорожденных. Интересно то, что если ребенок перестает придерживаться лечебной диеты, то болезнь опять станет прогрессировать. Поэтому диету надо соблюдать до остановки физиологического роста, примерно до 20 лет, когда токсичное воздействие будет менее опасным. Больные фенилкетонурией при беременности обязательно должны соблюдать диету, так как иначе плод будет отравлен из-за нарушения обмена веществ у матери.
Таким образом, при лечении, то есть полезном воздействии внешней среды, можно вернуть развитие организма в нормальное русло. Но действие окружающей среды может быть и вредным, то есть у организма под действием внешней среды возникают отклонения развития при совершенно нормальных генах. Для примера рассмотрим один случай. В 60-х годах в Германии было сильно разрекламировано новое снотворное под названием талидомид. Среди принимавших новое лекарство были беременные женщины. Спустя некоторое время было замечено, что в стране стало рождаться много детей с патологией конечностей. У них отсутствовали длинные кости конечностей, то есть прямо от основания тела начинались кисти или ступни.
Раньше такое заболевание встречалась один раз на несколько тысяч новорожденных, и вдруг такой всплеск. Начали проводиться исследования, и выяснилось, что причина в новом лекарстве. Как оказалось, талидомид имеет большое сродство к гуанину. Взаимодействуя с ДНК, он может приводить к функциональным нарушениям. Промотор гена, отвечающего за рост и развитие длинных конечностей, содержит большое количество гуанина, таким образом, талидомид нарушает работу этих генов, и зачатки костей длинных конечностей так и не начинают развиваться. Многие из этих детей не выжили, часть из тех, кто выжил, ведут жизнь инвалидов, но есть среди них люди, которые, несмотря на инвалидность, реализовали свои возможности.
После талидомидной трагедии все новые лекарства проверяют на тератогенную (вызывающую нарушения развития плода) активность, и для каждого препарата указано, можно ли его принимать беременным. Однако следует учитывать, что во время беременности, особенно на ранних этапах, женщина не должна принимать лекарства, не посоветовавшись с врачом, из-за возможных вредных воздействий на плод.
В настоящее время уровень тяжелых врожденных уродств составляет 1–2 %, из них около трети по генетическим причинам, около трети — из-за воздействий среды, и для трети причина неизвестна. Подбирая условия среды, соответствующие индивидуальным особенностям организма, можно скомпенсировать часть врожденных дефектов.
Взаимодействие генов и среды в процессе индивидуального развития можно сравнить с игрой в карты: хороший игрок может выиграть и с плохими картами.
Мы начнем с изложения законов Менделя, затем поговорим про Моргана, и в конце скажем, зачем генетика нужна сегодня, чем она помогает и каковы ее методы.
В 1860-х годах монах Мендель занялся исследованием наследования признаков. Этим занимались и до него, и впервые об этом говорится в Библии. В Ветхом завете говорится о том, что если владелец скота хотел получить определенную породу, то он одних овец кормил ветками очищенными, если хотел получить потомство с белой шерстью, и неочищенными, если хотел получить шкуру скота черной. То есть, как наследуются признаки волновало людей еще до написания Библии. Почему же до Менделя никак не могли найти законы передачи признаков в поколениях?
Дело в том, что до него исследователи выбирали совокупность признаков одного индивида, с которыми было сложнее разбираться, нежели с одним признаком. До него передача признаков рассматривалась часто как единый комплекс (типа — у нее лицо бабушкино, хотя отдельных признаков тут очень много). А Мендель регистрировал передачу каждого признака в отдельности, независимо от того, как передались потомкам другие признаки.
Важно, что Мендель выбрал для исследования признаки, регистрация которых была предельно простой. Это признаки дискретные и альтернативные:
1. дискретные (прерывистые) признаки: данный признак либо присутствует, либо отсутствует. Например, признак цвета: горошина либо зеленая, либо не зеленая.
2. альтернативные признаки: одно состояние признака исключает наличие другого состояния. Например, состояние такого признака как цвет: горошина либо зеленая, либо желтая. Оба состояния признака в одном организме проявиться не могут.
Подход к анализу потомков был у Менделя такой, который до него не применяли. Это количественный, статистический метод анализа: все потомки с данным состоянием признака (например — горошины зеленые) объединялись в одну группу и подсчитывалось их число, которое сравнивали с числом потомков с другим состоянием признака (горошины желтые).
В качестве признака Мендель выбрал цвет семян посевного гороха, состояние которого было взаимоисключающим: цвет или желтый, или зеленый. Другой признак — форма семян. Альтернативные состояния признака — форма или морщинистая или гладкая. Оказалось, что эти признаки стабильно воспроизводятся в поколениях, и проявляются либо в одном состоянии, либо в другом. В общей сложности Мендель исследовал 7 пар признаков, следя за каждым по отдельности.
При скрещивании Мендель исследовал передачу признаков от родителей к их потомкам. И вот что он получил. Один из родителей давал в череде поколений при самоопылении только морщинистые семена, другой родитель — только гладкие семена.
Наследственные признаки у гороха Pisum sativum: форма и цвет семян, форма и цвет стручка, размер растения, расположение цветков
Горох — самоопылитель. Для того, чтобы получить потомство от двух разных родителей (гибриды), ему нужно было сделать так, чтобы растения не самоопылялись. Для этого он удалял у одного родительского растения тычинки, и переносил на него пыльцу с другого растения. В этом случае образовавшиеся семена были гибридными. Все гибридные семена в первом поколении оказались одинаковыми. Все они оказались гладкими. Проявившееся состояние признака мы называем доминантным (значение корня этого слова — господствующий). Другое состояние признака (морщинистые семена) у гибридов не обнаруживалось. Такое состояние признака мы называем рецессивным (уступающим).
Мендель скрестил растения первого поколения внутри себя и посмотрел на форму получившихся горошин (это было второе поколение потомков скрещивания). Основная часть семян оказалась гладкой. Но часть была морщинистой, точно такой же у исходного родителя (если б мы говорили про собственную семью, то сказали бы, что внук был точно в дедушку, хоть у папы с мамой этого состояния признака не было совсем). Он провел количественное исследование того, какая доля потомков относится к одному классу (гладкие — доминантные), а какая к другому классу (морщинистые — рецессивные). Оказалось, что морщинистых семян получилась примерно четверть, а три четверти — гладких.
Мендель провел такие же скрещивания гибридов первого поколения по всем остальным признакам: цвету семян, окраски цветка и др. Он увидел, что соотношение 3:1 сохраняется.
Мендель провел скрещивание и в одном направлении (папа с доминантным признаком, мама — с рецессивным) и в другом (папа с рецессивным признаком, мама с доминантным). При этом качественные и количественные результаты передачи признаков в поколениях были одинаковыми. Из этого можно сделать вывод, что и женские и отцовские задатки признака вносят одинаковый вклад в наследование признака у потомства.
То, что в первом поколении проявляется признак только одного родителя, мы называем законом единообразия гибридов первого поколения или законом доминирования.
То, что во втором поколении вновь появляются признаки и одного родителя (доминантный) и другого (рецессивный) позволило Менделю предположить, что наследуется не признак как таковой, а задаток его развития (то, что мы сейчас называем геном). Он также предположил, что каждый организм содержит пару таких задатков для каждого признака. От родителя к потомку переходит только один из двух задатков. Задаток каждого типа (доминантный или рецессивный) переходит к потомку с равной вероятностью. При объединении у потомка двух разных задатков (доминантный и рецессивный) проявляется только один из них (доминантный, он обозначается большой буквой А). Рецессивный задаток (он обозначается малой буквой а) у гибрида не исчезает, поскольку проявляется в виде признака в следующем поколении
Так как во втором поколении появился точно такой же организм, как и родительский, Мендель решил, что задаток одного признака «не замазывается», при объединении с другим, он остается таким же чистым. В последствии было выяснено то, что от данного организма передается только половина его задатков — половые клетки, они называются гаметами, несут только один из двух альтернативных признаков.
У человека насчитывается около 5 тыс. морфологических и биохимических признаков, которые наследуются достаточно четко по Менделю. Судя по расщеплению во втором поколении, альтернативные задатки одного признака комбинировались друг с другом независимо. То есть доминантный признак мог проявиться при комбинациях типа Аа, аА и АА, а рецессивный только в комбинации аа.
Повторим, что Мендель предположил, что наследуется не признак, а задатки признака (гены) и что эти задатки не смешиваются, поэтому этот закон называется законом чистоты гамет. Через исследование процесса наследования можно было сделать выводы о некоторых характеристиках наследуемого материала, то есть что задатки стабильны в поколениях, сохраняют свои свойства, что задатки дискретны, то есть, определяются только одно состояние признака, то, что их два, они комбинируются случайно и т. д.
Во времена Менделя еще ничего не было известно о мейозе, хотя про ядерное строение клетки уже знали. То, что в ядре содержится вещество, названное нуклеином, стало известно только через пару лет после открытия законов Менделя, причем это открытие с ним никак не было связано.
Все выводы вышеизложенного материала можно сформулировать следующим образом:
1) Каждый наследственный признак определяется отдельным наследственным фактором, задатком; в современном представлении эти задатки соответствуют генам;
2) Гены сохраняются в чистом виде в ряду поколений, не утрачивая своей индивидуальности: это явилось доказательством основного положения генетики: ген относительно постоянен;
3) Оба пола в равной мере участвуют в передаче своих наследственных свойств потомству;
4) Редупликация равного числа генов и их редукция в мужских и женских половых клетках; это положение явилось генетическим предвидением существования мейоза;
5) Наследственные задатки являются парными, один — материнский, другой — отцовский; один из них может быть доминантным, другой — рецессивным; это положение соответствует открытию принципа аллелизма: ген представлен минимум двумя аллелями.
К законам наследования относятся закон расщепления наследственных признаков в потомстве гибрида и закон независимого комбинирования наследственных признаков. Эти два закона отражают процесс передачи наследственной информации в клеточных поколениях при половом размножении. Их открытие явилось первым фактическим доказательством существования наследственности как явления.
Законы наследственности имеют другое содержание, и они формулируются в следующем виде:
• Первый закон — закон дискретной (генной) наследственной детерминации признаков; он лежит в основе теории гена.
• Второй закон — закон относительного постоянства наследственной единицы — гена.
• Третий закон — закон аллельного состояния гена (доминантность и рецессивность).
То, что законы Менделя связаны с поведением хромосом при мейозе, было обнаружено в начале XX века во время повторного открытия законов Менделя сразу тремя группами ученых независимо друг от друга. Как вам уже известно, особенность мейоза заключается в том, что число хромосом в клетке уменьшается вдвое, хромосомы могут меняться своими частями при мейозе. Такая особенность характеризует ситуацию с жизненным циклом у всех эукариот.
Для того чтобы проверить предположение о наследовании задатков в таком виде, как мы уже говорили, Мендель провел также скрещивание потомков первого поколения, имеющие желтые семена с родительскими зелеными (рецессивными). Скрещивание на рецессивный организм он назвал анализирующим. В результате он получил расщепление один к одному: (Аа х аа = Аа + Аа + аа + аа). Таким образом, Мендель подтвердил предположение, что в организме первого поколения есть задатки признаков каждого из родителей в соотношении 1 к 1. Состояние, когда оба задатка признака одинаковы, Мендель назвал гомозиготным, а когда разные — гетерозиготным.
Мендель учитывал результаты, полученные на тысячах семян, то есть он проводил статистические исследования, которые отражают биологическую закономерность. Открытые им самые законы будут действовать и на других эукариотах, например грибах. Здесь показаны грибы, у которых четыре споры, получаемые в результате одного мейоза, остаются в общей оболочке. Анализирующее скрещивание у таких грибов приводит к тому, в одной оболочке присутствуют 2 споры с признаком одного родителя и две с признаком другого. Таким образом, расщепление 1:1 в анализирующем скрещивании отражает биологическую закономерность расщепления задатков одного признака в каждом мейозе, которая будет выглядеть как закономерность статистическая, если все споры смешать.
То, что у родителей были разные состояния одного признака, говорит о том, что задатки к развитию признака могут как-то меняться. Эти изменения называются мутациями. Мутации бывают нейтральными: форма волос, цвет глаз и др. Некоторые мутации приводят к изменениям, нарушающим нормальное функционирование организма. Это коротконогость у животных (крупный рогатый скот, овцы и др.), безглазость и бескрылость у насекомых, бесшерстность у млекопитающих, гигантизм и карликовость.
Некоторые мутации могут быть и безвредными, например бесшерстность у людей, хотя все приматы имеют волосяной покров. Но иногда встречаются изменения интенсивности волосяного покрова на теле и у людей. Н.И.Вавилов назвал такое явление законом гомологических рядов наследственной изменчивости: то есть признак, типичный только для одного из двух родственных видов, может быть обнаружен с какой-то частотой и у особей родственного вида.
На этом слайде показано то, что мутации могут быть достаточно заметными, мы видим негритянскую семью, в которой родился белый негр — альбинос. У него дети, скорее всего, будут пигментированными, поскольку мутация эта рецессивная, а частота ее встречаемости низка.
Мы говорили до этого о признаках, которые проявляются полностью. Но это не для всех признаков так. Например, фенотип гетерозигот может быть промежуточным между доминантным и рецессивным признаком родителей. Так, окраска плода у баклажан в первом поколении меняется с темно-синей на менее интенсивную фиолетовую. При этом во втором поколении расщепление по наличию окраски осталось 3:1, но если учитывать интенсивность окраски расщепление стало 1:2:1 (цвет темно-синий — АА, фиолетовый — 2Аа и белый — аа, соответственно) В данном случае видно, что проявление признака зависит от дозы доминантного аллеля. Расщепление по фенотипу соответствует расщеплению по генотипу: классы АА, Аа и аа, в соотношении 1:2:1.
Еще раз выделим роль Менделя в развитии науки. Никто до него не размышлял, что вообще могут существовать задатки признаков. Считалось, что в каждом из нас сидит маленький человечек, внутри его — еще маленький человечек и т. д. Зачатие имеет к его появлению какое-то отношение, но по механизму, готовый маленький человечек уже присутствует с самого начала своего роста. Такими были доминирующие представления, у которых, безусловно, был недостаток — по этой теории, при большом числе поколений гомункулус должен был получиться по размеру меньше элементарной частицы, но тогда про частицы еще не знали J.
Откуда Мендель знал, какой признак является доминантным, а какой рецессивным? Ничего такого он не знал, просто взял некоторый принцип организации опыта. Удобно, что признаки, за которыми он наблюдал, были разными: рост, размер, цвет цветка, цвет боба и т. д. У него не было априорной модели механизма наследования, он вывел ее из наблюдения за передачей признака в поколениях. Еще одна особенность его метода. Он получил, что доля особей с рецессивным признаком во втором поколении составляет четверть от всего потомства. То есть вероятность того, что данная горошина зеленая — 1/4. Допустим, получилось в среднем по 4 горошины в одном стручке. Будет ли в каждом стручке (это потомство от двух и только от двух родителей) 1 горошина зеленая и 3 желтых? Нет. Например, вероятность того, что там будет 2 зеленых горошины равна 1/4 х 1/4 = 1/16, а того, что все четыре зеленые — 1/256. То есть, если взять кучу бобов, с четырьмя горошинами в каждом, то у каждой 256-ой все горошины будут с рецессивными признаками, то есть зелеными. Мендель анализировал потомство множества одинаковых пар родителей. О скрещивании было рассказано, потому что они показывают, что законы Менделя проявляются как статистические, а в основе имеют биологическую закономерность — 1:1. То есть гаметы разных типов в КАЖДОМ мейозе у гетерозиготы образуются в равном соотношении — 1:1, а закономерности проявляется статистически, поскольку анализируются потомки сотен мейозов — Мендель анализировал более 1000 потомков в скрещивании каждого типа.
Сначала Мендель исследовал наследование одной пары признаков. Затем он задался вопросом, что будет происходить, если одновременно наблюдать за двумя парами признаков. Выше на рисунке, в правой части проиллюстрировано такое исследование по двум парам признаков — цвету горошин и форме горошин.
Родители одного типа давали при самоопылении горошины желтые и круглой формы. Родители другого типа давали при самоопылении горошины зеленые и морщинистой формы. В первом поколении он получил все горошины желтые, а по форме — круглые. Получившееся расщепление во втором поколении удобно рассмотреть с помощью решетки Пенета. Получили расщепление по признакам 9:3:3:1 (желтые и круглые: желтые и морщинистые: зеленые и круглые: зеленые и морщинистые).
Расщепление по каждой паре признаков происходит независимо друг от друга. Соотношение 9жк + Зжм + Ззк + 1зм соответствует независимой комбинации результатов двух скрещиваний (3ж + 1з) х (3к + 1 м). То есть и задатки признаков этих пар (цвет и форма) комбинируются независимо.
Посчитаем, сколько разных фенотипических классов мы получили. У нас было 2 фенотипических класса: желтые и зеленые; и по другому признаку 2 фенотипических класса: круглые и морщинистые. А всего будет 2*2=4 фенотипических класса, что мы и получили выше. Если рассматривать три признака, то фенотипических классов будет 23=8 классов. Мендель доходил до дигибридных скрещиваний. Задатки всех признаков, к счастью Менделя, находились у гороха на разных хромосомах, а всего хромосом у гороха — 7 пар. Поэтому, оказалось, что он взял признаки, которые комбинировались независимо в потомстве.
У человека 23 пары хромосом. Если рассмотреть какой-то один гетерозиготный признак для каждой хромосомы, может у человека может наблюдаться 223 ~ 8*106 фенотипических классов в потомстве одной супружеской пары. Как упоминалось на первой лекции, каждый из нас содержит между папиными и мамиными хромосомами порядка 1 различия на 1000 позиций, то есть всего порядка миллиона различий между папиными и мамиными хромосомами. То есть каждый из нас является потом ком миллионногибридного скрещивания, при котором число фенотипических классов составляет 21000000. Практически это число фенотипических классов в потомстве одной пары не реализуется, потому что хромосом у нас всего 23, а не миллион. Получается, что 8*106 — это нижний предел величины возможного разнообразия в потомстве данной супружеской пары. Исходя из этого, можно понять, что не может быть двух абсолютно одинаковых людей. Вероятность мутации данного нуклеотида в ДНК за одно поколение составляет около 10~7 — 10~8, то есть на весь геном (3*109) получится около 100 изменений de novo между родителем и ребенком. А всего отличий в папиной половинке вашего генома от маминой половинки — около 1 000 000. Это значит, что старые мутации в вашем геноме гораздо более частые, чем вновь возникшие (в 10 000 раз).
Также Мендель проводил анализирующее скрещивание — скрещивание с рецессивной гомозиготой. У потомка первого поколения комбинация генов имеет вид АаВЬ. Если скрестить его с представителем с полностью рецессивным набором генов (aabb), то получится четыре возможных класса, которые будут находиться в соотношении 1:1:1:1, в отличие от рассмотренного выше скрещивания, когда мы получили расщепление 9:3:3:1.
Аналитическое скрещивание RrYy x rryy
Ниже показаны некоторые статистические критерии — какие соотношения чисел следует считать соответствующими ожидаемым, скажем, 3:1. Например, для 3:1 — из четырехсот горошин вряд ли получится точно 300 к 100. Если получится, к примеру, 301 к 99, то это отношение наверное можно считать равным 3 к 1. А 350 к 50 уже, наверное, не равно 3 к 1.
Статистический тест хи-квадрат (χ2) используется для проверки гипотезы соответствия наблюдаемого распределения ожидаемому. Произносится эта греческая буква в русском языке как «хи», а в английском — как «чи» (chi).
Величина х2 рассчитывается как сумма квадратов отклонений наблюдаемых величин от ожидаемой, деленных на ожидаемую величину. Затем по специальной таблице для данного значения х2 находят величину вероятности того, что такое различие между наблюдаемой и ожидаемой величиной является случайным. Если вероятность оказывается меньше 5 % то отклонение считается не случайным (цифра в пять процентов выбрана по договоренности.
Всегда ли будет проявляться какой-либо наследственно предопределенный признак? Ведь это предположение по умолчанию лежит в основе интерпретации данных полученных Менделем.
Оказывается, это может зависеть от многих причин. Есть такая наследуемая черта у человека — шестипалость. Хотя у нас, как и у всех позвоночных, пальцев в норме пять.
Вероятность проявления задатка признака в виде наблюдаемого признака (здесь — шестипалость) может быть меньше 100 %. На фотографии у человека на обеих ногах по 6 пальцев. А у его близнеца этот признак не обязательно проявится. Доля индивидов с данным генотипом, у которых проявляется соответствующий фенотип, была названа пенетрантностью (этот термин ввел российский генетик Тимофеев-Ресовский).
В некоторых случаях шестой палец может быть просто обозначен некоторым кожным приростом. Степень выраженности признака у индивида Тимофеев-Ресовский предложил называть экспрессивностью.
Особенно ясно не 100 % связь генотипа с фенотипом прослеживается при исследовании идентичных близнецов. Генетическая конституция у них один в один, а признаки у них совпадают в разной степени. Ниже представлена табличка, в которой представлено совпадение признаков для близнецов идентичных и неидентичных. В качестве признаков в этой таблице взяты различные болезни.
Признак, который присутствует у большинства особей в естественных условиях обитания, называется диким типом. Наиболее распространенный признак часто оказывается доминантным. Такая связь может иметь приспособительное значение, полезное для вида. У человека доминантными признаками являются, к примеру, черные волосы, темные глаза, кудрявые волосы. Кстати, поскольку соответствующие гены находятся на разных хромосомах, то может получиться кудрявый негр, который будет блондином — ничто это не запрещает.
Почему так получается, что в при моногибридном скрещивании трем генотипическим классам в потомстве второго поколения соответствует в некоторых случаях три фенотипических класса (баклажаны синие, фиолетовые и белые), а в другом случае — два класса (желтая или зеленая горошина)? Почему в одном случае проявление доминантного признака неполное, а в другом — полное? Можно провести аналогию с фотопленкой. В зависимости от количества света, кадр может получиться совсем прозрачным, серым и совсем черным. То же самое — с генами. Например, есть у кукурузы ген Y, который определяет образование витамина А. Когда доза гена Y на клетку растет от одного до трех, то линейно изменяется активность фермента, который он кодирует и, в данном случае, усиливается образование витамина А и окраска зерна. (У кукурузы основная часть зерна — эндосперм. В каждой клетке эндосперма три генома — два от мамы и один от папы).
То есть, многие признаки зависят от дозы аллеля количественно. Чем больше копий аллеля нужного типа, тем больше будет величина контролируемого им признака. Такая связь постоянно используется в биотехнологии.
Мендель мог благополучно свои законы и не открыть. Исследования на горохе позволили Менделю открыть свои законы, потому что горох — самоопыляемое растение, а потому без принуждения — гомозиготный. При самоопылении доля гетерозигот уменьшается пропорционально двум в степени номера поколения. В этом заключалось везение Менделя — если бы доля гетерозигот была большой, то никаких бы закономерностей не наблюдалось. Когда он затем взял перекрестные опылители, то закономерности нарушились, что сильно расстроило Менделя, потому что он подумал, что открыл нечто частное. Оказалось, что нет.
У самоопылителей гетерозиготное растение даст лишь половину гетерозиготных потомков Аа х Аа => 1АА: 2Аа: 1аа. В следующем поколении от всех гетерозигот опять останется лишь половина. Уже в 4-м поколении гетерозигот останется всего 0.54 = 6 %, поэтому у Менделя взятые в опыт растения гороха были гомозиготными: либо доминантными, либо рецессивными. Законы Менделя могли бы не проявиться на перекрестниках, где получить гомозиготную линию гораздо сложнее.
Выше было рассказано о наследовании признаков качественных, а обычно большинство признаков — количественные. Их генетический контроль достаточно сложен. Количественные признаки описываются через среднюю величину значения признака и размахом варьирования, которая называется нормой реакции. И величина средней, и норма реакции — это видоспецифические показатели, которые зависят как от генотипа, так и от условий среды. К примеру, продолжительность жизни человека. Хоть в Библии и написано, что пророки жили по 800 лет, но сейчас ясно, что больше 120–150 лет никто не живет. А, мышь, например, живет два года, хотя она тоже млекопитающее. Наш рост, наш вес — это все количественные признаки. Нет людей 3–4 метрового роста, хотя слоны, к примеру, есть. У каждого вида своя средняя по каждому количественному признаку и свой размах его варьирования.
Норма реакции: изменение длины крыльев в зависимости от температуры среды во время развития у мух Drosophila melanogaster
Закономерности наследования открыты при исследовании качественных признаков.
Большинство наших признаков — количественные.
Величины значений признаков в представительной выборке особей данного вида характеризуются определенной средней и широтой ее варьирования, которая называется нормой реакции и зависит как от генотипа, так и от условий формирования признака.
Мы продолжим обсуждать качественные признаки, и говорить о связи генотипа и фенотипа, о вариантах проявления менделевских закономерностей, и что за этим стоит с точки зрения наших представлений о работе генетического материала.
Зачем надо изучать результаты Менделя и Моргана? Прежде всего, нам интересно узнать что-то о нас самих. Нам хочется быть богатыми, здоровыми и счастливыми (последние два признака во многом генетически контролируемые. Есть люди, которые чувствуют себя обычно счастливыми, а есть такие, которые чаще ощущают себя несчастными — эти ощущения связаны с определенными генетическими характеристиками).
Если мы знаем характер генетического контроля признака, то мы можем предсказать с определенной вероятностью фенотип на основе генотипа (если он известен). Если мы не знаем, как признак контролируется, то мы будем в полном неведении, и не сможем ничего сказать относительно признаков будущих поколений. Если мы знаем связь между генотипом и фенотипом, то мы можем сделать определенные предсказания о развитии признака (например, болезни) и, в некоторых случаях, предпринять действия полезные индивиду. Для этого нам надо установить генотип. Сейчас эта задача технически разрешима (поскольку секвенирование генома человека проведено), хотя и непомерно дорога.
В реальности нам дано лишь наблюдать проявление признака в поколениях и на основе этого создавать модель генетического контроля формирования признака, которая может быть верна лишь в данных конкретных условиях. Но, тем не менее, если мы создали такую модель, то мы можем в этом случае иметь средства для регуляции какого-то признака, в частности, повлиять возникновение или ход какой-либо болезни. Таким образом, генетический контроль и его изучение имеет большое практическое, в частности, медицинское, значение. И в основе всего лежат менделевские закономерности, которые могут проявляются по-разному в зависимости от конкретных особенностей генотипа и среды.
Мы сейчас рассмотрим, какие могут быть условия генотипа и среды, при которых эти закономерности будут выглядеть не такими, как их наблюдал Мендель, и почему это происходит. Мендель наблюдал, что при объединении задатков двух признаков в одном организме может быть проявление только одного признака. Второй задаток не проявляется. Такой тип доминирования называется полным.
Переоткрытие законов Менделя привело к выявлению других типов доминирования. Например, неполного доминирования, когда фенотип гетерозиготы является промежуточным между двумя гомозиготами. Есть еще один тип доминирования, очень популярный в последнее время в суде, — кодоминирование — в гетерозиготе проявляются фенотипы каждой из гетерозигот. Это явление имеет место, в частности, и у человека. Если у вас есть папина хромосома и мамина хромосома (а это, несомненно, так), и они различаются в миллионе позиций, что можно выявить разными методами, то это все случаи кодоминирования.
Первичным фенотипом организма является последовательность нуклеотидов молекул его ДНК. На этом фенотипе строятся все фенотипы следующих уровней. То есть при исследовании вашей ДНК проявляются все и папины, и мамины признаки; каждая из молекул ДНК проявляет свой признак независимо от присутствия другой молекулы ДНК с другим признаком: при секвенировании или при расщеплении ДНК какими-либо ферментами видны оба состояния ДНК. Кодоминантные признаки (маркеры самой молекулы ДНК) характеризуют различие между хромосомами и используются для идентификации личности или установления отцовства (число таких случаев разрешаемых в суде составляет несколько сотен в год).
Типы доминирования: полное (вверху) и неполное (внизу).
Когда мы говорим о генотипе и фенотипе — это такие крайние единого процесса реализации наследственной информации в индивидуальном развитии. Например, гладкая или морщинистая форма горошины, это ее фенотип. А генотип — это та специфическая последовательность нуклеотидов, которая в данных условиях определяет, что горошина будет гладкой или морщинистой. В 1999 году с менделевскими линиями гороха была проведена следующая работа. Участки хромосомы, отвечающие за форму горошины, были клонированы, секвенированы, и было установлены их особенности — различие последовательностей нуклеотидов — которые и определяли развитие гладкой или морщинистой формы горошины.
Обратите внимание, что форма горошины является конечным признаком, а формированию признака этого уровня предшествует проявление признака на многих предыдущих уровнях. Во-первых, это наличие (аллель 1) или отсутствие (аллель 2) олигосахарида, которое и приводит к той или иной форме горошины. Еще более глубоким уровнем проявления фенотипа является то, что имеется соответствующий белок (аллель 1), который необходим для синтеза олигосахарида или это тот же белок, но альтернативной структуры (аллель 2), при которой олигосахарид не образуется. Еще более глубоким признаком является РНК, с которой синтезируется этот белок. Эти РНК различны по последовательности нуклеотидов (аллели 1 и 2), что и делает различными соответствующие белки. А эти РНК различны, потому что транскрибируется с разных молекул ДНК, папиной и маминой, у которых последовательности нуклеотидов в данной позиции различны (аллели 1 и 2). Все это — проявление одного и того же фенотипа, последовательно реализуемого на каждом из уровней.
Мы имеем право говорить о фенотипе на каждом из этих многих уровней — от конкретных особенностей последовательности нуклеотидов ДНК до формы горошины. При этом, как только мы продвигаемся от ДНК выше, тем больше влияние условий окружающей среды. Например, возможность функционирования разных аллелей на уровне ДНК (транскрипция папиной и маминой копии гена) будет мало зависеть от температуры, а возможность функционирования тех же аллелей на уровне белка может критически зависеть от температуры. При некоторых температурах белок (например, аллель 1) будет работать, а другой (аллель 2) не будет работать. Как только мы выдвигаемся на более высокий уровень в реализации фенотипа, появляется больше возможностей для влияния окружающей среды на проявление признака.
И наоборот, чем ближе мы продвигаемся к генотипу, тем предсказуемее связь между генотипом и фенотипом. При идентификации человека в судебно-медицинской экспертизе чаще всего используются маркеры, которые различают одни и те же участки гомологичных (папины и мамины) хромосом. Обычно эти различия — микровставки в данном месте молекулы ДНК. Принцип метода таков. Мы можем размножить in vitro фрагмент молекулы ДНК в нужном месте хромосомы, например, с координатами от позиции N до позиции N+100. Этот фрагмент мы выбрали потому, что в нем у каждого человека в каждой хромосоме есть вставка, например, динуклеотид СА. В каждой хромосоме длина этой вставки может быть своя. Допустим, в одной хромосоме этот динуклеотид повторен в данном месте 10 раз, а в том же месте другой хромосомы — 15 раз. При размножении этого участка хромосомы мы получим фрагменты двух длин 100 +2*10=120 пар нуклеотидов и 100 + 2*15 = 130 пар нуклеотидов. Фрагменты каждого из этих размеров отличимы после их фракционирования электрофорезом в геле.
Пусть и папа и мама гетерозиготны по этому локусу, подобно гибридам первого поколения Менделевского моногибридного скрещивания. Обозначим их генотипы по характеристической длине размножаемых фрагментов ДНК — 120/130. Тогда их дети будут иметь такие генотипы 1 120/120 (гомозиготы по аллелю 120): 2 120/130 (гетерозиготы): 1 130/130 (гомозиготы по аллелю 130). Естественно, присутствие в образце фрагмента ДНК одной длины не влияет на возможность детекции фрагмента ДНК другой длины, то есть, используемые маркеры ко-доминантны. Они обе проявляются. Понятно, что здесь проявляются те же менделевские закономерности передачи и расщепления признаков, хотя в качестве признака мы использовали морфологию самой молекулы ДНК — различную длину фрагмента молекулы в данном месте хромосомы.
После переоткрытия законов Менделя выяснялось, что Мендель то в одном как бы как бы не прав, то в другом как бы не прав. Обнаруживались дополнительные обстоятельства, которые модифицировали проявление менделевских закономерностей.
Например, число классов генотипов и фенотипов зависит от плоидности, даже если аллелей всего два. К примеру, эндосперм в зерне кукурузы триплоидный. У него два генома маминых, а один папин (из пыльцевого зерна). Получали растения кукурузы, которые различались по числу доминантного аллеля гена Y. Этот аллель необходим для образования витамина А. Когда в эндосперме была одна копия аллеля Y, то Если относительное количество витамина А при одной копии аллеля Y составляло единицу, то при двух копиях — 2,2, а при трех копиях — 3,3. То есть выраженность конкретного признака может зависеть от дозы гена. А может и не зависеть — как в случае полного доминирования одного аллеля над другим. Все зависит от конкретного механизма формирования признака.
То, что от дозы гена зависит количество его продукта, используется в биотехнологиях, как основа всех современных процессов, основанных на рекомбинантных ДНК. Во всех этих случаях в клетке увеличивают дозу гена. Увеличение дозы гена приводит к нужным нам результатам, но клетка от этого может умереть. Обычно при производстве это безразлично. Критерием эффективности в биотехнологии является получение целевого вещества с минимальными затратами. Впрочем, если бы могли получить корову, которая бы дала сразу цистерну молока, а потом бы умерла, это было бы очень технологично, но не этично. Однако с бактериями так и поступают: выращивают бактерии в идеальных условиях, а затем включают синтез, который стоит бактериям жизни.
Выраженность признака макет увеличиваться с ростом дозы гена в геноме — это основа современной биотехнологии рекДНК.
Количество витамина А в эндосперме зерна кукурузы зависит от числа доминантных аллелей гена Y
Например, с помощью технологий рекомбинантных ДНК сконструированы бактерии, превращающие сахар в аминокислоту треонин. Более половины углерода, поглощенного такими бактериями превращается в единственный целевой продукт. Меньше половины сахара превращается в тысячи других углерод-содержащих соединений клетки, а, кроме того, расходуется еще и как источник энергии, чтобы все это синтезировать и просто жить. Треонин накапливается в среде до концентрации в 100 грамм на литр, что близко к пределу его растворимости. Мировые объемы производства рекомбинантных продуктов составляют десятки тысяч тонн в год (треонин) и даже сотни тысяч тонн (лизин).
В менделевском случае каждый признак формировался под действием как бы одного гена, который на другие признаки не влиял (ведь растение с гладкими семенами могло быть разной высоты, иметь разного цвета семена и цветы и др.), На самом деле формирование каждого признака требует работы многих генов, и большинство генов влияют более, чем на один признак. Например, относительное содержание каждого из трех метаболитов в эндосперме кукурузы (на слайде) зависит от генотипа по каждому из трех исследованных генов.
Отдельным признак может определяется многими генами (здесь признак — относительное содержание метаболита в эндосперме кукурузы)
Относительное содержание данного метаболита (признак) свое для каждого генотипа: количество триптофана при генотипе Ьt1 большее 1.4 раза, чем для su1, а при генотипе sh2 больше в 2 раза, чем для su1
M.Е… Лобашев. Генетика. Л.,1967. стр. 155
Видно, что на каждый признак влияет каждый из трех генов, и таких генов наверняка больше. Для формирования каждого признака нужно много генов. Объясним это на примере слуха. Чтобы человек слышал, нужны многие структуры уха: молоточки, наковаленки, барабанные перепонки, и если не будет какого-то белка, нужного, чтобы сформировать эти структуры, то человек не будет слышать. Поэтому глухота у человека может возникать из-за дефектов в десятках известных генов (контролирующих много элементов слухового аппарата, передачу сигнала в нервной ткани т. д.). При этом разные генотипы могут приводить к одному фенотипу (глухота). Внешне одинаковые фенотипы, обусловленные разными генетическими причинами, называются фенокопиями. Мутации глухоты редки и обычно рецессивны. Глухота проявляется обычно как моногенный аутосомный дефект с наследованием по менделевскому типу. Известны случаи, когда муж и жена, оба глухие, хотели бы, чтобы и их будущий ребенок был глухим, чтобы он также принадлежал их сообществу. Этот пример показывает — понятие нормы и болезни относительно. Оно зависит, в том числе, и от отношения индивида к своей особенности и от отношения общества к этой особенности.
Менделевские закономерности при взаимодействии генов (на примере глухоты). Допустим, что глухота определяется рецессивными мутациями в 10 разных генах и частота этих мутаций в популяции одинакова.
Вопрос 1. Какова вероятность того, что у двух глухих родителей будет глухой ребенок?
Решение. Каждый из родителей — гомозигота по мутации в одном из генов, нужных для развития слуха. Вероятность того, что второй родитель несет мутацию в том же гене, что и первый составляет 1/10. Следовательно, вероятность того, что ребенок от такого брака будет глухим, составляет 10 %, а того, что он будет слышать — 90 %. Запись генотипов будет при этом следующая: родители ааВВ х АА ЬЬ, потомство первого поколения Аа ВЬ.
Вопрос 2. Какова будет доля слышащих потомков от скрещивания индивидов первого поколения? (Чтобы не смущать друг друга будем считать, что этот опыт проводится, конечно, не на людях, а на мышах — основном модельном генетическом объекте из млекопитающих).
Решение. Расщепление по каждой паре аллелей происходит независимо друг от друга. То есть скрещивание Аа ВЬ х АаВЬ можно записать как два независимых скрещивания. По гену А: родители Аа х Аа. Расщепление у потомков по фенотипу составит 3: 1 (3 слышащих к 1 глухому). При этом у всех слышащих есть хотя бы один доминантный аллель А. Такой генотип записывается в форме А-. Генотип глухих потомков — аа (гомозиготы по рецессивному аллелю). Тогда генотипы соответствующие слышащим и неслышащим потомкам скрещивания можно представить как ЗА-: 1аа.
Таким же образом запись потомков по генотипу при расщеплении аллелей по локусу В можно представить как ЗВ-: 1ЬЬ.
Поскольку расщепление по аллелям одного локуса происходит независимо от расщепления по аллелям другого локуса, то генотип потомков при расщеплении по двум локусам одновременно можно записать в следующем виде:
(ЗА-: 1аа) х (ЗВ-: 1ЬЬ) = 9А-В-: ЗааВ-: 3A-bb: 1aabb
Чтобы индивид слышал, ему необходимо иметь хотя бы один аллель дикого типа по каждому из локусов. Таких индивидов 9 (генотипы А-В-). Чтобы индивид не слышал, достаточно гомозиготности по любому из двух рецессивных генов. Таких индивидов 7 (генотипы ааВ-, A-bb и aabb)
Таким образом, при скрещивании дигетерозигот соотношение слышащих потомков к неслышащим составит 9:7.
Отдельный ген может влиять на несколько признаков, в развитие которых он вовлечен. Такой эффект действия гена называется плейотропным (множественным). Например, альбинизм вызывается дефектом одного гена, контролирующего образование меланина. При этом меняются одновременно такие признаки как цвет волос (белый), цвет кожи (белый) и цвет глаз, (он будет красным от цвета кровеносных сосудов, лежащих за радужной оболочкой глаза). Множество признаков определяется геном SRY, контролирующим формирование всех признаков мужского пола у млекопитающих. Перенос гена SRY из Y-хромосомы самца в геном самки мыши, приводил к развитию особи с огромным количеством внешне наблюдаемых признаков мужского пола.
У Менделя получились одинаковые численные соотношения при расщеплении аллелей многих пар признаков. Это в частности подразумевало одинаковую выживаемость индивидов всех генотипов, но это может быть и не так. Бывает, что гомозигота по какому-нибудь признаку не выживает. Например, желтая окраска у мышей может быть обусловлена гетерозиготностью по одной из пар аллелей (слайд). При скрещивании таких гетерозигот друг с другом следовало бы ожидать расщепление по этому признаку соотношении 3:1. Однако наблюдается расщепление 2:1, то есть 2 желтых к 1 белой (рецессивная гомозигота). Показано, что доминантная (по окраске) гомозигота не выживает уже на эмбриональной стадии. Этот аллель одновременно является рецессивной леталью (то есть рецессивной мутацией, приводящей к гибели организма).
Разные генотипы могут давать разную выживаемость: доминантная мутация с рецессивным летальным эффектом
На следующем слайде показаны типы групп крови, их наследуемость. Этот пример приведен для того, чтобы сказать, что у одного гена может быть не только два аллеля. У Менделя их было всего два для каждого признака: например желтая и зеленая окраски, третьего не дано. Но на самом деле аллелей по каждому локусу может быть много. Группы крови различаются по тому, какой тип антигена мы вырабатываем. Может вырабатываться антиген типа А или В, но если одна хромосома ответственна за тип А, а другая за тип В, то будут вырабатываться оба типа антигена. Перед нами случай кодоминирования на уровне белка, когда наличие одного типа антигена не препятствует наличию другого. Четвертый тип — когда антигены вообще не вырабатываются. Какое практическое значение это имеет для нас? Это были первые генетические исследования, проведенные во время первой мировой войны в австрийской армии, так как во время войны всегда была острая необходимость переливания крови, которое не всегда оказывалось удачным, то есть человек от переливания крови иногда умирал.
Каждый индивид несет только два аллеля из трех по данному локусу: группы крови АВО человека
Переливать кровь наиболее безопасно между людьми, у которых одинаковая группа крови. Антигены групп крови у них одинаковые, антител против них нет и агглютинация (слипание клеток крови) не произойдет.
Если донором (то есть сдающим кровь) является человек, у которого ни одного из антигенов нет (группа крови 0), то его кровь можно переливать кому угодно — она не будет вызывать агглютинации у реципиентов (тех, кому кровь переливают) с любым типом крови. Таким образом, люди с типом крови 0 являются универсальными донорами. И наоборот, в крови людей с группой АВ не содержатся антитела ни на один из этих антигенов (ни на А, ни на В) и эти люди счастливы быть универсальными реципиентами — переливать кровь им можно от людей своей и всех остальных групп крови. То есть человек с группой крови АВ может принять кровь с любым типом. Самый плохой случай для реципиента — нулевая группа крови, которая будет реагировать с группами крови А, В и АВ.
Два разных гена могут находиться в разных локусах и влиять на один и тот же признак. Например, у дрозофилы могут быть разный цвет глаз, от коричневого (рецессивная гомозигота по одному гену), через разные оттенки красного к белому (рецессивная гомозигота по другому гену). Красные глаза имеет муха дикого типа (например, гомозигота по всем аллелям дикого типа), а также гетерозигота по двум генам, каждый из которых нужен для пигментации глаза (см. рис. слева). Взаимодействие двух генов в таком случае называют комплементарностью (дополнительностью). При скрещивании дигетерозигот дает расщепление по фенотипу в отношении 9:3:3:1. Из четырех фенотипических классов по окраске глаза самый многочисленный — 9, это окраска дикого типа, а самый малочисленный — 1, отсутствие окраски из за дефекта обоих генов, определяющих образование разных пигментов.
Такая же ситуация у человека с окраской волос, у нас есть разные типы меланина: эуификомеланин, которые в разном сочетании дают разные оттенки, например рыжий.
Справа на рисунке приведен тот же пример, только на растениях. Гены в различных локусах могут давать вклад в развитие одной и той же фенотипической характеристики: у перца 2 разных гена нужны для образования двух разных пигментов, что приводит к расщеплению по типу дигибридного скрещивания. Это используется при получении определенного цвета перца. Чтобы получит потомство с нужным цветом плода необходимо знать генотипы родителей и правильно их подбирать для скрещивания.
На животных это применяется на пушных зверьках в звероводческих фермах. За счет определенного подбора аллелей десятков известных генов, определяющих окраску шерсти, можно получить большое разнообразие окрасок шкур пушных зверьков, причем заранее планировать сколько и каких типов окраски получится.
Если два разных гена взаимодействуют при формировании признака и их действие складывается, то такое действие генов называют кумулятивным (накапливающимся). Например, степень красной окраски зерна пшеницы определяется двумя разными генами, в каждом из которых есть неполностью доминантный аллель А.
У перца 2 разных гена нужны для образования двух разных пигментов, что привода к расщеплению по типу дигибридного скрещивания
Таким образом, наблюдается много вариантов численных соотношений классов в потомстве дигибридного скрещивания в зависимости от типа взаимодействия генов. Если взаимодействия нет, то отношение будет 9:3:3:1. Может быть так, что появление в генотипе рецессивного гена а ведет к тому, что ген В в фенотипе не проявляется. Тогда соотношение будет 9:3:4. То же, но с доминантным геном — будет 12:3:1. И т. д. То есть это показывает, что Мендель был прав только в достаточно частном случае, когда гены не влияют друг на друга, но может быть еще много других вариантов.
Варианты соотношений классов в потомстве дигибридного скрещивания в зависимости от типа взаимодействия генов
Породы собак: для того, чтобы получить какие-то определенные зафиксированные признаки породы, проводили близкородственное скрещивание, пока эти признаки не закреплялись в гомозиготном состоянии, и далее при скрещивании собак одной породы расщепление по этому признаку больше не может происходить — признак становится стабильным, типичным для породы.
Окраска и другие признаки собак определяются взаимодействием многих генов в большом числе локусов
Каждая порода собак обладает своими признаками, и эти признаки стабильны в поколениях, поскольку каждую породу характеризует свой набор гомозиготных локусов, определяющих эти признаки. У каждой породы собак как свой набор гомозиготных локусов (у других пород они могут быть и гетерозиготны). Однако у одних пород данный локус гомозиготен по одним аллелям, а других тот же локус может быть гомозиготен по другим аллелям, что и определяет стабильные различия между породами (например, по окрасу). Ясно, что у каждой породы какие-то локусы остаются гетерозиготными, и собаки одной породы по этим признакам будут различаться, но это те признаки, которые данную породу не определяют.
Если скрестить собак разных пород, то получится дворняжка. У нее по большинству генов гетерозиготное состояние, соответствующее предковым формам. Дарвин в свое время подметил, что если скрещивать разные породы голубей, получается все время сизарь. Это происходит из-за утраты у гибрида гомозиготности характерной для каждой из родительских пород. А в гетерозиготных локусах один из аллелей, как правило, оказывается дикого типа, поэтому и выглядят гибриды сизарями — это дикий тип для всех пород голубей.
По генам окраски меха у норки в настоящее время установлено около 20 серий множественных аллелей. При скрещивании гетерозиготных норок между собой во втором поколении будет расщепление, типичное для дигибридного скрещивания в соотношении 9:3:3:1, или 56 % норок с дикой окраской меха, 19 % — алеутских, 19 % — платиновых и 6 % с сапфировой окраской меха. Вавилов сформулировал закон гомологических рядов: если у какого-то вида есть какой-то набор вариантов признаков, и мы рассматриваем близкородственный вид, то у него тоже может быть выявлен тот же набор признаков. Этот закон основан на том, что у близко-родственных видов и набор аллелей в ДНК может быть сходен.
Комбинации генов, определяющие окраску шерстяного покрова у норок
Гены могут находиться не только в ядре. Гены могут наследоваться однородительски, например, по материнской линии: окраска листа определяется генами хлоропластов, а не ядра, и наследуется только от матери. То есть, какая бы ни была мужская особь, потомство будет все однотипно — все в мать и только в нее.
У человека тоже есть признаки, которые определяются митохондриями, то есть наследуются по материнской линии. Митохондрии находятся в цитоплазме клетки, которая достается потомкам только от матери. К мутациям и болезням, связанным с митохондриями относятся, например, дефекты зрения и дефекты энергетического обмена.
Часть ядерных генов также наследуется только однородительски. Это гены Y-хромосомы, которая наследуется только от отца к сыну. Те гены в Y-хромосоме, которые не имеют пары в Х-хромосоме, наследуются однородительски — от отца к сыну. У человека один из таких генов определяет признак «волосатые уши» — у женщин такой признак не проявляется — гена этого нет, нет и его аллеля, из-за которого уши волосатые.
Проявление признака может зависеть также от пола индивида. Существуют признаки, гены которых могут находиться в аутосомах или половых хромосомах обоих полов, но проявляются лишь у одного из них. Такие признаки называют ограниченными полом. Например, быки несут гены, определяющие молочность дочерей, но гены свое действие у быков не проявляют. Гены казеинов — белков молока — это случай наиболее строгого контроля транскрипции ограниченной полом. Они действуют у особей как женского, так и мужского пола. Разница уровней экспрессии между ними составляет 1 на 100 000. Петухи также несут гены яйценоскости и размера яиц дочерей, хотя у петухов действие этих генов подавлено. Когда проводится селекция, учитывается этот факт. Здесь существенен генетический контроль признаков.
Как проявление действия гена, так и тип доминирования может зависеть от пола. Плешивость у человека наследуется аутосомно и моногенно. Аллель плешивости у мужчин доминирует, а у женщин рецессивен. У мужчин для облысения достаточно присутствия одного аллеля плешивости. При этом частота аллеля равна частоте встречаемости фенотипа. У женщин для облысения необходимо присутствие обоих аллелей плешивости.
Ответьте на несколько занятных вопросов.
Сколько женщин будут лысыми, если у мужчин лысый каждый десятый?
Ответ. Частота фенотипа плешивости у женщин равна квадрату частоты аллеля, следовательно, одна из ста.
Может ли у неплешивых родителей быть плешивая дочь?
Ответ. Нет: так как отец неплешивый, значит у него нет такого аллеля (у мужчины аллель плешивости доминантный и должен был проявиться) — оба аллеля определяют нормальную обволосненность. Значит, дочь обязательно получит аллель волосатости от отца, а этот аллель у женщин (в отличие от мужчин) доминантен. Плешивой она не будет независимо от того, какой аллель придет от матери.
Может ли у неплешивых родителей быть плешивый сын?
Ответ. Да: если у мамы есть аллель плешивости он рецессивен и не проявится, он может передаться сыну у которого этот аллель проявится как доминантный.
Если у неплешивых родителей один сын плешивый, какова вероятность того, что другой тоже будет неплешивый?
Ответ: 50 %. Аллель плешивости не у отца — иначе бы у него этот аллель проявился как доминантный. Значит аллель плешивости у матери. Раз она волосатая, то второй аллель у нее — нормальная обволосненность, а аллель плешивости не проявляется, так как у женщин он рецессивен. Следовательно, мать — гетерозигота — 1 аллель и нее — плешивость, 1 — норма. Поэтому расщепление по этому признаку у ее сыновей будет 1:1 (50 % плешивых)
Так генетика решает практически важные для нас задачи.
Экспрессия некоторых генотипов может зависеть от внешних условий. Ниже показаны два кролика, один из которых с темными пятнами. Аллель гималайской окраски у кролика температурочувствителен. При повышенной температуре белок не функционален и необходимый пигмент не образуется, а при нормальной температуре получается кролик, у которого некоторые участки шкуры окрашены.
Проявление аллеля himalayan в зависимости от температуры
Мутанты, проявление которых зависит от условий среды, сыграли очень важную роль в биологии вообще и в молекулярной биологии в частности, в понимании того, как работает генетический материал. Многие генетические феномены, были открыты и исследованы после получения и использования условно летальных мутантов (условно смертельные). Наиболее распространенные мутанты такого типа — температурочувствительные. Получены мутанты многих микроорганизмов и вирусов, которые не способны жить при повышенной температуре (ts-мутанты). У такого мутанта структура белка при повышенной температуре изменена, и белок не функционален (леталь), а при нормальной температуре структура обычная, и белок функционален. При этом, возможно исследовать особенности функционирования белка и его роли в формировании какой-либо структуры или сложной функции. Для этого клетки растят до нужной стадии, в условиях, когда белок функционален, затем разделяют клетки (обычно суспензию) на две части, в одной температура остается нормальной, а в другой — поднимается, так что белок теряет функциональность.
Есть также другой тип условно летальных мутаций — нонсенс-мутации, летальные на одном генетическом фоне и нелетальные на другом. Нонсенс-мутация приводит к изменению кодона для какой-либо аминокислоты в данном белке на стоп-кодон трансляции. Белок при этом образуется укороченный и нефункциональный. Нонсенс-мутация подавляется (супрессируется), в тех клетках, где образуется супрессорная тРНК. Супрессорная тРНК, это измененная тРНК, у которой антикодон по-прежнему узнает стоп-кодон в матричной РНК, но вместо терминации (окончания) трансляции белка на этом участке происходит подстановка определенного аминокислотного остатка. Белок с нонсенс-мутацией синтезируется полноразмерным и функциональным в присутствии тРНК.
При создании модели наследования признака для выяснения его генетического контроля начинают с проверки типа наследования по базовой, простейшей схеме — менделевской и, если соответствия нет, то добавляют к этой схеме дополнительные условия, понятные на сегодня:
• неравную вероятность образования и сочетания гамет и выживания потомства;
• однородительский тип наследования (Y — волосатые уши, мтДНК — болезнь Лебера)
• взаимодействие аллелей: наличие доминирования;
• взаимодействие генов;
• сцепление генов;
• ограничения признака полом;
• вероятность проявления признака при данном генотипе;
• влияние среды (не всегда формализуемое).
Напомним, что менделевский характер наследования относится к признакам качественным. Сколько менделирующих признаков известно у человека? Они зафиксированы в базе данных OMIM («Менделевское наследование у человека»). Их там перечислено около пяти тысяч признаков. А мы у себя можем насчитать гораздо больше признаков. Огромное количество остальных наших признаков зависит от действия многих генов. Здесь следует отметить важный идеологический аспект. Общей модели, по которой происходит формирование признаков под воздействием многих генов, сейчас нет. Наверное, ее и быть не может. Чтобы понять, как данный фенотип возникает на фоне данного генотипа, нам нужно еще узнать, как конкретно реализуется каждый этап передачи генетической информации: что происходит с модификацией ДНК, с какой из многих возможных вариантов РНК образуется с данного участка генетической информации, как модифицируется белок, образуемый с этой мРНК. В ДНК заложена лишь возможность всех этих вариантов реализации генетической информации. Произойдет ли это или нет, зависит от среды. Понятие среды мы пока толком формализовать не можем. Но если, подобно структуре ДНК, мы их будем знать структуру и модификацию РНК и белков, то понимание связи генотипа с фенотипом будет гораздо более глубоким, а предсказательная сила наших знаний будет больше. Как бы там ни было, одного знания генотипа часто недостаточно для предсказания фенотипа. Поэтому мы должны изучать следующие этапы экспрессии генетической информации.
В заключительной части лекции речь пойдет об определении пола и признаках, сцепленных с полом. Ниже показано, как выглядят половые хромосомы человека. Х-хромосома по длине ДНК больше чем Y-хромосома приблизительно в три раза.
А так выглядят клетки, транспортирующие эти хромосомы. Маленькая образована организмом генотипа XY, а большая — генотипа XX. Такое соотношение физических размеров имеют половые клетки.
Так выглядит человек после того, как он уже начал развиваться:
Вид человека на кончике иглы на стадии первых делений после оплодотворения яйцеклетки
Это игла, и на ее конце находится несколько поделившихся клеток, полученных из оплодотворенной яйцеклетки. Такой наш размер на стадии 4-5-ого деления.
Еще раз напомню, что у нас цикл развития двухстадийный. На нижней части рисунка изображена диплоидная стадия, период нашей долгой и счастливой жизни, которая с точки зрения генетического процесса заканчивается мейозом, после которого мы начинаем жить как бы в следующей стадии, гаплоидной. Это гаметы, у нас они не обладают способностью к самостоятельному существованию, хотя у многих растений именно гаплоид является основной частью жизненного цикла. Существование гамет заканчивается оплодотворением и появлением опять диплоидного организма.
X и Y хромосомы сильно отличаются. Они гомологичны только в так называемых псевдоаутосомных зонах, которые присутствуют и в папиных и в маминых хромосомах, как и обычные аутосомы. Спермии могут быть двух типов: X и Y, а яйцеклетки только одного типа — X и X. Поэтому расщепление получается 1:1 (две женщины и два мужчины). Именно расщепление 1:1 по полу на первом этапе исследования признака, сцепленного с полом, — окраски глаз у дрозофилы — привело Моргана к мысли о том, что гены находятся в хромосомах. Пол определяется хромосомами и гены находятся именно в них.
Не у всех организмов, в отличие от человека, пол однозначно определяется при слиянии гамет. Ниже показан моллюск, у которого в нижней части женские клетки, а в верхней части только мужские. У некоторых пресмыкающихся мужской пол не формируется при повышенной температуре (в частности, у крокодилов), образуются только женские организмы.
У дрозофилы всего четыре пары хромосом, три пары хромосом называются аутосомы и одна пара половых хромосом. У самок набор хромосом XX, а у самца XY — как и у человека (у самки на конце брюшка находится яйцеклад, поэтому у нее брюшко заостренное, а у самца оно овальное, — так их отличают).
Хромосомы Drosophila melanogaster (2n=8) состоят из трек пар аутосом (поры II. III, IV) и одной пары поповых хромосом X и Y
У плодовой мушки пол определяется не столько наличием той или иной половой хромосомы, а отношением числа Х-хромосом к числу гаплоидных наборов аутосом (А). Это видно на схеме ниже. Набор ХХ+2А (2 Х-хромосомы и 2 набора аутосом) дает соотношение 1,0 — такое соотношение является нормой для самок. Набор X Y+2A (1 Х-хромосома и 2 набора аутосом) дает соотношение 0,5 — такое соотношение является нормой для мужского пола. Если оказывается, что Y-хромосома утеряна (набор 1Х+2А, соотношение 0,5), то образуется мужской организм, хоть Y-хромосомы и нет. А если на фоне двух Х-хромосом добавилась Y-хромосома (набор 2Х+2А), пол формируется женский, хоть Y-хромосома и присутствует. У человека, сколько бы ни было Х-хромосом, если есть хоть одна Y-хромосома, то фенотип будет мужской.
Таким образом, у человека и мухи, при внешне одинаковой хромосомной формуле нормы (гомогаметный пол, XX, женский; гетерогаметный пол, X Y — мужской), механизм генетического контроля образования пола различен.
У птиц и ряда других групп организмов гомогаметный пол (XX) — мужской, а гетерогамтный пол (XY) — женский, что противоположно тому типу хромосомного определения пола, который оказался зафиксирован эволюцией в линии человека и других млекопитающих.
На следующем слайде показано месторасположение SPY-гена, отвечающего за формирование признаков мужского пола. Уже говорилось, что если в геном мыши, которая должна развиться самкой, пересадить SPY-ген, то у такого организма разовьется мужской фенотип. Человек почти не отличается от мыши в этом плане. У человека известны случаи, когда индивид кариотипически (то есть по типу хромосом в ядре) соответствовал женщине (в частности с двумя XX хромосомами и без наблюдаемой Y-хромосомы), но проявлял фенотип мужчины. В таких индивидов была обнаружена хромосомная перестройка — ген SPY был транслоцирован (перемещен) на одну из аутосом.
Ген SRY контролирует развитие по мужскому типу
На внизу на рисунке представлен случай отклонения по составу половых хромосом — синдром Тернера: индивид генотипа ХО (Y-хромосомы нет, а Х-хромосома одна). Фенотип индивида — женский. Отклонений в поведении нет, хотя при большем дисбалансе в генотипе наблюдаются проблемы в умственном развитии.
Другой случай отклонения по составу половых хромосом — это синдром Клайнфельтера: генотип XXY, фенотип мужской. Хотя две Х-хромосомы присутствуют, как в норме у женщин. То есть для определения пола у человека важно, чтобы присутствовала Y-хромосома
Напомним, что гены, локализованные в Y-хромосоме и не имеющие пары в X-хромосоме, наследуются только от отца к сыну. У человека аллель одного из таких генов определяет признак «волосатые уши». Через мать к ребенку могут передаваться гены, находящиеся в митохондриях, но т. к. генов в митохондриях на три порядка меньше чем в ядре, то и отклонений, передающихся только материнской линии лишь тысячная часть от всех известных для человека.
Избыток или недостаток какой-то хромосомы в геноме приводит к очень серьезным нарушениям у человека. Для примера можно привести трисомию по 21-ой хромосоме — синдром Дауна. Причина заболеваний при утрате или избытке любой хромосомы — дисбаланс в количестве продуктов генов этой хромосомы относительно количества продуктов генов других хромосом (все — по две). Дисбаланс по всем крупным хромосомам человека вообще не совместим с жизнью.
X хромосома одна из крупных хромосом человека. У женщин таких хромосом две, а у мужчин — одна. Но оба пола живы и здоровы — хоть на себя погляди. Почему разница в числе копий Х-хромосомы не смертельна, в отличие от ситуации с другими хромосомами?
Чтобы сбалансировать действие генов X хромосомы у мужчин (где Х-хромосома одна) и у женщин (где Х-хромосомы две) природа предусмотрела инактивацию одной из Х-хромосом в каждой клетке женского организма. У женщин одна X-хромосома инактивирована, то есть гены в ней не работают, а работают только в другой хромосоме — не инактивированной. Инактивиация вызвана компактизацией хромосомы даже в интерфазе. Поэтому компактизированная хромосома видна при окрашивании — в виде так называемого тельца Барра (слайд). Это один из диагностических признаков женского пола у млекопитающих, что у человека, что у слона. Некомпактизованная Х-хромосома, как и все аутосомы, не окрашивается и не видна в интерфазе.
На следующем рисунке показана кошка черепаховой окраски. Поскольку это кошка, а не кот, то генотип у нее XX. В каждой клетке женского организма одна из Х-хромосом инактивирована (ее видно как тельце Барра). На Х-хромосоме у кошки находится один из генов, определяющих окраску шерсти. У этого гена известны разные аллели, то есть определяющие разный цвет шерсти. Кошка на рисунке гетерозиготна по этим аллелям. Одна из Х-хромосом в каждой клетке инактивирована, поэтому только один из двух цветов может проявится в волоске, сформированном из данной клетки. Поэтому одни волоски одного цвета, а другие — другого. Какая из Х-хромосом инактивируется (папина или мамина), и, стало быть, аллель какого цвета будет работать — дело случая. Поэтому такая кошка и имеет черепаховую окраску. Кстати, сыновья у нее будут двух разных цветов в соотношении 1:1.
Черепаховая окраска у кошки определяется геном, находящимся на Х-хромосоме
В представленном на рисунке случае муха была гетерозиготна по гену окраски глаза и по гену, влияющему на форму крыла. Эти гены расположены в Х-хромосоме. Поэтому правый глаз мухи неокрашен: проявилась рецессивная мутация white, присутствующая в одной из Х-хромосом. Крыло изменено по форме. Левый глаз окрашен и крыло нормальной формы, поскольку в нем остались обе Х-хромосомы, в одной из которых присутствует рецессивный ген white, а в другой — доминантный ген w+.
Латеральный гнмандроморф у мухи (вверху — схема образования)
М.Е.Лобашев. Генетика. Л… 1967. стр. 205
Еще одно доказательство того, что гены находятся в хромосомах, было получено на мухах дрозофилах, называемых латеральными (боковыми, «сторонними») гинандроморфами. У таких мух после первого деления яйцеклетки в одной из клеток была утрачена Х-хромосома. Эта клетка при последующих делениях дала клетки с генотипом ХО, поэтому половина тела таких мух сформирована как у самца и во ее всех клетках (на рисунке — правая половина) цитологически наблюдается утрата одной из Х-хромосом. Левая половина тела, происходящая из клеток с нормальным генотипом XX, формируется как самка.
Ранее было рассказано о передаче признаков, кодирующихся одним геном, и про передачу признаков, кодирующихся разными генами с разных хромосом. В первом случае было соотношение 3:1 в потомках (или, если скрещивать на рецессив — 1:1), а во втором — 9:3:3:1, из них два класса фенотипических родительских, а два новых. Если же гены находятся на одной хромосоме, но все-таки достаточно далеко друг от друга, то возникает явление рекомбинации, то есть новой комбинации генетических признаков, но не свободное — не 9:3:3:1. В деталях это означает следующее. Если два разных гена находятся в одной хромосоме рядом, то определяемые ими признаки наследуются так, как если бы они определялись одним геном; новые комбинации признаков в потомстве не появляются. Например, при скрещивании растения, гетерозиготного по обоим локусам (MmDd, высокое и листья нормальные) с рецессивной гомозиготой (mmdd, низкое и листья крапчатые), должны наблюдаться те же два фенотипических родительских класса в соотношении 1:1 (первое растение образует гаметы MD и md, а второе — только md, поэтому другие классы образоваться не могут). То есть, хотя гены и разные, наследуется все по Менделю.
7.5а. Если два разных гена находятся в одной хромосоме рядом, то определяемые ими признаки наследуются так, как если бы они определялись одним геном — новые комбинации признаков в потомстве не появляются.
Например при скрещивании растения, гетерозиготного по обоим локусам (MmDd, высокое и листья нормальные) с рецессивной гомозиготой (mmdd, низкое и листья крупчатые), должны наблюдаться те же два фенотипических класса в соотношении 1:1 (родительские)
Если два разных гена находятся в разных хромосомах, то определяемые ими признаки наследуются независимо, новые комбинации признаков в потомстве появляются. При не сцепленном наследовании признаков (высота растения и тип листа) в анализирующем скрещивании растения, гетерозиготного по обоим локусам, должны наблюдаться четыре фенотипических класса в соотношении 1:1:1:1 — оба родительских класса (высокий с нормальными листьями и карлик с крапчатыми листьями) и два новых — рекомбинантных класса (высокий с крапчатыми листьями и карлик с нормальными листьями). Это происходит, потому что первое растение образует четыре типа гамет (Md, MD, mD, md), а второе — по-прежнему один тип гамет md. В данном случае — это независимое менделевское расщепление, потому что гены находятся в разных хромосомах.
7.5б. Если два разных гена находятся в разных хромосомах, то определяемые ими признаки наследуются независимо, новые комбинации признаков в потомстве появляются.
При не сцепленном наследовали признаков (высота растения и тип листа) в анализирующем скрещивании растения, гетерозиготного по обоим локусам, должны наблюдаться четыре фенотипических класса в соотношении 1:1:1:1: оба родительских класса (высокий с нормальными листьями и карлик с крапчатыми листьями) и два новых — рекомбинантных класса (высокий с крапчатыми листьями и карлик с нормальными листьями)
Говоря о рекомбинации, мы имели в виду появление новых, отличных от родительских, комбинаций аллелей. Но они могут находиться не только на разных хромосомах, но и на одной хромосоме.
Рекомбинация — это появление новых, отличных от родительских комбинаций аллелей, находящихся на одной хромосоме
В профазе 1 мейоза папина и мамина хромосомы объединяются друг с другом (конъюгация), и может происходить их кроссинговер (по-русски кроссинговер — перекрест). То есть, когда они потом расходятся, оказывается, что они поменялись своими кусочками. Гомологичные хромосомы, у которых произошел обмен кусочками, называются рекомбинантными. Две из четырех гамет, образовавшихся в мейозе 2, - рекомбинантные (две другие — родительского типа).
Если перекреста не происходит, то все гаметы — родительского типа. В результате одиночного перекреста половина гамет — рекомбинантная, половина — нерекомбинантная, однако рекомбинация происходит лишь в части клеток, доля которых зависит от расстояния между локусами (чем дальше они друг от друга, тем больше доля кроссоверных гамет).
7.6а. Без кроссинговера все гаметы родительского типа
7.6б. В результате одиночного кроссинговера половина гамет рекомбинантная, половина — нерекомбинантная, однако рекомбинация происходит лишь в части клеток, доля которых зависит от расстояния между локусами.
Рекомбинация происходит после последнего удвоения хромосом в мейозе. Такой вывод можно сделать из того, что наряду с рекомбинантными продуктами одного мейоза (свидетельствующими, что рекомбинация прошла) есть и нерекомбинантные продукты того же мейоза. А если бы рекомбинация проходила до репликации, то все хромосомы в данной мейозе были бы рекомбинантными.
В результате кроссинтовера появляются и рекомбинантные и НЕрекомбинантные гаметы. Это значит, что кроссинговер происходит после синтеза ДНК
В мейозе 1 кроссинговер между данной парой локусов происходит в части клеток, доля которых зависит от расстояния между локусами. В клетках, где кроссинговер произошел. 50 % гамет не рекомбинантные (родительские классы, 1:1), а 50 % — два рекомбинантных класса (1:1)
Гены, отвечающие за высоту куста и за тип листьев, находятся в одной хромосоме, но не совсем рядом. В клетке могут произойти два события. Кроссинговер может не произойти, тогда все гаметы будут родительского типа, но может и произойти в части клеток. Тогда половина гамет будет не кроссоверная, а половина — кроссоверная. Соотношение между такими гаметами — 1:1, а между клетками, где кроссинговер произошел и где не произошел, зависит от расстояния между локусами. Поэтому число рекомбинантов не превосходит 50 %. Возможные потомки показаны на рисунке выше.
Потомков высоких с нормальными листьями получилось 55, низких с крапчатыми листьями — 53, низких с нормальными листьями — 8, высоких с крапчатыми листьями — 7. Наблюдаемая частота рекомбинации численно равна проценту рекомбинантного потомства, образуемого в скрещивании. Общее число рекомбинантных потомков составило 15, общее число всех потомков — 123. Таким образом, частота рекомбинации равна 15/123 * 100 %=12 %.
Расчет частоты рекомбинации
Наблюдаемая частота рекомбинации численно равна проценту рекомбинантного потомства, образуемого в скрещивании.
В потомстве скрещивания на рис. 7.7 обнаружены растения четырех фенотипических классов:
1) 55 — высокое, листья нормальные (как родитель 1);
2) 53 — низкое, листья крапчатые (как родитель 2);
3) 8 — низкое, лисья нормальные (рекомбинант 1);
4) 7 — высокое, листья крапчатые (рекомбинант 2)
Общее число рекомбинантных потомков составило 15, общее число всех потомков составило 123
Наблюдаемая частота рекомбинации = число рекомбинантных потомков/общее число потомков х 100%
(8 + 7)/(55 + 53 + 8 + 7) х 100 % = 15/123 х 100 % = 12 %
В интервале 12 % рекомбинация произошла. Это событие пропорционально расстоянию между участками. Если оно наблюдается с частотой 12 %, то оно могло произойти с два раза с частотой 0.12*0.12*100 % = 1.44 %. Потомство от двух перекрестов между парой маркеров выглядит как НЕ рекомбинантное. Двойная (и любая четная) рекомбинация снижает проявление каждой из одиночных рекомбинаций. Детектируются только нечетные перекресты между парой маркеров, четные не детектируются.
7.11. Потомство от двух кроссинговеров между парой маркеров выглядит как НЕ рекомбинантное.
Двойная рекомбинация снижает проявление каждой из одиночных рекомбинаций.
Детектируются только нечетные перекресты между парой маркеров, четные не детектируются.
Наблюдаемая доля рекомбинантов отражает итог совокупности независимых рекомбинационных событий меду парой маркеров — одиночных, двойных, тройных и т. д. рекомбинаций.
Расчетное генетическое расстояние между парой маркеров примерно равно наблюдаемой частоте рекомбинаций плюс квадрат этой частоты минус куб и т. д.
Если наблюдаемая доля рекомбинантов (наблюдаемая частота рекомбинаций) = 12 %, то расчетное генетическое расстояние = 0,12 + 0,12 х 0,12 — 0,12 х 0,12 х 0,12 +… = 0,134 = 13,4 %
Наблюдаемая доля рекомбинантов отражает итог совокупности независимых рекомбинационных событий меду парой маркеров — одиночных, двойных, тройных и т. д. рекомбинаций. Расчетное генетическое расстояние между парой маркеров примерно равно наблюдаемой частоте рекомбинации плюс квадрат этой частоты — остальные члены этого ряда будут малы. Если наблюдаемая доля рекомбинантов (наблюдаемая частота рекомбинации) равна 12 %, то расчетное генетическое расстояние примерно равно 0,12 + 0,12 x 0,12 = 0,134 = 13,4 %. Практически чтобы величина поправки была пренебрежимо мала (меньше 5 % от величины генетического расстояния) значения наблюдаемых частот рекомбинации должны находится в пределах 5 %.
Группы сцепления и хромосомная теория наследственности
На фотографии изображен Томас Гент Морган, который первым обнаружил сцепленное наследование признаков (вначале сцепление с полом, а затем и признаков друг с другом) и генетическую рекомбинацию между ними. Это явилось генетической основой хромосомной теории наследственности, за что ему была присуждена Нобелевская премия.
Томас Гент Морган первым обнаружил сцепленное наследование признаков и генетическую рекомбинацию между ними. Это явилось генетической основой хромосомной теории наследственности, за что ему была присуждена Нобелевская премия.
Гены, расположенные в одной паре гомологичных хромосом наследующиеся единой группой. Морган назвал ее группой сцепления. Совместное наследование генов, ограничивающее свободное их комбинирование, называют сцеплением генов.
Гены в гомологичных хромосомах расположены в одном и том же порядке у всех людей. Но аллели (альтернативные состояния этих генов) могут в различаться в гомологичных хромосомах. Рассмотрим хромосомы вашей мамы. Обозначим аллели генов той хромосомы, которые она получила от вашей бабушки буквами Б, а те аллели той же хромосомы которые получила от дедушки буквами Д. Если рекомбинация не произошла, то у вас, как и у вашей мамы, будет присутствовать хромосома с набором аллелей БББББББ (ну если дедушкина хромосома к вам попала, то набор будет ДДДДДД) Генетическая рекомбинация — это обмен блоками аллелей между гомологичными хромосомами. Если рекомбинация произойдет при образовании той яйцеклетки, из которой вам повезло родиться, то блок аллелей бабушки будет продолжен блоком аллелей дедушки. Например, если рекомбинация произойдет между генами № 4 и № 5, то набор аллелей этой хромосомы будет выглядеть у вас так: ББББДДДД.
Чем больше расстояние между генами, тем выше вероятность рекомбинации между ними. Впервые это предположил и доказал Морган. Т.Морган предположил, что частота кроссинговера показывает относительное расстояние между генами: чем чаще осуществляется кроссинговер, тем далее отстоят гены друг от друга в хромосоме, чем реже кроссинговер, тем они ближе друг к другу.
Морган провел количественное исследование рекомбинации на дрозофилах. Он исследовал сцепленные гены, определяющие цвет тела, цвет глаз и форму крыльев. Все эти гены находятся в Х-хромосоме, то есть у самок две Х-хромосомы, а у самцов — одна.
Самки, гетерозиготные по всем трем генам, были скрещены с самцами, несущими рецессивные аллели этих генов. Так как самки были гетерозиготны, они обладали признаками дикого типа. Самцы, у которых второй Х-хромосомы нет, имели рецессивные признаки — желтый цвет тела (рецессивный аллель у, yellow), белые глаза (рецессивный аллель w, white) и расщепленные крылья (рецессивный аллель bi, bifid),
Если бы все было «по Менделю», то маркеры должны были бы комбинироваться независимо друг от друга. Но Морган к этому времени уже определил, что маркеры эти наследуются практически одним блоком — это явление и было названо генетическим сцеплением. При наследовании единым блоком самки в потомстве должны были получаться двух классов, смотря какую мамину хромосому получит дочь: либо гетерозиготные по всем трем генам, — yY, wW, biBi (если получили от матери доминантные гены), либо гомозиготные по всем трем рецессивным генам — yy, ww, bibi (если получили от матери хромосому с рецессивными генами). Однако иногда гены из одной группы сцепления все же наследуются раздельно, то есть появляются также и самки с другими генотипами. Например, с набором Yy, bibi, то есть получившие от матери сочетание аллеля Y и аллеля b i. Частота изменения комбинации маркеров у (желтый цвет тела) и bi (расщепленные крылья) составила 4,7 %. То есть на 1000 мух таких было 47. Доля рекомбинантов между маркерами у (желтое тело) и w (белые глаза) была равна 1,2 %, а между маркерами w (белые глаза) и bi (расщепленные крылья) — 3,5 %.
Несложно заметить, что 3,5 %+1,2 %=4,7 %. Если считать, что процент рекомбинации отражает расстояние между генами, то это означает, что гены могут быть расположены только линейно и никак иначе.
На тот момент еще не было ничего известно ни про ДНК, ни про химию наследственности — были просто формальные генетические признаки. Но Морган и без этого смог показать, что гены расположены линейно относительно друг друга, что бы ни было носителем генов. Вывод о том, что частота кроссинговера является функцией расстояния между генами и их линейного расположения в хромосомах и принес Моргану Нобелевскую премию.
Параллельно с генетическими исследованиями Моргана шли цитологические исследования. Исследовался митоз, мейоз, и было известно, что в мейозе (профаза
I) пары одинаковых (гомологичных) хромосом объединяются, а затем образуют крестообразные фигуры (хиазмы). Предположили, из чисто цитологических данных, что наблюдаемый под микроскопом перекрест хромосом связан с обменом сегментами между ними. Впоследствии это было подтверждено. Хромосомы маркировали — нашли мух у которых на хромосоме были дополнительные фрагменты (транслокация), видимые под микроскопом. Было видно, что в результате перекреста измененные морфологически хромосомы родителей оказываются у потомства в новых комбинациях.
На рисунке показано, как выглядят хиазмы — крестообразные структуры, образуемые гомологичными хромосомами в мейозе и различимые под микроскопом.
Хромосомы состоят из двух параллельных «линеечек», которые называются хроматидами, каждой из которых соответствует одна молекула ДНК. Под микроскопом было видно, что одна из пар хроматид пересекается, то есть между хромосомами происходит перекрест.
Был проведен следующий эксперимент. Х-хромосома дрозофилы была промаркирована дополнительным кусочком хромосомы, и было подтверждено соответствие генетических и цитологических данных, описывающих рекомбинацию.
Частота видимых под микроскопом перекрестов в данной хромосоме в расчете на 1 клетку в фазе мейоза, где перекрест можно наблюдать, стремится к двукратной частоте генетической рекомбинации между всеми маркерами этой хромосомы, по мере роста числа маркеров. Причина этого ограничения заключается в том, что в перекресте участвует, как правило, лишь одна из двух пар хроматид. Стало понятно, что можно связать количество перекрестов наблюдаемых цитологически (хиазмы) с частотой генетической рекомбинации, что особенно четко было показано на кукурузе в 50-х годах.
Длина генетической карты, выявляемая по анализу результатов генетической рекомбинации, вычисляется как сумма расстояний между наиболее близкими маркерами, Единицей генетической карты является 1 % рекомбинации и эта величина была названа в честь Моргана 1 сантиМорган (1 сМ).
Данные о связи цитологии с генетикой оказались очень важными в последующих генетических исследований, в частности на человеке. Они позволяют вычислить длину генетической карты по цитологическим данным, не прибегая к получению мутантов, чистых генетических линий и даже вообще без направленных скрещиваний — все это невозможно на человеке. У человека расчетная длина генетической карты по цитологическим данным составляет около 3000 сМ. или 3000 % (три тысячи процентов рекомбинации).
Почему длина генетической карты человека равна 3000 % (и почему нет ничего страшного в том, что эта величина превышает 100 %).
Генетическая карта — это последовательность маркеров в хромосоме и расстояния между ними, следующие из частот генетических рекомбинаций. Одна единица карты соответствует 1 % рекомбинации или одному сантиморгану (1 сМ).
Проведем следующую аналогию, чтобы было легче понять, почему длина карты человека равна больше, чем 100 %. Один и тот же термин иногда используется в разных смыслах: 100 градусов — температура кипения воды. 90 градусов — прямой угол. 40 градусов — крепость водки. И обычно эти смыслы никто не путает
То же и с термином процент (pro cent = на сто) который используется в разных смыслах при описании рекомбинации.
1) Генетическое расстояние между двумя маркерами (1 сантиморган, сМ=1 % рекомбинации). Например, наблюдаемый процент рекомбинации в потомстве (12 % рекомбинантов, как описывалось выше), где общее число потомков равно 100 %. Доля рекомбинантов по одной паре маркеров не может превышать 50 % от общего числа потомков (несцепленное наследование);
2) Общая длина генетической карты организма (N сантиморган = N %) Рассчитывается как сумма минимальных экспериментально определенных генетических расстояний между парами маркеров, и для каждого вида своя.
Количество последовательно расположенных пар маркеров, каждый из которых равен, например, 12 %, может быть и не ограниченным. Восемь таких отрезков составят в сумме 96 %, а восемьдесят отрезков — 960 %. Хотя доля рекомбинантов между любыми двумя из этих 81 маркеров, конечно, не может превышать 50 % от общего числа потомков.
Отметим, в заключение, что длина генетической карты человека определялась по цитологическим данным, которые были доступны уже достаточно давно. В отличие от мухи, установить длину генетической карты человека на основе экспериментов по скрещиванию невозможно.
Поиск или диагностика мутации, вызывающей заболевание, наследуемое по Менделю, часто проводится по сонаследованию признака «болезнь» и маркера-свидетеля, расположенного рядом с мутантным геном. Маркер-свидетель — это такой маркер, который легко обнаружить при анализе. Источник ошибки диагностики — утрата связи при рекомбинации между мутацией, вызывающей заболевание и маркером-свидетелем. Точность диагностики тем выше, чем меньше это расстояние.
Вопрос. Сколько генетических маркеров нужно иметь в геноме человека, чтобы обеспечить >95 % точность диагностики для любого гена, если длина генома человека — 3000 %.
Точность не менее 95 % означает, что не более генетическое расстояние между мутацией вызывающей заболевание и маркером составляет не более 5 % рекомбинации. Следовательно до ближнего к маркеру левого и до ближнего правого маркера должно быть не более 5 %, то есть расстояние между маркерами не более 5 % х 2 = 10 % рекомбинации. В 10 %-х интервалов в карте длиной 3000 % будет 3000/10=300. То есть 300 равноудаленных маркеров будет достаточно, чтобы картировать или выявить мутацию с точностью >95 %, даже ничего не зная о том, где находится исследуемый ген. Ясно, что когда это только начали делать, примерно 10 лет назад, маркеры ложились случайно, поэтому генетическую карту пришлось составить из нескольких тысяч маркеров, чтобы большинство интервалов между маркерами не превышало 10 %. Сегодня в практической работе по общегеномному скринингу у человека используют панель из 384 равноудаленных маркеров.
Молекулярный механизм гомологичной рекомбинации, предложен Холидеем.
Рассмотрим две гомологичные хромосомы: папину и мамину. В них, как предполагается, происходит однонитевой идентичный в обеих хромосомах разрыв, после которого эти части, перекрещиваясь, образуют так называемую структуру Холидея (который данную схему рекомбинации первым предложил). Далее происходит перенос точки надреза вдоль хромосомы, в результате чего части гомологичных хромосом меняются местами. В результате получаются хромосомы, составленные из кусков папиных и маминых хромосом. Механизм гомологичной рекомбинации — однонитевой разрыв в каждой из двунитевых молекул ДНК, вытеснение и замещение нити, миграция разрыва и разрешение единичной структуры Холидея.
Гомологичная рекомбинация, механизм: однонитевой разрыв в каждой из двунитевых молекул ДНК, вытеснение и замещение нити, миграция разрыва и разрешение единичной структуры Холидея
Геномные, хромосомные и генные мутации
Теперь поговорим о мутациях: геномных, хромосомных и генных.
Пример геномной мутации — удвоение всего числа хромосом в геноме (автополиплоидия), она может возникать из-за нерасхождения хромосом в митозе или мейозе.
9.27. Удвоение всего числа хромосом в геноме (автополиплоидия) может возникать из-за нерасхождения хромосом в митозе или мейозе.
Какое это имеет отношение к нам? У прямых предков человека как вида полиплоидия (чаще всего удвоение) случалась неоднократно, но последний раз — более 100 миллионов лет назад. У животных и растений она встречается часто, особенно у культурных растений. При отборе человек просто не замечал, что отбирал полиплоиды. Например, культурный картофель — тетраплоид, банан — триплоид, он пригоден к употреблению, так как не образует семян, в отличие от диплоида, который состоит из жестких семян и почти не имеет мякоти.
При скрещивании дикорастущих видов было ресинтезировано несколько видов культурных растений, например, слива (Prunus domestica). Константная и гибридная форма, полностью сходная с домашней сливой получена при скрещивании терна P.spinosa (2n=32) с алычой P.divaricata (2n=16). Это растение имело, как и P.domestica, 2n=48 хромосом. Вероятно, дикая слива в ходе эволюции получилась именно таким путем.
А триплоиды просто так не получишь, у них даже семян не образуется, но они удобны в практических целях человека, например для получения большей урожайности и плодов без семян (у арбузов, бананов и т. д.) У арбуза гаплоидный набор n = 11 хромосом. Скрещивание тетраплоидного (4n=44) и диплоидного (2n = 22) арбуза дало триплоид (3n = 33) — бессемянный, крупноплодный, устойчивый к заболеваниям, в отличие от родительских форм.
Межвидовое скрещивание можно наблюдать у близкородственных животных: осла с лошадью — мул, или у коня с ослицей — лошак, они более выносливы, хоть и бесплодны. Вероятность появления потомства у мулов и лошаков (а это зависит от того, отойдут ли при делении все хромосомы правильно к одному полюсу) равна одной второй в степени n, где n — гаплоидное число хромосом. С такой частотой будут образовываться яйцеклетки и сперматозоиды, соответствующие по хромосомному составу родителям — ослу или лошади. Видно, что вероятность эта очень мала.
Теперь поговорим о хромосомных мутациях. Хромосомные мутации — изменение числа отдельных хромосом в геноме (анеуплоидия) или целостности хромосом (перестройки). Это одна из причин болезней человека. Моносомия (In) или трисомия (3n) хромосомы в оплодотворенной яйцеклетке будут смертельны для плода (кроме половых и мелких хромосом), а в соматических клетках часто приводит к раку.
Каждая из 23 хромосом может быть покрашена в свой цвет (FISH гибридизация, справа). Каждая хромосома прокрашивается в штрих код (G-окрашивание, слева, полоса до 0,1 % от длины генома). Это позволяет увидеть изменение числа и структуры хромосом, в том числе при опухолевых заболеваниях. Опухолевые заболевания почти всегда связаны с перестройками генома. Хромосомы человека пронумерованы в порядке убывания размера от 1 до 22.
Хромосомы человека
Каждая из 23 хромосом м.б. покрашена в свой цвет (FISH гибридизация, справа)
Каждая хромосома прокрашивается в штрих код (D-окрашивание, слева, полоса до 0,1 %)
Это позволяет увидеть изменение числа и структуры хромосом, в том числе при раке.
Хромосомы человека пронумерованы в порядке убывания размера от 1 до 22
Синдром Дауна — трисомия по хромосоме 21
Изменение числа хромосом, как и всякая мутация, связано с физиологическим состоянием организма. С возрастом организм начинает функционировать хуже, это приводит, в частности, к повышению частоты рождения детей с синдромом Дауна. Подавляющая часть случаев синдрома Дауна вызвана нерасхождением пары хромосом 21 в мейозе у матери. Частота рождения детей с синдромом Дауна увеличивается с возрастом матери от 1/2000 в 20 лет до 1/12 в 50 лет. Но есть и семейные случаи — транслокация гена из хр21 на другую хромосому.
На слайде видно, что 21-я хромосома представлена трижды. Две копии вместо одной чаще присутствуют в еще неоплодотворенной яйцеклетке, а не в сперматозоиде. Это было выявлено по анализу микросателлитов, о чем будет рассказано на следующих лекциях. Сейчас до трех месяцев беременности можно провести хромосомный анализ, для этого берут клетки околоплодной жидкости и смотрят, есть ли трисомия по 21-ой хромосоме. Во многих европейских странах после 35 лет анализ беременной женщины на выявление у плода синдрома Дауна обязателен, в связи с повышением частоты рождаемости больных детей при увеличении возраста матери.
Теперь поговорим о хромосомных перестройках. Основные типы хромосомных перестроек:
1. дупликация — удвоение сегмента
2. делеция — утрата сегмента,
3. инверсия — переворот сегмента,
4. транслокация — перенос сегмента на другую хромосому Все они являются причинами многих болезней.
Перестройки хромосом в гаметах часто приводят к болезням человека — нарушениям морфологии, физиологии и поведения, особенно часто встречается дупликация и делеция, как правило, все такие болезни сопровождаются заторможенным умственным развитием, то есть чаще всего какие бы ни были хромосомные перестройки, они затрагивают развитие наших умственных способностей, ну а кроме этого болезни сопровождаются чаще всего недоразвитием каких-либо органов (например, маленькая голова).
Основные типы хромосомных перестроек:
1. дупликация — удвоение сегмента
2. делеция — утрата сегмента,
3. инверсия — переворот сегмента,
4. транслокация — перенос сегмента на другую хромосому
В эволюции геномные и хромосомные мутации чаще фиксируются у растений, реже у животных. Геномные мутации у животных обычно различают таксоны более высоких порядков например отряды (сельдевые и лососевые), а у растений это могут быть и виды (пшеница и другие культурные растения). Анеуплоидия и перестройки хромосом в гаметах обычно приводят к болезням у животных человека — нарушениям морфологии, физиологии, поведения, и резко снижают возможность оставить потомство. Тем не менее, сотни тысяч таких случаев зафиксированы на сегодня эволюцией — это почти любая пара родственных видов, различающиеся по структуре кариотипа (набора хромосом). Ясно, что такие изменения когда-то произошли у индивида и затем закрепились в поколениях.
Например, хромосома № 2 человека образована при транслокации, произошедшей у наших предков после ответвления от ствола всех приматов: у орангутанга, гориллы и даже шимпанзе (5 млн. лет расхождения). У всех этих наших родственников по две независимых хромосомы, которые лишь у человека оказались соединенными. Часто, хотя и не всегда, перестройки приводят к понижению жизнеспособности, но в нашем случае получилось не так, мы получили две разных хромосомы шимпанзе, которые соответствуют хромосоме № 2 человека. Это видно при поперечном окрашивании хромосом, которые выявляют идентичные в геноме фрагменты хромосом. Все люди на Земле имеют общего предка, у которого произошла эта транслокация (меньше 5 млн. лет назад)
Число хромосом у млекопитающих может различаться в десятки раз, хотя размер генома отличается менее чем на 20 %. У человека число пар хромосом 23, а у лошади — 66, у обитающего в Азии оленя-мунтжака — 6 хромосом. Исключение составляет южно-американский грызун, называемый красной вискашевой крысой (латинское название Tympanoctomys barrerae, английское — red viscacha rat), хотя крысе оно весьма отдаленный родственник). У этого животного геном не диплоидный, а тетраплоидный, содержит в два раза больше ДНК, чем у остальных млекопитающих, и 102 хромосомы.
Хромосома № 22 человека образована при трансляции, произошедшей у наших предков после ответвления от ствола всех приматов: у оранга, гориллы и даже шимпанзе (5 млн. лет расхождения) две разных хромосомы соответствуют хромосоме 2 человека. Все люди на Земле имеют общего предка, у которого произошла эта транслокация.
Если до общего предка млекопитающих около 200 миллионов лет и около 60 транслокаций (перестроек разных хромосом), то 1 транслокация сохраняется и дает начало новому виду не реже чем раз в 3 млн. лет. А так как недетектируемых внутрихромосомных перестроек больше на 1–2 порядка, то это означает, что носители таких перестроек выживают гораздо чаще, нежели раз в 3 млн. лет. Последний раз такая перестройка в линии человека произошла не более 5 млн. лет назад.
Геномные и хромосомные мутации могут появляться и в соматических клетках человека и животных. В этом случае они не передаются потомству, но часто связаны с развитием рака. Реципрокная транслокация фрагментов между хромосомами 8 и 14 в лимфоцитах человека приводит к лимфоме Бёркита: к гену иммуноглобинов присоединяется ген онкогена c-MYC, меняя его регуляцию.
Геномные и хромосомное мутации в соматических клетках человека и животных часто связаны с развитием рака
Реципрокная транслокация хромосом 8 и 14 в лимфоцитах человека приводит к лимфоме Бёркита: К гену иммуноглобинов присоединяется ген онкогена c-MYC меняя его регуляцию
Таким образом, перестройки, происходящие в соматических клетках, влияют только на нас, а на следующее поколение не влияют. Те перестройки, которые происходят в клетках зародышевого пути, могут пройти через эволюционное «сито» и остаться в поколениях, Это может привести к репродуктивной изоляции индивидов с перестройками от других индивидов внутри данного вида.
Хотя в клетках зародышевого пути геном остается постоянным, изменение структуры генов и генома может быть нормальной частью жизненного цикла. У некоторых эукариот число хромосом в соматических клетках отличается от числа хромосом в клетках зародышевого пути. У некоторых простейших в определенной фазе развития геном распадается по на несколько тысяч хромосом, предположительно соответствующих отдельным генам. Размер генома вегетативных клеток и клеток зародышевого пути также может различаться. Например, у некоторых круглых червей в соматических клетках (но не в клетках зародышевого пути!) подавляющая часть генома утрачивается (явление называется диминуцией хроматина). У человека перестройки генов иммуноглобулинов в лимфатических клетках — условие образования разных антител. Только при таком условии в организме может образовываться то разнообразие антител, которое может обеспечить необходимую защиту. То есть перестройки генома могут быть управляемыми и необходимыми.
Несколько слов про генные мутации. Генные мутации являются скачкообразными изменениями отдельных локусов хромосом — генов. Мутантные гены сохраняют свойство репродукции при делении ядра клетки, вследствие чего мутационные изменения наследуются. Мутации могут быть прямыми (нуклеотид Т в данной позиции заменен на нуклеотид С) и обратными (мутантный нуклеотид С в данной позиции заменен на нуклеотид Т, характерный для дикого типа). Частота мутирования в обоих направления характерна для каждого локуса. Для разных типов мутаций она варьирует от 10-6-10-8 на нуклеотид на генерацию до 3*10-1. Спонтанный мутационный процесс обусловливается свойством самого гена, системой генотипа, физиологическим состоянием организма и колебанием факторов внешней среды. Каждый локус — ген может мутировать в несколько состояний, образуя серию множественных аллелей. Для примера скажем, что существует ген супрессора опухолей, где обнаружены сотни мутаций, при каждой из которой опухоль может развиться в разных местах.
"Горячие пятна" мутаций внутри гена распределены неравномерно. Они характерны не только для спонтанного мутирования, но и при воздействии определенными химическими агентами.
Например, разберем мутации в гене CFTR, которые вызывают муковисцидоз — заболевание, связанное с дефектом проводимости ионных каналов, проявляется в виде заболеваний легких и др. В этом гене описано уже больше тысячи разных мутаций. На графике представлена частота разных мутаций в разных частях гена, видно, что распределение частоты неравномерно в разных его участках — экзонах. Частота встречаемости в популяции разных мутаций одного гена различается в тысячи раз.
Если смотреть реальное распределение мутаций среди людей, оказывается, что каждая из них присутствует со своей частотой в группе, живущей на данной территории. Например, для России мутация AF508 встречается у 80 % больных. А остальные мутации составляют менее 20 %, некоторые же не встретятся в России вообще.
Обнаружено >1000 различных мутаций в гене CFTR
Распределение мутаций вдоль гена неравномерное. Частота встречаемости в популяции разных мутаций одного гена различается в тысячи раз
На этом слайде показано, как растет частота мутаций с увеличением дозы облучения. Частота мутаций линейно растет с увеличением дозы радиоактивного облучения. «Безопасной» дозы облучения нет (нет порога). Повреждения происходят при любых дозах, так что понятие порога чисто юридическое.
Частота мутаций линейно растет с увеличением дозы радиоактивного облучения
«Безопасной» дозы облучения нет (нет порога)
На рисунке выше показано, что при воздействии мутагенами нет нижнего порога дозы. В данном случае показана ситуация с рецессивными мутациями, аналогичная ситуация и с доминантными. Поскольку все время есть какое-то фоновое мутагенное воздействие, то можно подумать, что число мутаций в поколениях должно все время расти
Действительно, после мутагенного воздействия (Хиросима, Чернобыль, Бхопал, Орандж эйджент) частота мутаций растет. Растет также и процент опухолевых заболеваний, так как повреждается геном соматических клеток. Однако после снятия мутагенного воздействия доля мутантов не увеличивается, а только снижается в поколениях из-за гибели и пониженной жизнеспособности мутантов. Если ребенок родился, значит наиболее существенные для развития гены у него нормальные, ведь в противном случае он бы умер на эмбриональной стадии. Основной летальный эффект мутаций реализуется еще на клеточном уровне, а не на организменном уровне. Клетка запрограммирована не пропускать мутации в следующее поколение. Есть специальный молекулярный механизм отслеживания повреждения в ДНК, еще до того как поврежденный участок понадобится для реализации функции. Если окажется, что ДНК повреждена и не может быть исправлена (репарирована), то в такой клетке станет работать запрограммированная система самоубийства. Вероятно, основная часть мутаций приводит к дефектам функционирования и гибели уже на стадии первых делений оплодотворенной яйцеклетки, меньшая часть проявляется позже и приводит к спонтанному аборту, еще реже — к рождению ребенка с аномалиями.
Хотя эта частота была повышенной после ядерного взрыва, уже через два поколения (сейчас) у жителей с Хиросимы частота наследственных аномалий и опухолевых заболеваний такая же и даже ниже, чем в других городах Японии, так как население этого города оказалось под пристальным вниманием врачей, проводилось больше профилактики и т. д. Что же касается опухолевых заболеваний, то во втором поколении частота заболеваний уже не будет больше, так как это эффект повреждения соматических клеток, не передающееся по наследству, не учитывая некоторые конкретные болезни.
В Чернобыле, после точки максимума, частота аномалий при рождении снизилась в 8 раз за первые 10 лет после радиоактивного выброса. Если произошла доминантная летальная мутация, то она будет устранена уже в следующем поколении. Если же мутация рецессивная, то частота мутации будет все время падать в поколениях (тем быстрее чем более выражен ее вредный эффект) и это будет монотонно убывающей функцией.
Генетика популяций
До этого мы говорили о том, что происходит с индивидом, но с точки зрения эволюции больший интерес представляют изменения внутри популяций. В каждом поколении частота каждого аллеля данного гена и частота каждого генотипа по этому гену сохраняется постоянной. Правда при условии, если отбора нет, если среда не меняется, если подбора пар нет (свободно скрещивающася или панмиктическая популяция), если нет миграции (притока генов извне) и еще много всяких «если». В этом случае и частоты фенотипов постоянны.
Например, мы по внешности распознаем людей с данной территории как один народ, хоть люди и разные. Это происходит потому, что частоты аллелей в данной популяции постоянны в поколениях, а, следовательно, постоянны и частоты генотипов. Ну а среда вокруг все та же — поэтому и частоты фенотипов не меняются. Вот эту совокупность фенотипов мы и воспринимаем либо как общую (один народ), либо как другую (другой народ).
Если мы будем рассматривать коренных жителей достаточно удаленных регионов (несколько тысяч километров) то принять решение, что народы, или даже расы, разные, труда не составит. А вот если посмотреть на такие же группы, разделенные расстоянием в сотни километров, не говоря уж о десятках километров, то возникнут большие затруднения, где же границу провести. Потому что границы-то объективной, генетической, нет. Есть только непрерывный ряд частот огромного количества аллелей, причем со своим направлениями и градиентами изменения в географическом пространстве.
Приведем для наглядности такой пример, иллюстрирующий постоянство частот аллелей в поколениях одной популяции. Для человека известен доминантный ген Т (Taster — дегустатор). Носитель его обладает свойством определять на вкус слабый раствор фенилтиокарбамида как горький. Обладатель рецессивной аллели этого гена в гомозиготном состоянии (tt) тот же раствор определяет как безвкусный. Присутствие такого гена можно тестировать как на уровне генотипа, так и на фенотипическом уровне: «чувствует — не чувствует» горечь. Определено, что частота «дегустаторов» в данном поколении 0,36, а «не дегустаторов» — 0,64. «Не дегустаторы» несут два аллеля tt, следовательно, частота аллеля в популяции равна корню квадратному из этой величины (0,64), то есть частота аллеля t в популяции равна 0,8. В сумме частота двух аллелей равна 1, следовательно, частота аллеля Т равна 1–0,8 = 0,2. Зная частоты аллелей в гаметах (сперматозоидах и яйцеклетках) можно рассчитать частоты генотипов и фенотипов которые получаться в следующем поколении.
Нетрудно видеть, что частоты генотипов и фенотипов по гену Т остались неизменными в следующем поколении.
Что можно ожидать в этом поколении по частотам аллелей в гаметах? Гаметы с аллелем Т будут возникать от гомозиготы ТТ 0,04*2 + от двух гетерозигот Tt "дегустаторов" 0,16*2 = сумма 0.4. Гаметы с аллелем t будут возникать от недегустаторов tt 0,64*2 + от двух гетерозигот Tt 0,16*2 = 1.6. Соотношение частот аллелей в гаметах 0,4:1,6= 0,2:0.8, то есть такое же, как и в предыдущем поколении.
Отсюда следует, что в указанной популяции в поколениях поддерживается одинаковое соотношение частот аллелей (0,2T:0,8t), и фенотипов (64 % "недегустаторов" и 36 % "дегустаторов").
Неизменность генетического состава свободно скрещивающейся (панмиктической) неограниченной по численности популяции, существующей в отсутствии отбора, называется правилом (законом) Харди-Вайнберга.
Поскольку свободное скрещивание означает случайное объединение гамет, несущих аллель Т или t, то при частоте р аллеля Т и частоте q аллеля t (заметим, что при наличии только двух аллелей, подобно рассмотренному выше случаю, p+q=l) распределение генотипов TT, Tt и tt неизменно и соответствует уравнению
р2 TT + 2pq Tt + q2 tt = 1
Если в популяции соблюдается указанное соотношение между частотами аллелей и генотипов, то она называется равновесной по данному гену. Для каких-то генов это равновесие между частотами аллелей и генотипов может не соблюдаться. Отклонение от равновесного распределения частот генотипов может наблюдаться по статистическим причинам в выборках малого размера, в популяциях с отсутствием панмиксии и по другим причинам. Одной из причин неравновесия частот аллелей и генотипов считается отбор. Степень отклонения от равновесия указывает на интенсивность отбора.
На прошлой лекции было рассказано о летальной рецессивной мутации у мышей. Если скрещиваются две желтых мыши, гетерозиготных по гену окраски (несут доминантный в определении цвета аллель Yellow, обознчаемый буквой Y, и рецессивный аллель белой окраски у), то появляются мыши желтые и белые. Они находятся в соотношении 2:1, а класса YY нет. Оказывается, что эмбрионы с генотипом YY есть, но они гибнут до рождения (в отношении летального эффекта аллель Y рецессивен). При этом, естественно, равновесие Харди-Вайнберга среди родившихся мышей не будет соблюдаться.
Отмечу, что для генов, которые просто оказались рядом с геном Y в хромосоме, равновесие Харди-Вайнберга тоже не будет соблюдаться. При исследовании этих генов может показаться, что сами они находятся под действием отбора, хотя они просто оказались сцеплены с тем геном, по которому жестко происходит отбор. Это явление приходится достаточно часто разбирать в генетике — какое изменение в хромосоме является причинным для наблюдаемого признака, а какое просто сцеплено с наблюдаемым признаком.
Для подавляющего большинства исследованных у человека аллелей соблюдается равновесие Харди-Вайнберга — соотношение между частотами аллелей и частотами генотипов. То есть большинство генов адаптивно нейтральны в данных условиях.
Когда мы говорим о частоте встречаемости конкретного аллеля, надо учитывать, что эта величина, которая характерна для данного места и времени. Говорить о частоте гена для человечества вообще бессмысленно. Частоты могут быть своими для каждой территории и каждой популяции, и могут различаться в десятки раз. Об этом будет рассказано в лекции 21. Частота аллеля на данной территории может меняться в результате резких изменений численности популяции, отбора или миграций. Последняя причина — наиболее частая.
Естественный и искусственный отбор
В Спарте, как известно, детей с отклонениями бросали в пропасть, чтобы население в следующих поколениях стало лучше. Но эти меры по элиминации индивидов с фенотипическими отклонениями от нормы не только аморальны, но и генетически бессмысленны. Относительная частота гетерозигот в поколениях сокращается значительно медленнее, чем частота рецессивных гомозигот. Полное устранение из популяции рецессивных гомозигот в каждом поколении не приводит к их окончательному исчезновению даже в сотом поколении, так как гетерозиготные особи являются постоянными поставщиками рецессивных гомозигот.
Иогансен в 1903 году исследовал, как будут наследоваться вариации, которые наблюдаются, в генетически однородной группе индивидов. Он взял самое маленькое и самое большое растение из самоопыляющихся бобов, получал от таких «крайних» потомство в шести поколениях, и посмотрел, что будет в шестом поколении. Оказалось, что потомство от самых мелких не отличается от потомства самых крупных ни по средней величине признака, ни по ее дисперсии.
Самоопыляющиеся растения по природе своей генетически однородны — это набор чистых линий. Изменчивость по размеру, которая проявлялась в чистых линиях, не является наследственной. Она называется модификационной изменчивостью, зависящей только от условий среды. В генетически однородной группе изменения, которые мы можем наблюдать, в том числе благоприобретенные, унаследоваться не могут. То есть отбор при отсутствии генетического разнообразия даже при наличии разнообразия внешнего, неэффективен.
Пример ненаследственной модификационной изменчивости у человека — это, например, акселерация, которая проявилась после войны в разных странах. Например, средний рост японцев стал больше на 20 см, хотя понятно, что частоты аллелей генов, и генотипов в этой популяции мало изменились за два поколения, прошедших после войны.
В генетически однородной группе индивидов отбор не эффективен (Иогансен, 1903), Различия, приобретенные в индивидуальном развитии, не наследуются
Если популяция генетически гетерогенна (потомство второго поколения, F2), то отбор по фенотипу расчленяет ее на неперекрывающиеся группы с различающимися генотипами уже за два поколения (потомство четвертого поколения F4). На рисунке это проиллюстрировано для длины венчика у табака. В одной группе велся отбор растений с длинным венчиком, в другой — с коротким. То сеть отбор при генетическом разнообразии в популяции возможен.
Если популяция генетически гетерогенна (F2), то отбор по фенотипу расчленяет ее на неперекрывающиеся группы с различающимися генотипами уже за два поколения (F4) (длина венчика у табака)
Отбор естественный и искусственный действует только на генетически гетерогенные группы индивидов. Эволюция — это отражение сдвига частот аллелей в популяции. Индивид, как уже упоминалось, не эволюционирует
Когда проводится отбор, очень важно отличить размах вариаций признака, который связан с внешней средой, от размаха вариаций, причиной которого является генетическое разнообразие. Селекция (отбор на племя) более эффективна при оценке величины признака по генотипу (т. е. по потомству или у братьев-сестер), чем по оценке признака по фенотипу (т. е. у самого индивида).
В таблице видно, что решение по оценке генотипа (оставить на племя курицу № 12 потомство которой более яйценоское) правильное, хотя сразу неочевидное. Решение по оценке фенотипа (оставить на племя № 4 6 как более яйценоскую в данном поколении) — неправильное, хотя кажется очевидным.
Геномика — комплексная наука, изучающая геномы.
Разделы геномики:
1. структурная геномика — содержание и организация геномной информации;
2. функциональная геномика — реализация информации, записанной в геноме, от гена — к признаку;
3. сравнительная геномика — сравнительные исследования содержания и организации геномов разных организмов;
Все эти разделы геномики вносят вклад в фундаментальную биологию (индивидуальное развитие, эволюция), здравоохранение, сельское хозяйство и биотехнологию.
Итог структурной геномики — получение последовательности нуклеотидов (сиквенс от англ. sequence), которая представляла бы полностью каждую из хромосом с первого нуклеотида до последнего.
Для того, чтобы получить такой сиквенс, сегодня приходится определять последовательность нуклеотидов в достаточно коротких отрезках ДНК, длиной примерно 1000 позиций. В геноме человека 3 миллиарда позиций, значит, его надо разбить на куски, которые и будут «читаться». Затем нужно восстановить единую последовательность нуклеотидов из сравнения отдельных прочтенных отрезков текста. Восстановление основано на сравнении определенных последовательностей и выявлении в них перекрывающихся (идентичных) участков текста. Длина участка перекрывания должна превышать длину последовательности, которая может встретиться в данном геноме по причинам случайного характера. Например, в геноме человека 3*109 п.н. случайно может встретится последовательность длиной 15 нуклеотидов — поскольку в каждой позиции может находится один из четырех нуклеотидов, то вероятность того, что заданные нуклеотиды окажутся в 15 позициях подряд 415 = 230 что примерно равно 109. То есть в отрезке длиной 109 позиций заданная 15-нуклеотидная последовательность может встретиться 1 раз по причинам случайного характера.
Но дело в том, что в ДНК нуклеотиды расположены не случайно, и это является проблемой для восстановления последовательности из перекрывания отрезков. Если две последовательности из 1000 нуклеотидов перекрываются на 20 нуклеотидов или сто — это еще ничего не значит, так как весь этот фрагмент из 1000 нуклеотидов может быть несколько раз повторен в геноме. Поэтому нужно было сначала расставить вдоль генома фрагменты, а уже потом выявлять их перекрывание на основе сиквенса. Таков был путь мирового сообщества при секвенировании генома человека (секвенированием в русскоязычной литературе называют процесс определения последовательности нуклеотидов. Этот термин также является калькой с английского названия).
Как это можно было сделать? Нужно было поставить какие-нибудь «буйки» в геноме человека, какой участок стоит за каким. Последовательность таких участков и составляет карту генома. Первой такой картой стала карта генетическая. Она показана на рисунке слева.
Рядом показана окрашенная хромосома, на которой видны поперечные полоски. Поперечная окрашенность индивидуальна для каждой хромосомы, каждая полоска имеет собственный номер, который представляет собой "адрес" данного участка на хромосоме. Ясно, что в каждом таком участке миллионы пар нуклеотидов, последовательность которых мы должны определить. Были получены полиморфные маркеры, то есть найдены такие участки хромосомы, которые у разных людей (или на разных хромосомах одного человека) содержат неидентичные последовательности нуклеотидов. В прошлой лекции упоминалось, что для генетической карты с интервалом в 10 % рекомбинации нужно 300 равноудаленных маркеров. Эти маркеры нужны для различения одной хромосомы от другой в данном локусе.
В основе детекции ДНК маркеров лежит метод амплификации (размножения) фрагментов ДНК in vitro с точностью до нуклеотида методом полимеразной цепной реакции (ПЦР). Методом ПЦР можно синтезировать фрагмент ДНК in vitro (в пробирке) и получить его как химически чистое вещество. Для синтеза используются короткие синтетические отрезки ДНК, называемые праймерами (затравка для синтеза). С 3'-конца праймера начинается синтез фрагмента ДНК по матричной нити, на которую он отжигается (прилипает при комплементарном взаимодействии между нуклеотидами праймера и матрицы). За один цикл достройки ДНК из двух нитей ДНК получили 4. В следующем цикле из 4 нитей получится уже 8 и т. д. Каждый цикл занимает несколько минут. За 30 циклов ПЦР целевой фрагмент размножится в 1 миллиард раз, что позволяет наблюдать фрагмент (после окраски). Время проведения каждого этапа ПЦР в будущем сократится на 2–3 порядка, таким образом, что каждый цикл будет проводиться за секунды.
Для различения папиной и маминой хромосом использовали так называемые STR-маркеры (Short Tandem Repeat), состоящие из одинаковых звеньев, чаще всего звено состояло из пары нуклеотидов ЦА. То есть нашли места в геноме, где повторялись эти вкрапленные звенья. Допустим в папиной хромосоме в фрагменте из 100 пар нуклеотидов была вставка из 20 звеньев, а в таком же месте маминой хромосомы было вставлено 22 звена. Этот фрагмент ДНК размножили in vitro, с точностью до нуклеотида методом полимеразной цепной реакции (ПЦР). Длина этих фрагментов будет у папы 100 + 20*2 = 140, а у мамы — 100 + 22*2 = 144. При фракционировании образованных фрагментов в геле под действием постоянного тока (электрофорез) мы можем провести разделение фрагментов по размеру. Чем тяжелее фрагмент, тем меньше его электрофоретическая подвижность и тем ближе к старту он будет находиться. Если у родителей ребенка длины фрагментов составляли (как указано в примере выше) 140 и 144 п.н., то и у ребенка будут эти полоски присутствовать.
Описанный подход применяется не только в фундаментальных исследованиях, но и в практике идентификации личности при судебно-медицинской экспертизе. Допустим данный локус в хромосоме может находиться в одном из 10 альтернативных состояний. (Эти состояния, аллели, различимы по их электрофоретической подвижности). Эти состояния различают 10 хромосом или людей с такими хромосомами. Если мы возьмем в анализ еще один локус (на другой хромосоме) с такими же характеристиками, то по этому локусу мы тоже различим 10 хромосом или людей. А по сочетанию состояний в этих двух локусах различимы 10 x 10 = 102 хромосом. Пять таких локусов позволят различить 105 хромосом. А поскольку хромосом у каждого из нас по паре, то сочетания аллелей этих пяти локусов дают 105 х 105 = 1010 вариантов. Это число вариантов больше, чем число людей на земле. На практике при идентификации используют набор аллелей из 13 локусов, хотя и пяти как мы видим, может быть волне достаточно.
Генетическая карта была первой картой генома человека, на основе которой строилась дальнейшая работа по картированию. Эту карту соотнесли с физической картой, показывающей порядок следования клонированных фрагментов ДНК вдоль генома (см. рисунок 1 справа).
Физические карты генома часто представлены наборами фрагментов ДНК, клонированные в векторных молекулах (рекомбинантных ДНК), упорядоченно расположенных относительно друг друга. Такой набор непрерывно перекрывающихся фрагментов ДНК называется контиг. Для того чтобы выявить перекрывание клонированных фрагментов ДНК и понадобилась ранее установленная карта генетических маркеров. Перекрывание устанавливалось между «большими» молекулами ДНК, содержащими примерно 106 пар нуклеотидов, которые были клонированы в искусственных хромосомах дрожжей (YAC-клоны, сокращение от Yeast Artificial Chromosome). Искусственные, потому что у них удалили основную часть собственно дрожжевой ДНК и вставили человеческие фрагменты ДНК. Такие конструкции способны реплицироваться в клетках дрожжей. Размер хромосом дрожжей как раз примерно 1–2 миллиона пар нуклеотидов.
Как устанавливали перекрывание клонированных фрагментов ДНК? У нас есть YAC-клон № 1 с протяженным фрагментом клонированной ДНК, а в нем, предположим, обнаружен и маркер А и маркер В, для которых из генетических данных известно, что они соседние на карте. В YAC-клоне № 2 уже нет маркера А, а есть маркеры В и С, причем также известно из генетической карты что В и С — соседи. В клоне № 3 есть маркеры С и D. Сопоставление данных по присутствию генетических маркеров А, В, С и D в YAC-клонах показывает что они перекрываются в последовательности YAC № 1, № 2, № 3.
Вставки ДНК из 3000 YAC-клонов примерно равны по длине геному человека. В анализ на перекрывание YAC-колонов взяли 30000 клонов, с тем чтобы каждая точка генома перекрывалась несколькими клонами. Вначале неизвестно было, как они расположены, но в среднем каждая точка генома перекрывалась 10 раз. Было использовано порядка 3000 STR-маркеров, и посмотрели, эти как маркеры и клоны друг с другом перекрываются. В качестве метода, выявляющего присутствие генетического маркера в составе YAC-клонов, использовался ПЦР. На заключительном этапе составления физической карты генома человека в этих 30 000 YAC-клонов, выявлено присутствие примерно 30000 маркеров. Это один маркер на 100 000 пар нуклеотидов. Расстояние между концами YAC-клонов также составило 100 000 п.н. (при длине клона 1 млн. п.н.). Картирование проводили на роботизированных машинах, которые проводили приблизительно по 300 000 ПЦР-реакций в день. Позволило расставить в контиг все YAC клоны. Предполагалось, что они будут непосредственно секвенироваться. Однако в дальнейшем была использована друга схема секвенирования клонов. Картированные YAC-клоны часто использовали для поиска генов, находящихся во вставке YAC, а к сиквенсу этот этап не привел.
Перекрывание можно также посмотреть по расположению специфических рестрикционных сайтов. Рассмотрим этот способ подробнее. Структура фрагмента ДНК выявляется по положению участков расщепления специфическими ферментами — рестрикционными эндонуклеазами (рестриктазами). Каждая рестриктаза узнает последовательность нуклеотидов определенной длины и состава. Например, рестриктаза
EcoRI узнает GAATTC и никакую другую (расщеплять ДНК она будет в среднем один раз на 46 = 4096 нуклеотидов), BamHI узнает GGATTC. Предположим, что у нас есть клонированный фрагмент ДНК, длиной 13000 нуклеотидов, и мы расщепили его рестриктазой BamHI, получив два фрагмента по 9 и 4 тысячи нуклеотидов. Затем если мы расщепим EcoRI, получим фрагменты по 8, 3 и 2 kb. Когда мы посмотрим двойное расщепление, получим фрагменты размерами 7, 3, 2, 1 kb. Размеры известны, потому что рядом есть дорожка, в которой идет фракционирование молекул стандартного размера, что позволяет создать калибровочную кривую. Если мы проведем второе расщепление, то увидим, что фрагмент в 9kb расщепился на фрагменты по 7 и 2kb. Эта специфическая последовательность сайтов и специфическое расстояние между ними является портретом молекулы (см. рис. ниже). По этим портретам мы можем сопоставлять молекулы друг с другом, независимо от того, что они кодируют, и что в них находится. Это очень типичная процедура. Расщепление фрагмента ДНК каждой рестриктазой по отдельности и их смесью позволяет создать рестрикционную карту фрагмента.
Структура фрагмента ДНК выявляется по положению участков расщепления специфическими ферментами — рестрикционными эндонуклеазами (рестриктазами). Каждая рестриктаза узнает последовательность нуклеотидов определенной длины и состава. Например, рестриктаза EcoRI узнает последовательность GAATTC, а рестриктаза BamHI — GGATTC
Размер получившихся фрагментов устанавливают, разделяя их в геле под действием электрического тока — чем меньше фрагмент, тем быстрее он движется (слева — результат такого разделения).
Расщепление фрагмента ДНК каждой рестриктазой по отдельности и их смесью позволяет создать рестрикционную карту фрагмента.
Итак, мы расставили молекулы методом генетического и физического картирования. Вернемся к методу секвенирования. Использовалась примесь дидезоксинуклеотидов — ddNTP (на рисунке — справа; у них нет ОН-группы у 3'-атома углерода), которая добавлялась к обычным дезоксинуклеотидам (на рисунке слева). И при синтезе ДНК in vitro это приводило к прекращению синтеза цепи в позиции, в которой вставился ddNTP. Через позицию 3' идет присоединение нуклеотида к строящейся молекуле ДНК. Но если на 3'-конце не будет гидроксильной группы, а водород, то синтез дальше не пойдет — он будет терминирован.
Примесь дидезоксинуклеотидов (справа, нет ОН-группы у 3'-атома углерода) к дезоксинуклеотидам (слева) при синтезе ДНК in vitro приводит к прекращению синтеза цепи в позиции, в которой ставился ddNTP
Это используется следующим образом. У нас есть матрица (нить ДНК), которую надо секвенировать. Если идет синтез, и в первой позиции матрицы стоит А (см. рис. ниже), то может встроиться обычный Т и синтез пойдет дальше, а может встроиться ddTTP и синтез дальше не пойдет. Произойдет обрыв цепи, а полученный синтезированный огрызок займет при фракционировании определенную позицию согласно своему размеру. Следующий обрыв будет соответствовать второй букве секвенируемой нити, и также займет свою позицию согласно длине при фракционировании на электрофорезе и т. д. И так по каждому нуклеотиду. Так мы восстановим последовательность нуклеотидов в секвенируемой нити ДНК. Этот метод предложил Фрэд Сэнгер, за что получил свою вторую Нобелевскую премию.
Метод секвенирования ДНК, основанный на терминации синтеза дидезоксинукпеотидтрифосфатами
Рассмотрим определение последовательности нуклеотидов в клонированном фрагменте ДНК. Клонированный фрагмент находится в так называемой векторной молекуле ДНК — молекуле, которая позволяет ввести его в клетку (обычно это клетка бактериальная, но иногда используются и дрожжевые клетки). Все работы по секвенированию генома человека прошли при участии бактериальных векторных молекул. Участок вектора, прилежащий к вставке, содержит последовательность нуклеотидов, комплементарную универсальному секвенирующему праймеру. С этого праймера инициируется синтез ДНК in vitro, который с первого нуклеотида будет идти по матрице клонированного фрагмента ДНК человека. Универсальных праймеров используется два, один к последовательности вектора прилежащей к одному концу вставки, другой праймер к последовательности вектора прилежащей к другому концу вставки. С одного из праймеров клонированный фрагмент секвенируется с одной стороны, а с другого праймера — с другой стороны.
Участки молекулы ДНК распознаваемые праймерами для секвенирования, присоединены к исследуемому фрагменту ДНК путем. Исследуемый фрагмент ДНК вставляют в векторную молекулу ДНК. Участки вектора, прилежащие к вставке, содержат последовательности нуклеотидов, комплементарные универсальным секвенирующим праймерам — левому и правому. С этих праймеров инициируется синтез ДНк in vitro
Вектор у нас один и тот же, а вставок — миллионы, но все они секвенировались с одной и той же пары праймеров. Основная часть генома была секвенирована при клонировании фрагментов в 2 тысячи пар нуклеотидов, потому что тысяча читалась с одной стороны и тысяча — с другой. Каждая точка генома человека была просеквенирована несколько десятков раз в составе разных клонированных молекул ДНК. То есть расстояние в геноме между концами клонированных и секвенированных фрагментов ДНК составляло меньше 200 пар нуклеотидов. От каждой точки старта было прочитано около 1000 нуклеотидов. Из всего этого набора «текстов» воспроизводилась структура генома человека. Но собрать эти 1000-буквенные сиквенсы в контиги длинной в миллионы букв удалось лишь на основе того, что большая часть фрагментов была предварительно картирована относительно хромосом человека. Без картирования сиквенс мог попасть в повторяющийся участок генома, а продолжение сиквенса из такого участка имеет столько вариантов продолжений, сколько раз повтор присутствует в геноме человека (некоторые повторы — миллион раз). Поэтому сначала устанавливали последовательность расположения клонированных фрагментов в геноме. Это было сделано для фрагментов размером около 200 тыс пар нуклеотидов, а уже затем их секвенировали.
Процесс секвенирования по методу Сенгера может быть автоматизирован. Механизм представлен на следующем слайде.
Ha слайде виден праймер, синтез с которого идет влево. У нас есть дидезоксинуклеотидфосфаты Т, А,С и G. Каждый из них занимает свою позицию во фрагменте синтезируемом по исследуемой матричной нити. На предыдущем слайде каждой букве соответствовала отдельная дорожка геля, их всего четыре. Если каждую из букв терминирующих синтез пометить в свой цвет, то все терминаторы можно объединить в одной пробирке и фракционировать продукты в одной дорожке. Обрыв синтеза в позиции данной буквы даст фрагмент со своим положением в геле после фракционирования. Каждое положение обрыва будет характеризоваться цветом той буквы терминатора, на которой произошел обрыв. В ходе фракционирования терминированных фрагментов лазер будет фиксировать на детекторе последовательные пики — какая прошла полоса по счету, и какого она цвета. Далее эта последовательность пиков дешифруется в последовательность нуклеотидов в молекуле ДНК. Точность сиквенса (установления того, какая именно буква терминировала синтез в данной позиции) определяется соотношением высот пиков соответствующих разным буквам в одной и той же позиции секвенируемого фрагмента. Между двумя пиками разных цветов в одной позиции было заданное дискриминирующее значение. Техника отрабатывалась так, что буква считалась достоверно установленной для данной позиции, если основной пик в этой позиции был выше других в заданное количество раз.
Бактерия Н. influenzae была первым свободно живущим организмом, геном которого был полностью секвенирован. Поскольку геном бактерии маленький, около тысячи нуклеотидов, и повторов нем мало (да и короткие они), то предварительное картирование клонированных фрагментов ДНК не понадобилось — эти фрагменты сразу сиквенировались.
Бактерия Н. influenzae была первым свободно живущим организмом, геном которого был секвенирован (TIGR, США)
Такая работа была проведена в институте генетических исследований TIGR под началом Крега Вентера. Вентер затем организовал фирму Селера, секвенировавшую геном человека, где он применил ту же схему секвенирования что и для бактерии. Причем деньги он взял у частных фирм, так как государство не верило, что у него что-нибудь получится.
Мировое сообщество предварительно использовало генетическую и физическую карты, относительно которой была выстроена последовательность перекрывающихся фрагментов клонированной ДНК (контиг), предназначенной для секвенирования. То есть сиквенс генома человека был собран из фрагментов правило благодаря использованию упорядоченного набора клонов и установлению последовательности нуклеотидов картированных клонов.
Вентер же, в отличие от мирового сообщества, использовал случайный набор клонов и попытался восстановить полную последовательность нуклеотидов прямо из сравнения сиквенсов всей кучи фрагментов. На бактерии у него это удалось, но на человеке это сработало лишь потому, что он использовал публично доступные данные от мирового сообщества о том, какие молекулы, где расположены в геноме человека.
Секвенирование всего генома может быть основано на детальной генетической и физической карте, относительно которой выстроена последовательность перекрывающихся фрагментов клонированной ДНК (контиг), предназначенной для секвенирования
Вентер опубликовал свою работу на месяц раньше, чем мировое сообщество, потому что он ничего не картировал, а использовал секвенирование совсем коротких рекомбинантных молекул. Общую длина секвенированных фрагментов ДНК была у Вентера в пять раз больше, чем сделало все мировое сообщество. Используя данные мирового сообщества о картированных фрагментах, Вентер смог восстановить в единую последовательность нуклеотидов все то, что он насеквенировал. Если бы данных мирового сообщества не было бы, то вся его работа была представлена короткими отрезками, которые бы разветвлялись, из-за того, что в геноме находятся повторы.
В результате проделанной работы вышло две статьи: статья Вентера в журнале Science и статья Лэндера — лидера мирового сообщества — в журнале Nature.
Проект генома человека начат в 1990 г. Первая (черновая) версия последовательности нуклеотидов была закончена в 2000 г. Конечная версия, которая больше не будет совершенствоваться (названная Build35) — закончена в 2004 г.
Последняя версия последовательности содержит 2,85 миллиардов пар нуклеотидов с 341 брешью, то есть в этих местах по каким-то причинам секвенировать геномную ДНК не удалось. Сиквенс покрывает около 99 % той части генома человека, которая представлены в некомпактизированной форме — эухроматине. Аккуратность сиквенса в конечной версии — 1 ошибка на 100 тысяч позиций подряд.
Еще точнее секвенировать весь геном уже никто не будет. Напомню, что папин геном отличается у вас от маминого генома примерно в 1 позиции на тысячу.
Предсказанное число генов у человека теперь 20–25 тысяч, что немного меньше, чем предсказывалось раньше.
Кроме данных о последовательности нуклеотидов геномной ДНК человека (референтная последовательность) созданы также базы данных:
1) о последовательности нуклеотидов транскрибируемых участков ДНК (EST database, EST = Expressed Sequence Tags), которая характеризует не геномную ДНК, а то, транскрибировалось с ДНК.
2) о положении и содержании отличий (полиморфизмов, то есть нуклеотидных замен) других известных последовательностей ДНК человека от референтной последовательности (SNP database, SNP = Single Nucleotide Polymorphism)
Геномика — недавно возникшее направление науки, объектом изучения которой являются геномы всех организмов, не только человека. Одно из направлений геномики — воссоздание суммарной карты метаболических путей живого, состоящей из частных метаболических карт, характерных для каждого организма.
Выявление в разных геномах определенных наборов генов метаболических функций позволяет предположить, функциональную связь генов этого набора в едином участке метаболической цепи. В частности, один из подходов такой. Исследуют ряд видов (рисунок ниже), к примеру, бактерий. У первых трех видов есть гены для белков 1, 3 и 6. Остальные белки у некоторых есть, а у некоторых нет.
Этот набор генов (1, 3 и 6) отсутствует у четвертого вида. Такого рода присутствие-отсутствие цельного набора генов позволяет сделать предположение о том, что кодируемые ими белки каким-то образом связаны в метаболическом цикле. Гены такого набора необязательно располагаются рядом в геноме.
Филогенетический профиль белков — основа гипотез об их функциях белки Р1, Р3 и Р6 присутствуют у трех разных видов бактерий. У четвертого вида весь набор этих белков отсутствует.
Еще один критерий функциональной связи между генами, особо хорошо работающий на бактериях, основан на сохранении соседства одних и тех же (по сиквенсу) генов у разных видов бактерий. У бактерий нередко бывает, что группа генов, расположенных вместе, отвечает за группу последовательных этапов метаболизма. Такая группа генов регулируется на уровне транскрипции единым образом и называется оперон (единица операции). Часто последовательность расположения генов в опероне совпадает с последовательностью метаболических этапов. Для эукариот соседнее расположение функционально связанных генов не типично, но, хоть такие гены и разбросаны у них по геному, скоординированная регуляция транскрипции есть и эукариот.
Геномы четырех бактерий.
Гены 1 и 8, а также гены 4 и 5 соседствуют в разных геномах, хотя положение этого блока относительно других генов в каждом из геномов различается.
На данный момент просеквенировано несколько сотен геномов бактерий и геномы нескольких эукариот. Теперь мы знаем, что у бактерий размеры генома не бывают меньше 0,5 миллионов пар нуклеотидов, а максимальный размер генома около 10 миллионов п.н., у дрожжей (эукариотический организм) — порядка 12 миллионов, у червя нематоды — 97 млн., а у человека — 3 миллиарда пар нуклеотидов. А число генов у про- и эукариот различается уже в меньшее число раз. Минимальное количество генов у бактерии микоплазмы — 470 штук, у дрожжей — 6000, у нематоды — 19000, а у человека около 20000, то есть от нематоды и мухи по количеству генов мы не сильно отличаемся. Количество хромосомной ДНК, приходящейся на один ген у бактерий — 1000 п.н. то есть гены упакованы очень плотно; у дрожжей — 2000 п.н., и кое-где гены разделены некоторым пространством; у нематоды — 5000 п.н. на ген и появляются пространства внутри генов — интроны; у человека — 30000 п.н. У нас в геноме большие межгенные пространства и большие пространства внутри генов, которые не переходят в зрелую РНК.
Заметим, все эти организмы по размерам зрелых транскриптов не сильно отличаются. В зрелой РНК белок-кодирующий участок занимает обычно основную часть последовательности. Часть генов кодируют РНК, с которой белок вообще не синтезируется. Перед белок-кодирующей последовательностью в зрелой мРНК расположены участки регуляции трансляции, а после белок кодирующей последовательности — участки определяющие стабильность (время жизни РНК). У прокариот последовательности перед и после белок-кодирующей части гораздо короче, чем у эукариот. Так что по размерам РНК все организмы ближе, чем по размерам генов, а по размерам белков — еще ближе.
Экспериментально проводили «выключение» каждого гена у многих бактерий, и смотрели, выживут они в данных условиях или нет. Оказалось, что у бактерий можно «выключить» (поочередно) около 50 % генов, и они все равно будут жить. У дрожжей можно выключить 80 % генов и они все равно будут жить.
Как это было экспериментально показано? В геном клетки вставляют репортерный фрагмент ДНК, который позволяет замерить скорость транскрипции и трансляции в точке вставки фрагмента. Известно поэтому, что и траснкрипция и трансляция репортерного гена через данную точку в данных условиях происходит с регуляторных элементов гена, разорванного вставкой репортера, хотя разорванный ген сам не функционален. Таким образом 80 % генов дрожжей по одному «убивали» и видели, что клетка дрожжей все равно живет.
У нематоды на 20 000 генов получено несколько десятков тысяч мутаций, которые, по-видимому, поражают около 2 000 генов (так называемых групп комплементации). Это около 10 % всех генов нематоды. То есть если «выключить» около 90 % генов, клетка будет продолжать жить. У человека из 20 000 генов только в 1700 (меньше 10 %) известны мутации, которые связаны с болезнями, наследуемыми по Менделю как моногенный признак.
В связи с этим понятно, что количество генов, мутации в которых будут приводить заболеваниям человека (по крайней мере, к летальным), скорее всего, не увеличится значительно, по сравнению с тем, что уже известно к настоящему времени. Сейчас в интернет доступна база данных OMIM (Online Mendelian Inheritance in Man) по генам, мутации которых приводят к заболеваниям и проявляются как менделирующие признаки.
В геноме не все его участки транскрибируется. В связи с этим встал вопрос экспериментального определения, где и сколько в геноме генов. Под одним геном понимается участок ДНК, который соответствует единому транскрипту, образованному с этого участка. При транскрипции участка ДНК получается так называемыя пре-мРНК, которая содержит и экзоны (участки, переходящие затем в зрелую мРНК), и интроны (вставочные последовательности, которые удаляются из мРНК). Интроны удаляются из пре-мРНК в результате процесса, называемого сплайсингом. Остающиеся в результате участки пре-мРНК, называемые экзонами, соединяются в единую нить. Она называется зрелой мРНК. (Некоторые из РНК не кодируют белок. Называть такие РНК матричными, т. е. мРНК терминологически не верно, хотя они соответствуют генам и имеют свои функции.)
Зрелая мРНК используется как материал для экспериментального исследования наличия гена в геноме, его положения и интрон-экзонной структуры. Инструментом для такого исследования являются биологические микрочипы.
Первый патент на микрочипы принадлежит коллективу под руководством Андрея Дарьевича Мирзабекова, который был директором Института молекулярной биологии РАН и заведующий одной из кафедр ФМБФ МФТИ. Он предложил иммобилизовать синтетические фрагменты ДНК на твердые матрицы, и проводить гибридизацию этой матрицы с исследуемым образцом нуклеиновой кислоты — ДНК или РНК.
Как исследовать, действительно ли ген существует, то есть, транскрибируется ли данный участок ДНК? Для этого ген представляют в чипе частью его последовательности — олигонуклеотидом, который иммобилизован в микроплощадке с определенными координатами на этой матрице. Этот олигонуклеотид соответствует части экзона, предсказанного компьютером на основе сиквенса геномной ДНК. Чтобы выяснить, действительно геном в данном участке транскрибируется, берется клетка и из нее выделяется суммарная РНК. Из всех этих молекул РНК получают ДНК-копии, которые флуоресцентно метят и проводят гибридизацию с иммобилизованными на микрочипе олигонуклеотидами. Если в данных условиях какие-то площадки с олигонуклеотидами «молчат» (они показаны черным), то это значит, что участок геномной последовательности, комплементарной этому олигонуклеотиду, не транскрибируется. Если же площадка матрицы «светится», значит олигонуклеотиды в этой площадке прогибридизовались с флуоресцентно меченым продуктом, то есть соответствующий участок генома транскрибировался и действительно является частью какого-то гена.
Биологические микрочипы используются для одновременной детекции экспрессии многих генов
В реальном эксперименте все участки на матрице в той или иной мере «светятся». Поэтому без сравнения с некоторым стандартом, нельзя сказать, с чем связано появление сигнала в данной площадке чипа. Чтобы определить, является ли полученный результат ошибкой эксперимента или нет, проводится сравнение двух объектов. Для этого берутся некие клетки А, из них получают РНК, и их флуоресцентно метят (на слайде — красным). То же проводят и с клетками В, но метят РНК другим цветом (зеленым). Затем проводят гибридизацию чипа со смесью этих двух препаратов РНК. Если сигнал в данной площадке на чипе получается красным, значит в клетках А транскрипция данного гена сильнее, чем в клетках В. Если сигнал зеленый, то транскрипция сильнее в клетках В. Если красного и зеленого поровну, то получится желтый цвет. Таким образом, возникает возможность сравнивать уровень траснкрипции данного гена в разных клетках В, С, D и т. д., нормируя его на уровень транскрипции этого гена в клетках А. При этом сравнивают транскрипцию гена в разных тканях, в них гены экспрессируются по-разному. Можно сравнивать опухоль и норму, тогда выявляют те гены, которые специфически более сильно транскрибируются в опухоли или в норме. Можно посмотреть разные стадии развития, как работают гены в зародышевом развитии и во взрослом состоянии. Таким образом, гибридизация на микрочипах позволяет узнать, какие гены в геноме в данных условиях транскрибируются, а именно этим он и проявляет свою жизнь.
Биологические микрочипы могут быть использованы для установления относительного уровня экспрессии в клетках различных типов (например, печень — почки, норма — опухоль, зародыш — взрослый организм)
Если уровень экспрессии данного гена в образце А > В, цвет красный
Если уровень экспрессии данного гена в образце А < В, цвет зеленый Если уровень экспрессии данного гена в образце А = В, цвет желтый
Если образец А используется как нормирующий, то можно сравнивать экспрессию в образцах D, Е, F… друг с другом
Гибридизация на микрочипах позволяет проверить компьютерное предсказание о том, что данный фрагмент генома — экзон, (участок, остающийся в зрелой мРНК) и он действительно транскрибируется. Каждый ген не обязан экспрессироваться во всех тканях и в каждых данных условиях. Поэтому нужно исследовать много условий и тканей, чтобы выявить все участки генома, соответствующие экзонам. На слайде каждая гибридизация на данном чипе соответствует какому-то одному типу ткани или условиям ее функционирования. Красным указано количество экзонов в каждой из хромосом, существование которых экспериментально подтверждено. На каждом чипе 1 090 408 площадок с пробами-олигонуклеотидами, соответствующими каждому из 442 785 экзонов человека, предсказанных компьютером.
Олигонуклеотиды в площадках соответствуют как транскрибируемой нити ДНК, так комплементарной нити. В геноме человека транскрипция комплементарных нитей ДНК, характерна для небольшой части генов. Такие гены перекрываются и, возможно, взаимно регулируются на уровне транскрипции. У бактерий перекрывание генов гораздо более частое явление, чем у эукариот.
Котранскрибируемые экзоны (границы гена) выявляются экспериментально на чипе. Соседние площадки содержат олигонуклеотиды, соответствующие экзонам, соседним в геноме. Граница выглядит как переход от блока площадок одного цвета (красного, олигонуклеотиды принадлежащие котранскрибируемым экзонам) к другому (зеленому). Полный список данных по экспериментальному подтверждению существования всех предсказанных компьютером экзонов пока не существует.
Границы гена
Котранскрибируемые экзоны (границы гена) выявляются экспериментально на чипе
Shoennikei е.а., Natuie (2001), v.409, р.922
Микрочипы могут быть использованы для исследования изменений уровня транскрипции генов, связанной с возникновением или прогрессией заболевания, (например, опухолевого или инфекционного). Предполагается, что каждая болезнь, характеризуется своим штрих-кодом — изменением уровня транскрипции набора ге нов характерного именно для данной болезни. Этот анализ является очень важным для усовершенствования функциональной диагностики в медицине.
Микрочипы могут быть использованы для исследования экспрессии, связанной с возникновением или прогрессией заболевания (например, опухолевого или инфекционного), поскольку каждая болезнь, вероятно, характеризуется специфичными изменениями наборов экспрессируемых генов по сравнению нормальным состоянием.
Провели такой опыт. Взяли образцы РНК из опухолей у двух групп больных. В одной группе метастазы были, а в другой — нет. Метастазы — это возникновение новых очагов опухоли в организме, пространственно отделенных от исходного очага. На данном чипе довольно резко проходит граница между группами зеленых и красных площадок. То есть, видны гены, изменение уровня экспрессии которых характерно для стадии метастазирования опухоли, что можно использовать для диагностики этой стадии. Пока этот метод диагностики недоработан. Предполагается, что в будущем по штрих-коду изменения экспрессии в определенном наборе генов можно будет диагностировать конкретные заболевания и стадии их развития, а, следовательно, и знать, как лечить.
Сделаем небольшое отступление. На прошлых лекциях было рассказано про генетические карты. Такие карты были построены для многих видов. На видах с подробными генетическими картами проводится экспериментальный поиск мутаций связанных с регистрируемыми морфологическими изменениями. На слайде показана схема такой работы на рыбах. Вначале проводят мутагенез. После этого получают гибриды первого поколения. Их используют для возвратных скрещиваний с мутагенизированными родителями. Если оказывается, что какой-то признак выявляется, то смотрят, с какими генетическими маркерами он сонаследуется. Таким образом исследуется, какие гены повреждены мутациями, выявляемыми фенотипически.
Гены (мутации), определяющие морфологические или биохимические признаки, могут быть идентифицированы после общегеномного мутагенеза (например, EMS) и генетического скрининга. Для этого проводят анализ сонаследования исследуемого аллеля с полиморфными маркерами ДНК, перекрывающими весь геном в известной последовательности, и расстояние между которыми достаточно мало, чтобы отнести исследуемый аллель к одному из интервалов генетической карты.
Обобщая вышесказанное, гены (мутации), определяющие морфологические или биохимические признаки, могут быть идентифицированы после общегеномного мутагенеза (например, EMS) и генетического скрининга. Для этого проводят анализ сонаследования исследуемого аллеля с полиморфными маркерами ДНК, перекрывающими весь геном в известной последовательности, и расстояние между которыми достаточно мало, чтобы отнести исследуемый аллель к одному из интервалов генетической карты.
На этом слайде показано, что существуют бактерии, у которых количество генов может быть больше, чем например у дрожжей. Мы привыкли считать, что бактерии устроены проще, но это не всегда так. Существуют бактерии, у которых генов порядка 10 тысяч.
Даже для прекрасно изученного организма — кишечной палочки, не понятны функции около трети из 4289 ее генов. Известна и последовательность нуклеотидов в этих генах, и как они транскрибируются и т. д., но все равно не известно, какую функцию они выполняют.
На этом слайде хотелось бы обратить ваше внимание на то, что хотя число генов разнится у разных видов, но число так называемых белковых доменов (структурные единицы в белке, отвечающие за единичную функцию) отличаются в пределах разных царств живого (прокариоты и эукариоты) до полутора раз, не более. Конечно комбинации этих доменов разные, но сами домены похожи, то есть они кодируются сходными по последовательности нуклеотидов участками генома и эти сходные участки имеют общее происхождение в эволюции.
Обратно заявление будет не верно. Если функции белков сходны, это не означает, что их структура будет одинакова. Одна и та же функция, например, один и тот же каталитический процесс, может выполняться разными, не родственными по происхождению белками. Один и тот же процесс может катализироваться даже и белком и РНК (рибозим), у которых нет ничего общего в происхождении.
На данном слайде показаны средние значения характеристик различных элементов генов человека. Средний размер экзона — 145 нуклеотидов, интрона — 3365 и т. д. В общей сложности получается, что белок-кодирующая часть гена невелика по сравнению с белок-некодирующей частью, поэтому, когда происходят какиенибудь мутации, велика вероятность, что промутирует белок-некодирующая часть. Такие мутации или вообще не скажутся на структуре белка, или приведут к изменению его количества, но не структуры (изменения регуляторных участков инициации транскрипции или стабильности РНК), или приведут к драматическим изменениям структуры РНК (мутации в мишенях для сплайсинга).
Общая структура генома такова. Напомню, что размер генома человека 3200 Mb. Гены занимают всего 1200 Mb. Основная часть этого пространства приходится на псевдогены (нефункциональные гены, инактивированные мутациями), различные фрагменты генов и интроны. А на экзоны функциональных генов (суммарная длина зрелых РНК) приходится 48 Mb. Здесь есть некоторое лукавство, так как на одну пре-мРНК в среднем приходится 1,4 зрелых РНК. А из одной зрелой мРНК в некоторых случаях может получиться до тысячи белков. Межгенная ДНК занимает 2000 Mb, она представлена главным образом короткими рассеянными по всему геному повторяющимися последовательностями, которые занимают 1400 Mb. Один из таких повторов — Alu-повтор, длиной около 300 п.н., повторен в геноме миллион раз. Другой примечательный тип рассеянных повторов — длинные концевые повторы (LTR, long terminal repeat). Эти элементы являются молекулярными свидетельствами перескока фрагмента ДНК внутри генома. Общая протяженность таких участков на молекуле ДНК-250 Mb.
Геном человека: размеры областей занятых элементами известной структуры
Число генов у человека оценено в 20–25 тысяч, (оценка 2001 г. — 35–40 тыс.).
Основная часть генома человека занята не генами: 63–74 % длины — межгенные пространства, половина из них — повторы. Ген человека внутри «пустой»: 95 % внутригенной ДНК вырезается (интроны). Общая длина белок кодирующих областей около 1 % от геномной ДНК человека. Это лишь в 3 раза больше длины генома бактерий.
От 26383 до 39114 генов человека были предсказаны компьютером (в 2001 г.), но лишь менее 7000 были подтверждены на человеке. И более чем для 80 % генов, хоть в чем-то была пересмотрена структура в период с 2001 по 2003 г и продолжает уточняться на микрочипах.
Сейчас предсказанное число генов у человека 20–25 тысяч и существование около 19 000 из них экспериментально подтверждено — с них образуются транскрипты.
Имеющееся на данный момент определение гена (ген — это фрагмент геномной ДНК с котранскрибируемыми субфрагментами) — не полное. Например, возможна транскрипция с двух цепей. Плохо выявляются короткие гены и белок-некодирующие гены. Их, по крайней мере, под тысячу, но точное число не известно. Такие гены — тоже гены, хоть белок они и не кодируют. Они — гены, потому что с них образуется РНК. Причем РНК некоторых белкнекодирующих генов состоит из нескольких экзонов. То есть, клетке эти РНК зачем-то нужны, но мы пока не понимаем, зачем.
Альтернативный сплайсинг, биологическая роль и механизмы
Предположим, образовался транскрипт зрелой мРНК, и он может содержать экзоны 1, 2, 3. Это вовсе не означает, что он обязательно будет содержать их все. У нас может появиться РНК, которая будет содержать экзоны 1 и 2 или экзоны 1 и 3, ив результате с них будут образовываться разные белки. Такой способ процессинга (обработки) генетической информации называется альтернативный сплайсинг.
Одному гену соответствует с среднем 14 зрелых мРНК Альтернативный сплайсинг — различные комбинации экзонов остающееся в зрелой мРНК получаемой из одной и той же пре-мРНК
У человека есть ген slo. Он «работает» во внутреннем ухе, в частности, этот белок присутствует в ворсинках, которые отвечают за распознавание высоты звука. Он состоит из 35 экзонов (на рисунке — прямоугольники), 8 из которых (синие) могут или присутствовать, или отсутствовать в зрелой мРНК. Возможны 8! = 40 320 вариантов сплайсинга, но только около 500 из них обнаружены. Других, может быть, и нет, то есть природа не должна, вообще говоря, реализовывать все возможные варианты.
Биологическая роль множественного сплайсинга заключается в следующем. Разные типы волосяных клеток внутреннего уха реагируют на звуки разных частот от 20 до 20 000 герц. Различия клеток в восприятии частоты частично определяются свойствами альтернативных сплайс-форм белка Slo. Как определяется выбор между вариантами сплайсинга неизвестно.
Ген slo человека,
Состоит из 35 экзонов (прямоугольники), 8 из которых (синие) могут или присутствовать или отсутствовать в зрелой мРНК Возможны 8! = 40 320 вариантов сплайсинга, но только около 500 из них обнаружены экспериментально.
Биологическая роль множественного спланснгта.
Разные типы волосяных клеток внутренне по уха реагируют на звуки разных частот от 20 до 20 000 герц. Различия клеток в восприятии частоты частично определяются свойствами ал тернатмвных сплайс-форм белка Slo.
Как определяется выбор между вариантами сплайсинга неизвестно
Известны случаи, когда с одного локуса образуются тысячи разных белков. К ним, в частности, относятся белки, которые образуются на поверхности нервных клеток. Таким образом, они, видимо, как-то участвуют в распознавании друг друга, и в формировании нейронных сетей. В этом случае происходит выбрасывание не только экзонов или интронов, но и может реализовываться и альтернативный участок инициации транскрипции. Такие случаи известны, в частности, для человека, когда у разных генов есть несколько разных промоторов, каждый из которых дает свою РНК, в которой, в зависимости от того, где он начался, будет дополнительный экзон, связанной с различной длиной транскрипта на 5' — конце.
Механизм сплайсинга
Процесс соединения одного экзона с другим происходит в участках определенной последовательности нуклеотидов. Донорный сайт сплайсинга всегда заканчивается одним из двух динуклеотидов, обычно — AG.
Консенсусная последовательность донорного и акцепторного участков сплайсинга в интронах и экзонах эукариот
В начале происходит нуклеофильная атака донорного экзона, затем происходит разрезание, кусочек GU заворачивается и присоединяется к А. Затем разрезается вторая часть, первый экзон соединяется со вторым, и образуется интрон.
Если посмотреть, какую долю гена составляют экзоны, то самый большой известный транскрипт (у гена миодистрофина) имеет длину около 2,5 миллионов нуклеотидов. У него в зрелую часть РНК переходит 14 тыс нуклеотидов (0,6 %), а остальные 99,4 % от первичного транскрипта выкидывается (интроны).
С ростом размеров гена в хромосоме его белок-кодирующая часть увеличивается незначительно, а количество интронов в гене растет. С ростом числа интронов растет число сайтов сплайсинга и вероятность их повреждения. Поэтому для генов с большим числом интронов потеря функции при мутации может быть связана не с белок-кодирующей частью ДНК, а с регуляторными элементами сплайсинга.
Секвенирование генома человека показало, что некоторые экзоны многократно повторены в геноме. Это могут повторы экзонов в составе одного гена, или присутствие одного и того же экзона в составе нескольких разных генов. Получается, что экзоны, основные элементы структуры РНК, то есть белок-кодирующие элементы, в процессе эволюции могут каким-то образом размножаться в геноме и «перетасовываться» между разными генами. Такое явление получило название exon shuffling — перетасовка экзонов. Ниже показаны разные белки, в которых содержатся одинаковые экзоны. Таким образом, оказывается, что эволюция — это нередко именно блоковые изменения генома, а не точечные изменения.
Генные дупликации и "тасующиеся" экзоны
Ген фибронектина содержит 12 копий экзона, кодирующего "палец" белка. Этот же модуль найдет в продуктах других генов. Он содержит также модули, встречающихся в белках определенных типов, таких как мембранные клеточные рецепторы и белки внеклеточюго матрикса.
Классификация генов по их функциям
На 2001 год для более 40 % генов человека не было никаких предположений относительно выполняемых функций. А для остальных раскладка была достаточно условной. Принадлежность белка к одному функциональному классу не исключает его принадлежности также и к другому классу. Например, то, что белок связывается с ДНК, не означает, что он не может быть еще и ферментом и т. д. Это — характеристика, которая была дана гену по той его части, которая связана с охарактеризованной функцией, но, вообще говоря, такая функция у белка может быть и не одна.
Распределение функций 26 383 генов человека
Больше всего генов отвечают за экспрессию, репликацию и поддержание функций генома; около 20 % — за передачу сигналов между клетками, около 17 % — за то, чтобы клетка сама по себе была здорова, и для других функции не классифицированы.
Оказывается, что у человека, по сравнению с дрожжами, бактериями и т. д., в геноме имеется больше генов регуляторов транскрипции. То есть, транскрипционные регуляторы сильно размножились в эволюционной линии млекопитающих, в частности, человека. Предполагается, что разнообразие регуляторов транскрипции обеспечивает большую тонкость реакции генома на сигналы внешней среды. То есть у млекопитающих больше число ансамблей координировано транскрибируемых генов, чем в других группах.
Сложность организации человека и.о. связана с большим количеством генных ансамблей, управляемых единичными кнопками: генами активаторами транскрипции. В эволюционной линии человека они сильно амплифицированы
Схема структурных элементов фрагмента генома человек» размером 50 т. п.н. в локусе Т-клеточного рецептора (хромосома 7).
Около половины длины фрагмента занимают элементы, структура и функция которых понятна. Это пены (экзоны и нитроны) и псевдогены, короткие (SINE)и длинные (LINE) диспергированные повторы, длинные концевые повторы (LTR), транспозоны, микросателлиты.
Выше показано, как выглядит кусок генома человека («50 000 п.н.). Около половины длины этого фрагмента ДНК занимают элементы, структура и функция которых понятна. Среди этих элементов есть гены (экзоны и интроны) и псевдогены — есть гены функциональные, а есть их нефункциональные копии. Они, обычно, не содержат интронов (считается, что после транскрипции и при преобразовании зрелой РНК возможен процесс встраивания ее обратно в геном в виде ДНК-копии; тогда это будет ген, содержащий лишний «хвост» и не содержащий интронов). А также короткие (SINE) и длинные (LINE) диспергированные повторы, длинные концевые повторы (LTR) — следы, оставшиеся после транспозиции, транспозоны, микросателлиты.
К 2001 году в геноме человека было выявлено 1112 "генов болезней" (то есть таких, мутации в которых ведут к заболеванию) и еще есть 94 "составных" гена, образующихся при опухолевых перестройках генома. Пока, в основном, раскрыты по механизму те заболевания, которые затрагивают белок-кодирующую часть гена. Возможно, не меньшее количество мутаций, вызывающих болезни, будет найдено и в участках регуляции транскрипции, сплайсинга и стабильности РНК.
В геноме человека выявлено 1112 “генов болезней” + 94 “составных” гена, образующихся при опухолевых перестройках генома
суммарная частота менделирующих заболеваний <1 % новорожденных
Мутации в кодирующей части гена — лишь часть из возможных причин потери функции. Другая часть — дефекты процессинга генетической информации (сплайсинга, регуляции транскрипции и трансляции)
McKusick еа, Science (2001), v291, р.1224
По представлениям на март 2005 года, у человека 24000 белок-кодирующих генов, из них 1700 генов ассоциированы с заболеваниями. Обнаружено 44,500 мутаций в этих 1700 генах (в среднем 26 на ген), связанных к заболеваниям. А для остальных 10 000 000 известных мутаций подобная связь не выявлена.
20 % смертей в США происходит из-за того, что прием лекарства осуществлялся либо не того, либо не так. Но это связано не с некомпетентностью врачей, а с тем, что мы все генетически разные. У болезней много мишеней и если бить не по той мишени, то лекарство точно не будет полезным, а потому может быть и вредным. У человека может быть специфическая реакция на данное лекарство (слишком низкая или слишком высокая скорость метаболизма). А в нашей стране ведущая пока причина смертей взрослого населения — пьянство. Эта первопричина просто скрыта за определением «травматизм» (производственный, бытовой, дорожный и т. д.), который и указывают как причину смерти. Выявлена корреляция потребления алкоголя в нашей стране и продолжительности жизни: когда, снижается потребление алкоголя, продолжительность жизни идет вверх, и наоборот.
Если два белка характеризуются сходной последовательностью аминокислотных остатков (выше критической длины, до которой совпадения могут быть чисто случайными), то у них есть общая предковая последовательность, и соответствующий предковый ген. Количество таких предковых структур у белков весьма ограничено.
К примеру, был один ген в геноме, а потом их стало два (дупликация). Со временем мутации изменили эти гены каждый по-своему. А потом этот вид дал начало двум новым видам (см. рис. ниже). Все эти гены являются «родственниками» (гомологами), но по-разному называются. Гомологичные гены, которые мы рассматриваем в составе разных видов, называются ортологи, а гомологичные гены в одном геноме называют паралоги.
Гомологичные (сходные) последовательности, вероятно, являются родственными по происхождению, если их длина выше некоторого порога. Для генома человека этот порог равен последовательности длиной в 15 нуклеотидам
415 = 109 = длина генома человека в нуклеотидах.
Гомологичные последовательности нуклеотидов в геномах разных видов называются ортологи (А1 и В1; А2 и В2).
Гомологичные последовательности нуклеотидов в геноме одного вида называются паралоги (А1 и А2; В1 и В2)
Сравнения таких родственных генов часто используют при исследовании эволюции. Эволюционная геномика (сравнительная геномика), используется очень интенсивно в медицине. Пример ее практического применения. У людей по разным причинам бывает ожирение. В частности, есть семейные формы, менделирующие. У человека мутации, вызывающие это заболевание, картированы не были. Сходный фенотип ожирения наблюдали у мышей. У мышей этот ген генетически картировали (картируют, на самом деле, не ген, а собственно мутацию в гене). Просеквенировали участок вокруг этой мутации, потом нашли такую же последовательность нуклеотидов в геноме человека. Стало ясно, в каком месте генома человека надо искать мутации, вызывающие ожирение у человека. Проверка этого участке генома человека у больных людей и сравнение его со той же нуклеотидной последовательностью у здоровых подтвердила, что мутации этого гена у человека, как и у мыши, приводят к ожирению.
В школьном курсе биологии вы узнали, об исследованиях костных останков предполагаемых предков человека и родственных видов, австралопитека, питекантропа, неандертальцев, живших более 500 000 лет назад и исчезнувших к настоящему времени. В этой лекции будет рассказано про то, как генетические исследования помогают восстановить историю народов и историю появления вида Homo sapiens в целом.
То, что обезьяна — близкий родственник человека, известно уже давно, шимпанзе среди всех обезьян — наш самый близкий родственник. При исследовании ДНК происхождение человека от обезьяноподобных предков вполне подтверждается. Генетические различия на уровне ДНК между людьми составляют в среднем 1 нуклеотид из 1000 (то есть 0.1 %), между человеком и шимпанзе — 1 нуклеотид из 100 (т. е. 1 %). По размеру генома человек и высшие приматы не отличаются друг от друга, но отличаются по количеству хромосом — у человека на одну пару меньше. Как было рассказано на прошлых лекциях, у человека 23 пары хромосом, т. е. всего 46. У шимпанзе 48 хромосом, на одну пару больше. В процессе эволюции у предков человека две разных хромосомы приматов объединились в одну. Подобные изменения числа хромосом встречаются и в эволюции других видов. Они могут быть важны для генетической изоляции группы в процессе видообразования, так как в большинстве случаев особи с разным числом хромосом не дают потомства.
Время расхождения (дивергенции) видов, или другими словами, время существования последнего общего предка для двух видов, можно определить несколькими способами. Первый такой: проводят датировку костных останков и определяют,
кому эти останки могли принадлежать, когда мог жить общий предок тех или иных видов. Но костных останков предполагаемых предков человека не так много, чтобы можно было с уверенностью восстановить и датировать полную последовательность форм в процессе антропогенеза. Сейчас используют другой способ датировки времени расхождения человека и остальных приматов. Для этого подсчитывают количество мутаций, накопившихся в одних и тех же генах в каждой из ветвей за время их раздельной эволюции. Скорость накопления этих мутаций более менее известна. Скорость накопления мутаций устанавливают по числу различий в ДНК тех видов, для которых известны палеонтологические датировки расхождения видов по костным останкам. Время расхождения человека с шимпанзе по разным оценкам варьирует от 5,4 до 7 млн. лет назад.
Вы уже знаете, что геном человека полностью прочтен (секвенирован). В прошлом году появилось сообщение, что прочтен также геном шимпанзе. Сравнивая геномы человека и шимпанзе, ученые пытаются выявить те гены, которые "делают нас людьми". Это было бы легко сделать, если бы после разделения ветвей эволюционировали только гены человека, но это не так, шимпанзе тоже развивались, в их генах тоже накапливались мутации. Поэтому, чтобы понять, в какой ветви произошла мутация — у человека или у шимпанзе — приходится сравнивать их еще и с ДНК других видов, гориллы, орангутана, мыши. То есть то, что есть только у шимпанзе и нет например у орангутана, это чисто «шимпанзиные» замены нуклеотидов. Таким образом, сравнивая нуклеотидные последовательности разных видов приматов, мы можем выделить те мутации, которые произошли только в линии наших предков. Сейчас известно около дюжины генов, которые "делают нас людьми".
Филогенетическое древо высших приматов
Генетические различия на уровне ДНК между людьми: 1 нуклеотид из 1000 между человеком и шимпанзе: 1 нукл. из 100
Обнаружены различия между человеком и другими животными по генам обонятельных рецепторов. У человека многие гены обонятельных рецепторов инактивированы. Сам фрагмент ДНК присутствует, но в нем появляются мутации, которые инактивируют этот ген: либо он не транскрибируется, либо он транскрибируется, но с него образуется нефункциональный продукт. Как только прекращается отбор на поддержание функциональность гена, в нем начинают накапливаться мутации, сбивающие рамку считывания, вставляющие стоп-кодоны и т. д. То есть мутации появляются во всех генах, и скорость мутирования примерно постоянная. Удается поддерживать ген функционирующим только за счет того, что мутации, нарушающие важные функции, отбрасываются отбором. Такие инактивированные мутациями гены, которые можно распознать по последовательности нуклеотидов, но накопившие мутации, делающие его неактивным, называются псевдогенами. Всего в геноме млекопитающих около 1000 последовательностей, соответствующих генам обонятельных рецепторов. Из них у мыши 20 % псевдогенов, у шимпанзе и макаки инактивирована треть (28–26 %), а у человека — более половины (54 %) являются псевдогенами.
Псевдогены найдены у человека также среди генов, которые кодируют семейство белков кератинов, входящих в состав волос. Так как волосяной покров у нас меньше, чем у шимпанзе, то понятно, что часть таких генов могла быть инактивирована.
Когда говорят об отличие человека от обезьяны, то в первую очередь выделяют развитие умственных способностей и способность к речи. Найден ген, связанный со способностью говорить. Этот ген выявили, изучая семью с наследственными нарушением речи: неспособностью научиться строить фразы в соответствии с правилами грамматики, сочетавшейся с легкой степенью задержки умственного развития. На слайде представлена родословная этой семьи: кружки — это женщины,
квадратики — мужчины, закрашенные фигуры — больные члены семьи. Мутация, ассоциированная с заболеванием, находится в гене F0XP2 (forkhead box Р2). У человека достаточно трудно исследовать функции гена, легче это делать у мышей. Используют так называемую технику нокаута. Ген прицельно инактивируют, если знать конкретную последовательность нуклеотидов, то это возможно, после этого у мыши этот ген не работает. У мышей, у которых выключили ген F0XP2, нарушилось формирование одной из зон мозга в эмбриональный период. Видимо, у человека эта зона связана с освоением речи. Кодирует этот ген фактор транскрипции. Напомним, что на эмбриональной стадии развития факторы транскрипции включают группу генов на тех или иных этапах, которые контролируют превращение клеток в то, во что они должны превратиться.
Способность говорить
Выявлена семья с наследственными нарушениями речи затруднениями движений, связанных с артикуляцией; нарушением разбивания слов на фонемы Мутация, ассоциированная с заболеванием, находится в гене FОXP2 (forkhead box Р2)
Чтобы посмотреть, как этот ген эволюционировал, его просеквенировали у разных видов: мыши, макаки, орангутана, гориллы и шимпанзе, после этого сравнили эти последовательности нуклеотидов с человеческой.
Оказалось, что этот ген очень консервативен. Среди всех приматов только у орангутана имелась одна аминокислотная замена, и одна замена у мыши. На слайде у каждой линии видны две цифры, первая показывает число аминокислотных замен, вторая — число так называемых молчащих (синонимических) нуклеотидных замен, чаще всего это замены в третьей позиции кодона, не влияющей на кодируемую аминокислоту. Видно, что молчащие замены накапливаются во всех линиях, то есть мутации в данном локусе не запрещены, если они не ведут к аминокислотным заменам. Это не значит, что не появлялись мутации в белок-кодирующей части, они скорее всего появлялись, но были отсеяны отбором, поэтому мы не можем их зафиксировать. В нижней части рисунка схематично изображена аминокислотная последовательность белка, отмечены места, где произошли две аминокислотные замены человека, которые, видимо, повлияли на функциональные особенности белка FOXP2.
Если белок эволюционирует с постоянной скоростью (число нуклеотидных замен в единицу времени постоянно), то число замен в ветвях будет пропорционально времени, в течение которого замены накапливались. Время разделения линии грызунов (мыши) и приматов принимается равным 90 млн. лет, время разделения человека и шимпанзе — 5.5 млн лет. Тогда количество замен ш, накопившихся, накопившихся суммарно в линии мыши и в линии приматов между точкой разделения с мышью и точкой разделения человека и шимпанзе (см. рисунок), по сравнению с числом замен h в линии человека, должно быть в 31.7 раз больше. Если же в линии человека накопилось больше замен, чем ожидается при постоянной скорости эволюции гена, то говорят об ускорении эволюции. Во сколько раз ускорена эволюция, вычисляют по простой формуле:
А.I. = (h/5.5)/[m /(2 х 90 — 5.5)] = 31.7 h/m
Где A.I. (Acceleration Index) — индекс ускорения.
Теперь надо оценить, находится ли отклонение числа замен в линии человека от в пределах случайного, или отклонение достоверно выше ожидаемого. Вероятность того, что в линии человека за 5.5 млн. лет появится 2 аминокислотные замены при том, что вероятность появления замен оценивается по линии мыши как 1/(90+84.6)=1/174.6. При этом используют биноминальное распределение B(h + m, Th/(Th+Tm)), где h — число замен в линии человека, m-число замен в линии мыши: Th=5.5, Tm=174.5.
Попробуйте самостоятельно рассчитать вероятность в приведенном примере.
Генетическое разнообразие современного человечества
Вы знаете, что антропологи подразделяют людей на три большие расы: негроиды, европеоиды и монголоиды. Представители этих рас отличаются цветом кожи, формой тела, разрезом глаз и т. д. Но на самом деле четкие различия между разными людьми, относящимся к разным расам, имеются только если мы возьмем географически отдаленные группы. Если посмотреть на все разнообразие антропометрических признаков в целом, то окажется, что четких различий нет, существует множество переходных форм. Почему и как у людей сформировались внешние различия, где и когда зародилось человечество?. Чтобы ответить на этот вопрос в 1985 году Алан Уилсон — американский генетик — вместе со своей группой исследовал митохондриальную ДНК (мтДНК), которая передается, как известно из прошлых лекций, только по материнской линии (обозначена красным). Y-хромосома передается же только по отцовской линии (синяя линия), серой линией обозначена передача аутосомной ДНК, то есть весь остальной геном, передающийся нам от всех наших предков.
Y-хромосоме не с чем рекомбинировать, поэтому она, в отличие от рекомбинирующих аутосом, передается из поколения в поколение от отца к сыну неизменной. Изменения происходят в ней только за счет новых мутаций. То же и с мтДНК.
Генетическая карта мтДНК показана на рисунке, разным цветом показаны разные гены. У человека ее размер составляет 16 500 нуклеотидов.
Генетическая карта мтДНК человека (размер 16500 п.н.) Указано положение мутации, маркирующим разные линии.
Из-за того, что система репарации в митохондриях работает не так, как в ядре, скорость накопления мутаций в мтДНК в 10 раз больше, чем в ядерной. В ней есть один интересный участок примерно в 300 нуклеотидов (показан сверху на рисунке), называемый некодирующим или гипервариабельным, в котором скорость накопления мутаций в 10 раз выше, чем в остальной части мтДНК. Он очень интенсивно изучается. На рисунке стрелками показаны положение известных мутаций в мтДНК и разными буквами указаны линии, маркируемые этими мутациями. Скорость накопления нуклеотидных замен в гипервариабельном участке мтДНК человека: 1 нуклеотид в 18–20 тысяч лет. Максимальные отличия между мтДНК у двух разных людей 22 нуклеотида. Генетическое разнообразие в эволюционно родственной группе, например, среди членов одной этнической группы, меньше. Например, максимальное число отличий в гипервариабельном участке мтДНК между индивидами у русских — 4 нуклеотида. Скорость накопления замен у человека рассчитывается по сравнению с числом замен, возникших после дивергенции человека и шимпанзе, и, в зависимости от того, какая дата расхождения этих видов принята за основу расчетов (5.5 или 7 млн. лет), полученные генетические датировки событий популяционной истории колеблются на 20–30 %. Что сделал Алан Уилсон?
Реконструкция происхождения Homo sapiens по различиям в митохондриальной ДНК
Он собрал кровь у людей разной расовой принадлежности (красные кружки на рисунке), исследовал мутации в мтДНК и выстроил дерево, в котором родственные последовательности, отличающиеся одним нуклеотидом, находились рядом, отличающиеся двумя нуклеотидами находились подальше друг от друга, и т. д. В конце концов, у него получилось дерево, восходящее к одному корню, показанному желтым кружком. Все линии возле корня оказались африканскими, из чего был сделан вывод об африканском происхождении человека. Гипотетическую прародительницу, обладавшую мтДНК с рассчитанной последовательностью нуклеотидов, окрестили митохондриальной Евой, из-за чего неспециалисты стали писать, что Библия подтвердилась, что все человечество произошло от одной женщины Евы, жившей в Африке. Это неверно, так как она жила там не одна, при исследовании других генетических локусов было показано, что предковая популяция человека составляла 5 тыс. человек, просто одна из линий мтДНК дошла до нас, остальные линии потерялись. Это может произойти, когда у женщины рождаются только сыновья или она бесплодна. Точка, к которой сходятся линии, называется точкой коалесценции. Проводившиеся дальнейшие исследования, покрывающие практические весь земной шар, подтвердили выводы Уилсона. Датировка точки коалесценции — от 100 до 200 тыс. лет назад (последние оценки показывают 130–180 тыс. лет). Удалось выделить мтДНК из двух образцов костей неандертальцев. Неандертальцы также относятся к роду Homo (лат. называние Homo neanderthalensis) Один, из пещеры Фельдгофер (не датирован) и второй на Кавказе в пещере Мезмай (останки датируются радиоуглеродным методом 29 тыс. лет назад). Гипервариабельный участок в мтДНК неандертальцев отличался от человеческой 24 заменами, что, как формулируют генетики, выходит за пределы видового разнообразия человечества. Молекулярно-генетическая датировка расхождения линий человека и неандертальца — примерно 500 тыс. назад. По палеонтологическим данным, предки неандертальца поселились в Европе 300 тыс. лет назад. Вымерли неандертальцы 28–30 тыс. лет назад. Так как люди пришли в Европу 40–50 тыс. лет назад, то на протяжении 20 тыс. лет они сосуществовали с неандертальцами, а затем неандертальцы вымерли.
Предки неандертальца поселились в Европе 300 тыс. лет назад. Неандертальцы вымерли 28–30 тыс. лет назад
Пунктиром очерчен район находок останков неандертальцев. Отмечено положение пещер Фельгофер и Мезмайская
Все генетические корни человека уходят в Африку, численность предковой группы человека была 100 тыс. человек, затем был период резкого падения численности в 10 раз, как раз это время генетики считают временем схождения разных линий — датой точки коалесценции (так называемое время прохождение через "бутылочное горлышко"). Генетики считают, что именно в это время появился вид Homo sapiens. У антропологов дата появления человека — 2 млн. лет назад. На самом деле это время появления рода Homo. Можно столкнуться с тем, что неандертальца также считают подвидом Homo sapiens (называя его в этом случае Homo sapiens neanderthalensis) вместе с человеком вида (Homo sapiens sapiens). Однако критерий принадлежности к одному виду — появление при скрещивании потомства, что генетики отрицают, так как генетическое разнообразие у человека было бы гораздо больше, если бы оно накапливалось 500 тыс. лет, а не 100 или 200 тыс. лет. Раньше, в середине 20-го века предполагали, что неандерталец — предок человека. Однако сейчас ясно, что он наш эволюционный "двоюродный брат".
Если более крупно и подробно нарисовать это дерево мтДНК всего человечества, то получится такая картинка:
Древо мтДНК
Красные кружочки на рисунке обозначают мтДНК современных людей, а само это дерево — гипотетическое, потому что есть очень немного образцов древних ДНК. Сначала отделились ветви на древе, которые сейчас находятся в Африке. Затем от одной из африканских ветвей отделилась ветвь, которая ушла в Азию. Там эта популяция поделилась на часть, которая ушла в Австралию и Океанию, и оставшуюся часть, которая поделилась на европейскую и азиатскую ветки. От последней отделилась группа, которая ушла в Америку. (Даты на рисунке — по количеству накопившихся мутаций митохондриальной ДНК).
Если это дерево положим на географическую карту, то увидим, как и когда люди расселились по Земле. Корень дерева — в Африке, потом ветвь идет в Азию, потом от азиатской ответвились все европейские линии митохондриальной ДНК.
Ниже показано упрощенное древо человечества по Y хромосоме. В Y хромосоме появляются мутации, и если у одного из братьев появилась мутация, то он дал начало новой генетической линии. Каждая линия датируется по числу мутаций, отличающей ее от остальных. Ниже для примера показана область распространения линий. Самая древняя — в Африке, следующая — расселение вокруг Средиземного моря, и более молодая линия заселяет Северную Евразию.
Древо линий Y хромосомы человека
Каждая линия cooтветствует появлению мутации. Даты, тыс. лет назад. указывают распространение этих мутаций (в маркированных или линий) в популяциях.
По времени события развивались так. Вначале люди появились в Африке. Точное место назвать нельзя, но наиболее древние линии встречаются у некоторых этнических групп в Танзании и Субсахарской Африке (у бушменов и готтентотов). Потом они разделились на группы, одна из которых около 90 000 лет назад вышла в Восточное Средиземноморье (Левант). Эта группа затем полностью вымерла. Раньше считалось, что из Африки люди вышли через Левант, это на самом деле не так: первая попытка выхода около 90 000 лет назад оказалась неудачной — люди вымерли, и территория была заселена неандертальцами, которые потом тоже вымерли. Люди выходили из Африки при потеплении, вслед за животными, на которых они охотились, и за растениями, которые они ели. В благоприятных условиях численность популяции росла, и они расселялись на новые территории.
Следующая попытка выхода из Африки осуществилась по южному пути, через Южную Аравию. Преимущества этого пути заключалось в получении бесконкурентного источника питания — моллюсков (их раковину практически никто из животных не может разбить). Вышли они около 80 000 лет назад, а 74 000 лет назад случилось извержение вулкана Тоба, которое привело к экологической катастрофе — похолоданию по сценарию "ядерной зимы". Слой пепла, оставшегося после этого извержения, достигает 3 метров. И, видимо, люди здесь вымерли, потому что потом территория Индии повторно заселялась с двух сторон. Далее люди заселили очень благоприятную для проживания территорию Юго-Восточной Азии. Там береговая линия была другой, не такой, как сейчас, водные промежутки были не очень большими, и, скорее всего, люди уже умели плавать на плотах. Около 60 000 лет назад они добрались до Австралии, около 50 000 они появились в Европе, а затем во время потепления была заселена вся Евразия. Предполагается, что около 25 000 лет назад была первая волна расселения в Америку. Тогда туда можно было пройти по суше. На месте Берингова пролива была суша Берингия. Эта первая волна вызывает очень много споров — была ли она на самом деле или нет. А 12–15 тыс. лет назад пошла вторая волна расселения, которая не вызывает уже никаких сомнений (есть археологические данные, подтверждающие этот факт).
Около 10–11 тысяч лет назад появляется земледелие на Ближнем Востоке. Плотность населения земледельцев была в 10 раз больше плотности населения охотников — собирателей. И эти земледельцы начинают расселяться во все стороны; идет вторая волна заселения территорий, на которые уже живут охотники-собиратели.
Когда люди расселялись в разные стороны, мутации в географически изолированных популяциях накапливались, давая начало новым генетическим линиям. Но популяции не только разделялись, в какие-то периоды они смешивались.
На карте ниже обозначены народы бывшего СССР и сопредельных стран для того, чтобы можно было представить, каковы разные этнические группы, населяющие эту территорию. Этнический ареал русских, т. е. та область, где они сформировались, не очень большой, несмотря на то, что сейчас русские составляют около 80 % населения России.
Народы бывшего СССР
Следы смешения народов можно найти в их генах. На рисунке частоты европейских и азиатских линий мтДНК для некоторых народов, населяющих Россию.
Относительные частоты европейских и азиатских линий у народов европейской части России.
Исследованные народы относятся к разным языковым семьям: индо-европейской, уральской, алтайской
На карте доля европейских линий показана синим, а азиатских — желтым. Видно, что генетическая граница между Европой и Азией проходит там же, где и географическая — по Уралу.
Расселяясь по земле, люди оставляли по земле генетический след расселения, потому что, если какие-то мутации были частыми у африканских линий, то когда люди уходили, накапливались другие мутации, чем дальше они уходили, тем больше их накапливалось. Есть определенный градиент частоты разных аллелей по долготе — это и есть след расселения. Но есть и другие причины изменения частот аллелей. С расселением связывают очень интересный ген, дофаминовый рецептор, DRD4, связанный с поведением человека, с такой психологической характеристикой как стремление к новым впечатлениям (она тестируется по психологическим опросникам). Один из аллелей этого гена, называемый R7, ассоциирован с более высоким уровнем стремления к новым впечатлениям. Журналисты иногда называют это ген геном «авантюризма». Частота аллеля сильно варьирует в разных популяциях. Например, в Европе частота составляет 10–15 %, на Севере Америки — 40 %, а в Южной Америке доходит до 70 %. Американский психолог Майкл Бертон выдвинул гипотезу о том, что когда народы расселялись по Земле, уходили с обжитого места именно люди с повышенной частотой этого аллеля.
Генетические различия между разными популяциями могут быть связаны с адаптацией к факторам внешней среды, таким как климат, природные условия или к особенностям питания и типу хозяйства (производящее или присваивающее), к эндемичным инфекциям и некоторым другим факторам.
Адаптация к геоклиматическим факторам
Наиболее известный признак, связанный с адаптацией к климату — цвет кожи. Там, где ультрафиолет наиболее интенсивен — там самая темная коже у людей. В северных широтах кожа у людей самая светлая, если бы это было не так, у детей был бы рахит, так как темная кожа защищает от ультрафиолета, под действием которого вырабатывается витамин Д. Витамин Д необходим для усвоения кальция. Интенсивность кожной пигментации связана с накоплением пигмента меланина, которое контролируется белком мелонокартиновым рецептором. Ген, кодирующий данный белок, исследован у разных народов, и было показано, что накопление мутаций, ведущих к ослаблению пигментации, происходило у жителей Азии и Европы. Интересен тот факт, что хотя у народов Африки самое высокое генетическое разнообразие, по этому гену мутации там отсутствуют, так как светлая кожа там неадаптивна. На рисунке показано широтное распределение кожной пигментации.
Цвет кожи в различных регионах мира
Интенсивность кожной пигментации негативно коррелирует с широтой, хотя встречаются некоторые исключения. Например, у эскимосов кожа немного темнее, чем у других популяций, живущих на той же широте. Предполагается, что это из-за того, что они пришли из более южных районов в недалеком прошлом и не успели адаптироваться, или из-за того, что они много едят печени морских животных, где много витамина Д.
Рост и форма тела также являются адаптацией к климатическим условиям. На севере выгоднее всего быть низкого роста, с более короткими конечностями, так как будут наименьшие потери тепла через кожу, на юге — наоборот, худым и высоким, чтобы больше терять тепло.
Рост и форма тела — адаптация к климатическим условиям
Адаптация к особенностям питания и типу хозяйства
После перехода от присваивающего хозяйства многое изменилось: от кочевого образа жизни люди перешли к оседлому, питание стало более однообразным (вместо десятков диких растений и животных), возросла плотность населения и возникли более благоприятные условия для распространения инфекций.
Раньше всего земледелие появилось на Ближнем Востоке в районе Месопотамии, в так называемом «плодородном полумесяце» (здесь очень благоприятный климат), затем в Китае. Здесь начали выращивать рис через 2000 лет после появления земледелия в Месопотамии. И еще через несколько тысяч лет появились независимые самостоятельные зоны земледелия в Америке, а только потом и в Африке.
После появления земледелия возросла частота нарушений зрения, например, дальтонизма. Понятно, почему — альтернатива такая: либо дальтоник, либо охотник. От успеха на охоте зависит количество детей; женщины предпочитают выбирать хороших охотников себе в мужья, так что у хорошего охотника больше шансов оставить потомство. Частота нарушения цветового зрения в обществах, где вклад охоты-собирательства 15 % и выше, близка к нулю. У индустриализованных странах частота дальтонизма может достигать 7 %.
У охотников-собирателей редко встречаются нарушения цветового зрения
Популяционная частота нарушении цветового зрения (частоты для 19 этнических групп, по Рычков и др. 2000)
Есть еще один интересный ген, связанный со способностью пить молоко. Все млекопитающие кормят своих детенышей молоком, и чтобы расщеплять молочный сахар лактозу в кишечнике детеныша вырабатывается фермент лактаза. И у всех нормальных млекопитающих по окончании периода грудного вскармливания лактаза перестает синтезироваться, потому что в дикой природе им молоко больше никто не даст.
Так же было и у людей, пока у них не появилось молочное животноводство. С его появлением, стало выгодно пить молоко и взрослым, так как оно является ценным пищевым ресурсом. Но дело в том, что если взрослый человек, у которого лактаза не синтезируется, пьет молоко, ему становится очень плохо, у него вздувается живот и начинается понос. Это происходит, потому, что сахар, нерасщепленный лактазой в кишечнике, перерабатывается бактериями, которые на него бурно набрасываются и расщепляют его с выделением водорода. Человек становится похожим на шарик, наполненный водородом, что порождает массу неприятных симптомов. В норме синтез лактазы прекращается примерно в пять лет. Охотники-собиратели кормят своих детей грудью до трех-пяти лет. Но у европейцев распространилась мутация, которая препятствует отключению фермента в пятилетием возрасте. Эта мутация найдена, она находится в регуляторном участке гена лактазы. У 90 % взрослого населения датчан синтез лактазы продолжается. У китайцев только 2 % взрослого населения способны усваивать молоко, но они все равно его не пьют, в их культуре это не принято, они молоко за еду для взрослых не считают. Среди русских 30–40 % взрослых не могут пить молоко. Есть корреляция с широтой частоты этой мутации — на севере молоко важнее как источник кальция, так как там меньше интенсивность ультрафиолетового излучения.
Частота переносимости/непереносимости молочного сахара лактозы
Козлов А.И., Балановская Е.В., Нурбаев С.Д., Балановский О.П. Геногеография первичной гиполактатки в популяциях Старого Света. Генетика, 1998, 34 (4): 551–561 с разрешения А.И. Козлова
Еще один интересный ген — аполипопротеин Е. О нем уже шла речь на одной из прошлых лекциях. Разные аллели этого гена связаны с разными уровнями холестерина. Самый высокий уровень — у носителей аллеля е4. Уровень холестерина разный у разных этнических групп. У европейцев частота этого аллеля 5-15 %, и он ассоциирован с рядом болезней, в том числе с болезнью Альцгеймера. У гомозигот по аллелю е4 вероятность заболеть старческим слабоумием выше в 10 раз, чем у тех людей, у которых этого аллеля нет. На севере уровень холестерина и частота е4 больше, чем на юге. На экваторе частота аллеля е4 около 3–5 %. У лапландцев (саамов) — 20–30 %. У бушменов он достигает 40 %, но никакой болезни Альцгеймера у них нет. И не потому, что они не доживают до такого возраста, просто у них этот ген ни с какими рисками не ассоциирован. Когда это было обнаружено, выдвинули предположение, что этот ген относится к так называемым «жадным» генам. Раньше была низкохолестериновая бессолевая диета, и сахар тоже охотникам-собирателям никто просто так не давал. И им приходилось эти ценные вещества эффективно усваивать из той пищи, которая была им доступна. Теперь сахар, соль и масло продаются в любом магазине, а организм человека «заточен» на то, что это ценные вещества, и людям кажется, что они вкусные. И те гены, которые раньше помогали человеку запастись необходимыми веществами, стали аллелями риска. Иногда их называют «жадными» генами. Те гены, которые обеспечивали эффективное поглощение холестерина, стали факторами риска атеросклероза; те, которые обеспечивали эффективное поглощение соли — факторами риска гипертонии, сахара — факторами риска диабета.
Когда исследовали питание бушменов — охотников-собирателей, живущих в Южной Африке, оказалось, что оно соответствующим рекомендациям ВОЗ по общему балансу белков, жиров, углеводов, витаминов, микроэлементов и калорий. Они ведут тот образ жизни, к которому человек приспособлен лучше всего. Биологически человек и его непосредственные предки на протяжении сотен тысяч лет адаптировались к образу жизни охотников-собирателей. Рекомендации врачей по поддержанию здоровья — физическая активность, прием витаминов и микроэлементов, ограничение соли и т. п. по сути, искусственно воссоздают условия, в которых человек жил большую часть времени своего существования как биологического вида.
Инфекции как фактор отбора
Серповидноклеточная анемия — это смертельная болезнь крови. Ею болеют гомозиготы по мутации в гене гемоглобина. Распространена эта болезнь в тропическом поясе. Оказалось, что эта мутация выгодна для гетерозигот, потому что от анемии они не умирают, зато малярийный плазмодий в их эритроцитах размножается гораздо хуже. Это открытие было сделано, когда американские солдаты в середине 20-го века находились в Корее. То, что в этой зоне распространена малярия, — хорошо известный факт. Это очень тяжелая болезнь, и чтобы защитить солдат от этой болезни, им давали противомалярийные лекарства. Эти препараты ингибируют развитие плазмодиев. Многих солдат эти лекарства спасли, но некоторые солдаты умерли непосредственно от самого лекарства. Причем умерли только либо афроамериканцы, либо те солдаты, которые происходили из Италии или Испании. Когда провели расследование этого случая, выяснилось, что они как раз были носителями этих мутаций, которые защищали их предков от малярии, а у них стала причиной смерти от противомалярийных препаратов. Частота мутаций, защищающих от малярии, достигает 20 % в тех регионах, где люди более всего страдают от этой инфекции, и быстро снижается по мере удаления от тропической зоны.
Серповидноклеточная анемия и малярия
Есть мутации, защищающие от вируса иммунодефицита. На одной из предыдущих лекций было рассказано, что ВИЧ проникает в клетку, связываясь с рецептором. Есть люди, у которых этот рецептор отсутствует. Называется этот рецептор — хемокиновый рецептор CCR5. Найдена мутация в кодирующем его гене, делеция 32 нуклеотидов, (мутантный аллель называется CCR5delta32) которая прерывает синтез белка.
ВИЧ протективные мутации CCR5A32,CCR2-64I, SDF1-3'
Эти гены кодируют рецепторы, с которыми связываются вирус.
Есть мутации в других генах, выше приведен пример с двумя генами. На рисунке выше показаны результаты обследования выборки приблизительно двух тысяч человек. Часть из них умерла к концу исследования, длившегося 15 лет. Около 65–70 % людей, у которых нет ни одной протективной мутации, при наличии инфекции умерло. У людей, у которых есть три протективных мутации, симптомы СПИДа не проявлялись на протяжении достаточно большого периода времени, и лечению они поддавались значительно лучше. Правда, людей с тремя мутациями было всего несколько человек.
Частота этой мутации (делеции в гене CCR5) у русских — 15 %. Несложно подсчитать, что 1 % русских гомозиготен по этой мутации и устойчив к заражению СПИДом половым путем. Но, тем не менее, никто никаких экспериментов подобного рода на них не ставит, потому что защита не абсолютная, и при инъекционном заражении никакие мутации не помогут. На рисунке представлена карта частоты делеции CCR5delta32 на территории Евразии. Предполагается, что в прошлом какая-то свирепствовавшая в Европе мутация провела отбор по этой мутации.
Географическое распределение частоты ВИЧ-протективной мутации CCR5delta32
Генетическая детерминация химических зависимостей
Сейчас установлено, что в развитие как химических, так и поведенческих зависимостей вклад наследственности составляет 40–60 %. Вклад наследственности определяется по близнецовым исследованиям. Если монозиготные близнецы по дан ному признаку больше похожи друг на друга, чем дизиготные, значит, наследственность работает. Когда признаки совпадают, близнецов называют конкордантными по данному признаку. Ниже показаны результаты таких исследований на примере зависимости от кокаина. Уровень конкордантности монозиготных близнецов при злоупотреблении кокаином достоверно выше, чем дизиготных. Вывод — развитие злоупотребления кокаином зависит от генов, не только от среды.
Выявлены две группы генов, связанные с развитием зависимостей:
1. Гены, связанные с работой системы положительного подкрепления (преимущественно рецепторы и транспортеры нейромедиаторов). Когда вы сделали что-нибудь хорошее для своего организма, то система подкрепления дает сигнал, что все хорошо. То есть, в лимбической системе мозга вырабатывается дофамин, рецептор воспринимает дофамин, сигнал идет дальше и организм знает, что все хорошо. Когда дофаминовый рецептор слабо чувствителен, необходимо увеличить дозу дофамина. Наркотическая зависимость возникает, потому что наркотики действует на эти рецепторы впрямую, обманывая организм, подавая ему ложный сигнал «все в порядке» даже в том случае, когда человек близок к смерти.
К этой же группе генов также относится ген транспортер серотонина. Серотонин — это нейромедиатор, участвующий в передаче сигналов в мозге. В ряде работ показано, что различия в активности этого гена связаны со склонностью к депрессиям.
2. Гены метаболизма алкоголя и наркотиков. В организме алкоголь окисляется в альдегид, а потом — в кислоту. В гене алкогольдегидрогеназы ADHlb имеется точечная мутация, ведущая к аминокислотной замене (аргинин на гистидин), от чего сильно увеличивается скорость работы фермента. И этанол начинает быстро перегоняться в альдегид. А альдегид — это как раз то «злобное» вещество, которое вызывает неприятные ощущения после приема спиртного, похмелье. Когда алкоголики похмеляются, они пьют спирт, подстегивая тем самым работу ферментов метаболизма алкоголя, и весь накопившийся альдегид при этом может окислиться дальше (до тех пор, пока ферментные системы печени не истощены регулярным приемом алкоголя). Носители мутации (она называется ADH1B*47His) обладают повышенной чувствительностью к алкоголю.
Частота этой мутации, которая ведет к быстрому росту концентрации альдегида в крови, разная у разных народов. У финнов — 0, у русских — 6 %, у якутов — 16 %, у китайцев — 76 %, у тайванцев — 86 %. Фермент перерабатывающий альдегид, также может иметь разную активность. Если он неактивен, то от очень маленьких доз спиртного человеку становится очень плохо — концентрация альдегида в его крови в 30 раз выше, чем у «устойчивого» индивида при тех же дозах этанола. Частота неактивного аллеля альдегидегидрогеназы также высока в Юго-Восточной Азии и составляет там 30–50 %. В Японии аллель выявлен у 2 % алкоголиков и 44 % неалкоголиков. Гомозиготы по альдегиддегидрогеназе ALDH2 практически не встречаются среди больных алкоголизмом.
Риск развития алкоголизма в 100 раз выше при сочетании (1), чем при сочетании (2), показанным на рисунке. Ген ADH1b может быть вовлечен в адаптацию к внешней среде: показано, что в Юго-Восточной Азии высокая частота аллеля ADHlb*47His обусловлена действием отбора, тогда как в других регионах преобладает предковый вариант ADHlb*47Arg. Возможными факторами отбора могли быть какие-либо особенности диеты или инфекции.
Гены метаболизма алкоголя и риск развития алкоголизма
Риск развития алкоголизма в 100 раз выше при сочетании (1), чем при сочетании (2)
Распространенность аллеля ALDH2*2 (фермент не активен) у монголоидов 30–50 %
В Японии аллель выявлен у 2 % алкоголиков. 44 % неалкоголиков
Гомозиготы по алкогольдегидрогеназе ALDH2*2/2 практически не встречается среди больных алкоголизмом
Частота аллеля ADH1b*47Hi$
финны — 0, русские — 6 %, якуты -16 %, китайцы 76 %
Д. И. Люри
ЭКОЛОГИЯ (ойкос — «дом, жилище») — наука о взаимоотношениях между организмами и средой их обитания. Такое определение дал классик современной экологии Ю. Одум в 1975 году. Но изначально термин был предложен Э. Геккелем в 1866 г. Как наука, экология сформировалась как раздел биологии примерно к 1900 г. Чем же занимается экология? Есть много подразделений экологии, здесь дана упрощенная схема.
1. Один из крупных блоков экологии — биоэкология, наука о взаимодействии организмов с окружающей средой. Один из ее подразделов — аут-экология, изучающая взаимодействие видов с окружающей средой. На слайде представлена фотография птенцов белоголового орлана, по отношению к ним, а также и к любому другому виду аут-экология изучает ареал распространения вида, его экологическую нишу, то есть в каких пределах температуры, влажности, скоростей ветра, живет орлан, чем он питается, где гнездится, какие есть влияющие на его жизнь экологические факторы — паразиты, хищники, жертвы, как происходит динамика популяции, адаптацию к окружающей среде и т. д. Другой раздел — син-экология, изучающая закономерности образования сообществ, а также взаимодействие этих сообществ с окружающей средой. На слайде показана астраханская степь, в которой живет орлан. Синэкология изучает проблемы объединения разных видов в общую экосистему-биогеоценоз, пищевые цепи, как по этим цепям движется энергия, трофические пирамиды (как вещество и энергия движется по цепям), потоки энергии и круговороты веществ в экосистемах.
2. Второй крупный блок — социоэкология, изучающая взаимодействие человеческого общества с окружающей средой. Она тоже делится на две части. Первая — экология человека, изучающая влияние окружающей среды на здоровье и жизнедеятельность человека, как биологического вида, а конкретно комфортность среды для человека, влияние ядовитых и токсичных веществ, заболеваемость, системы жизнеобеспечения и т. д. Вторая часть — социо- или геоэкология, изучающая взаимодействие цивилизаций, создаваемых ею систем, с окружающей средой, а конкретно загрязнение среды, деградация экосистем, экологические кризисы, проблемы устойчивого развития и т. д. На слайде показано поле, на котором выращивают бахчевые культуры. Такое поле используется всего три — четыре года, после этого оно становится непригодным.
3. Третий блок — прикладная экология, занимающаяся созданием техники, технологий и методов для:
• минимизации воздействия человека на среду,
• контроля за ее состоянием,
• управления средой,
• охраны природы и рационального природопользования,
• систем жизнеобеспечения и др.
Кроме перечисленных выше направлений есть еще псевдоэкология (экология культуры, мышления, разума, стеклопакетов и т. д. и т. п.), служит для привлечения денег, клиентов и прочих благ. Экология — «несчастная» наука, стала она несчастной лет 20 назад, когда политики и журналисты ее очень полюбили и стали использовать этот термин вне связи с его научным содержанием.
В этой лекции будет преимущественно рассказано про социоэкологию. В сферу внимания социоэкологии входит:
• влияние природных факторов на развитие цивилизации
• влияние человеческой деятельности на окружающую среду
• деградация окружающей среды, загрязнение и др.
• закономерности ресурсопользования и управление ресурсами
• экологические угрозы
• экологические кризисы
• устойчивое развитие: правила и способы перехода
• экономическая и внеэкономическая оценка стоимости природных ресурсов
• ренатурализация и рекультивация нарушенных экосистем
• правила сохранения природных экосистем и биоразнообразия
Сейчас идут разговоры об изменении климата. Является ли это следствием деятельности человека или нет, как оно подействует на человека? На этот вопрос сейчас нет однозначного ответа. Также существует проблематика экологической угрозы, попытки оценить экономически и внеэкономически стоимость природных ресурсов. Возьмем, например, лес. Ясно, сколько стоит древесина, ягоды, пушнина в отдельности. Но также ясно, что лес не сводится к этим ресурсам, он еще очищает воздух, запасает углерод и т. д. Возникает вопрос, как это оценить? Это огромная проблема во всем мире. В нашем современном рыночном мире то, что не имеет стоимости, не включается в систему цивилизации, в какие-либо программы охраны.
Можно ли выделить основную проблему геоэкологии, такую, от которой зависят ответы на частные вопросы? Ее можно сформулировать так: является ли цивилизация составной частью системы биосферы или самостоятельной системой — биосферопользователем? В первом случае есть механизмы, регулирующие развитие цивилизации, направленные от биосферы к цивилизации, то есть цивилизация включена в систему биосферных процессов, во втором случае таких механизмов нет и цивилизация "сидит" на биосфере как спрут.
От ответа на этот вопрос зависят стратегии выживания человечества. Понятно, что человек — потребитель ресурсов (сам он ресурсом не является, разве что для комаров). Потребителей (называемых в экологии консументами первого порядка, консументами второго порядка) очень много, однако они никогда не смогут «съесть» свою экосистему, потому что существуют механизмы регуляции их численности. Это проиллюстрировано на следующем рисунке:
Динамика численности «потребителя» при наличии (А) и отсутствии (Б) регулирующих связей с «ресурсом»
На верхнем графике показаны колебания численности рыси и зайца по данным о закупках шкур этих зверей компанией Гудзонова залива. Это классическая схема колебания численности зверей при наличии механизмов их регуляции. Рысь никогда не сможет съесть всех зайцев, так как существуют механизм регуляции. В более упрощенной схеме (справа вверху) колебания выравниваются и численность колеблется около среднего значения.
Совершенно по-другому ведет себя система, если нет регулирующих связей (нижний график). Есть какая-то питательная среда, туда «высевается» жертва, после в пробирку запускают хищника, который съедает жертву и затем сам погибает от голода.
Какая из этих схем соответствует отношениям цивилизации и биосферы?
Существуют два подхода к разрешению этого вопроса. Первый подход, которого, к сожалению, до последнего придерживалось большинство ученых, представляет человека как биосферопользователя. Этот подход представлен в ставших классическими работах супругов Даниелы и Денниса Медоузов и Й.Рандерса, выполненных под эгидой Римского клуба (организация, созданная 100 крупнейшими промышлен никами, они дают заказы ученым, которые пишут книги на заказанные темы). Это работы «Пределы роста» (1972 г.) и «За пределами роста» (1992 г.). На схеме из этой книги человек представлен системой, стоящей на потоке, переводящей энергию высокого уровня и ресурсы в отходы.
Человек здесь представлен как система, стоящая на потоке, превращающая энергию высокого уровня (солнечную энергию, нефть) и ресурсы (древесину, полезные ископаемые) в энергию низкого уровня, словом, ресурсы в отходы.
Смысл работы в том, что источники ресурсов и стоки имеют свои пределы. Человечество близко подошло к этим пределам, и из-за экспоненциального роста скоро эти пределы перейдет. Выход за эти пределы грозит катастрофой, разрушением биосферы, а вместе с этим и разрушением человечества в целом. Так, как это было представлено с моделью хищника и жертвы в пробирке.
Какие существуют ограничения по использованию ресурсов? Из 3.2 млрд. га максимально возможных зеленых ресурсов (то есть если мы сведем все леса) мы используем 1.5. Использовали уже почти половину доступных водных ресурсов, треть лесных и т. д. Согласно этим расчетам, 10 % стоков уже заполнено.
Сценарии будущего по модели МИР-3
Если вложить в эту модель удвоенные значения пределов, то есть если у нас в 2 раза больше ресурсов, чем мы сейчас думаем, и если у нас будут сверхмощные, безотходные технологии переработки, картина принципиально не изменится, только сдвинется на 20–30 лет.
Сверху показана схема оптимистического сценария. Если в 1995 г принята программа стабилизации населения (1 семья — 2 ребенка), внедрены безотходные и ресурсосберагающие технологии, удвоенные значения пределов. Все это приводит к тому, что в 2005 г. ситуация стабилизируется. Но так как ничего не сделано, Медоузы разработали модель, когда меры приняты в 2015 г. Тогда ситуация несколько ухудшается, а затем стабилизируется. И чем позже приняты меры, тем больше "оптимистический" сценарий приближается к стандартному.
Что же предлагается в социально-экономическом отношении:
• Скорейшее прекращение роста населения (к 2015 г.: 1 семья — 2 ребенка, эффективность контроля -100 %).
• Стабилизация промышленного производства на уровне 350$ на человека в год (это примерно Южная Корея или в два раза больше, чем Бразилия в 1990 г.).
• Внедрение «безотходных» и ресурсосберегающих технологий (снижение ресурсопользования и загрязнения до уровня 1975 г.).
В отношении ресурсопользования:
• Темпы потребления возобновимых ресурсов не должны превышать темпов их регенерации.
• Темпы потребления невозобновимых ресурсов не должны превышать темпов их замены на возобновимые (очень сложно выполнить в практическом смысле, т. е. наращивать добычу нефти так, чтобы вкладывать в лесоразведение, чтобы количество энергии в новых лесах было таким же, как в использованной нефти)
• Темпы выбросов загрязняющих веществ не должны превышать темпов их природной «переработки» (очистки).
Требования очень жесткие. Но они мягкие по сравнению с другой теорией.
Вторая теория, называемая «теорией золотого миллиарда» принадлежит физику
В.Г. Горшкову, разработана в 1990–1995 гг. Она говорит о следующем:
1. Биосфера представляет собой систему, работающую по принципу Ле Шателье (компенсация внешних воздействий внутренними механизмами).
2. Действие этих механизмов устойчивости обеспечивается «невозмущенной биотой», т. е. ненарушенными природными экосистемами.
3. Разрушение природных экосистем приводит к потере устойчивости биосферы, ее разрушению и последующей гибели цивилизации
4. Современная цивилизация уже превысила пределы возмущения биоты, что привело к нарушению принципа Ле Шателье (биосфера, теряющая управляемость — об этом говорит изменение климата, нарушение/размыкание круговоротов, загрязнение среды и др.).
Устойчивость суши, по его мнению, была нарушена в середине XVIII века, до начала XX века устойчивость биосферы поддерживалась за счет океана, после чего она была нарушена глобально. Принцип, заложенный в основу работы, совершенно другой, если у Медоузов были рассмотрены ресурсы, то здесь рассмотрена термодинамическая модель биосферы.
Пределы нарушения биоты: площадь нарушенных экосистем не должна превышать 20 % от площади суши, а сейчас нарушено уже 60 %, доля антропогенного потребления продукции биосферы не должна превышать 1 %, а сейчас она составляет 10 %. То есть здесь тоже есть пределы, но совсем другие.
Пределы нарушения биоты
В социально-экономическом отношении предлагается сокращение численности населения за несколько десятилетий в 10 раз до 0,5–1 млрд. человек. В отношении ресурсопользования предлагается:
1. Фактический отказ от использования невозобновимых ресурсов: уменьшение их эксплуатации в сотни раз.
2. Прекращение роста энергопотребления (в первую очередь ГЭС и АЭС).
3. Сокращение вырубки лесов как минимум в 10 раз.
4. Прекращение экспансии на еще неосвоенные земли и сокращение уже используемых в 3 раза.
Как это сделать — неизвестно, в том числе и автору теории, понятно, что демографическими методами это сделать не удастся (если только мерами физического воздействия)
Что общего в этих двух классических работах? Очень жесткие требования к численности населения и ресурсопользованию. Причем если эти требования не будут выполнены в ближайшие десятилетия, нам грозит катастрофа.
Этот подход очень безрадостен. Допустим, эта модель верна. Но мы реально не готовы не только сократить население, но даже и прекратить его рост (как показывает опыт Китая). Переход только на возобновимые ресурсы — также невозможен, это другая цивилизация. Допустим, мы согласимся принять меры, а окажется, что модели неверны.
То есть в любом случае, будем ли мы принимать эти требования или нет, согласно этим моделям наша цивилизация или погибнет или радикально поменяется.
Второй подход гласит, что цивилизация — часть биосферы. Основу заложили работы Вернадского, Тьер де Шардена и др. Их теория ноосферы говорит о том, что появится некий центр, который может управлять биосферой с помощью разума. Этот подход представлен на следующей схеме.
Цивилизация как часть биосферы
Рассмотрим с этих позиций взаимоотношения человека с ресурсами и с природой. Начнем с типов ресурсов? Ресурсы существуют возобновимые и невозобновимые. Мы можем выделить 4 типа:
1. природно-возобновимые ресурсы (воздух, вода, растительная и животная биомасса):
• они восстанавливаются после использования до исходного состояния посредством природных механизмов
• производительность природных механизмов восстановления имеет свой предел (река может переработать определенное количество отходов в год, а если больше — то начнется загрязнение)
• человек может вложить средства в интенсификацию возобновления
2. антропогенно-возобовимые ресурсы (металлы, сера, соли, фосфаты, строительные материалы и т. д.):
• восстановления осуществляется только самим обществом за счет имеющихся у него средств
• в принципе могут быть восстановлены после использования до исходного состояния, но природные механизмы для этого отсутствуют
3. невозобновимые ресурсы (энергоресурсы углеводородные — нефть, газ, уголь, неуглеводородные — уран, а также алмазы-брильянты т. д.). Они в принципе не могут быть восстановлены после использования до исходного состояния.
4. условно неисчерпаемые ресурсы (солнечная и гравитационная энергии):
• поступают из-за границ биосферы
• за счет них функционируют природные механизмы восстановления ресурсов
Соотношение между этими группами представлено на рисунке. Видно, что возобновимых ресурсов большинство, они могут вовлекаться в круговороты «ресурс — отход — ресурс» посредством природных и антропогенных механизмов.
БОЛЬШИНСТВО РЕСУРСОВ ЯВЛЯЮТСЯ ВОЗОБНОВИМЫМИ И МОГУТ ВОВЛЕКАТЬСЯ В КРУГОВОРОТЫ «РЕСУРС-ОТХОД-РЕСУРС» ПОСРЕДСТВОМ ПРИРОДНЫХ II АНТРОПОГЕННЫХ МЕХАНИЗМОВ
Рассмотрим способы взаимодействия человека с природой (эволюции ресурсопользования). Первый тип назван «природа — мать». Заключается он в том, что энергия тратится только на добычу ресурсов (охота, собирательство), которые затем восстанавливаются посредством природных механизмов. Вся промышленность начинается именно с этого — воздухо- и водопотребление без очистки (только там нет природного восстановления).
МОДК. Ill РЕСУРСОИОЛЬЮНАИНЯ
1. «ПРИРОДА — МАТЬ»
К этому типу ресурсопользования относятся охота, собирательство, отгонное животноводство, начало индустриального производство (воздухо- и водопотребление без очистки), начало добычи полезных ископаемых и др. Объемы ресурсопользования при этом ограничены регенерационным потенциалом природы — мы не можем убить мамонтов или выловить рыбу больше определенного количества. Поэтому человечество переходит на второй тип, названный «природа — соратник». Его суть в том, что восстановление ресурсов идет за счет природы и человека, интенсивность цикла зависит от общих регенерационных вкладов природы и человека, при этом снимается ограничение на объемы ресурсопользования.
Человек делает ресурсные циклы все более и более интенсивными. Начало этого этапа связано с возникновением земледелия. Сейчас преобладает почти во всей ресурсной деятельности, т. е. человек использует ресурсы, которые требуют от него затрат на восстановление. биомассы и для рыбных ресурсов.
Видим, что чем больше добыча рыбы, тем больше доля аквакультуры. Рыболовство заменяется рыбоводством. Сейчас каждая пятая рыба выращена, а не выловлена. Чем больше мы используем ресурсов, тем больше мы вкладываем в их восстановление.
Продуктивность древесных насаждений в 20 раз может превосходить продуктивность естественных лесов. Использование в водных ресурсах технологии «природа-соратник» — это их очистка и зацикливание. Данные по древесным и водным ресурсам представлены ниже.
Перейдем к антропогенно-возобновимым ресурсам.
Выше — данные по цветным металлам. Видим, что доля вторичного металла в потреблении все время растет. На осях трехмерного графика отложены запасы металлов, потребление металлов, доля вторичного металла. При малых запасах при увеличении потребления очень быстро растет доля вторичного металла, но стоит увеличиться запасам металлов, эта зависимость ослабевает. Подобные графики характерны для многих ресурсов.
И вполне, возможно, что если мы дальше будем развиваться по увеличению своей доли восстановления ресурсов, мы придем к третьему типу «природа-экспонат». То есть, в рамках этой модели мы полностью тратимся на добычу и восстановление ресурсов. В наше время этот тип встречается исключительно редко (например, в системах жизнеобеспечения на подлодках и космических станциях, но и там зациклены воздух и частично вода, но не продукты питания).
Мы как бы движемся к этому, но пока не подошли. Возникает вопрос: почему же мы еще не подошли? На рисунке ниже приведены обозначения, которыми мы будем пользоваться.
• R — объем ресурсопользования (то количество ресурсов, которое мы получаем за единицу времени, за год);
• А — объем потребления (разница между тем, что получили и тем, что затратили);
• Z — затраты, подразделяются на D (затраты на добычу) и V (затраты на восстановление);
• Р — это то, что природа восстанавливает;
• К1 и К2 — удельные затраты на добычу и восстановление.
А теперь давайте посмотрим, как изменяется эффективность ресурсопользования по мере роста его объемов. Если мы возьмем «природу-мать», то это будет просто константа. Для системы «природа-соратник» получается, что чем больше объемы ресурсопользования, тем больше падает эффективность, то есть каждая единица ресурса становиться все дороже. Именно поэтому доля восстановленного хорошо растет при малых запасах ресурсов, и плохо — при больших. Если ресурсов достаточно, то в их восстановление средства не вкладываю
Посмотрим, в какой мере это соответствует реальности.
Если при собирательстве, затратив 1 дж, получали 20 джоулей, то при агропромышленном производстве это на порядок меньше.
Рост объемов ресурсопользования сопровождается падением его эффективности. То есть каждая единица ресурсов дается нам дороже и дороже.
Из этого следует, что у нас есть первый регулирующий механизм в системе "общество-природа", который основан на совместном с природой восстановлении ресурсов.
Напомню, в системе Медоузов человек стоял на протоке, превращая ресурсы в отходы. А здесь принципиально другая схема, человек участвует в ресурсном цикле, восстанавливает ресурсы вместе с природой.
Итак, рост объема ресурсопользования ведет к снижению эффективности, добыча ресурса становится все дороже и дороже, это ведет к замедлению роста объема ресурсопользования (потом даже и к падению объема)
Получается, что, двигаясь по этой ниспадающей кривой, мы найдем где-то равновесную точку, которая будет нас устраивать и по эффективности (по стоимости добычи ресурса), и по объемам ресурсопользования.
Механизм, показанный выше, хорош всем, кроме того, что никак не соответствует тому, что происходит в действительности. В таблице показано, что у нас на самом деле получается.
Так происходит потому, что затраты на восстановление обычно гораздо ниже необходимых, всех волнует только одно — объемы потребления. Поэтому вся наша стратегия ресурсопользования направлена на увеличение объемов потребления. Люди стремятся увеличить объемы ресурсопользования и снизить затраты. Снижать затраты на добычу ресурсов почти невозможно (очевидно, если вы не посеете зерно, то вы его и не соберете), а с восстановлением все гораздо проще — его можно отложить на будущее. И в этом одна из основных причин экологических кризисов.
В реальности мы не движемся по равновесной траектории. Мы сначала отходим от нее (фаза I на рисунке), увеличивая объемы ресурсопользования без соответствующего увеличения вложений в восстановление ресурсов, и получаем в результате излишки ресурсов.
И все вроде бы хорошо, но затем у нас начинают истощаться ресурсы. В связи с этим увеличиваются удельные затраты на их добычу, следовательно, падает эффективность. То есть, мы сталкиваемся (фаза II) с той же проблемой, что и при движении по равновесной траекторией, только на равновесной снижение эффективности связано с увеличением затрат на восстановление ресурсов, а на кризисной траектории — с ростом затрат на их добычу. Причем в первом случае не происходит истощения ресурсов. Выход из сложившейся ситуации возможен тремя принципиально различными путями.
(1) Первый — социально-благоприятный. Мы вкладываем средства в восстановление ресурсов, но мы платим за это падением эффективности. В результате мы оказываемся на равновесной траектории.
(2) Второй — социально-неблагоприятный, когда у нас нет средств для восстановления, объем ресурсопользования сокращается до равновесного.
(3) Третий — катастрофический, когда ресурсы настолько истощены и нет механизма их природного или антропогенного восстановления, что объемы ресурсопользования падают до нуля, что приводит к гибели основанной на них цивилизации.
В правом верхнем углу рисунка тот же процесс показан в других координатах — вместо эффективности (Е) здесь затраты (Z).
Таков механизм развития экологических кризисов. Под экологическими кризисами мы понимаем такой этап развития системы "общество-природа", при котором высокоэффективное увеличение объемов ресурсопользования и потребления, достигаемое за счет истощения ресурсов, тем или иным образом меняется на восстановление ресурсно-экологического равновесия ("вираж экологического кризиса").
Причина их заключается в стремлении человека увеличивать объемы потребления наиболее быстрыми темпами (что характерно для большинства обществ) и, экономя на регенерационных затратах, повышать эффективность хозяйства.
Возникновение таких этапов в ходе развития ресурсопользования является вполне закономерным, поскольку потребительские цели главенствуют в современном обществе и поэтому постоянно толкают его к отклонению от равновесной траектории.
Некоторые характеристики кризиса: Г — глубина кризиса (максимальное удаление от равновесной траектории), φ — резкость кризиса, (tкон. — tнач.) — продолжительность кризиса (период между уходом с равновесной траектории и возвращением на нее).
Рассмотрим конкретные примеры. Ниже показана история развития сельского хозяйства в центральном Черноземье России в 1785–1985 гг. В самом начале у нас восстановление ресурсов было намного меньше, чем необходимо, за счет этого достигалось потребление ресурсов в 2 раза большее, чем могла обеспечить равновесная траектория. Эффективность была 1.4 джоуля на джоуль, тогда как надо было бы 1.2 дж/дж, при этом шла деградация почв.
В 45-ом году луга стали настолько вытравлены, что стала падать численность скота, вследствие этого снизилось внесение удобрений, а затем стала падать урожайность зерновых, результатом чего стал знаменитый голод конца 19-ого века. Здесь есть момент, похожий на то, что происходит в нашей стране сейчас. Дело в том, что после освобождения крестьян освобожденный пахарь перестал вкладывать средства в восстановление почв, и этот привело к кризису. Аналогичным образом сейчас "освобожденный бизнесмен" тоже первым делом перестает вкладывать средства, как говорят, "в экологию", что также ведет к кризису.
В начале 20-го века кризис углубился — хотя вложения пошли, но их не хвата-
Лишь в 1950-х годах в ЦЧР началось активное увеличение вложений в регенерацию агроресурсов при переходе к современному агропромышленному хозяйству. Их 10-кратный рост позволил в 6 раз повысить объемы ресурсопользования и при этом практически полностью восстановить ресурсно-экологическое равновесие — прекратить истощение полей и ослабить пастбищную дигрессию. Платой за это стало снижение эффективности примерно в 2 раза с 1.5 до 0.9 дж/дж.
Грустно, что даже при падении объемов ресурсопользования мы не вкладываем деньги в восстановление ресурсов, хотя, казалось бы, уже все плохо и надо что-то делать, мы все равно пытаемся на этом экономить. В современной России, падение объемов ресурсопользования гораздо больше, чем падение выбросов загрязнений.
Похожая ситуация имела место на Великих Американских Равнинах в середине XX в. Аналогичным образом произошел выход из экологического кризиса, связанного с загрязнением атмосферы в США оксидами серы. Развитие угольной энергетики без необходимой очистки выбросов к 1970-м годам привело к катастрофическому загрязнению атмосферы оксидами серы в крупных городах. Однако последующие огромные вложения в очистные сооружения позволили к 90-м годам не только продолжать наращивать производство электроэнергии из угля, но и довести загрязнение воздуха до приемлемого уровня. Платой за это стало снижение рентабельности энергетики США в некоторых штатах на 20 %.
Теперь посмотрим кризис с неблагоприятным выходом. Выше проиллюстрировано развитие животноводства в аридной Африке. График показывает зависимость деградации пастбищ от увеличения объемов использования мясо-молочной продукции. Некоторые страны миновали кризис, а часть стран в него вошла. Марокко и Тунис вложили средства и достигли равновесной траектории. А Сомали, Нигеру и Кении ничего не оставалось, только как катастрофически сократить численность скота.
Кризис с катастрофическим исходом. Ниже показано, как мы выбили китов (есть модель того, как мы выбили мамонтов, с абсолютно идентичным графиком). Был перейден рубеж естественного восстановления, потом мы продолжали некоторое время истощали ресурсы, потом китов стало мало и начала падать эффективность их добычи, а затем снизилось ресурсопользование. У нас стали слишком совершенными технологии добычи, поэтому голубых китов мы добили до последнего.
Посмотрим типологию экологических кризисов. Кризисы, о которых шла речь выше — это кризисы от жадности. Представим себе другую ситуацию. Мы развиваемся по абсолютно равновесной траектории, например, сбрасываем мало отходов в Финский залив. И в какой-то момент мы просто строим некую дамбу. В результате изменяется вся структура потоков, механизмы восстановления начинают работать хуже, и мы оказываемся в состоянии кризиса. Равновесная траектория сама падает, а не мы от нее отодвигаемся. Это кризисы "от глупости". И третий тип — природные кризисы, когда снижение регенерационного потенциала природы происходит в результате естественных причин.
Ответим на три вопроса: когда НУЖНО выйти из кризиса, всегда ли МОЖНО выйти из кризиса, ХОТИМ ли мы выйти из кризиса.
Экологический кризис нам нужен для того, чтобы увеличить объемы потребления. Рассмотрим динамику ресурсопользования при развитии кризиса.
Синяя линия на рисунке — это как бы росли объемы потребления, если бы мы развивались по равновесной траектории, кривая линия показывает развитие по кризисной траектории. Заштрихованы — кризисные излишки потребления. После достижения точки максимального потребления и точки максимального ресурсопользования кривая идет вниз, но понятно, что ниже прямой R = D она не упадет (R — добываемые ресурсы, D — затраты на добычу).
Посмотрим, как развиваются события, если мы не вкладываем ничего в восстановление ресурсов. У нас начинает загибаться кривая объемов ресурсопользования, а ей навстречу падают равновесные объемы ресурсопользования. В итоге, точка их пересечения является наиболее выгодной точкой ресурсопользования. И чем более совершенны технологии добычи, тем глубже оказывается эта точка.
Посмотрим теперь этот же график в "более важных" координатах — объемы потребления (А) и объемы ресурсопользования (R).
На этом графике показано, что в ходе кризиса у нас возникают 4 критических точки: (1) когда кризисные объемы потребления равны максимально возможным равновесным, (2) когда достигаются максимальные объемы потребления, (3) когда максимальны объемы ресурсопользования, (4) когда равновесные объемы потребления равны нулю.
Развитие событий при выходе из кризиса на разных участках кризисной траектории представлены на следующем рисунке:
Когда мы выходим до первой кризисной точки (слева вверху), у нас абсолютно не снижаются объемы потребления, заштрихованную часть ресурсов мы вкладываем в восстановление ресурсов, и только в какой-то момент снижаются темпы роста потребления.
Когда мы выходим между первой и второй точкой (справа вверху), мы, судя по рисунку, должны заплатить снижением объемов потребления. На самом деле, это не совсем так, потому что люди могут находить новые ресурсы и технологии. Этот момент — наиболее подходящий для маневра, потому что человечество достигает того, что хотело, входя в этот кризис, максимальных объемов потребления. Дело в том, что здесь мы можем делать ресурсный маневр: часть новых ресурсов и технологий вкладывать не в увеличение объемов производства, а в восстановление ресурсной среды.
Если мы переходим вторую критическую точку (слева внизу), то события все больше усложняются и вероятность выхода из кризиса снижается. После четвертой критической точки (справа внизу) вероятность выхода без снижения численности населения практически нулевая.
Посмотрим, что происходит с населением во время кризиса. Введем еще один параметр — Аж — объем минимального жизнеобеспечения.
Аж = N*а(min),
где N — численность населения, a(min) — минимальный уровень потребления.
Если у нас реальный объем индивидуального потребления очень велик, то мы, в принципе, можем согласиться на то, чтобы не покупать второй телевизор и вложить эти средства в восстановление природы; но последний кусок хлеба мы для этого не отдадим. И если объемы жизнеобеспечения идут практически рядом с кризисными объемами потребления, то у человечества просто нет ресурсов, чтобы вкладывать в восстановление.
Ниже показана картинка для Сомали, Кении и т. д. — им просто не откуда взять ресурсы, чтобы их восстановить. Бросается в глаза, что мы можем выйти из кризиса только в том случае, если объемы жизнеобеспечения будут расти достаточно медленно, не доходя до второй критической точки. Мы можем выйти из кризиса только в этой ситуации. Но это достаточно трудно осуществить.
Экологический кризис гасит демографический взрыв прирост населения % в год
Падение темпов роста численности населения начинается с 700-1000 $ВВП/чел∙год и 2000–2300 Кал/чел∙день
Известно, что чем богаче страна, чем больше ВВП на душу населения, тем меньше прирост населения. Падение темпов роста населения начинается в среднем с 1000$ в год, или в других координатах с 2000 калорий в день на человека.
Экологический кризис и демографический взрыв: кто быстрее?
выход из кризиса с падением уровня индивидуального потребления не ниже аmin, если Аж приближаемся к Aeq между первой Acr = Aeq(max) и второй Асr(maх) критическими точками.
То есть происходит следующее. Мы входим в экологический кризис, чтобы получить максимальные объемы потребления, тем самым мы увеличиваем индивидуальные объемы потребления, и таким образом гасится демографический взрыв, являющийся одним из основных толчков экологического кризиса. Если экологический кризис успеет погасить демографический взрыв до второй критической точки, то есть шанс выйти из экологического кризиса, если нет — шансы резко падают.
Вышесказанное можно обобщить следующей схемой.
Механизм регулирования экологического кризиса
Основан на обратной зависимости скорости роста населения от уровня потребления
Давайте посмотрим на конкретные числа. В следующей таблице показан прирост населения в 1990 году относительно 1950 года, а также ресурсопотребление. Видно, что только потребление картофеля и шерсти не превосходит прироста населения. Видно, что индивидуальное ресурсопотребление растет, а прирост населения падает, то есть наши рассуждения оправдываются.
Теперь ответим на последний вопрос: хотим ли мы платить, вкладывая средства в восстановление ресурсов? Неким образом было рассчитано для 149 стран мира «экологичность» экономики (ВВП страны и «чистоту» производства внутри страны), по отношению к среднему мировому значению, равному единице. На этом слайде показана логарифмическая зависимость «экологичности» экономики от ВВП на одного человека. Видно, что чем богаче страна, тем более высокоэкологичную экономику она имеет, люди хотят жить в гармонии с окружающей средой и ради этого готовы вкладывать деньги в восстановление ресурсов. Это можно назвать неким «культурным» механизмом регулирования взаимодействия человека с природой.
Хотим ли мы платить? «Культурный» механизм регулирования взаимодействия человека и природы
В заключении хочется отметить, что сейчас происходит поворот от представления цивилизации как биосферопользователя, к представлениям о том, что все-таки существуют некие биосферные механизмы регулирования человеческой деятельности.
Наверняка каждый бывавший в селе человек видел, как утята бегают за своей мамой-уткой. Откуда же они знают, кто их мама и за кем надо бежать? Здесь мы сталкиваемся с явлением импринтинга (от англ. запечатлевать), описанным лауреатом Нобелевской премии Конрадом Лоренцом. Дело в том, что если утенок или цыпленок увидит в течение нескольких часов после вылупливания движущийся объект, он будет бегать за ним всю оставшуюся жизнь. Образ движущегося объекта впечатывается в их зрительную память, это достаточно разумное эволюционное приспособление, так как в обычной жизни первое, что видят цыплята, — это их мать, которая обеспечивает их существование. Каким же образом формируются нервные связи, с помощью которых мы можем что-то запомнить? Об этом и пойдет речь.
Если вам нужно узнать время, вы можете взглянуть на часы и некоторое время помнить, что показывали стрелки часов. Но одного мимолетного взгляда на часы не достаточно, чтобы запомнить на всю оставшуюся жизнь, что именно в этот момент было столько-то времени, разве что в это время произойдет что-то необычное. При неоднократном повторении какого-либо действия оно запоминается и уходит в так называемую долгосрочную память. Механизмы формирования кратко- и долгосрочной памяти разные. Они были изучены на разных животных, от улиток до обезьян, и знания, полученные в экспериментах, применяются сейчас в медицине, а также помогают понять, что происходит, как происходит развитие ребенка. Каким образом формируется память? Со школы известно, что мозг состоит из нейронов, у которых имеется тело, длинный отросток аксон и короткие отростки дендриты, которые получают сигнал от других нейронов или рецепторов, обрабатывают его и посылают его дальше. При рождении животного часть нервных путей уже сформирована, это то, что называют безусловными рефлексами или комплексами фиксированных действий. Это набор реакций на какой-либо стимул, для которых не требуется обучения. На прошлых лекциях упоминалось, что у ребенка при рождении есть набор рефлексов, например хватательный и сосательный. На основе врожденного поведения формируется дальнейшее поведение. Мы разберем формирование нервных связей на примере зрительных, то есть, как ребенок или котенок учится различать объекты. При рождении животное не способно различать объекты, хотя способно реагировать, например, на яркий свет, так как глаза у котенка устроены так же, как и у взрослой кошки, есть связи, передающие сигнал от светочувствительных клеток к зрительной коре, но структура этих связей еще не такая, как у кошки. После рождения, та часть коры головного мозга, которая отвечает за зрительное и другие типы восприятия претерпевает изменения. От глаз, светочувствительных клеток идут цепи нейронов к структуре, называемой боковым коленчатым телом, от них сигналы поступают к зрительной коре противоположной части головного мозга. Сигналы, поступающие в мозг, обрабатываются на каждой стадии поступления, то есть если в самом глазном яблоке миллионы рецепторов, то в боковом коленчатом теле на порядок меньше нервных связей, соответственно каждый нейрон получает сигнал от нескольких рецепторов. То, как формируется распознавание объектов в зрительной коре, было изучено на котятах. У новорожденного котенка, зрительные нервные связи перекрываются, но по мере накопления зрительного опыта оказывается, что глаза посылают сигналы в не перекрывающиеся участки коры, то есть остаются только те чередующиеся связи, которые идут только к одному глазу отдельно. Эти структуры называются колонками глазодоминантности. На слайде они показаны на примере макаки. Они видны, потому что макаке ввели в глаз радиоактивное вещество, которое распространилось только в тех клетках коры, которые отвечают за зрительное восприятие, то есть, имеют нервные связи с этим глазом.
Колонки глазодоминантности в стриарной коре макаки формируются в результате конкуренции потоков нервных импульсов от левого и правого глаза
Hubei and Wiese 1977
Исследование того, как сигнал с сетчатки глаза последовательно передается в структуры мозга и как он обрабатывается в каждой из них, что приводит в конечном итоге к восприятию изображения, провели лауреаты Нобелевской премии Дэвид Хьюбел и Торстен Визел. Они провели серию экспериментов по так называемой монокулярной депривации у котят. Один глаз у новорожденного котенка закрывали на несколько недель. Сигналы от этого глаза поступали в кору. Было показано, что соответствующие этому глазу колонки глазодоминантности были очень узкими, в то время как от другого — очень широкими. Таким образом тот глаз, который был закрыт, представлен в коре головного мозга небольшим числом нервных связей. Если через месяц глаз открыть, то новые нервные связи уже не образуются, хотя глаз и нервные структуры не повреждены. Это говорит о существовании сензитивного (чувствительного) периода, когда клетки компетентны и способны образовывать нервные связи, соответствующие получаемому опыту. После этого периода такие нервные связи не образуются. До того, как были проведены эксперименты с котятами, когда врачи лечили врожденную катаракту (помутнение хрусталика) у детей, операцию откладывали на более поздний возраст, когда ребенок легче перенесет операцию. В результате после операции зрение не восстанавливалось. После проведения опытов с котятами стало ясно почему — у детей проходил сензитивный период, когда еще был смысл проводить операцию. Если котятам в течение сензитивного периода закрывать глаза по очереди, то у котят не формировалось бинокулярное зрение, то есть они видели, но не могли оценить перспективу.
Есть концепция, основанная на ряде проведенных опытов, что процесс образования колонок глаза доминантности является конкурентным, идет конкуренция потоков сигналов от левого и правого глаза. Так же конкурентный характер носит формирование связей в других участках коры, принимающих сигналы от других рецепторов. Представление о конкурентном формировании нервных структур мозга разработана Джеральдом Эдельманом (лауреат Нобелевской премии за серию работ по структуре антител). Эдельман показал, что при поступлении сигналов между нейронами, которые активируются одновременно, образуются нервные связи. Они образуют группы нейронов, которые на следующем этапе обучения животного, образуют группы более высокого порядка и так далее.
Схема различных типов связей в группах нейронов
Edelman 1987
Таким образом, в результате приобретения жизненного опыта изначально одинаковые нейроны делятся на группы, которые взаимодействуют и работают вместе при поступлении какого-либо сигнала. Например, если одна группа нейронов отвечает за вкус, другая — за цвет, третья — за запах, четвертая — за форму, то при возникновении связей между этими группами можно создать целостное представление о яблоке. На каждом этапе образование нервных связей между группами нейронов идет за счет конкуренции, то есть если сигналы не поступают, то нервные связи отмирают, и наоборот. Свою концепцию Эдельман назвал нейродарвинизмом, так как процесс конкурентного отбора нервных связей очень похож на естественный отбор, происходящий в процессе эволюции и образования видов.
Следующая серия экспериментов была проведена с совами Э.Кнудсеном. У сов очень хорошо развита зрительная и слуховая система. На совенка надевали призматические очки, в которых все образы смещались на двадцать градусов в сторону. Происходило рассогласование между слуховыми и зрительными сигналами. Через некоторое время после того, как зрительная кора сделала пересчет на двадцать градусов назад, слуховая система подстроилась под зрительную, и совенок без проблем ловил мышей. Но это происходило только в том случае, если совенку было не больше 70 дней. Если после этого очки снять, то слуховая кора может опять подстроиться под зрительную, но только если совенку не больше 200 дней. Однако если совенка держать в вольере, где много других сов, сензитивный период увеличивался, они больше времени были способны к обучению. Их этих экспериментов был сделан вывод: богатая сенсорная среда продлевает сензитивный период.
Похожие опыты проводились и на крысах. Оказывалось, что у крыс, у которых была интересная, богатая среда, в коре сформировано больше нервных связей, у них более разветвленные дендриты на аксонах, на нейронах больше синапсов. Уже давно известно, что с младенчества ребенку надо давать много разных игрушек, погремушек, ярких картинок, чтобы он тренировал тактильные, зрительные и слуховые системы восприятия, у таких детей в дальнейшем лучше развиваются интеллектуальные способности.
В следующей серии экспериментов котят помещали в так называемую вертикальную среду (котята сидели в темноте, и свет зажигали ненадолго, при этом в пустом помещении имелись только вертикальные полоски на стенах). По окончании сензитивного периода их помещали в обычную среду. Оказалось, что такие котята не видят горизонтальные предметы, то есть если швабра стоит, то котенок может ее обойти, если она лежит, то он на нее натыкается. Это происходит потому, что в коре не образовались связи, реагирующие на горизонтальные предметы. То есть сигнал, поступивший через глаза и далее через боковое коленчатое тело, просто не может быть обработан в коре, он не распознается. Этот пример говорит о том, что животное, в частности человек, который в сензитивный период (до 3–5 лет) не получил богатый сенсорный опыт, будет ограничен в развитии своих интеллектуальных способностей. Пример — дети-Маугли, которых находили в возрасте 5–7 лет, не способных уже научиться говорить.
Каким образом изучают гены, связанные с поведением? Их изучают и животных и у человека. На прошлых лекциях упоминалось о том, как степень наследственной детерминации признака изучается на близнецах, монозиготных и дизиготных. Здесь представлено сравнение конкордантности (совпадения признака) по росту у моно- и дизиготных близнецов.
Видно, что у монозиготных близнецов совпадение по росту заметно больше, чем у дизиготных, из чего можно сделать вывод, что вклад наследственности велик. Поведение больше подвержено внешнему влиянию, но все же и здесь можно уследить, хоть и более слабое, но заметное влияние наследственности на поведение. В данном случае брался такой признак, как стремление к новизне, которое устанавливается на основе психологического тестирования и оценивался в баллах. Видно, значения признака у монозиготрных близнецов ближе, чем у дизиготных.
Стремление к новизне в парах близнецов
На прошлых лекциях уже рассказывалось о гене DRD4, ассоциированном со стремлением к новым впечатлениям. Длинный аллель этого гена с повышенной частотой встречается в семьях больных с наследственной формой алкоголизма, и он ассоциирован с «модным» детским диагнозом — синдром гиперактивности с нарушением внимания. Дети с таким диагнозом в школах не могут усидеть за партами. Любопытно, что это заболевание эффективно лечится без всяких таблеток на тренажерах с обратной связью. Детям показывают мультфильм на экране компьютера, и мультфильм выглядит резко, когда они внимательны. Внимательность фиксируется с помощью энцефалограмм, и в зависимости от внимательности детей изменяется резкость мультфильма.
Аллель с 7 повторами ассоциирован с повышенным уровнем стремления к новым впечатлениям, а также с синдромом гиперактивности с нарушением внимания
Имеется генетический вклад и в развитие наркотической зависимости — конкордатность монозиготных близнецов по злоупотреблению и зависимости от кокаина выше, чем у дизиготных.
Действие кокаина было изучено на крысах. У крысы с сформированной кокаиновой зависимостью нейроны, опосредующие действие кокаина, имеют больше синапсов, чем у нормальных крыс. То есть, кокаин оказал на крыс такое же действие, как обучение. То есть, человек или крыса, которая пользовалась наркотиком, прошел «обучение», чтобы реагировать на наркотик, и у него сформировались патологические нервные связи, которые делают для него полученный опыт легко восстановимым, потому что нервные связи уже есть. А другие нервные связи, которые бы в норме обеспечивали ему приятные ощущения от полезных для здоровья переживаний, из-за конкурентного формирования оказываются ослабленными. То есть использование наркотиков, особенно в раннем возрасте, меняет морфологию и анатомию нейронов, структуру коры головного мозга, и уклоняет развитие с нормального пути.
Влияние кокаина на нейроны
Крысы с сформированной кокаиновой зависимостью имеют больше синапсов, чем нормальные в зонах коры (nucleus accurubulens and preftonatl corex), связанных с действием кокаина
Как известно, сигнал в нейронах передается в два этапа. На первом этапе передается электрический импульс вдоль отростка нейрона. При этом происходит поляризация-деполяризация мембраны, потому что поперек мембраны идет поток ионов (К, Mg и т. д.). На участке контакта между двумя нейронами имеется структура, которая называется синапс. Это тесный контакт меду двумя клетками, а между ними имеется синаптическая щель. В эту щель при деполяризации мембраны передающего сигнал нейрона попадают нейромедиаторы (посредники передачи нервного импульса). На мембране воспринимающего нейрона «сидят» рецепторы, которые воспринимают сигнал, опять происходит поляризация-деполяризация мембраны и сигнал передается дальше. Ниже показаны некоторые вещества, которые выступают в роли нейромедиаторов: Глицин, ацетилхолин, γ-аминомаслянная кислота, гистамин, серотонин, дофамин и т. д. Структура некоторых нейромедиаторов представлена на рисунке.
Биосинтез дофамина и других катехоламинов
К примеру, дофамин образуется из тирозина, и в результате последовательности реакций получается адреналин. Существуют последовательности реакций, в которых происходит синтез нейромедиаторов и их распад. Рассмотрим это на примере дофамина. В пресинаптическом нейроне синтезированный дофамин упаковывается в пузырьки, которые, в ответ на поступивший сигнал, сливаются с пресинаптической мембраной и выпускают дофамин в синаптическую щель. Поступивший в синаптическую щель дофамин связывается с рецепторами на постсинаптической мембране и с ауторецепторами пресинаптического нейрона. Связывание нейромедиатора с рецепторами постсинаптического нейрона «включает» трансмембранный поток ионов, что приводит к изменению заряда мембраны нейрона. Изменение заряда (область переполяризации мембраны) распространяется вдоль аксона, что собственно и представляет собой нервный импульс, и сигнал идет дальше следующему нейрону. Через ауторецепторы синтез дофамина в пресинаптическом нейроне ингибируется. Неиспользованный дофамин транспортируется обратно в пресинаптический нейрон или окисляется ферментами, работающими в синаптической щели (катехоламин-о-метилтрансфераза, моноаминоксидаза и другие).
Другой нейромедиатор, серотонин, работает сходным образом. Есть нейрон, который передает сигнал, и есть нейрон, который его принимает. Передающий нейрон синтезирует серотонин. Когда поступает сигнал, серотонин выпускается в синаптическую щель и связывается с рецептором на мембране воспринимающего нейрона.
После того, как нейромедиатор серотонин поступил в синаптическую щель, часть его была использована для запуска сигнала и деполяризации постсинаптической мембраны, а часть (также как и в случае с дофамином) осталась «болтаться» в синаптической щели. Во-первых, этот неиспользованный серотонин разрушается ферментами. Но система устроена настолько экономично, что на пресинаптической мембране (то есть на мембране подавшего сигнал нейрона) «сидит» специальный белок — транспортер серотонина, который, как хорошая хозяйка, закладывает обратно на хранение неиспользованный серотонин. Оказалось, что генетически детерминированы две формы этого белка-транспортера, одна работает быстро, а другая медленно. Ниже показано, чем на уровне ДНК отличаются эти две формы. Оказалось, что различие между ними вызвано различием в регуляторной области гена.
Вставка в регуляторном участке гена транспортера серотонина ("длинный аллель”).
У гомозигот по длинному аллелю уровень синтеза данного белка в 2 раза выше, чем у гомозигот по короткому аллелю, что ассоциируется с повышенной склонностью к депрессии при неблагоприятных жизненных событиях.
Если белка-транспортера много, то серотонин поступает в синаптическую щель, и тут же начинает закачиваться обратно. Рецепторы, даже не успевают толком на него среагировать — это случай склонности к депрессии и, возможно, повышенной частоты самоубийств. Лекарства от депрессии блокируют работу транспортера серотонина и дают возможность серотонину сделать свою работу.
Для исследования связи между генотипом по гену серотонина и склонностью к депрессии провели следующий эксперимент. Выборку молодых людей до 26-летнего возраста опросили о том, какие тяжелые переживания достались на их долю, и о том, бывает ли у них депрессия, а затем определили, какие аллели он по гену транспортера серотонина они несут. Оказалось, что существует связь между перенесенными стрессами и сообщениями о депрессии в зависимости от того, какой вариант гена транспортера серотонина они несли. Люди с высокоактивным белком-транспортером серотонина чаще испытывают депрессию по мере накопления негативных событий в их жизни, чем те, у кого транспортер обладает низкой активностью. Если же негативных событий в жизни было мало, то различия между людьми с разными генотипами не были обнаружены.
Сейчас выявлено около 60 генов, регулирующих передачу нервного импульса в разных системах мозга.
Выше упоминался фермент моноаминоксидаза А (МАОА), который разрушает нейротрансмиттеры, оставшиеся в синаптической щели. Этот ген привлек внимание ученых, когда была обнаружен семья с мутацией в этом гене. На прием к врачу пришла женщина, которая хотела иметь ребенка, но боялась, что ребенок будет болен, — у нее в семье мужчины (не все, но многие) отличались высокой агрессивностью (немотивированная агрессия и легкая степень умственной отсталости). Когда они были обследованы, оказалось, что это не просто дурной характер, а генетически детерминированное заболевание. Родословная этой семьи представлена на рисунке (темные кубики — больные мужчины, кружочки с ромбиком в центре обозначают женщин-носительниц мутации).
Х-сцепленное наследование признака
По характеру наследования поняли, что это заболевание, сцепленное с X-хромосомой, потому что здоровые женщины рожали больных сыновей (дочери рождались нормальными, потому что у них две Х-хромосомы, и в одной ген мутантный, но в другой — нормальный). На Х-хромосоме нашли мутантный ген, оказалось, что он кодирует МАОА. Мутация — единичная нуклеотидная замена, которая вела к обрыву синтеза белка и МАОА при этом была нефункциональна. Таким образом, замена одного нуклеотида (цитозина на Тимин в данном случае) приводила к изменению поведения.
Этот ген стали более активно исследовать. Такая мутация, как в этой семье, полностью инактивирующая фермент, больше нигде не была найдена, но были обнаружены мутации, снижающие активность МАОА. Исследовали группу людей с низкой и нормальной активностью МАОА и сравнили количество случаев асоциального поведения (нападение, нападение с целью нанесения повреждений, убийство, изнасилование, жестокость по отношению к животным). Когда просто так исследовали выборку, разницы не нашли. Но когда эту выборку разделили по условиям воспитания в детстве, оказалось, что разница в поведении людей, которые воспитывались в благоприятных условиях, практически отсутствует, а вот если условия были плохие, то разница становится существенной.
Для изучения связи моноаминоксидазы А с поведением провели серию экспериментов на мышах. У мышей «нокаутировали» (то есть инактивировали) ген МАОА. Такие мыши были очень агрессивны, они набрасывались на своих сородичей без всякого повода, то есть вели себя также как и люди с аналогичным генетическим дефектом. Эти исследования помогают понять, что именно в поведении детерминировано генетически и в какой мере, а что подвержено влиянию среды.
Другая серия исследований была посвящена тому, как формируется память и каким образом в этом процессе участвуют гены. На мышах была проведена серия экспериментов. Были исследованы глутаматные рецепторы. Они работают в зоне мозга, которая связана с ориентацией на местности. Нобелевский лауреат Сусуми Тонегава получил мышей, мутантных по рецептора глутамата, и исследовал их способность к запоминанию. В разных мышиных тестах мутанты не отличались от нормальных собратьев, но в тесте на запоминание положения предметов оказались "двоечниками". Мышей запускали в ванну с платформой, на которую можно было встать. Непрозрачная вода не позволяла узнать где платформа, пока мышь не наткнется на нее случайно. Обычно мыши, несколько раз побывав в ванне, запоминали, где находится платформа и сразу плыли к ней. Мутанты не могли запомнить даже после десятков повторений. Их "географический кретинизм" связан с мутацией в рецепторе. Изменив этот рецептор, удалось получить и мышей-"отличниц".
Дело в том, что существуют как минимум два типа глутаматных рецепторов. Один тип работает у молодых мышей и в ответный на сигнал дает сильный ионный ток через мембрану и, следовательно, сильный и дольше действующий потенциал. Но в определенном возрасте, по мере созревания, рецептор меняется, и вместо белка-рецептора, который давал сильный ионный ток, в мембранах уже находится рецептор, который дает слабый и менее продолжительный ток. Это связано с тем, что интенсивное обучение нужно проходить в молодости, а с возрастом животное становится более консервативным, повторяет то, что выучило в молодости. Исследователи ввели в геном мышей мутацию, в результате которой синтез "юношеского" белка усилился в несколько раз. Мутанты лучше запоминали и распознавали звуки, объекты и их положение в пространстве, быстрее справлялись с тестами. Тем самым, им как бы продлили сензитивный период. Может возникнуть вопрос, почему способность к обучению угасает с возрастом, то это уже отдельный эволюционный вопрос.
Каким же образом формируются навыки, то есть, новые синаптические связи? В серии экспериментов на мухах и улитках морских зайцах (аплизиях — их очень любят нейробиологи), были расшифрованы механизмы формирования кратковременной и долговременной памяти. За эти работы Эрик Кенделл получил Нобелевскую премию.
Допустим, улитке подали электрический ток на хвост. Ей нужно хвост отдернуть. Каким образом это происходит.
Молекулярно-генетические механизмы формировании условного рефлекса
Продолжительность реакции: 1 —минуты, 2 — часы, 3 — формирование новых синапсов
От обиженного хвоста поступил сигнал в виде серотонина. Серотонин связывается с рецептором на мембране сенсорного нейрона. Именно здесь происходит этап обработки информации и принятии решения. Рецептор взаимодействует с аденилатциклазой, которая синтезирует циклический аденозинмонофосфат (цАМФ). Последний взаимодействует с киназой (киназы — это белки, которые фосфорилируют другие белки). Киназа фосфорилирует кальциевые каналы в мембране, через них идет ток, мембрана деполяризуется, что является сигналом к выбросу нейромедиаторов в синаптическую щель. Нейромедиатор связывается с рецептором на постсинаптической мембране мотонейрона, и мотонейрон дает мышцам команду отдернуть хвост от неприятного раздражителя. Это — кратковременная память (работает 3–4 минуты).
Если раздражение продолжает поступать регулярно, то эта реакция — долгосрочная память (работает 12–24 часа). В этом случае продолжает синтезироваться цАМФ, то фрагмент киназы перемещается в ядро и активирует здесь ген, модифицирующий киназу — отщепляющий от нее кусочек таким образом, что она становится перманентно активной. То есть, циклический аденозинмонофосфат ей для активации становится не нужен. Это — долговременная память.
Если сигнал продолжает поступать и дальше, то включается следующий механизм. Большие количества фрагментов киназы активируют фактор транскрипции, запускающий работу группы генов, обеспечивающей синтез белков и образование нового синапса. Это — память на всю жизнь, именно она должна работать при обучении.
ЭВОЛЮЦИОННАЯ ТЕОРИЯ ПОЛА
С.А.Боринская
Теория полового отбора Дарвина вызывала споры, неоднократно высказывалось мнение, что она является самым слабым местом дарвиновского учения. После Дарвина проблемой пола занимались крупнейшие биологи, однако современные авторитеты продолжают говорить об отсутствии удовлетворительного объяснения того, почему возник и сохраняется пол. Например, в книге канадского ученого Белла, вышедшей в 1982 г., читаем: "Пол — главный вызов современной теории эволюции. Интуиция Дарвина и Менделя, которые осветили так много загадок, не смогла справится с центральной загадкой полового размножения. В чем функциональное значение пола, которое приводит к его сохранению в биологических популяциях? "
Путь к решению проблемы был предложен в середине 60-х гг. в новой концепции В.А. Геодакяна, дающей объяснение эволюционного смысла деления на два пола.
Существование двух полов чаще всего связывают с размножением. Верно ли это?
Древнейшим способом размножения является бесполое, осуществляющееся путем простого деления клетки. Оно широко распространено у одноклеточных организмов (бактерии, сине-зеленые водоросли, амебы, инфузории и др.). При бесполом размножении не нужно искать партнера. Однако при таком способе размножения изменчивость достигается только за счет мутаций. Значительное увеличение изменчивости за счет комбинирования признаков различных особей обеспечивает половой процесс (скрещивание). Процесс скрещивания лежит в основе половых способов размножения. Если брачным партнером особи может быть любая из остальных, такой способ полового размножения называется гермафродитным. К гермафродитам относятся черви, пиявки, усоногие ракообразные, многие моллюски, некоторые рыбы. Следующим шагом в эволюции размножения стало раздельнополое размножение, при котором популяция делится на два различающихся между собой по ряду признаков пола.
Сравним эти способы размножения по двум параметрам: количественной эффективностью и комбинаторным возможностям. В количественном отношении самая высокая эффективность принадлежит бесполым формам, которым не надо искать партнера. При половом размножении эффективность в два раза меньше. Значит, с появлением скрещивания количественные преимущества утрачиваются. Однако появляются практически неисчерпаемые возможности быстрого обмена полезными мутациями, обеспечивающими комбинаторное богатство популяции. Но по этому показателю у половых форм явное преимущество принадлежит гермафродитам, где при скрещивании нет ограничений по полу партнера.
Выходит, раздельнополое размножение уступает двум предыдущим формам или по комбинаторному потенциалу, или по количественной эффективности. Тогда встает вопрос, почему же все прогрессивные в эволюционном плане формы животных (млекопитающие, птицы, насекомые и другие) раздельнополы. Среди растений прослеживается та же тенденция — более поздние формы дифференцированы по полу (двудомные растения). Раздельнополый способ размножения появился в процессе эволюции в очень далеких друг от друга группах. Парадокс? Но известно, что в эволюции ничего не бывает зря. Зачем же эволюции понадобились два пола?
Как совместить устойчивость и изменчивость
Весь окружающий нас мир можно представить как совокупность разнообразных систем. Каждая из них существует в определенной среде. Эволюционирует как среда, так и система. Среда диктует системе направление эволюции. Каждая эволюционирующая система должна быть устойчивой, консервативной, сохраняя накопленную полезную информацию, и одновременно изменчивой, способной адаптироваться к меняющимся требованиями среды.
Как же снят этот конфликт? Возможны два решения. Первое — поддерживать свойства системы к изменчивости в некотором промежуточном, оптимальном состоянии. Однако это создает для системы довольно узкие рамки существования.
Второе решение — разделить систему на две части, подсистемы. Одна из этих частей — консервативная — убирается подальше от среды (не в геометрическом, а в информационном плане) для сохранения полезной информации, а другая — изменчивая, оперативная — воспринимает и проверяет новую информацию. Такое разделение на две сопряженные подсистемы (консервативную и оперативную) повышает устойчивость системы в целом. Но ведь популяция особей — это живая система, эволюционирующая в изменчивой среде и нуждающаяся в повышенной устойчивости. Логично предположить, что разделение ее на две части — два пола — и обеспечивает такую устойчивость. Но тогда один из полов должен быть консервативен, представлять собой "ядро" системы, а второй должен быть оперативной, изменчивой "оболочкой". Таким образом, разделение на два пола оказывается выгодной для популяции формой получения информации от среды и сохранения информации о собственном строении. Возникает вопрос, кто есть кто в системе "мужской — женский пол", какой из полов специализирован на получении информации, а какой — на сохранении? Однако прежде чем ответить на этот вопрос, необходимо выяснить, в чем суть различий между полами.
Репродуктивная стратегия
Женщина не может иметь в год более одного ребенка (если только у нее не рождаются близнецы). То есть за весь репродуктивный период своей жизни (с 13 до 45–55 лет) они способна родить примерно три десятка детей.
Возможности мужчины гораздо больше. Он может стать отцом 4–5 тысяч детей. Рассмотрим популяцию, в которой особи разного пола скрещиваются хаотически. Понятно, что количество потомства пропорционально количеству женских особей. А вот качество зависит от количества мужских особей — ведь чем их больше, тем шире возможности выбора "самых качественных".
Это значит, что при неблагоприятном воздействии среды сокращение количества самок приведет к снижению численности потомства, а сокращение количества самцов — к изменению его качества.
Мужчины отличаются друг от друга больше, чем женщины (дисперсия признаков)
Совокупность всех генов организм составляет его генотип. В процессе индивидуального развития организма его генотип взаимодействует со средой, определяя формирование внутренних и внешних признаков индивида. Совокупность всех этих признаков составляет его фенотип.
Генотип — это программа, которая в разных условиях среды может реализовываться по-разному. В генотипе записано не жестко определенное значение признака, а диапазон его возможных значений. В онтогенезе (процессе индивидуального развития от зарождения до конца жизни) реализуется один самый подходящий для данной конкретной среды фенотип. Следовательно, генотип задает диапазон, а среда выбирает "точку" внутри него. Ширина этого диапазона называется нормой реакции организма на воздействие окружающей среды.
Есть признаки, например, группа крови или цвет глаз, влияние среды на которые сводится практически к нулю. По другим признакам (например, интеллектуальным способностям) норма реакции очень широкая, поэтому их часто связывают только с влиянием среды, то есть воспитанием. Третьи признаки (рост, масса) занимают промежуточное положение. Норма реакции у женского пола значительно шире, чем у мужского.
Рис. 1. Норма реакции
Это положение проверено при сравнении близнецов. Монозиготные братья должны быть больше похожи друг на друга, чем монозиготные сестры. Но если близнецы не монозиготные, то больше сходство должно быть у девочек. Иными словами, женский пол больше поддается влияниям среды, а мужской влиянию генотипа.
На рисунке 2 на графике А показано распределение фенотипов у мужского и женского пола. По горизонтальной оси отложены значения признака, а по вертикали — частота появления особи с данным значением признака.
Рис. 2. Распределение генотипов (внизу) и фенотипов (вверху) в стабильной среде
Так как люди со средним значением признака — например, среднего роста, встречаются чаще, чем карлики или великаны, кривая имеет вид колокола и у женщин, и у мужчин. Такую же колоколообразную кривую можно получить, измеряя успеваемость учеников в школе: выявим некоторое число отличников и двоечников, основное же количество — среднеуспевающие. Кривые распределения признаков мужского и женского пола отличаются — у мужского пола кривая более пологая, то есть отражает большую дисперсию признаков. Из такого распределения можно было бы сделать вывод, что если среди мужчин больше гениев, то среди них больше и полных идиотов.
Распределение генотипов при этом одинаково для обоих полов и показано на графике Б. По горизонтали отложены средние значения какого-либо признака, определяемые генотипом, а по вертикали — частота появлений генотипа с тем или иным значением.
Из-за узкой нормы реакции (то есть низкой способности поддаваться воздействиям среды) у мужского пола распределение мужских фенотипов примерно повторяет распределение определяемых генотипами средних значений. Для женского же пола картина иная. Из-за широкой нормы реакции женские фенотипы более подвержены влиянию среды и ближе к среднему (оптимальному) значению в стабильной среде. То есть самцы отличаются большей степень разнообразия признаков, чем самки. Из-за этого первыми жертвами всех неблагоприятных изменений среды становятся мужские особи. Часть из них (обладатели крайних значений признака) погибает, поэтому оставшиеся в живых передадут следующему поколению спектр генотипов, измененный в соответствии с направлением воздействия среды.
Широкая норма реакции женского пола позволяет уходить от вредных воздействий среды за счет онтогенетической пластичности. Поэтому женский пол сохраняет и передает потомству весь спектр исходных генотипов.
Таким образом, в каждом поколении яйцеклетки широкого разнообразия, несущие информацию о прошлом богатстве генотипов, оплодотворяются спермиями узкого разнообразия, генотипы которых содержат информацию только о самых подходящих для текущих условий среды признаках. То есть, следующее поколение получает информацию о прошлом по материнской линии, а о настоящем — по отцовской. Из чего видно, кто есть кто в системе "мужской-женский пол". Женский пол — стабильное, консервативное "ядро" популяции, а мужской — лабильная "оболочка". Мужской пол выступает как эволюционный "авангард", принимающий на себя удары меняющейся среды. При этом за информацию приходится платить гибелью части мужских особей. Отсюда и повышенная смертность мужского пола.
Мы пришли к выводу, что два пола существуют не только для размножения — оно возможно и бесполым путем. Два пола это два канала информации, один (женский) — от предшествующих поколений, другой (мужской) — от среды. Их взаимодействие обеспечивает системе — эволюционирующей популяции — успешное функционирование.
Природа не бережет мужчин (соотношение полов)
Повышенная чувствительность и смертность мужского пола всегда была одной из загадок. Из 163 стран мира, по которым есть данные, в 152-х женщины живут в среднем дольше мужчин. По миру в целом средняя продолжительность жизни женщин (59,3) на 3,6 года больше, чем у мужчин (55,7).
Повышенную смертность мужчин пытались объяснить социальными причинами, такими как алкоголизм, курение, опасные профессии, рискованное поведение и т. д. Но оказалось, что аналогичная картина смертности наблюдается у большинства животных и даже растений, при чем на всех этапах — от зачатия до самой смерти. Платить за новую информацию популяции выгоднее мужскими, а не женскими особями.
Исходя из этого, можно ожидать, что при всех неблагоприятных условиях (резкие изменения климата, голод, войны, переселения) должна повышаться смертность самцов. Но чтобы популяция в экстремальных условиях не потеряла мужской пол, это должно сопровождаться одновременным увеличением их рождаемости. То есть увеличивается "оборачиваемость" самцов, что позволяет раздельнополой популяции быстрее приспособиться к новым условиям.
Соотношение полов потомства у позвоночных, видимо, регулируется интенсивностью половой деятельности. Чем выше половая активность данного пола, тем больше появляется потомков того же пола. Этот механизм объясняет многие факты демографической статистики: "феномен военных лет", избыточное рождение мальчиков в "женских коллективах" (гаремы, текстильные города) и девочек в "мужских" (экспедиции, портовые города).
У перекрестноопыляющихся растений связующим звеном является количество пыльцы, попадающее на женский цветок. Чем больше пыльцы, тем больше женских потомков, и наоборот.
Почему мужчины отличаются от женщин (половой диморфизм)
У одних видов самцы почти неотличимы от самок, тогда как у других, в том числе человека, они имеют различия по ряду признаков. Различие средних значение по любому признаку мужского пола и женского называется половым диморфизмом (рис. 3).
Рис. 3. Распределение фенотипов в нестабильной среде
Половой диморфизм — еще одна характеристика раздельнополой популяции, кроме соотношения дисперсий и численности полов.
Через изменение этих трех характеристик плавно регулируется степень изменчивости популяции. В оптимальных условиях стабильной среды, когда нет необходимости что-либо менять, усиливаются консервативные тенденции: снижается рождаемость мальчиков, уменьшается дисперсия полов (уменьшается их разнообразие) и уменьшается половой диморфизм новорожденных. В экстремальных условиях, когда от популяции требуется высокая пластичность, рождаемость мальчиков увеличивается, увеличивается дисперсия признаков (сначала у мальчиков, потом у девочек), возникает или растет половой диморфизм. Таким образом, эти три параметра могут служить своеобразным индикатором состояния экологической ниши.
За последнее десятилетие в Каракалпакии рождаемость мальчиков возросла на 5 %. Печальное наблюдение. Видимо, это реакция популяции на экстремальные изменения среды в связи с гибелью Аральского моря.
Мужчины — авангард эволюции
Попробуем схематически изобразить процесс эволюции какого-либо признака в филогенезе, то есть в его историческом развитии. Допустим, что существует некий стабильный признак, по которому нет полового диморфизма, то есть он одинаково представлен и у одного, и у другого пола. Но вот произошли какие-то изменения в среде, и под их воздействием признак начал меняться (рис. 4).
Как мы уже выяснили, первым реагирует мужской пол. Изменения сначала происходят только у него. Сначала увеличивается дисперсия признака, поскольку для отбора необходимо разнообразие. Затем под давлением среды начинает меняться и среднее значение признака. Женский пол остается некоторое время (может быть, много поколений) неизменным. В этот период эволюции популяции появляется и растет половой диморфизм по данному признаку. Образно выражаясь, мужской пол ведет "авангардные бои" за новые эволюционные позиции, а женский остается на месте.
Затем перемены затрагивают и женский пол. У него также начинают расти дисперсия и скорость эволюции, достигая их значения для мужского пола. На этой фазе эволюция идет параллельно у обоих полов. Половой диморфизм доходит до своего максимума и остается постоянным.
Когда у мужского пола признак достигает нового стабильного значения, у женского он еще продолжает меняться. На этой стадии дисперсия и скорость эволюции больше у женского пола (женский пол ведет "арьергардные бои").
Таким образом, фазы эволюции признака у разных полов сдвинуты во времени: у мужского они начинаются и заканчиваются раньше, чем у женского. При этом половой диморфизм это своего рода дистанция между полами на пути эволюции признака. Смысл ее состоит в том, чтобы проверить эволюционные "новости" на мужском поле прежде, чем передать их женскому. Отсюда миссия мужского пола — поиск и пробы. Он является той оперативной частью системы, которая делает находки, но неизбежно при этом чаще совершает ошибки. В консервативную, женскую, часть системы должны попасть только находки. Поэтому миссия женского пола — сохранение и закрепление находок. Это придает ему черты совершенства, которые, однако, оплачиваются неизбежной эволюционной инерционностью, тогда как новаторство и прогрессивность мужского пола сочетаются с его несовершенством.
А теперь можно сделать ряд важных выводов.
Половой диморфизм существует только во время эволюции признака: появляется с ее началом, сохраняется, пока она идет, и исчезает, как только эволюция заканчивается. Значит, если половой диморфизм отсутствует, то признак стабилен и эволюция по нему не идет, а если он существует, то признак находится на "эволюционном марше". То есть, наличие полового диморфизма может служить критерием эволюции признака.
По половому диморфизму можно определить направление эволюции признака: как правило, он меняется от женской формы к мужской.
Наконец, можно судить о фазе эволюционного процесса: только он начался или уже завершается. На это указывает соотношение дисперсий признака у мужского и женского пола. Таким образом, получаем своего рода хронометр эволюции.
Половой диморфизм — "последние новости" эволюции
Все признаки можно разделить на три группы по степени различия между полами. К первой группе отнесем те признаки, по которым между мужским и женским полом нет никакой разницы. К ним относятся качественные признаки, которые проявляются на уровне вида — общий для обоих полов план и принципиальное строение тела, число органов и многие другие. Половой диморфизм по этим признакам в норме отсутствует. Но он наблюдается в области патологии. У девочек чаще проявляются атавистические аномалии (возвраты или остановки развития), а у мальчиков — футуристические (поиск новых путей). Например, среди 4000 новорожденных детей с тремя почками девочек было в 2,5 раза больше, чем мальчиков, а среди 2000 детей с одной почкой было примерно в 2 раза больше мальчиков. Напомним, что у наших далеких предков в каждом сегменте тела имелась пара выделительных органов — метанефридиев. Следовательно, три почки у девочек — это возврат к предковому типу (атавистическое направление), а одна почка у мальчиков — футуристическая тенденция. Такая же картина наблюдается среди детей со сверхнормативным числом ребер, позвонков, зубов и т. д., то есть органов, претерпевших в процессе эволюции уменьшение числа — среди них больше девочек. Среди же новорожденных с их нехваткой больше мальчиков.
Сходная картина наблюдается и в распределении врожденных пороков сердца и магистральных сосудов. У девочек преобладают элементы, свойственные сердцу эмбриона или филогенетическим предшественникам человека: открытое овальное отверстие в межпредсердной перегородке, незарастающий Боталлов проток (сосуд, соединяющий у плода легочную артерию с аортой) и др. "Мужские" пороки чаще бывают новыми, ни у эмбрионов, ни в филогенезе они не имеют аналогий — это разного рода стенозы (сужения) и транспозиции магистральных сосудов.
Итак, на уровне видовых признаков половые различия проявляются в области патологии.
Теперь рассмотрим вторую группу признаков — тех, которые встречаются и у мужского пола, и у женского, но распределены в популяции с разной частотой и степенью выраженности. Это количественные признаки: рост, вес, размеры и пропорции, многие морфофизиологические и этолого-психологические признаки. Половой диморфизм по ним проявляется как отношение их средний значений. Именно этот половой диморфизм служит "компасом" эволюции признака.
Например, эволюция большинства позвоночных сопровождалась увеличением их размеров. Многие же виды насекомых и паукообразных, наоборот, мельчали. Можно предсказать, что у крупных позвоночных самцы должны быть крупнее самок, а у мелких насекомых — наоборот.
Те же тенденции наблюдаются и внутри таксономических единиц низшего ранга, скажем, в классе млекопитающих: у крупных форм чаще крупнее самцы, а у мелких — самки. Например, самцы африканского слона весят до 6,5 т, а самки — до 3,5 т. У некоторых летучих мышей, белок-летяг, карликовой мангусты, кролика, то есть у те формы, которые, видимо, эволюционно мельчали, самки более крупные, чем самцы.
Здесь можно воспользоваться и обратной логикой: если мужские особи крупнее — вид эволюционирует в сторону увеличения размеров, если мельче — наоборот.
Это правило справедливо также и для растений. Например, существует половой диморфизм по форме листьев. У тополя женские экземпляры имеют более продолговатые листья, мужские более округлые. Значит, филогенетические предшественники тополя имели узкие (как у ив) листья.
Наконец, к третьей группе относятся признаки, присущие только одному полу. Это первичные и вторичные половые признаки: половые органы, молочные железы, борода у человека, грива у льва, а также многие хозяйственные признаки (продукция молока, яиц, икры и т. д.) Половой диморфизм по ним носит генотипический характер, поскольку в фенотипе одного пола эти признаки отсутствуют, Но наследственная информация об этих признаках записана в генотипе обоих полов. Поэтому, если они эволюционируют, то по ним должен существовать генотипический половой диморфизм. Обнаруживается он в виде реципрокных эффектов.
Исходя из авангардной роли мужского пола можно предсказать существование реципрокного "отцовского эффекта" (доминирование отца) по всем эволюционирующим, новым признакам. "Отцовский эффект" наблюдается у кур по таким хозяйственно-ценным признакам, как инстинкт насиживания, скороспелость, яйценоскость и живой вес. У крупного рогатого скота этот эффект наблюдается по удою молока и продукции молочного жира.
У человека к эволюционно молодым признакам, видимо, можно отнести все социальные, психологические характеристики, связанные с эволюцией мозга (в первую очередь асимметрия полушарий, речь, абстрактное и логическое мышление, пространственное воображение, юмор и другие творческие способности).
Таким образом, по всем признакам животных и растений, по которым наблюдается половой диморфизм, его можно рассматривать, как эволюционные "последние новости", уже попавшие к мужскому полу, но еще не дошедшие до женского. При этом, как мы уже отметили, по видовым (качественным) признакам закономерность проявляется в области патологии, по популяционным (количественным) — в норме, а по половым — в виде реципрокного "отцовского эффекта".
Если по данному признаку существует половой диморфизм, то в индивидуальном развитии (с возрастом) признак будет меняться от женской формы к мужской. То есть для начальной, ювенильной стадии (для человека это возраст до 25 лет) более характерна женская форма признака, а для взрослой, зрелой (старше 25 лет и до начала старческой инволюции) более характерна мужская форма.
Заключение
До сих пор мы считали, что два пола необходимы для размножения. А оказывается, что пол — это скорее способ эволюции. Теория эволюции стала основой мировоззрения современного человека. Необходимую информацию эволюционное учение получало из трех источников: палеонтологии, эмбриологии и сравнительной анатомии. Теперь к ним добавляется четвертый — эволюционная теория пола, дающая возможность извлекать ценную информацию о процессах индивидуального и исторического развития организма.
Конечно, закономерности, с которыми нас знакомит теория пола, справедливы для всего живого. Но все же больше всего нам интересен человек, и в первую очередь такие его признаки, как темперамент, интеллектуальные возможности, творческие способности, камор. Именно эти признаки, как находящиеся на "эволюционном марше", теория описывает наиболее четко.
Считается, что биологическая эволюция человека завершилась 40–50 тысяч лет назад. Теория опровергает эту точку зрения, давая возможность в перечне признаков человека отличить эволюционирующие признаки от стабильных, неизменных в данный момент.
Мужчине и женщине в эволюционном процессе отведены разные роли. Знание теории заставляет отказаться от идеи социальной одинаковости и взаимозаменяемости полов, и в противоположность ей развивать идею их различия и взаимодополнительности. Не тождественность, но равноправие, не конкуренция и драматизм неоправдавшихся притязаний, а коалиция и разумный выбор социальной ниши.
Материал подготовлен с использованием следующей литературы:
1. "Два пола: зачем и почему?" Всеросиийский институт повышения квалификации инженерно-педагогических работников профтех образования. Санкт-Петербург, 1992. Составитель Е.И.Соколова
2. Геодакян В.А. "Эволюционная теория пола". Журнал "Природа", 1991, N 8, с. 60–69.
3. Геодакян В.А. Теория дифференциации полов в проблеме человека. В кн.: "Человек в системе наук". М., "Наука", 1989, с. 171–179.
С. Боринская, Н. Янковский
К успехам биологии конца XX века, символизирующим прогресс науки, относятся открытия, ставшие научными сенсациями, и разработанные на их основе технологии, которые позволяют манипулировать генным материалом всех живых существ — от бактерий до человека. Это дает надежду на решение множества стоящих перед человечеством проблем (разработку новых средств диагностики и лечения болезней, продление жизни человека, обеспечение продовольствием) и в то же время вызывает опасения, что внедрение биотехнологий может нарушить равновесие природных экосистем и привести к катастрофическим последствиям. Современная биосфера есть результат миллиардов лет эволюции. Достаточно ли человеку пятидесяти лет развития генных технологий, чтобы быть уверенным, что его вмешательство не вызовет глобального экологического кризиса? Чем в связи с этим пугают людей? Утратой биологического разнообразия в результате неконтролируемой экспансии созданных человеком генных конструкций. Замещением сельскохозяйственных сортов растений и пород животных немногочисленными генетически модифицированными организмами в результате монополизации источников сортов и пород. Снижением жизнеспособности будущих поколений людей в результате массового осуществления медико-генетических мероприятий. Обоснованы ли эти опасения? Что действительно можно ждать от этих технологий?
Как устроен геном и как он работает
Программа развития организма записана в его генетическом коде. Геном — это весь текст данного организма, записанный в ДНК четырьмя буквами-нуклеотидами. Самый короткий текст из свободно живущих организмов у бактерии микоплазм — 600 тысяч знаков. В геноме человека — 3 миллиарда. Чтобы только пробежать глазами по собственному генетическому тексту вам потребуется вся жизнь (три миллиарда секунд).
Генетическая программа каждого организма разбита на отдельные гены — подпрограммы, отвечающие за определенную часть жизни клетки. У бактерий от полутысячи до почти десяти тысяч генов, а у человека, мыши и слона лишь немногим больше — 30–40 тысяч. В каждый момент времени в клетке работает лишь небольшая часть генов, необходимых для жизнедеятельности в данной конкретной ситуации, остальные «молчат».
Как у человека, так и у бактерии ген состоит из структурной и регуляторной части. В структурной записана информация о составе синтезируемого с этого гена белка, который, взаимодействуя с другими белками, участвует в построении клеточных структур и проведении биохимических реакций. В регуляторной части записано, когда и при каких условиях данный белок должен синтезироваться.
На структурную часть генов у бактерий приходится 80–90 % ДНК, остальная ДНК участвует в регуляции работы генов. У человека ситуация принципиально отличается. Кодирующие белок участки генома занимают меньше 3 %, тогда как остальная часть выполняет регуляторные и другие, пока неизвестные функции. Система регуляции работы генов человека (и других млекопитающих) гораздо сложнее. Никаких уникальных биохимических процессов клетки человека не проводят, зато те процессы (общие для всего живого мира), которые идут, включаются и выключаются в нужное время и в нужной части тела в соответствии с генетической программой. Например, перед человеческим геном, контролирующим переработку лактозы, найдены два регуляторных участка. Один определяет место, другой — время работы гена. Первый указывает, что ген должен работать только в клетках слизистой кишечника, ведь именно здесь расщепляются поступившие с пищей сахара. Второй полностью отключает работу гена по окончании периода грудного вскармливания (у человека в возрасте 3–5 лет), так как в естественных условиях детеныши млекопитающих получают лактозу только с материнским молоком, а взрослым особям фермент не нужен. Однако у некоторых людей в этом регуляторном участке имеется мутация, которая «разрешает» синтез фермента у взрослых. Такие люди могут пить молоко, тогда как у носителей исходного, немутантного варианта молоко не усваивается, что приводит к расстройству пищеварения.
Записанная в генах человека программа развития реализуется в процессе роста и деления клеток, от первого деления зародышевой клетки до последнего вздоха на жизненном пути. Судьба каждой клетки — станет ли она клеткой эпителия или превратится в нейрон, лейкоцит или эритроцит — определяется тем, какие группы генов в ней работают. Постоянно работают во всех клетках только так называемые гены «домашнего хозяйства» — то есть те, которые заняты синтезом клеточных структур, производством энергии, ремонтом молекулы ДНК. Большая же часть генов обычно бездействует, и необходимы специальные сигналы для того, чтобы они активизировались. Например, гены, контролирующие форму тела, расположены на хромосомах несколькими блоками, причем идут один за другим в том же порядке, в каком и контролируемые ими части тела: сначала гены, которым положено работать в голове, потом гены грудного отдела, потом те, которые определяют развитие задней части тела. Включаются они по очереди. Причем эти свойства генов «домашнего хозяйства» присущи и человеку, и животным. Так, в экспериментах на мухах показано, что если порядок включения генов нарушен, то могут получиться монстры, каких не придумать и Спилбергу, — с дополнительными ногами вместо антенн на голове или с глазами на брюшке и крыльях. У человека известные мутации (на латыни «мутация» означает «изменение») в этих генах также приводят к нарушениям — к изменению положения органов или, например, отсутствию некоторых зубов. Более серьезные нарушения останавливают развитие плода.
Хотя прочтена последовательность нуклеотидов всего генома человека, функции большинства генов по-прежнему неизвестны. Многие гены в нуклеотидной последовательности выявлены лишь с помощью компьютерного анализа (см. «КТ» # 413), и их существование следует подтвердить не вычислительными, а экспериментальными методами. Мы видим текст, но не понимаем, что он означает. Кроме знания структуры и функций генов, нужно еще представлять, чем отличается их работа в разных клетках и на разных этапах развития. И еще — знать, как взаимодействуют генные продукты. Порой утрата довольно больших фрагментов генома не приводит к заметным последствиям. А в других случаях замена всего лишь одной буквы из трех миллиардов приводит к тяжелому заболеванию.
Генные технологии
Теперь мы можем попытаться понять, каким образом генетики вмешиваются в работу наследственных программ. До появления биотехнологии и методов генной инженерии генетические изменения тоже, конечно, происходили, но шли они совершенно иными темпами. С очень значительными генетическими изменениями связана вся эволюция жизни на Земле, насчитывающая более трех миллиардов лет. От времени существования общего предка обезьяны и человека прошло пять миллионов лет, накопившиеся за это время изменения затронули 1,5 % их генетических текстов. Селекционная работа, которую человек вел на протяжении десяти тысячелетий существования производящего хозяйства, также вызвала изменения геномов культурных растений и одомашненных животных, являвшихся объектом отбора. Да и сами люди были вынуждены приспосабливаться (в том числе и на генетическом уровне) к создаваемой ими самими среде обитания.
Заставить ген одного организма работать в геноме другого можно лишь при соблюдении определенных условий. Во-первых, к чужеродному гену следует «подшить» регуляторные элементы подходящего хозяйского гена с тем, чтобы он включился в нужное время в нужной ткани (например, чтобы его продукт секретировался в молоко у коровы), а также элементы, обеспечивающие его встраивание в геном или самостоятельное воспроизведение в хозяйской клетке. Во-вторых, нужно обеспечить систему введения генетической конструкции в клетки хозяина. Технологии «кройки и шитья» генов для всех одинаковы, а вот системы введения ДНК в клетки организма-хозяина сильно различаются. Сейчас такие системы отработаны и для микроорганизмов, и для растений, и для некоторых животных, причем существуют методы введения ДНК в клетки, размножаемые в пробирках, и методы, пригодные для модификации сформированного организма. Последние используют для генотерапии, то есть лечения наследственных болезней путем введения человеку «здоровых» генов.
Еще одно условие — работа гена не должна вредить самому организму-хозяину. Например, устойчивость трансгенного картофеля к колорадскому жуку обеспечена введением в растительный геном бактериального гена, контролирующего синтез белка, токсичного для насекомых (причем не для всех, а для определенной группы) и безвредного для растений, животных и человека. После генетической модификации полученный уникальный организм следует размножить. Для этого используется клонирование.
Клонирование
Клонирование (от греч. клон — ветвь, побег) — точное воспроизведение того или иного живого объекта в некотором количестве копий. Этим термином обозначают два совершенно разных процесса — клонирование (то есть получение идентичных копий) фрагментов ДНК и клонирование клеток взрослого организма (то есть получение группы клеток с одинаковым генотипом).
Клонирование фрагментов ДНК широко используется в молекулярной генетике, так как изучать небольшой участок (размером сотни или тысячи пар нуклеотидов) гораздо легче, чем целую хромосому. Для этого изучаемый фрагмент вводят в клетки микроорганизмов. В частности, в биотехнологии именно с помощью клонирования фрагментов ДНК в бактериях получают клетки, продуцирующие нужные медицине человеческие белки.
Клонирование растений всем известно — это размножение растений черенками. А эксперименты по клонированию животных впервые осуществили в начале 1950-х годов американские эмбриологи Роберт Бриггс и Томас Кинг (Robert Briggs, Thomas King), пересадившие ядро зрелой клетки лягушки в яйцеклетку, собственное ядро которой было удалено. В России такие эксперименты были проведены даже несколько раньше Георгием Лопашевым, но его результаты не были опубликованы из-за преследований генетиков в сталинское время. Английскому ученому Джону Гердону (John Gurdon) удалось усовершенствовать методику и добиться того, что из 1–2 % яйцеклеток с пересаженным ядром вывелись лягушата. Из остальных яйцеклеток или развивались дефектные эмбрионы, или не развивались вообще — слишком велики были повреждения во время операции по пересадке ядер. Если можно клонировать лягушку, то почему не попробовать сделать это и с другими животными?
В 1997 году появилось сенсационное сообщение о том, что в лаборатории Яна Вилмута (Ian Willmut, Эдинбург, Шотландия) разработан метод клонирования млекопитающих. Эксперименты проводились на овце. Ядро из клетки молочной железы взрослой особи ввели в яйцеклетку с удаленным ядром и затем активировали ее посредством электрического удара. Развивающиеся зародыши пересадили в матку приемной матери, где они оставались до рождения. Из 236 опытов успешным был только один, в результате которого родилась ставшая знаменитой овечка Долли. Позже появились сообщения о клонировании других млекопитающих — коровы, козы, мыши, свиньи.
В принципе, технически можно клонировать и человека, но в этом случае возникают моральные, этические и юридические проблемы. Но даже если удастся осуществить клонирование людей, получить личность, идентичную личности донора ядра, невозможно. Невозможно получить даже организм, полностью идентичный исходному по своим биологическим свойствам — для этого пришлось бы точно воспроизвести условия развития плода и рождения ребенка. А предположения о массовом производстве сверхгениев или сверхпослушных солдат не имеют под собой никаких оснований. Любые возможности, которые могут быть реализованы при клонировании, будут все равно лежать в границах возможностей человека как биологического вида.
Сообщения о клонировании животных и появляющиеся время от времени сообщения о якобы успешных попытках клонирования человека (которые пока ничем не подтверждены) привлекают огромное внимание публики. Опросы, проведенные в европейских странах фондом Progress Educational Trust (Лондон), показали, что об овечке Долли знают около 90 % опрошенных, тогда как об имеющих гораздо большее значение для людей и уже применяемых на практике генодиагностике и генотерапии слышали лишь около половины. Похоже, что клонирование ассоциируется у неспециалистов с чем-то вроде возрождения душ и порождает страхи, подобные тем, что были высказаны участниками студенческого митинга в Беркли, во время Международного генетического конгресса (1973). Студенты пытались бойкотировать ученых, обвиняя их в попытках клонировать Ленина, Гитлера, Сталина, Мао Цзэдуна. Как правило, такие опасения возникают из-за недостатка информации. Для клонирования организмов нужны живые клетки. После смерти целостность ДНК нарушается, и она может быть использована для уже упоминавшегося молекулярного клонирования отдельных фрагментов, но никак не для воспроизведения генетически идентичного организма.
Геном человека как объект генных технологий
Геномы разных людей содержат одинаковые наборы генов, но их генетические тексты различаются. Различия составляют в среднем один нуклеотид на тысячу «букв» текста, то есть 0,1 %. С генетическими различиями связаны видовые и индивидуальные биологические признаки каждого организма. Индивидуальные особенности человека затрагивают и устойчивость к инфекциям, и адаптацию к определенным климатическим условиям (в частности, цвет кожи является такой адаптацией), и приспособленность к тому или иному типу питания. Образ жизни, к которому человек генетически и физиологически не приспособлен (включая климатические условия, уровень физической активности, диету), ведет к болезням. Некоторые болезни можно вылечить или предотвратить, меняя среду или образ жизни. Всем известен «бег от инфаркта». Но есть наследственные заболевания, проявляющиеся вскоре после рождения ребенка и до недавнего времени неизлечимые.
Понимание молекулярных основ развития организма в норме и при патологии позволяет разработать принципиально новые подходы к лечению и профилактике заболеваний. Полученная при расшифровке генома человека информация уже привела к созданию систем диагностики для нескольких сотен наследственных заболеваний. Еще двадцать лет назад для большинства из них в справочниках указывалось «исходное нарушение, приводящее к развитию заболевания, неизвестно». Понимание закономерностей работы генов позволяет обнаружить болезнь еще до проявления симптомов. Во многих случаях раннее начало профилактического лечения позволяет предотвратить развитие заболевания или отодвинуть начало его проявления. Например, у одного из десяти тысяч новорожденных встречается серьезное нарушение обмена веществ — фенилкетонурия. При этом заболевании недостает фермента, превращающего аминокислоту фенилаланин в другую аминокислоту — тирозин. У больных накапливается промежуточный продукт обмена фенилаланина — фенилпировиноградная кислота. Избыток ее приводит к поражению клеток мозга и умственной отсталости. Всех младенцев проверяют на наличие этого заболевания. Если оно выявлено, назначают специальную диету, которая позволяет избежать или в значительной мере смягчить развитие симптомов.
Диагностика может проводиться даже еще до рождения ребенка. Для этого на ранних сроках беременности отбирают небольшое количество околоплодной жидкости, содержащей клетки плода. Затем определяют, имеются ли нарушения в генетическом материале этих клеток и не содержатся ли в нем болезнетворные мутации. Такая диагностика может быть проведена еще до имплантации зародыша в матку, поэтому она называется преимплантационной.
Системы генодиагностики самых распространенных заболеваний, таких как болезнь Дауна, фенилкетонурия и др., введены в практику медико-генетического консультирования. Для некоторых заболеваний это позволило значительно снизить частоту рождения детей, обреченных на неизбежную мучительную смерть.
При выявлении генетических нарушений у плода врач предоставляет информацию о возможных рисках, но только родители могут решать, прерывать беременность или нет. Появление новых методов сделало необходимым обсуждение этических проблем и принятие соответствующих законов, защищающих права и достоинство человека, в том числе и в эмбриональном состоянии. В таких дискуссиях участвуют медики и генетики, представители общественных организаций, религиозные деятели, юристы, философы и специалисты по этике.
Разрабатывается новый метод лечения — генная терапия. Больным с генными нарушениями вводят генетический материал, который должен компенсировать исходный дефект. Хотя до широкого применения метода еще далеко, однако основания для оптимизма есть. Например, в 1990 году американский генетик Андерсон (W.F. Anderson) успешно применил генную терапию для лечения девочки с тяжелыми врожденными нарушениями иммунитета.
Большое внимание привлекают исследования по генетике рака. Рак может возникать как под воздействием внешних причин (канцерогенов или вирусов), так и при повреждении генетического аппарата клетки. Найдены гены, мутации в которых повышают риск развития злокачественных преобразований, в частности рака груди. Это позволило проводить диагностику предрасположенности к развитию некоторых форм рака. При лечении онкологических заболеваний может быть эффективна генотерапия. Но разрабатываются и другие направления — например, получение вакцин против рака. В 2001 году начаты испытания вакцины, предотвращающей заражение папилломавирусом — одним из основных агентов, вызывающих рак шейки матки (вирус передается половым путем, и формально этот вид рака можно рассматривать как венерическое заболевание). Если они будут успешны, то в ближайшие годы будет получена вакцина против рака шейки матки — второй по распространенности среди 20-30-летних женщин форм рака.
Задолго до появления генотерапии люди стремились к улучшению породы. В древней Спарте «неправильных» младенцев сбрасывали со скалы. В 30-х годах в США с той же целью было подвергнуто принудительной стерилизации около ста тысяч человек, носителей определенных, утвержденных государством признаков. Такие меры бессмысленны с точки зрения генетики, так как не снижают частоты проявления данных признаков в следующем поколении. На пороге третьего тысячелетия человечество стремится заплатить поменьше за свое благополучие — взять под контроль собственные генетические процессы и вносить в них коррективы не ценой жизни носителей неблагоприятных мутаций, а подправляя генетические тексты по собственному разумению, добываемому в геномных исследованиях.
Г. И. Абелев
Введение
Иммунитет — защита организма от инфекции или, в более широком смысле, — реакция организма на чужеродные макромолекулы, микроорганизмы и клетки. Защита осуществляется с помощью двух систем — неспецифического (врожденного, естественного) и специфического (приобретенного) иммунитета. Эти две системы могут рассматриваться и как две стадии единого процесса защиты организма. Неспецифический иммунитет выступает как первая линия защиты и как заключительная ее стадия, а система приобретенного иммунитета выполняет промежуточные функции специфического распознавания и запоминания болезнетворного агента (или чужеродного вещества) и подключения мощных средств врожденного иммунитета на заключительном этапе процесса.
Система врожденного иммунитета действует на основе воспаления и фагоцитоза, явлений, которые будут рассматриваться в следующей статье. Эта система реагирует только на корпускулярные агенты (микроорганизмы, занозы) и на токсические вещества, разрушающие клетки и ткани, вернее, на корпускулярные продукты этого разрушения.
Вторая и наиболее сложная система — приобретенного иммунитета — основана на специфических функциях лимфоцитов, клеток крови, распознающих чужеродные макромолекулы и реагирующих на них либо непосредственно, либо выработкой защитных белковых молекул.
Феноменология
Рассмотрим элементарную реакцию специфического иммунитета на двух внешне совершенно непохожих моделях — выведении чужеродного белка и отторжении чужеродной ткани. Если в кровь животного, например, кролика, ввести непосредственно, минуя тканевые барьеры, белок крови животного другого вида (например, альбумин лошади) в смеси с собственным альбумином, то в первые дни после введения оба белка будут вести себя неразличимо, то есть выводиться с постоянным и довольно длительным периодом "полужизни" (рис. 1).
Рис. 1. Кривые выведения собственного и чужеродного белков из крови кролика.
САК — сывороточный альбумин кролика, CAЛ — сывороточный альбумин лошади, САЧ — сывороточный альбумин человека, а — первичный ответ, б — повторный ответ, в — индукция толерантности.
Чужеродный белок в нашем случае не токсичен и молекулярно-дисперсен. Он не вызывает ни воспаления, ни фагоцитоза, то есть беспрепятственно минует первую линию защиты и непосредственно встречается со второй. Примерно на 7-й день кривые выведения собственного и чужеродного белка резко расходятся — первый продолжает "двигаться" по своей кривой "полужизни", для второго наступает перелом и он выделяется из кровотока с резко возросшей скоростью (рис. 1а). Организм, следовательно, отличает "свое" от "не своего", это первая особенность реакции специфического иммунитета. Отличие запоминается — повторное введение лошадиного белка приводит к сокращению латентного периода и усиленной реакции (более крутой наклон кривой выведения). Это так называемая иммунологическая память — вторая характерная черта реакции специфического иммунитета. Память специфична, запоминается контакт лишь с лошадиным альбумином, но ни с каким-либо третьим белком. Специфичность запоминания очень высока, и это третья особенность реакции приобретенного иммунитета (рис. 1б). Иммунный ответ на чужеродную макромолекулу можно избирательно подавить, если ввести ее в развивающийся организм внутриутробно или в первые часы после рождения. Способность отличать введенный чужеродный белок от собственного у такого животного утрачивается после рождения. Подавление реакции строго специфично — оно распространяется только на белок, введенный в процессе развития, но не какой-либо иной чужеродный белок (рис. 1в). Это явление носит название толерантности (терпимости). Оно составляет четвертую неотъемлемую особенность элементарной реакции приобретенного, или специфического, иммунитета.
Четыре признака реакции неразделимы, они всегда вместе независимо от того, в какой системе разыгрывается реакция иммунитета. Например, отторжение кожи или органов у генетически разнородных животных и человека, внешне совсем не похожее на выведение чужеродного белка, подчиняются тем же закономерностям. Так, если взять мышей какой-либо генетически однородной линии, то все особи этой линии будут генетически идентичны и иметь, например, белую окраску. Если таким мышам пересадить лоскут кожи (трансплантат) другой инбредной линии, пусть черной, а в качестве контроля — лоскут кожи от генетически идентичной линии, то оба трансплантата сначала приживутся, но на 12—14-й день черный лоскут будет окружен валом лейкоцитов, затем его кровоснабжение начнет ухудшаться и через 3–4 дня он будет отторгнут, в отличие от контрольного, генетически идентичного трансплантата. Очевидно, мы вновь встретились здесь со способностью организма отличать "свое" от "не своего". Эта особенность запоминается: вторичная пересадка черной кожи на белую мышь ведет к усиленному отторжению трансплантата, в более короткие сроки и более интенсивно (иммунологическая память). Запоминание специфично — лоскут кожи от мыши "коричневой" линии, пересаженный при повторной трансплантации "черного" трансплантата, отторгается по типу первичного, а не повторного ответа. И, наконец, толерантность: при пересадке тканей она выявляется еще лучше, чем в системе с чужеродным белком. Введение животному живых клеток крови генетически чужеродной линии в процессе внутриутробного развития делает его на всю жизнь восприимчивым к пересадке тканей и органов линии донора крови. Именно на этой модели толерантность и была впервые обнаружена в 1953 году.
Таким образом, в организме человека и животных (рыбы, земноводные, пресмыкающиеся, птицы, млекопитающие) имеется система иммунитета, способная отличать "свое" от "не своего", запоминать встречу с "не своим", причем с высокой специфичностью, отторгать "не свое" и отвечать иммунологической ареактивностью (толерантностью) на контакт с чужеродным веществом, предварительно введенным в процессе раннего развития. Эта система лежит в основе приобретенного, или специфического, иммунитета.
Приобретенный иммунитет широко используется для вакцинации, то есть введения ослабленных или убитых микроорганизмов, или выделенных из них макромолекул, вызывающих иммунологическую реакцию на эти микроорганизмы. Вакцинация является основным способом предупреждения таких страшных заболеваний как оспа, туберкулез, полиомиелит, сибирская язва и многих других. Приобретенный иммунитет составляет основное препятствие для пересадок органов (сердце, почки, печень) и тканей (кожа) от одного человека другому. Для преодоления этого барьера несовместимости пользуются препаратами, подавляющими иммунную систему.
Вещество, способное вызывать реакцию приобретенного иммунитета, носит название антигена. Антигеном может быть не всякое вещество. Оно должно быть чужеродным, макромолекулярным (с мол. весом более 10 000 — 12 000) и иметь устойчивую химическую структуру. К типичным антигенам относятся белки и полисахариды. В первом примере (см. рис. 1.) антигеном является сам чужеродный белок — альбумин крови, во втором — особые белки, присутствующие на мембранах пересаженных клеток, так называемые антигены тканевой совместимости.
Антитела и антиген-распознающие рецепторы лимфоцитов
Что же происходит в точке перелома кривых выведения и отторжения? В первом случае, когда свободный молекулярно-дисперсный антиген циркулирует в крови, в ответ на него появляются защитные белки — антитела, которые специфически распознают его, образуют с ним комплекс, обезвреживают, если антиген токсичен (бактериальный токсин, змеиный яд или болезнетворный вирус), и способствуют ускоренному выведению его из организма.
При отторжении трансплантата главная роль принадлежит особой разновидности лимфоцитов Т-лимфоцитам-киллерам, "убийцам". Эти лимфоциты несут на своей наружной мембране антителоподобные рецепторы — рецепторы Т-клеток (РТК). РТК специфически распознают антиген, находящийся на мембране чужеродных клеток, и обеспечивают прикрепление киллера к клетке-мишени, что необходимо для осуществления киллером своей смертоносной функции. Для того чтобы киллеры убили клетку-мишень, они должны прикрепиться к ее мембране и выделить в просвет между киллером и мишенью особый белок, "продырявливающий" мембрану клетки-мишени, в результате чего клетка гибнет. После этого они открепляются от мишени и переходят на другую клетку, и так несколько раз. При повторной встрече организма с антигеном образуется больше антител и киллеров, они появляются в более короткие сроки, чем при первой встрече, и их специфичность во взаимодействии с антигеном возрастает. В этом и проявляется иммунологическая память, и на этом основан эффект вакцинации.
Как устроены антитела и рецепторы лимфоцитов? Очевидно, что их структура должна быть необычной, так как они строго специфически распознают громадное множество различных антигенов — любой чужеродный белок, полисахарид или синтетическую молекулу, вообще в природе не встречающуюся. При этом антитела и Т-лимфоциты, как правило, не реагируют с белками и клетками собственного организма. Как природа решает эту задачу?
Принцип строения антитела и РТК представлен на рисунке 2. Антитело состоит из двух идентичных пар полипептидных цепей: Н (Heavy — тяжелых) с молекулярным весом примерно 50 000 и L (Light — легких) — примерно 25 000. Цепи соединены друг с другом ковалентными (дисульфидными) связями (рис. 2а).
Рецептор лимфоцитов, в отличие от антител, — гетеродимер, состоящий из пары различных цепей — а и Ь с молекулярным весом около 50 000, соединенных между собой одной дисульфидной связью. Н-, L-, а- и b-цепи имеют сходный план строения и относятся к одному большому суперсемейству белков — иммуноглобулинов. В основе их структуры лежит сходное повторяющееся звено (домен), состоящее примерно из 110 аминокислот, свернутых в глобулы, напоминающие друг друга (см. рис. 2, где эти звенья обозначены как прямоугольники). Каждый домен в молекуле антитела или РТК выполняет свою биологическую функцию, а наиболее важную из них — распознавание и связывание с антигеном — осуществляют концевые домены (см. рис. 2).
Пара концевых доменов (один из Н-цепи, другой из L-цепи, а в РТК — один из a-цепи, другой из b-цепи) образуют активный центр, уникальную по структуре полость, распознающую в молекуле антигена небольшие дискретные участки, состоящие из 4–8 аминокислот. Эти участки антигена подходят к структуре активного центра, "как ключ к замку", образуя прочные нековалентные связи антигена с антителом. Разные антитела (и РТК также) отличаются друг от друга структурой активных центров. На химическом уровне отличие активных центров определяется первичной структурой концевых доменов Н- и L-, а- и b-цепей, то есть последовательностью аминокислот в них. Участки Н и L цепей (равно как а и Ь), образующие "стенки" активного центра, носят название вариабельных (или V) районов. Остальная часть молекул постоянна и носит название константного (С) района. Вариабельных районов среди молекул антител тысячи, константных — единицы. Главная функция вариабельных районов — образование активных центров антител и РТК. Разнообразие активных центров очень велико, не менее 107–108, что вполне достаточно для более или менее специфического распознавания любого произвольно взятого антигена. Таким образом, структура антител и РТК, а точнее их активных центров, обеспечивает узнавание любого чужеродного белка или полисахарида, попавшего в организм.
Рис. 2. Принципиальная схема строения антител и рецепторов Т-клеток (РТК).
Н и L — тяжелая и легкая цепи антител соответственно, VL и VH — вариабельные районы соответственно легких и тяжелых цепей; Va и Vb — вариабельные районы а- и b-цепей; Акт. ц. — активные центры антител и РТК. Прямоугольники — повторяющиеся сходные звенья (домены) в структуре полипептидных цепей; М — клеточная мембрана.
1 D — от diversity (разнообразие), J — от Joining (соединяющий).
V' — фрагмент гена контролирует первые 95 аминокислот в V-доменах,
D — от 2 до 10 и J — от 5 до 15 (см. рис. 3).
Генетический контроль синтеза антител
Как же осуществляется контроль синтеза полипептидных цепей, один из районов которых постоянно варьирует при переходе от одного антитела (или РТК) к другому (вариабельный, V-район), а остальные строго постоянны (константные, Cl-районы). Эта задача решается благодаря уникальному генетическому механизму — независимому генетическому контролю V- и С-районов, составляющих одну полипептидную цепь, и сборке гена, контролирующего вариабельный район, из фрагментов в процессе созревания лимфоцита.
Гены, контролирующие структуру одной полипептидной цепи антитела или РТК, объединены в семейства, расположенные в одном участке хромосомы. При этом гены, соответствующие V-районам, "разорваны" на 2 или 3 фрагмента — основной V' и один или два дополнительных — D и J 1. V'-фрагментов в геноме недифференцированных лимфоцитов много — от 50 до 1000 для разных цепей и все они отличаются друг от друга по своей структуре. D представлены несколькими десятками копий, a J — единичными, причем каждая из копий имеет уникальную структуру. В процессе созревания лимфоцита фрагменты V-гена объединяются на случайной основе в V'DJ-ген (рис. 3), причем число возможных сочетаний равно произведению числа V'-, D- и J-генов. Для различных цепей антител или РТК число вариантов от тысячи до десятков тысяч.
Рис. 3. Упрощенная схема семейства антител (а) и сборки гена, контролирующего вариабельный район антитела (б).
а — Принципиальная схема участка хромосомы, включающего семейства вариабельных (V') и константных (С) генов. Численность V'-генов в отдельных семействах варьирует в зависимости от типа цепей и вида животных от 50 до 1000, а С-генов от 1 до 9.
б — Сборка V-гена из фрагментов. V' — фрагмент гена, контролирующий первые 95 аминокислот V-района; D — короткий фрагмент, контролирующий от 2 до 10 аминокислот, начиная с 96. (Число D — до 20, в зависимости от типа цепи и вида животных); J — короткий концевой фрагмент V-гена, контролирующий от 5 до 15 аминокислот концевого района V-гена. Районы ДНК, разделяющие V'-D и D-J вырезаются и утрачиваются при сборке гена. Транскрибируется (то есть переписывается в информационную РНК) лишь собранный VDJ ген. Расстояние от VDJ до С-гена вырезается и утрачивается при синтезе информационной РНК.
Кроме того, в процессе сборки возможны ошибки и химические модификации объединяющихся фрагментов, что резко увеличивает число возможных комбинаций. Дальнейшее разнообразие активных центров возникает за счет объединения вариабельных районов пары цепей, составляющих этот центр (см. рис. 2). Таким образом, благодаря сборке V-гена из фрагментов и образования активных центров из разных цепей, создается 107–108 уникальных по своей структуре участков молекулы антител и РТК, среди которых всегда найдутся способные взаимодействовать с любым произвольно взятым антигеном. Все это разнообразие составляет репертуар антител или РТК. Следует подчеркнуть, что этот репертуар возникает до встречи с антигеном и независимо от антигена и что бóльшая часть репертуара антител не потребуется в течение всей жизни особи.
Клеточные механизмы иммунитета
Итак, в организме предсуществуют антитела и РТК к любому произвольно взятому антигену. Эти антитела и РТК присутствуют на поверхности лимфоцитов, образуя там антиген-распознающие рецепторы. Чрезвычайно важно, что на поверхности одной клетки находятся антитела (или РТК) одной и той же специфичности. Один лимфоцит может синтезировать антитела (или РТК) только одной специфичности, не отличающиеся друг от друга по структуре активного центра. Это формулируется как принцип "один лимфоцит — одно антитело".
Каким же образом антиген, попадая в организм, вызывает усиленный синтез именно тех антител, которые специфично реагируют только с ним? Ответ на этот вопрос дала теория селекции клонов австралийского исследователя, Нобелевского лауреата Ф.М. Бернета (1899–1985). Согласно этой теории, высказанной в 1957 году и полностью подтвержденной последующими экспериментами, одна клетка синтезирует лишь один тип антител, которые локализуются на ее поверхности. Репертуар антител формируется до, и независимо от встречи с антигеном. Роль антигена заключается лишь в том, чтобы найти клетку, несущую на своей мембране антитело, реагирующее именно с ним, и активировать эту клетку. Активированный лимфоцит вступает в деление и дифференцировку. В результате из одной клетки возникает 500 — 1000 генетически идентичных клеток (клон), синтезирующих один и тот же тип антител, способных специфически распознавать антиген и соединяться с ним. В результате дальнейшей дифференцировки лимфоцит превращается в клетку, не только синтезирующую данное антитело, но и секретирующую его в окружающую среду. Таким образом, функции антигена — найти соответствующий ему лимфоцит, вызвать его деление и дифференцировку в клетку, секретирующую антитела. В этом и заключается суть иммунного ответа: в селекции нужных клонов и их стимуляции к делению. Динамика первичного и повторного ответов, согласно теории Бернета, — это отражение динамики размножения клонов клеток, продуцирующих антитела к данному антигену. Толерантность — утрата клона клеток вследствие их контакта с антигеном в процессе созревания лимфоцита.
В основе образования лимфоцитов-киллеров лежит тот же принцип: селекция антигеном Т-лимфоцита, несущего на своей поверхности РТК нужной специфичности, и стимуляция его деления и дифференцировки. В результате образуется клон однотипных киллеров, несущих на своей поверхности большое количество РТК, взаимодействующих с антигеном, входящим в состав чужеродной клетки, и способных убивать эти клетки.
И здесь мы встречаемся с новыми проблемами, уже выходящими за пределы клонально-селекционной теории иммунитета. Первая из них: как РТК узнают антиген? Дело в том, что киллер ничего не может сделать с растворимым антигеном, ни обезвредить его, ни удалить из организма. Но лимфоцит-киллер очень эффективно убивает клетки, содержащие чужеродный антиген, поэтому он проходит мимо растворимого антигена, но не пропускает антиген, находящийся на поверхности чужеродной клетки. Для этого существует специальный механизм, так называемое "распознавание в контексте". Он заключается в том, что РТК не узнают соответствующий ему антиген, если он находится в свободном виде, но строго специфически реагируют с ним, если он находится в комплексе с антигеном тканевой совместимости, о котором мы упоминали выше. Эти антигены всегда присутствуют на поверхности любых клеток организма и обладают способностью комплексироваться с чужеродными белками, вернее, с их фрагментами. Таким образом, антигены тканевой совместимости образуют "контекст", в котором (и только в котором!) РТК распознают чужеродный антиген, активируя лимфоцит и стимулируя его к делению и дифференцировке в полноценный киллер.
Вторая проблема, выходящая за пределы клонально-селекционного принципа, — это лимфоциты-помощники. Детальное изучение реакций иммунитета показало, что для образования клона клеток, продуцирующих антитела, или клона киллеров необходимо участие специальных лимфоцитов-помощников. Сами по себе они не способны ни вырабатывать антитела, ни убивать клетки-мишени. Но, распознавая чужеродный антиген, они реагируют на него выработкой ростовых и дифференцировочных факторов, которые необходимы для размножения и созревания антителообразующих и киллерных лимфоцитов. В этой связи интересно вспомнить о вирусе СПИДа, вызывающем сильнейшее поражение иммунной системы (синдром приобретенного иммунодефицита — СПИД). Этот вирус поражает именно лимфоциты-помощники, делая иммунную систему не способной ни к выработке антител, ни к образованию киллеров.
И наконец, очень важная проблема: как вырабатывается толерантность к антигенам собственного организма? В полном соответствии с теорией Бернета было показано, что если незрелый лимфоцит, несущий антительный рецептор или РТК к собственным антигенам, встречается с таким антигеном, то он инактивируется или погибает. Таким образом, организм лишается клонов лимфоцитов, способных реагировать с собственными антигенами, не ослабляя своего ответа на антигены чужеродные. Важно отметить, что при некоторых заболеваниях сохраняются "запрещенные" клоны, отвечающие антителами или киллерами на антигены собственных клеток. В этом случае возникают тяжелейшие заболевания, такие, например, как красная волчанка, при которой поражаются собственные ткани организма.
Эффекторные механизмы иммунитета
Как антитела или лимфоциты-киллеры удаляют из организма чужеродные вещества или клетки? Очевидно, что в случае киллеров РТК выполняют лишь функцию "наводчика" — они распознают соответствующие мишени и прикрепляют к ним клетку-убийцу. Так распознаются клетки, зараженные вирусом. Сам по себе РТК не опасен для клетки-мишени, но "идущие за ним" Т-клетки представляют огромный разрушительный потенциал. В случае антител мы встречаемся со сходной ситуацией. Сами по себе антитела безвредны для клеток, несущих антиген, и не обладают физиологической активностью, ведущей к разрушению антигена. Правда, они подавляют биологическую активность опасных антигенов, таких, как дифтерийный или столбнячный токсины, или змеиный яд. Они также способны блокировать вирус, находящийся в крови (но не в клетках). Но это лишь особые случаи действия антител. При встрече с обычными антигенами (не токсичными), циркулирующими или входящими в состав клеточной стенки микроорганизма, к антителам подключается система комплемента, резко усиливающая эффект действия антител. Комплемент сообщает образующемуся комплексу антиген-антитело биологическую активность: токсичность, сродство к фагоцитирующим клеткам и способность вызывать воспаление.
Система комплемента включает более 10 белков, большая часть которых является проферментами — неактивными предшественниками специфических ферментов, действующих на белки. Первый компонент этой системы распознает комплекс антиген-антитело, находящийся либо в жидкостях организма (в крови или лимфе), либо на поверхности бактериальной клетки. Распознавание комплекса антиген-антитело ведет к активации первого компонента комплемента, в котором появляется ферментативная активность к последующему компоненту. Последовательная активация всех компонентов системы комплемента имеет ряд последствий. Во-первых, происходит каскадное усиление реакции, почти каждый последующий этап реакции активации комплемента является ферментативным, при котором продуктов реакции образуется несравнимо больше, чем исходных реагирующих веществ. Во-вторых, на поверхности бактерии фиксируются компоненты комплемента, резко усиливающие фагоцитоз этих клеток, то есть сродство их к фагоцитирующим клеткам организма. В-третьих, при ферментативном расщеплении белков системы комплемента образуются фрагменты, обладающие мощной воспалительной активностью. И, наконец, при включении в комплекс антиген-антитело последнего компонента комплемента этот комплекс приобретает способность "продырявливать" клеточную мембрану и тем самым убивать чужеродные клетки. Таким образом, система комплемента — важнейшее звено в защитных реакциях организма.
Однако комплемент активируется любым комплексом антиген-антитело, вредным или безвредным для организма. В связи с этим воспалительная реакция, возникающая на безвредные антигены, регулярно попадающие в организм, может вести к аллергическим, то есть извращенным, реакциям иммунитета, тяжело переносимым человеком или животным. Аллергия развивается при повторном, как правило, многократном попадании антигена в организм, например, при повторном введении антитоксических сывороток, или у мукомолов на белки муки, или при многократной инъекции фармацевтических препаратов, в частности, некоторых антибиотиков. Правда, есть аллергические реакции, не требующие для своего развития комплемента. Борьба с аллергическими болезнями состоит в подавлении либо самой реакции иммунитета, либо в нейтрализации образующихся при аллергии веществ, вызывающих воспаление.
Итак, мы рассмотрели сложную и удивительно целесообразно устроенную систему защитных реакций организма. Одной из важнейших проблем современной биологии является вопрос о том, как и из чего она могла возникнуть в процессе эволюции. Подходы к этой проблеме лишь только начинают намечаться.
РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА
1. Ройт А. Основы иммунологии. М.: Мир, 1991.
2. Альберте Б., Брей Д., Льюис Дж., Рафф М., Робертс К. и Уотсон Дж. Молекулярная биология клетки. М.: Мир, 1994. 2 изд. Гл. 18. "Иммунная система".
ПЕРЕДАЧА И ТРАНСДУКЦИЯ ГОРМОНАЛЬНОГО СИГНАЛА В РАЗНЫЕ ЧАСТИ КЛЕТКИ
Кулинский В.И.
Введение
Общим принципом передачи любой информации в клетке, как наследственной, так и оперативно регулирующей и управляющей, является обязательность ее трансдукции (преобразования) на каждом этапе. Для наследственной информации общеизвестны как факт трансдукции, так и ее этапы: транскрипция — процессинг про-мРНК (созревание про-матричной РНК) — трансляция — посттрансляционная модификация белка. Для передачи гормональной информации это во многом выяснено в последние годы.
Существуют два основных механизма трансдукции гормонального сигнала в клетку (рис. 1).
Рис. 1. Общая структура сигнал-трансдукторных систем клетки.
R — рецептор, G — G-белок, Е — фермент, образующий второй посредник, ЭПС — эндоплазматическая сеть, ПК — протеинкиназа, Ras — белок Раs, HR — гормон-рецепторный комплекс
При первом гидрофобный гормон (стероидный, иодтиронин, активированные витамины А и D) проникает через плазматическую мембрану, а затем через цитозоль (последнему, очевидно, способствуют транспортные рецепторы цитозоля) в ядро, где образует комплекс с ядерными рецепторами и в результате изменяет матричные синтезы. При втором гормон-рецепторный комплекс образуется на наружной поверхности плазматической мембраны. Это вызывает либо быстрое открытие ионного канала и вход ионов в клетку (вариант На, на рис. 1) и в результате нервный импульс, либо включение систем вторые посредники (ВП) — протеинкиназы (ПК), приводящее к более медленным изменениям метаболизма и функций клеток (вариант IIб). Два механизма (I и IIб) могут приводить к поздним эффектам — изменениям процессов, которые регулируются ядром клетки. Совокупности механизмов, осуществляющих трансдукцию межклеточных сигналов гормонов во внутриклеточные, в том числе и во внутриорганелльные сигналы, получили название сигнал-трансдукторных систем [1]. В статье излагаются современные данные по системам ВП-ПК для разных компартментов (микроотсеков) клетки. Важным достижением является выяснение того, что передача регулирующей информации в ядро и митохондрии происходит своеобразно и различно.
Цитозоль
Четыре основные и наиболее изученные системы передачи гормонального сигнала в цитозоль [1, 2] представлены на рис. 2. Многие гормоны (амины, пептиды, белки, простагландины I и Е), а также запах и вкус действуют через систему цАМФ (циклический аденозинмонофосфат). Образование гормон-рецепторного комплекса через G [ГТФ (гуанозинмонофосфат) — зависимые]-белки активирует или ингибирует аденилилциклазу, которая из АТФ (аденозинтрифосфат) образует цАМФ. Этот ВП вызывает диссоциацию зависимой от него ПК А на регуляторную и каталитическую субъединицы. В результате последняя активируется и фосфорилирует многочисленные белки. Это увеличивает, например, распад гликогена и жира, синтез катехоламинов и глюкокортикостероидов, сокращение сердца, расслабление гладких мышц. Поэтому цАМФ часто рассматривают как сигнал голода и стресса.
Другой циклонуклеотид — цГМФ (циклический гуанозинмонофосфат) образуется двумя гуанилилциклазами. Мембранный фермент активируется натрийуретическими гормонами (G-белки не участвуют), а растворимый (цитозольный) — монооксидами NOJ, СО и JOH [1–3]. Последние — новый (90-е годы) класс неорганических регуляторов, проявляющих свойства иногда межклеточных, иногда внутриклеточных регуляторов. цГМФ активирует ПК G, но, кроме того, изменяет активность других белков, включая ионные каналы (последнее важно для восприятия света [4]). цГМФ увеличивает выделение мочи и Na+, расслабляет гладкие мышцы; NО через цГМФ вызывает эрекцию полового члена. Оба циклонуклеотида дезагрегируют (разъединяют) тромбоциты.
Рис. 2. Основные сигнал-трансдукторные системы клетки.
АЦ — аденилилциклаза, ГЦ — гуанилилциклаза, КМ — кальмодулин, КМ-ПК — кальмодулиновая ПК, ФГ С — фосфолипаза С, ФИ — фосфоинозитиды, ФХ — фосфатидил-холин, ИФ3 — инозитолтрифосфат, ДАГ — диацилглицерид, ИН — инсулин, ФРК — факторы роста клеток, ЦК — цитокины, ТК — тирозинкиназа
Многие гормоны (амины, пептиды, белки, простагландины F и тромбоксаны) через G-белок включают систему фосфолипаз С, которые из фосфатидилинозитидов образуют два ВП: инозитолтрифосфат и диацилглицерид, а из фосфатидилхолина — только последний. Инозитолтрифосфат увеличивает поступление в цитозоль Са2+— как внутриклеточного из эндоплазматической сети, так и межклеточного через медленные кальциевые каналы. Комплекс Са2+ с его рецептором кальмодулином активирует многие цитозольные ферменты либо прямо, либо через кальмодулиновую ПК. Диацилглицерид при наличии Са2+ активирует ПК С. Таким образом, в этой системе функционируют три ВП, две ПК и кальмодулин. Ее стимуляция, например, модулирует функции ионных каналов, способствует распаду гликогена, фосфолипидов и белка, активирует секрецию разных желез, выделение гормонов, вызывает сокращение гладких мышц и агрегацию тромбоцитов [1, 2].
Тирозинкиназы (ТК) — это ПК, фосфорилирующие в белках остатки тирозина (а не серина или треонина, как другие ПК). Эта система отличается от остальных отсутствием ВП. Различают рецепторные ТК, расположенные в плазматической мембране и являющиеся частью рецептора или сопряженные с ним, и нерецепторные (или клеточные). Эта система включается в действие факторов роста клеток, цитокинов (см. раздел "Ядро") и инсулина, опосредуя большинство его эффектов (цитозольные). Образование гормон-рецепторного комплекса, а также антигены активируют рецепторные ТК, и они фосфорилируют различные белки (см. рис. 2). Это включает системы малого G-белка Ras и фосфолипаз С. В последние годы установлено, что обе они запускают целый каскад цитозольных ПК — обычных ПК и нерецепторных ТК [1, 2, 5].
Нет сомнений, что сигнал-трансдукторных систем больше. В 90-е годы открыты новые ВП: церамид, фосфатидная кислота, цАДФ (циклоаденозиндифосфат) — рибоза и даже 5'-АМФ (аденозинмонофосфат). Сейчас интенсивно изучаются связанные с ними сигнал-трансдукторные системы.
Ядро
Многие гормоны и другие внеклеточные факторы (некоторые витамины, сыворотка крови) регулируют матричные синтезы, деление и дифференцировку клеток и другие процессы, определяемые ядром клетки. Однако в ядро проникает очень небольшая группа гормонов (стероиды, иодтиронины). Все остальные гормоны регулируют ядерные процессы без проникновения не только в ядро, но даже в клетку. Это возможно только в том случае, если вместо самого гормона в ядро будет поступать его сигнал. Очевидно, что для этого межклеточный сигнал, передаваемый гормоном, должен трансдуцироваться вначале во внутриклеточный, а затем во внутриядерный сигнал.
Первый этап преобразования гормонального сигнала нами уже разобран. Он приводит к накоплению в клетке ВП и/или активации ПК, то есть особой специфики здесь нет. Отметим только, что ядерные эффекты гормонов наиболее часто связаны с активацией ТК, ПК С и А [5].
Гормоны, наиболее эффективно регулирующие ядерные процессы, — это факторы роста клеток (ФРК) и цитокины. ФРК регулируют деление и дифференцировку всех клеток и, кроме того, поддерживают их витальность (жизнестойкость). Аналогичные эффекты соматотропного гормона (гормона роста) и инсулина реализуются через ФРК. Цитокины регулируют деление и дифференцировку иммунных клеток и вообще процессы иммунитета и воспаления. Иммунологи часто включают ФРК в состав цитокинов.
Теперь и начинается самое интересное — как цитозольный сигнал трансдуцируется во внутриядерный. Наиболее частым механизмом регуляции транскрипции на этапе инициации является специфическое взаимодействие белковых транскрипционных факторов с регуляторными участками ДНК. Поэтому основные усилия были направлены на выявление взаимодействия этого механизма с цитозольными событиями. В результате в 1990–1994 годы были выявлены три основных варианта [5] (рис. 3).
Рис. 3. Основные пути передачи сигнала из цитозоля в ядро.
ТФ — транскрипционный фактор, Р — остаток фосфата, И — ингибитор. —> — транслокация сигнальной молекулы в ядро, —> — другие варианты передач и сигнала
При первом, характерном для действия сыворотки крови или цАМФ-зависимых гормонов в ядро проникают цитозольные ПК, например киназа митогенактивированного белка (MAP-киназа) или каталитическая субъединица ПК А. В ядре такие ПК фосфорилируют один (или более) из внутриядерных транскрипционных факторов, что изменяет его сродство к ДНК и/или степень его активности. Например, ПК А участвует в развитии клеток (спермы и др.), синтезе гормонов и поддерживании суточного ритма, то есть функции цАМФ намного шире, чем думали недавно. При втором варианте, установленном для ряда ФРК, цитокинов и противовирусных белков интерферонов, сигнал в ядро передает не ПК, а фосфорилированный ею белок (например, Stat). До этого он был латентным транскрипционным фактором, но в результате фосфорилирования становится активным, проникает в ядро и специфически связывается с ДНК. При третьем варианте, реализующем эффекты ФРК, активных форм кислорода и ультрафиолета и регулирующем процессы воспаления и иммунитета, в белковом комплексе фосфорилируется и в результате отщепляется ингибиторная или якорная субъединица. Освобожденный от нее и ставший активным транскрипционный фактор проникает в ядро и связывается с ДНК. Это установлено, например, для NF-kB-ядерного фактора, первым (из очень многих) открытым эффектом которого была стимуляция синтеза k-легкой цепи иммуноглобулинов в В-лимфоцитах.
Таким образом, все три уже изученных варианта передачи сигнала в ядро связаны с протеинкиназным фосфорилированием регуляторных белков — транскрипционных факторов или их предшественников. При всех трех вариантах связывание активного транскрипционного фактора с регуляторным участком ДНК происходит быстро и запускает или увеличивает процесс транскрипции ранних генов, то есть генов, определяющих быстрые (в пределах ~ 15 мин) ответы клетки. Возникающие мРНК определяют синтез белковых продуктов ранних генов, которые становятся новыми транскрипционными факторами. Последние, как хорошо известно, стимулируют поздние гены (их активность реализуется в течение часов и суток) [5].
Напомним, что такие гормоны, как стероидные и иодтиронины, и активированные витамины А (ретиноевая кислота) и D (кальцитриол) после образования комплекса со своими ядерными рецепторами также взаимодействуют с регуляторными участками ДНК (см. рис. 1). Это означает, что конечный этап в регуляции ядерных процессов разными гормонами оказывается близким — это взаимодействие гормон-рецепторного комплекса (при механизме I на рис. 1) или — при механизме 116-модифицированного транскрипционного фактора (см. рис. 3) с регуляторными участками ДНК. Однако очевидны глубокие различия и в процессах трансдукции гормонального сигнала в ядро, и в регуляторных участках ДНК. Отметим, что изобилие последних почти в каждом гене эукариот привело к термину "мозг гена", а сам такой ген заслужил название "умного" (smart gene).
Изложенные данные не исчерпывают возможных механизмов и уровней регуляции. Показано, что при стимуляции деления клеток в ядре увеличивается концентрация Са2+. Следовательно, проникать в ядро могут не только ПК и модифицированные ими транскрипционные факторы, но и ВП. Однако трансдукция сигнала Са2+ в ядре пока не выяснена. Ясно также, что цитозольные ВП и ПК могут регулировать экспрессию генов и на посттранскрипционном и трансляционном уровнях. Но конкретные механизмы передачи сигналов в ядро еще не установлены.
Митохондрии
В последние годы окончательно доказано, что существует множественная регуляция гормонами и ВП всех основных функций митохондрий (MX) [6]: активности ферментов, включая цикл трикарбоновых кислот Кребса, работы дыхательной цепи, окислительного фосфорилирования и процессов энергопотребления. Регуляция осуществляется двумя группами гормонов: Са2+-мобилизующими (катехоламины через а1-рецепторы, вазопрессин, ангиотензин) и цАМФ-зависимыми (глюкагон и катехоламины через b-рецепторы). Схема передачи гормонального сигнала в MX представлена на рис. 4. Общее для обоих механизмов — первичный регуляторный сигнал в клетке возникает в гормональных рецепторах плазматической мембраны и затем трансдуцируется в увеличение цитозольной концентрации ВП — Са2+ и/или цАМФ. Их влияние на MX является вторичным — в результате воздействия на наружную сторону внутренней мембраны MX или проникновения через нее в матрикс (внутренняя растворимая часть MX).
Рис. 4. Передача гормонального сигнала в митохондрии.
Е — фермент MX
Конкретные механизмы этих процессов различны. Для Са2+ существует постоянный обмен через внутреннюю мембрану MX: вход в матрикс (к минусу внутри) за счет энергии мембранного потенциала и выход назад в гиалоплазму в обмен на Na+ или Н+ за счет энергии, связанной с различиями pH. Расход энергии на это невелик и оправдан: он является основой для кальциевой регуляции функций MX. Кроме того, Са2+ активирует как минимум один фермент наружной стороны внутренней мембраны MX (глицерофосфатдегидрогеназу). цАМФ взаимодействует с рецепторным белком внутренней мембраны MX, что, очевидно, и приводит к активации их функций. Кроме того, цАМФ проникает во все компартменты MX, а в каждом из них есть ПК А (но ее роль в регуляции функций MX еще не вполне доказана). В результате описанных процессов цитозольный сигнал — увеличение концентрации Са+ и/или цАМФ — трансдуцируется в митохондриальный, что и вызывает множественные изменения функций этих субклеточных частиц [6].
Необходимо обратить внимание на две важные особенности: 1) ионы Са2+ действуют не через специализированные рецепторные белки типа кальмодулина, а прямо на митохондриальные ферменты как матрикса, так и внутренней мембраны; 2) эффекты цАМФ могут реализовываться не только через ПК А, но и путем связывания с рецепторным белком внешней стороны внутренней мембраны MX, что изменяет ее свойства и в результате приводит к изменениям функций MX. Это существенно отличается от классических механизмов, характерных для цитозоля эукариот. В то же время у прокариот нет обычных рецепторных белков (кальмодулина и ПК А) для этих вторых посредников, и цАМФ действует через внутриклеточный цАМФ-рецепторный белок. Эту аналогию можно рассматривать как еще один важный факт в пользу известного представления о прокариотическом происхождении MX (суть его в том, что MX в клетке — эндосимбиоз безмитохондриального эукариота, ранее жившего на гликолизе, с прокариотом, открывшим окислительное фосфорилирование). Вместе с тем у MX есть и важные отличия от прокариот: 1) отсутствие аденилилциклазы, 2) локализация рецепторного белка цАМФ в мембране MX, 3) наличие в ней системы транспорта Са2+, 4) наличие ПК А. Все эти особенности могли появиться после возникновения эндосимбиоза как ответ на потребность клетки регулировать свои (уже свои) MX. Конечно, в процессе эволюции это происходило разновременно: рецепторный белок цАМФ в MX есть уже у дрожжей, а система транспорта Са2+ развивается только у позвоночных. Последние в регуляции функций MX имеют наиболее широкие возможности для выбора: 1) выбор гормона, 2) выбор одного из его рецепторов, 3) выбор ВП, 4) для цАМФ вероятен также выбор пути реализации его эффекта (рецептор внутренней мембраны MX или ПК А).
Вероятно, регуляция функций MX не ограничивается рассмотренными четырьмя гормонами и двумя ВП: 1) как Са2+ -мобилизующих, так и цАМФ-зависимых гормонов очень много; 2) биосинтезы (особенно матричные), ионный транспорт (особенно Na+ и К+) и мышечная работа — основные пути расхода энергии, поэтому их регуляторы должны стимулировать и энергообеспечение. Функции MX могут стимулироваться и другими ВП и их рецепторными белками. Для цГМФ и ПК С такие данные уже появились, но излагать их пока преждевременно, да и регуляторные механизмы остаются неясными.
Заключение
В каждой клетке существует комплекс сигнал-трансдукторных систем, преобразующих все внешние сигналы во внутриклеточные, а затем и во внутриорганелльные. Сигналы подавляющего большинства гормонов с рецепторов плазматической мембраны в цитозоль передаются системой вторые посредники — их специфические рецепторы (чаще всего протеинкиназы); фосфорилирование же белков изменяет их активность. Существуют и варианты: второй посредник — неферментный рецепторный белок (Са2+ — кальмодулин или цГМФ — ионный канал) и протеинкиназы (тирозинкиназы), прямо активируемые гормон-рецепторным комплексом.
В ядро сигнал обычно передается путем транслокации в него цитозольной протеинкиназы или активированного транскрипционного фактора (фосфорилированного ею или освобожденного из комплекса с другим белком). В митохондрии сигнал передается иначе — путем транслокации из цитозоля вторых посредников: Са2+ или цАМФ, которые в основном действуют не через свои специфические рецепторы, а прямо на функциональные белки митохондрий. Механизмы трансдукции в органеллах отличаются от классических цитозольных, но они обеспечивают столь же эффективный контроль гормонами ядерных и митохондриальных процессов, как и цитозольных.
ЛИТЕРАТУРА
1. Кулинский В.И. Лекционные таблицы по биохимии. Иркутск: Иркут, мед. ин-т, 1994. Вып. 4: Биохимия регуляций. 94 с.
2. Нейрохимия/Под ред. И.П. Ашмарина, П.В. Стукалова. М.: НИИ биомед. химии РАМН, 1996. С. 244–371.
3. Реутов В.П. // Успехи биол. химии. 1995. Т. 35. С. 189–228.
4. Островский М.А. // Природа. 1993. № 10. С. 23–36.
5. Терентьев А.А. // Биохимия. 1995. Т. 60. С. 1923–1952.
6. Кулинский В.И. // Успехи биол. химии. 1997. Т. 37. С. 171–209.
В.А. Ткачук
Введение
Все процессы жизнедеятельности у человека и животных находятся под контролем нервных клеток, которые секретируют в синаптическую щель нейромедиаторы, и эндокринных желез, которые выделяют в кровь гормоны. Гормоны и нейромедиаторы сообщают органам и тканям, что, когда и сколько они должны производить. Когда — определяется временем секреции, сколько — количеством секретированного гормона или нейромедиатора, что — наличием рецепторов к этим молекулам только у определенной группы клеток, специализирующихся в отношении данной функции. Среди нейроэндокринных механизмов регуляции существует своя иерархия, тесно связанная со скоростями развития и гашения их сигналов, а также с молекулярными механизмами их действия (рис. 1).
Рис. 1. Три основных механизма нейроэндокринной регуляции клеток
Отклонение от нормы того или иного процесса жизнедеятельности включает нервную систему регуляции, и нейромедиаторы, изменяя активность ионных каналов (являющихся одновременно рецепторами нейромедиаторов, рис. 2), вызывают гипер- или деполяризацию мембраны. Эта регуляция клеточной активности, происходящая за счет физических процессов (перемещение ионов через мембрану), развивается и гасится за доли секунды (рис. 1, слева).
Если нервная система не в состоянии вернуть тот или иной фактор гомеостаза к норме, подключаются гормоны, действующие через мембранные рецепторы и системы вторичных посредников, которые стимулируют химическую модификацию белков. Эта регуляция (рис. 3), происходящая за счет химических процессов (синтез и расщепление вторичного посредника, фосфорилирование и дефосфорилирование белка), развивается и гасится за минуты или десятки минут (рис. 1, в центре).
Если же отклонения от нормы того или иного процесса достигают опасных для организма величин или же должны произойти фенотипические изменения клеток, подключаются стероидные и тиреоидные гормоны, которые имеют цитозольные или ядерные рецепторы, что позволяет им взаимодействовать с хроматином и влиять на экспрессию генов (рис. 4). Эта регуляция, развивающаяся путем индукции или репрессии синтеза мРНК и белков, реализуется спустя 3–6 ч после появления гормона в крови, а гасится спустя 6-12 ч (рис. 1, справа).
Промежуточное положение в этой иерархии занимают факторы роста, рецепторы которых являются тирозиновыми киназами. Взаимодействие фактора роста с рецептором приводит сначала к фосфорилированию определенных белков по ОН-группам тирозина, а затем к проникновению этих фосфорилированных белков или самих факторов роста (иногда вместе с рецептором) в ядро, что может вызывать деление клеток. Следует отметить также, что многие нейромедиаторы (например, ацетилхолин, д-аминомасляная кислота), диффундируя из синаптической щели (которая всегда сообщается с межклеточным пространством) в кровь, приобретают свойства гормонов, вызывающих фосфорилирование белков.
Рис. 2. Структура холинергического рецептора микотинового типа, формирующего ионный канал. Субъединицы, полипептидные цепи которых четыре раза пронизывают липидный бислой, гликоэнлированы извне клетки, а внутри взаимодействуют с белками тубулинового и актинового цитоскелета. Связывание ацетилхолина (АХ) с двумя α-субъединицами холинергического рецептора вызывает конформационные изменения в олигомерном комплексе, в результате чего Na- входит внутрь клетки
Рис. 3. Системе проведения гормонального сигнала путем образования вторичных посредников и последующей химической модификации белков. Мембранные рецепторы, семь раз пронизывающие липидноый бислой (β-R — бета-адренергический рецептор, М2-R — холинергический рецептор мускаринового типа) и имеющий сродство к G-белкам (G2 — G-белок, стимулирующий, а G1 — G-белок, ингибирующий аденилатциклазу), регулируют образование циклического АМФ (цАМФ) в цитоплазме клетки. Циклический АМФ связывается с протеинкиназой и переводит ее из неактивного в активное состояние. Фосфорилирование ряда белков клетки по ОН-группам серина или треонине изменяет их свойства и тем самым вызывает биологический эффект данных гормонов. Гормональное влияние на клетку устраняется за счет разрушения гормонов извне клетки, что вызывает диссоциацию гомон-рецепторного комплекса. Вследствие этого происходит разобщение G-белков с аденилатциклазой. Кроме того, фосфодиэстераза (ФДЭ) гидролизует циклический АМФ до АМФ, а фосфопротеинфосфатаза дефософолирует фосфобелки, что приводит к полному гашению гормонального сигнала.
Рис. 4. Механизм действия гормонов на процессы трансформации и синтеза белков. Показано влияние тироксина (Т4), который проникает в клетку и там деиодируется, после чего образовавшийся трииодтиронин (Т3) связывается в ядре со своим рецептором и, изменяя взаимодействие рецептора с гистонами и ДНК, вызывает транскрипцию матричной рибонуклеиновой кислоты (мРНК). При трансляции мРНК на рибосомах образуется белок, который вызывает биологические эффекты гормона
Изменение мембранного потенциала
На рис. 2 показана структура так называемого никотинового холинорецептора. Он локализован на постсинаптической мембране клетки и при связывании ацетилхолина изменяет свою конформацию таким образом, что через устье, сформированное субъединицами, внутрь клетки устремляются ионы Na+. Происходит деполяризация, а затем и замена заряда мембраны на противоположный, что приводит к выходу К+ из клетки. Ток ионов К+ возвращает потенциал мембраны к исходной величине. В процессе этой перезарядки мембраны, называемой потенциалом действия, через этот же канал-холинорецептор внутрь клетки могут входить ионы Са2+. Следовательно, этот канал нельзя назвать избирательным в отношении катионов. В то же время это очень быстродействующая регуляторная система — потенциал действия, вызываемый ацетилхолином, возникает и гасится за 1–2 миллисекунды, благодаря чему синапс может проводить от аксона на иннервируемую клетку до 500 имп./с. Такое быстрое развитие и гашение сигнала возможны благодаря быстроте связывания ацетилхолина с рецептором, а также высоким скоростям его диссоциации от рецептора и разрушения ацетилхолинэстеразой. Разумеется, не менее важен и механизм открывания канала за счет конформационных переходов, происходящих за наносекунды. Продолжительное и быстрое функционирование холинергического синапса требует также большого запаса ацетилхолина, который синтезируется впрок и накапливается в везикулах пресинаптической мембраны. Кроме того, в клетках должны существовать высокие градиенты ионов Na+ и К+ по обе стороны плазматической мембраны, которые создаются и поддерживаются Ыа+/К+-насосом (см. статью А.А. Болдырева "Nа/К-АТФаза — свойства и биологическая роль": Соросовский Образовательный Журнал. 1998. № 4).
Быстродействие ацетилхолина (как и других нейромедиаторов) определяется также особенностями того морфологического образования, которое существует между аксоном и иннервируемой клеткой и которое называется синапсом. Благодаря тому что расстояние между пре- и постсинаптической мембранами составляет всего 300–500 Б, а холинорецепторы сконцентрированы в виде кластеров строго против мест секреции ацетилхолина, в момент разрыва секреторного пузырька нейромедиатор быстро оказывается в месте его рецепции. Кроме того, при раздражении аксона происходит выброс столь большого количества ацетилхолина, что молекулы этого нейромедиатора мгновенно насыщают все рецепторы и вызывают массированный вход Na+ в клетку (развитие потенциала действия).
Холинергические рецепторы никотинового типа имеют очень низкое сродство к ацетилхолину — полумаксимальное насыщение рецепторов наблюдается в присутствии 10-4 М ацетилхолина, поэтому как только ацетилхолинэстераза (локализованная, кстати, рядом с холинорецептором) начинает гидролизовать ацетилхолин и понижать его уровень в синапсе, происходят диссоциация этого нейромедиатора от рецептора и возвращение канала в закрытое состояние. Сродство рецептора к нейромедиатору или гормону определяется соотношением скоростей диссоциации и ассоциации гормон-рецепторного комплекса. При константе диссоциации 10-4-10-3 М скорость диссоциации ацетилхолина от рецептора составляет доли миллисекунды, что, несомненно, очень важно для быстрого (за 1–2 миллисекунды) восстановления синаптической передачи.
Холинорецептор-каналоформер, функционирующий на постсинаптической мембране, получил название "никотиновый" благодаря тому, что никотин, алкалоид из листьев табака имитирует действие ацетилхолина. На рис. 2 показана структура, которую этот рецептор имеет в электрическом органе рыб или в мышцах эмбрио нов. Видно, что полипептидные цепи каждой из субъединиц (две альфа, по одной бета, гамма и дельта) четыре раза пронизывают мембрану (рис. 2, справа). В зрелых дифференцированных мышцах взрослого животного гамма-субъединица в составе холинорецептора замещается на эпсилон-субъединицу, а в нервных клетках этот рецептор представлен лишь тремя альфа- и двумя бета-субъединицами, что приводит к снижению электропроводности канала для ионов Na+.
Химическая модификация белков
Совершенно иную структуру и другой механизм функционирования имеет так называемый мускариновый холинергический рецептор, который локализован преимущественно вне синапса. На этот рецептор не действует никотин, но он прекрасно активируется мускарином (алкалоидом из ядовитых грибов), а также, разумеется, ацетилхолином, к которому имеет сродство порядка 10-6 М. Существуют по крайней мере четыре типа мускариновых рецепторов, причем все они близки по структуре (полипептидная цепь семь раз пронизывает мембрану) и сопряжены с G-белками, но передают сигнал разным системам внутриклеточной сигнализации. Так, например, М-холинорецепторы могут стимулировать фосфолипазу С, которая гидролизует фосфоинозитиды, и могут ингибировать аденилатциклазу, синтезирующую циклический АМФ (см. рис. 3) и активировать К+-канал.
Эффекты мускариновых холинорецепторов развиваются спустя минуты после взаимодействия с рецептором и гасятся за десятки минут. Столь разительное отличие в скоростях проведения ацетилхолинового сигнала между никотиновым и мускариновым рецепторами объясняется прежде всего разной кинетикой связывания лиганда с соответствующими рецепторами (диссоциация ацетилхолина от мускаринового рецептора происходит за десятки минут), сложным каскадом проведения сигнала в случае мускариновой регуляторной системы (необходимо последовательное взаимодействие рецептора с соответствующим G-белком, затем G-белка с определенным ферментом или каналом и т. д.), а также сравнительно медленно протекающими химическими реакциями синтеза вторичных посредников, фосфорилирования и дефосфорилирования белков.
В каждой клетке функционируют обычно разные типы рецепторов к одному и тому же гормону (например, как альфа-, так и бета-адренорецепторы). Кроме того, клетка чувствительна обычно к 7-10 разным эндокринным регуляторам (нейромедиаторам, гормонам, простагландинам, факторам роста). Каждый из этих регуляторов имеет характерные только для него продолжительность и амплитуду регуляторного сигнала, для каждого характерно определенное соотношение активностей систем генерации вторичных посредников в клетке или изменения мембранного потенциала. На уровне исполнительных систем клетки может происходить как потенциирование, так и взаимное гашение разных регуляторных сигналов.
В каждой клетке функционирует также специальная биохимическая надстройка, регулирующая чувствительность клеток к гормону. Проиллюстрируем ее на примере рецептора, сопряженного с G-белками. Обычно уровень гормонов, действующих через эту систему трансмембранной сигнализации (к их числу помимо названных выше относятся простагландины, гормоны гипофиза, ангиотензин II, брадикинин, вазопрессин, окситоцин, гистамин, дофамин, энкефалин, эндорфин, серотонин, эндотелии, холецистокинин, гастрин, паратироидный гормон), повышается на несколько минут. Этого времени достаточно, чтобы произошло образование нужного количества вторичных посредников (циклического АМФ, Са2+, диацилглицерина), которые вызовут активацию соответствующих протеинкиназ и последующее за этим фосфорилирование белков. Если же уровень гормона сохраняется повышенным в течение десятков минут или нескольких часов (из-за гиперфункции эндокринной железы или фармакологического вмешательства), то происходит десенсибилизация соответствующего рецептора. Сначала протеинкиназа, которая есть в плазматической мембране практически всех клеток, фосфорилирует рецептор, в результате чего его сродство к гормону снижается в 2–5 раз. Эта протеинкиназа может фосфорилировать только гормон-рецепторный комплекс, поэтому, чем дольше гормон связан с рецептором, тем больше вероятность того, что рецептор будет фосфорилирован. Если такое фосфорилирование не в состоянии погасить гормональный сигнал, то спустя 15–30 мин происходит фосфорилирование рецептора протеинкиназой, которая активируется соответствующим вторичным посредником (например, в случае b-адренергических рецепторов, активирующих аденилатциклазу, цАМФ-зависимой протеинкиназой; в случае а1-адренергических или M1- и М3-холинергических рецепторов, активирующих фосфолипазу С, протеинкиназой С). Фосфорилирование рецепторов протеинкиназами, зависимыми от вторичных посредников, нарушает сопряжение с G-белками, вследствие чего ослабляется активирующее или ингибирующее влияние гормонов, действующих через эти рецепторы на аденилатциклазу, фосфолипазы А, С и D, Са2+- или К+-каналы. Если высокий уровень гормона сохраняется в течение нескольких часов, а перечисленные выше механизмы десенсибилизации не в состоянии погасить регуляторный сигнал, происходит эндоцитоз гормон-рецепторных комплексов и внутри клетки появляются рецепторосомы. Они могут вновь встроиться в плазматическую мембрану, если уровень гормона понизится в первые 2–3 часа. Если этого не происходит, они сливаются с лизосомами, после чего рецепторы разрушаются. Очевидно, что восстановление чувствительности клетки к этому гормону потребует нового синтеза рецепторов.
Экспрессия генов
Как уже отмечалось, на определенных стадиях онтогенеза или при достижении критического для организма отклонения от нормы того или иного фактора гомеостаза (гипотермия, гипогликемия, гипоксемия, потеря крови) включается медленная, но наиболее мощная система эндокринной регуляции, действующая через стероидные (андрогены, эстрогены, прогестины, глюкокортикоиды и минералокортикоиды) и тиреоидные гормоны (тироксин и трииодтиронин). Молекулы этих регуляторов, имея липофильную природу, легко проникают через липидный бислой и связываются со своими рецепторами в цитоплазме или ядре (см. рис. 4). Затем гормон-рецепторный комплекс, который из-за высокого сродства рецепторов к гормону (полумаксимальное насыщение рецепторов происходит в присутствии 10-9-10-10 М гормона) не распадается в течение 1–3 ч, связывается с ДНК и белками хроматина, что стимулирует синтез матричной РНК на определенных генах. Трансляция мРНК приводит к появлению в клетке 3–7 новых белков, которые вызывают биологический эффект этих гормонов. Стероидные и тиреоидные гормоны могут также репрессировать некоторые гены, вызывая биологический эффект путем уменьшения количества определенных белков в клетке. Обычно эти гормоны изменяют содержание того или иного белка не путем ускорения-замедления транскрипции функционирующих генов, а за счет включения-выключения новых генов. Так, например, стимулирование глюкокортикоидами аминотрансферазной активности печени происходит благодаря появлению в клетках новых (индуцибельных) изоформ аминотрансфераз. Интересно, что и на этом этапе регуляции эндокринная система заботится о гашении сигнала: индуцибельные изоформы белков, как правило, значительно быстрее инактивируются эндогенными протеазами, чем конститутивные изоформы. В процессах влияния стероидных и тиреоидных гормонов на клетки наиболее загадочным представляется механизм избирательной активации только определенных генов. По-видимому, избирательность обеспечивается тем, что рецепторы этих гормонов (рецепторные белки) имеют специальные домены, получившие название "цинковые пальцы", с помощью которых белки могут присоединяться только к определенным участкам нуклеотидных последовательностей ДНК и воздействовать на гены, несущие эти последовательности.
К числу белков, экспрессия которых в клетке контролируется гормонами, относятся не только ферменты, участвующие в метаболизме, но и протеинкиназы, фосфопротеинфосфатазы и другие участники систем проведения нейроэндокринного сигнала, а также многие рецепторы-каналоформеры и рецепторы, регуляторные белки и ферменты, участвующие в обмене вторичных посредников, Благодаря этому стероидные и тиреоидные гормоны могут участвовать в формировании не только возрастных и половых признаков, но и определять психоэмоциональный статус организма, а также баланс катаболических и анаболических реакций в органах и тканях, их чувствительность к нейромедиаторам и гормонам.
Заключение
Мы рассмотрели основные механизмы, с помощью которых нейроэндокринная система поддерживает постоянство внутренней среды организма и обеспечивает его адаптацию к изменениям окружающей среды. Следует отметить, что у высших животных гормоны влияют также на поведение и память, а мозг, в свою очередь, контролирует активность эндокринных желез. Едва ли есть смысл в рассуждениях о том, какая система — нервная или эндокринная — более эффективна или более важна, так как эти регуляторные процессы не функционируют обособленно. У человека и животных нейроэндокринная система регуляции стоит во главе всех регуляторных процессов, обеспечивающих согласованность процессов жизнедеятельности по скорости, времени и месту протекания.
РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА
1. Розен В.Б. Основы эндокринологии. М.: Изд-во МГУ, 1994.
2. Альберте Б., Брей Д., Льюис Дж. и др. Молекулярная биология клетки. М.: Мир, 1994. Т. 2. С. 338–393.
3. Ткачук В. А. Введение в молекулярную эндокринологию. М.: Изд-во МГУ, 1983.
4. Авдонин П.В., Ткачук В.А. Рецепторы и внутриклеточный кальций. М.: Наука, 1994
А.А. Миронов
В настоящее время слово биоинформатика стало очень модным, оно употребляется в трех разных смыслах. Первый смысл связывают с телепатией, экстрасенсорикой и т. д., об этом мы говорить не будем. Второй смысл связан с применением компьютеров для изучения любого биологического объекта, но эту тему мы тоже не будем затрагивать. Речь пойдет о биоинформатике в узком смысле слова, а именно о применении компьютерных методов для решения задач молекулярной биологии, в основном анализа разных последовательностей (аминокислотных, нуклеотидных). Эта наука возникла в 1976–1978 годах, окончательно оформилась в 1980 году со специальным выпуском журнала «Nucleic Acid Research» (NAR). Биоинформатика включает в себя:
• базы данных, в которых хранится биологическая информация
• набор инструментов для анализа тех данных, которые лежат в таких базах
• правильное применение компьютерных методов для правильного решения биологических задач
На рисунке показаны соотношение этапов развития биоинформатики (справа) с возникновением разных экспериментальных методик и полученных результатов экспериментальных исследований.
Технология ∙ Биоинформатика
1962 ∙ — ∙ Молекулярные часы
1965 ∙ Секвенирование tRNA ∙ База данных PIR
1970 ∙ Обратная транскрипция ∙ Алгоритм выравнивания NW
1972 ∙ Клонирование ∙ —
1980 ∙ Секвенирование ∙ База данных PDB. Спец ∙ выпуск NAR, Базы данных нукл. Послед
1981 ∙ — ∙ Алгоритм выравнивания SW
1982 ∙ Секвенирование ДНК фага лямбда ∙ -
1983 ∙ PCR ∙ Алгоритм поиска по базе данных WL
1985 ∙ Секвенирование ДНК вирусов ∙ FASTA — поиск по базе данных
1987 ∙ — GeneBank. Профили
1989 ∙ Программа "Геном человека" ∙ Swiss-Prot. NCBI
1991 ∙ EST ∙ -
1992 ∙ Первая хромосома дрожжей ∙ BLOSSUM
1993 ∙ Автоматическое секвенирование ∙ -
1995 ∙ Первый геном бактерии ∙ База данных SCOP
1996 ∙ Первый геном архейный ∙ -
1997 ∙ — ∙ PSI-BLAST. Кластеры ортологичных генов
1998 ∙ Геном червя ∙ -
2001 ∙ Геном человека ∙ -
В 1962 году была придумана концепция "молекулярных часов", в 1965 была секвенирована тРНК, определена ее вторичная структура, в это же время были созданы базы данных PIR для хранения информации об аминокислотных последовательностях. В 1972 году было придумано клонирование. В 1978 году были разработаны методы секвенирования, была создана база данных пространственных структур белков. В 1980 был выпущен спецвыпуск журнала NAR, посвященный биоинформатике, затем были придуманы некоторые алгоритмы выравнивания последовательностей, о которых речь пойдет дальше. Дальше был придуман метод ПЦР (полимеразная цепная реакция), а в биоинформатике — алгоритмы поиска похожих фрагментов последовательностей в базах данных. В 1987 году оформился GeneBank (коллекция нуклеотидных последовательностей) и т. д.
Биолог в биоинформатике обычно имеет дело с базами данных и инструментами их анализа. Теперь разберемся, какие базы данных бывают в зависимости от того, что в них помещают. Первый тип — архивные базы данных, это большая свалка, куда любой может поместить все, что захочет. К таким базам относятся
• GeneBank & EMBL — здесь хранятся первичные последовательности
• PDB — пространственные структуры белков, и многое другое.
В качестве курьеза могу привести пример: в архивной базе данных указано,
что в геноме археи (архебактерии) есть ген, кодирующий белок главного комплекса гистосовместимости, что является полной чепухой.
Второй тип — курируемые базы данных, за достоверность которых отвечает хозяева базы данных. Туда информацию никто не присылает, ее из архивных баз данных отбирают эксперты, проверяя достоверность информации — что записано в этих последовательностях, какие есть экспериментальные основания для того, чтобы считать, что эти последовательности выполняют ту или иную функцию.
К базам данных такого типа относятся:
• Swiss-Prot — наиболее качественная база данных, содержащая аминокислотные последовательности белков
• KEGG — информация о метаболизме (такая, которая представлена на карте метаболических путей, которую те, кто ходит на лекции, видели на лекции № 2)
• FlyBase — информация о Drosophila
• COG — информация об ортологичных генах.
Поддержание базы требует работы кураторов или аннотаторов. Тем не менее, даже в курируемых базах данных могут встречаться курьезные надписи, например такая забавная надпись:
CAUTION: AN ORF CALLED DSDC WAS ORIGINALLY (REF. 3) ASSIGNED TO THE WRONG DNA STRAND AND THOUGHT TO BE A D-SERINE DEAMINASE ACTIVATOR, IT WAS THEN RESEQUENCED BY REF. 2 AND STILL THOUGHT TO BE "DSDC", BUT THIS TIME TO FUNCTION AS A D-SERINE PERMEASE. IT IS REF.1 THAT SHOWED THAT DSDC IS ANOTHER GENE AND THAT THIS SEQUENCE SHOULD BE CALLED DSDX. IT SHOULD ALSO BE NOTED THAT THE C-TERMINAL PART OF DSDX (FROM 338 ONWARD) WAS ALSO SEQUENCED (REF.6 AND REF. 7) AND WAS THOUGHT TO BE A SEPARATE ORF (YES, DON'T WORRY, WE ALSO HAD PROBLEMS UNDERSTANDING WHAT HAPPENED!).
По крайне мере здесь кураторы базы данных честно признаются, что не знают, как это случилось.
Третий тип — производные базы данных. Такие базы получаются в результате обработки данных из архивных и курируемых баз данных. Сюда входит:
• SCOP — База данных структурной классификации белков (описывается структура белков)
• PFAM — База данных по семействам белков
• GO (Gene Ontology) — Классификация генов (попытка создания набора терминов, упорядочивания терминологии, чтобы один ген не назывался по разно му, и чтобы разным генам не давали одинаковые названия)
• ProDom — белковые домены
• AsMamDB — альтернативный сплайсинг у млекопитающих
И интегрированные базы данных, в которых вся информация (курируемая, не курируемая) свалена в кучу, и введя имя гена, можно найти всю связанную с ним информацию — в каких организмах встречается, в каком месте генома локализован, какие функции выполняет и т. д.
• NCBI Entrez — доступ к информации о нуклеотидных и аминокислотных последовательностях и структурах
• Есосус — все о Е. coli — гены, белки, метаболизм и пр.
Теперь перейдем к рассмотрению инструментов биоинформатике. Инструменты определяются задачами, которые мы хотим решать.
Основу биоинформатики составляют сравнения. Если у нас есть, например, аминокислотная последовательность, о которой у нас есть экспериментальные данные, и известны ее функции, и другая, похожая на нее последовательность, мы можем предположить, что эти последовательности выполняют сходные функции. Это задача поиска сходства последовательностей
Другая задача связана с анализом генома. Недавно было объявлено, что полностью просеквенирован геном человека, но так же просеквенировали геномы и других организмов: три генома растений, мыши, крысы, кошки, собаки, курицы, рыбы, лягушки завершается, шимпанзе завершается, две дрозофилы сделаны, малярийный комар, червяки, дрожжи и т. д. — всего около 30 видов эукариотических геномов. Также просеквенированы сотни бактериальных геномов. Один бактериальный геном можно просеквенировать в хорошо оборудованной лаборатории за неделю. При этом получают длинную нуклеотидную последовательность нуклеотидов. Там есть гены — белок-кодирующие участки, и участки, кодирующие тРНК и рРНК. Возникает задача найти эти гены. Другая задача — поиск сигналов в ДНК, то есть тех участков ДНК, которые отвечают за регуляцию — сайты связывания регуляторных белков, элементы вторичной структуры мРНК, которая транскрибируется с этого гена и др.
Есть задача предсказания вторичной структуры РНК. А также есть большой класс задач анализа белков. Для решения этих задач надо создавать методы анализа, то есть алгоритмов (протоколов) и программ для анализа. При создании метода надо иметь критерий того, что метод адекватен, соответствует реальности.
Как оценить "правильность" метода? Геном типичной бактерии содержит около 1000 генов. Как уже упоминалось, секвенировать геном можно за неделю. Экспериментальная характеристика одного белка требует как минимум 2 месяца работы современной лаборатории.
Для того чтобы определить, насколько предложенный метод анализа хорош и правилен, существует так называемый «золотой стандарт». Например, у нас есть метод определения генов. Если после его применения на какой-либо последовательности, в которой известно месторасположение генов, наши результаты совпадают с тем, что есть на самом деле на 80–90 %, значит наш метод правильный и эффективный. В этом и заключается суть «золотого стандарта».
Или предсказание вторичной структуры РНК. Экспериментально ее определить очень трудно, но есть РНК, структура которых хорошо известна — это рРНК и тРНК. И если наш метод хорошо предсказывает структуру этих известных РНК, то можно ожидать, что и для других РНК он будет давать хорошие предсказания.
Вернемся к первой задаче — сравнению последовательностей. Запишем одну последовательность под другой.
Нам надо при сравнении найти наилучший вариант, так выровнять эту пару последовательностей, чтобы количество совпадений будет максимальным (парное выравнивание). Качество выравнивания оценивают, назначая штрафы за несовпадение букв и за наличие пробелов (когда приходится раздвигать одну последовательность для того, чтобы получить наибольшее число совпадающих позиций).
Таким образом, первым делом после секвенирования последовательности ищут в базах данных похожие последовательности, чтобы после сравнения судить о том, какие функции несет эта последовательность. Если две буквы совпали, значит они находятся под давлением отбора, они функционально важны. Известно, что аминокислоты различаются по своим свойствам, поэтому если произошла аминокислотная замена, это может почти никак не повлиять на работу белка, а может сильно его изменить.
Например, если лизин (положительно заряженная аминокислота заменится на лейцин (похожий по созвучию, но совершенно несходный по свойствам), то для пространственной структуры и функций белка это может оказаться катастрофой. А вот замена лизина на аргинин (также положительно заряженный) может не сказаться на структуре белка.
Поэтому при сравнении аминокислотных последовательностей учитывают также матрицу сопоставления аминокислотных остатков (похожих, менее похожих и совсем непохожих).
Как осуществляется выравнивание? Пишем одну последовательность под другой.
Сколько есть способов написать одну последовательность S1 длиной m под другой — S2 длиной n (со вставками)? Об этом можно доказать теорему — попробуйте.
Построим выборочную последовательность S длиной m + n следующим образом: возьмем несколько символов из последовательности S1, потом несколько символов из последовательности S2 потом опять несколько символов из S1, потом опять несколько из S2.
• Каждой выборочной последовательности S соответствует выравнивание и по каждому выравниванию можно построить выборочную последовательность. (Доказать!)
• Количество выборочных последовательностей равно
(Доказать!)
Таким образом количество выравниваний можно определить по формуле:
А как же найти оптимальное среди такого большого количества? Можно, конечно, попробовать разные способы, но оказывается, что этот поиск сводится к задаче поиска оптимального пути на графе. Задача поиска оптимального пути на графе решается методами динамического программирования следующим образом. Мы пишем одну последовательность над другой. И у нас есть некая ячейка, в которой мы будем хранить вес наилучшего выравнивания префиксов (то фрагментов последовательности от начала до данного места). И если у нас известен вес наилучшего выравнивания в 3 ячейках (см. слайд ниже), то мы можем определить вес наилучшего выравнивания в четвертой ячейке. То есть, для того, чтобы найти вес оптимального выравнивания, нам надо просмотреть m*n ячеек (количество ячеек в прямоугольной матрице MxN). Как принято говорить в информатике, это — квадратичный алгоритм. Он занимает время и объем памяти, пропорциональный квадрату длины последовательности. И вместо случайного перебора большого числа вариантов, мы решаем задачу довольно быстро.
Откуда берутся матрицы замен? Мы берем некоторое количество выравниваний, в которое по тем или иным причинам верим, и смотрим, как часто у нас происходят такие замены. Тогда матрица замен является логарифмом отношения некоторых вероятностей, которые можно оценить как частоты.
Итак, у нас имеется замечательный квадратичный алгоритм поиска сходства. Время решения задачи выравнивания пропорционально L1*L2. Мы сравниваем имеющуюся у нас последовательность с последовательностями в банке. L1 = размер банка = 108, а для генома человека 3x109. Сравниваемая последовательность обычно имеет размер L2=103, количество операций примерно равно 100*1011=1013.) Обычный компьютер имеет быстродействие около 109 операций в сек. На каждый шаг надо ~102 операций. Тогда время работы равно Т~106 сек ~11 дней. То есть, просеквенировав бактериальный геном из 3000 генов (приблизительно за неделю), на то, чтобы его охарактеризовать, мы потратим 11*3000 дней, то есть проанализировать дольше, чем секвенировать, что, конечно, не очень хорошо.
Решением является то, что мы до применения методов динамического программирования сначала выбираем правильных кандидатов для сравнения. Есть такая программа BLAST (basic local alignment search tool), которую все биологи очень любят, она почти правильная. То есть она почти всегда работает так, как требует "золотой стандарт".
Основная идея ее работы заключается в хешировании. В самом начале мы один раз проходим по всему банку и для каждого короткого слова с заранее зафиксированной длиной мы запишем список позиций, где оно встречается в банках.
Здесь показано для слов длиной 4, в реальности слова берут не длиной 4, как показано на рис., а длиной 7 или 10 или 13, но принцип тот же. В каких-то случаях "слову" соответствует три позициями, в других — 100 позиций.
Дальше мы идем вдоль последовательности "Query" (та последовательность, которую мы хотим прогнать по банку) и выбираем очередные слова. Смотрим в таблице, где встречается это слово, вытягиваем найденные последовательности из банка и строим выравнивание их с нашей исходной последовательности. Это делается быстро, так как мы сравниваем нашу последовательность не со всеми последовательностями из банка, а только те, которые соответствуют нашему "слову" (tttgc в показанном случае). И выравнивание строим тоже не так аккуратно, как это делает алгоритм динамического программирования, а используем упрощенную схему.
Затем мы оцениваем статистическую значимость этого выравнивания — так называемую e-value. Вообще, есть два понятия, которые очень часто встречаются в биоинформатике: e-value и p-value. Е-value — это сколько мы ожидаем увидеть совпадений с таким весом (то есть такого качества), если бы у нас наши последовательность и банк были случайными. Если они случайные, то мы ожидали бы увидеть е-2 совпадений.
e-value — это ожидаемое число событий, может быть больше единицы. Если е-value маленькое, то, значит, совпадение значимое, и оно несет большую биологическую информацию. P-value — это вероятность встречи такого соответствия (не может быть больше единицы). При оценке e-value, да и вообще при любых статистических оценках, важно, какая модель лежит в основе всего этого дела. Модель, которая лежит в основе e-value, конечно же, неправильная, потому что мы не знаем правильность статистических характеристик биологических последовательностей. Е-value просто дает нам ориентир, и реально, если мы имеем е-value порядка 10-2, то это, как правило, мусор, незначимое соответствие. Правда, есть некоторые специалисты с такой интуицией о структуре белков, которые могут работать с выравниваниями с e-value даже порядка 1. А обычно если исследователи видят e-value > 10-3, они с этим не работают.
Есть разные модификации BLAST: BLASTp (выравнивание аминокислотных последовательностей), BLASTn (выравнивание нуклеотидных последовательностей), BLASTx (выравнивание всех возможных транслятов нашей нуклеотидной последовательности против банка аминокислотных последовательностей), TBLASTx (выравнивание всех возможных транслятов нашей нуклеотидной последовательности против всех транслятов банка нуклеотидных последовательностей). Еще нужно знать, что Nr Data Base — (non redundant) — это база, против которой обычно прогоняют BLAST, в которой нет повторяющихся последовательностей, из которой убраны дубли для того, чтобы не гонять BLAST по одним и тем же последовательностям. И score — это вес выравнивания.
А если на нашу последовательность при поиске налипло, например, не одна, а двадцать последовательностей. При этом возникает задача написать все эти последовательности друг под другом, чтобы увидеть, в какой мере они совпадают, что консервативно (устойчиво повторяется), а что нет, и как устроена наша аминокислотная последовательность. Эта задача называется
Множественное выравнивание
Множественное выравнивание — это такой способ написания нескольких последовательностей друг под другом (может быть, с пропусками в каких-то позициях в разных последовательностях), чтобы в каждом столбце стояли гомологичные позиции.
Для этой задачи тоже есть «золотой стандарт». Это выравнивание, которое бы получилось, если бы мы выровняли друг под другом последовательности, которые имеют одинаковую пространственную структуру. То есть две экспериментально установленные пространственные структуры белка сопоставляем и отмечаем, какие аминокислотные остатки друг под другом встали (эти остатки соответствуют гомологичным позициям). Это — биологически обоснованное выравнивание. Возникает задача — найти способ (построить алгоритм и определить параметры), который выравнивает последовательности "золотого стандарта" (то есть последовательности, для которых пространственная структура известно) правильно. Если такой алгоритм построен, то есть надежда, что он выровняет последовательности с неизвестной пространственной структурой тоже правильно.
Для решения задачи множественного выравнивания можно попробовать написать многомерную матрицу и построить методом динамического программирования с просмотром многомерной матрицы. Тогда количество вершин будет порядка Ln, где L — длина, а n — количество последовательностей. Так как типичное количество последовательностей в семействе белков сотни, то 300 аминокислот дадут 300100 — это очень много, этот алгоритм для множественного выравнивания не подходит.
Тогда придумали метод прогрессивного выравнивания. Зная расстояния между любой парой последовательностей, мы можем построить выравнивание, определить вес выравнивания, и построить какое-то бинарное дерево. Затем мы обходим это дерево, последовательно проводя парные выравнивания наиболее близких последовательностей. Объединяем, получаем выравнивание. Соединяем суперпоследовательности, получаем следующее выравнивание. В конце концов, получаем выравнивание в корне.
Такое постепенное построение выравнивание решает задачу, которую мы не можем сформулировать математически. В биоинформатике очень часто нельзя построить математическую формулировку задачи, которую мы решаем. Поэтому формулировка задачи, которую решает алгоритм BLAST, выглядит так: мы находим то, что находит программа BLAST. Также мы не можем сказать, что мы оптимизируем при множественном выравнивании.
Одна и та же биологическая задача может приводить к разным математическим постановкам одной и той же задачи. Есть примеры, когда одна и та же задача может быть построена так, что она будет математически решаемой или математически не решаемой. Есть класс задач, для которых не существует хороших алгоритмов. Но при построении множественных выравниваний мы решаем с помощью данного алгоритма, без формулировки математической задачи.
Дальше идет задача
предсказания вторичной структуры РНК
Вторичная структура РНК — структура, образуемая спаренными основаниями на однонитевой молекуле РНК. Биологическая роль вторичной структуры: структурная (РНК — рибосомная, тРНК), регуляция (рибопереключатели, аттенюация, микроРНК), рибозимы, стабильность РНК.
На рисунке показана типичная вторичная структура РНК и разные формы представления вторичной структуры РНК:
Вся РНК состоит из петель и спиралей (указано на рисунке). Петли бывают следующих типов: шпилька, внутренняя, выпячивание, множественная, псевдоузел. Так вот, возникает задача установить, кто с кем спарен. Биологическая формулировка этой задачи звучит так: дана последовательность РНК, определить ее правильную вторичную структуру. «Золотой стандарт» — тРНК и рРНК. Количество возможных вторичных структур очень велико. Задачу можно сформулировать таким образом (законным с точки зрения физики): надо минимизировать энергию, по скольку правильная вторичная структура наиболее стабильная. На самом деле, с точки зрения биологии это не совсем верно, но формулировка очень удобная с точки зрения физики и математики. Далее вопрос, что оптимизировать и как оптимизировать.
Предположим, что мы не будем минимизировать усилия по поиску, а все переберем. Построим такой граф, в котором вершины — потенциальные спирали, а ребра проводятся, если две потенциальные спирали в вершинах совместимы (то есть, если две спирали могут одновременно существовать в данной молекуле РНК).
Тогда вторичной структурой будет любой полный подграф, то есть такой граф, в котором все вершины между собой соединены — называется "клика". Тогда задача такова: в таком графе найти клику. Клика будет соответствовать хорошей структуре.
Но, к сожалению, задача поиска клики в графе является математически плохой — для нее, скорее всего, не существует эффективного алгоритма ее решения (кроме полного перебора всех вариантов).
Если мы fgh уберем, то получим клику, некую вторичную структуру. Можем получить и другую клику.
Вторичная структура может быть представлена в виде правильной скобочной структуры, как на рисунке ниже. Левая часть — открывающая скобка, правая часть — закрывающая скобка. Вторичная структура тоже может быть представлена в виде дерева, но важно, что количество возможных структур порядка 1,8L (это доказывается в теореме, которую я не буду здесь представлять). Это тоже очень много, поэтому задача поиска клики тоже не эффективна.
Тем не менее, есть алгоритм динамического программирования, который позволяет нам найти за кубичное (а не квадратичное, как раньше) время найти структуру, имеющую наибольшее количество спаренных оснований. Основная идея его (как и любого алгоритма динамического программирования) заключается в том, что если мы знаем все решения на какой-то части, то мы можем сказать, какое будет решение на чуть большем фрагменте.
Можно минимизировать не число спаренных оснований, а минимизировать энергию (эта задача сложнее, но ее с помощью разных ухищрений тоже можно оставить кубичной). Минимизация все равно не позволяет достигнуть большой точности предсказания. Проблемы предсказания вторичной структуры РНК.
Только около 65–70 % тРНК сворачиваются в правильную структуру.
Для предсказания вторичной структуры используются энергетические параметры, а они определены не очень точно. Более того, в клетке бывают разные условия, и, соответственно, реализуются разные параметры.
Находится единственная структура с минимальной энергией, в то время как обычно существует несколько структур с энергией, близкой к оптимальной.
Поэтому есть предложения искать субоптимальные структуры и искать эволюционно консервативные структуры (структуры тРНК и рРНК определены именно так). То есть забыть про энергию, и если мы знаем, что эти наборы РНК выполняют одну и ту же функцию, то мы можем построить такую структуру, которая была бы общей для всех этих последовательностей.
Теперь я расскажу, как это все применяется.
Исследование консервативности альтернативного сплайсинга, или Почему мышь не стала человеком?
Структура генов прокариот очень проста: есть начало, есть конец, получается мРНК, которая имеет начало и конец, идет транскрипция, трансляция и белок.
У эукариот структура гена сложнее. Из длинной мРНК удаляются (вырезаются) интроны (insertion sequences, вставочные последовательности), а оставшиеся экзоны сшиваются в единую нить. Из пре-мРНК получается зрелая мРНК, процесс называется сплайсингом. Потом происходит трансляция зрелой мРНК, в результате образуется белок. Мы будем интересоваться экзонами и интронами.
Если бы мы умели правильно предсказывать интроны и экзоны, мы бы могли разметить ген на белок-кодирующие и белок-некодирующие участки.
Альтернативный сплайсинг
Оказывается, ситуация еще сложнее. РНК, прочитанная с одного и того же гена, может сплайсироваться по-разному, что приводит к образованию мРНК с разными наборами экзонов: какой-то экзон в один вариант мРНК попадает, а в другой — нет, и в итоге получатся две разных мРНК и, соответственно, два разных белка. Это называется альтернативным сплайсингом. Таким образом, на уровне созревания мРНК могут образовываться разные РНК-продукты, которые приводят к образованию разных белков.
Сплайсинг происходит в ядре, трансляция — в цитоплазме. Для изучения того, что же оказалось в цитоплазме (то есть того, что подвергается трансляции), секвенируют короткие, 500–600 до 1000 нуклеотидов куски цитоплазматической РНК. Такие сиквенсы называются EST (expresstion sequence tag — "ярлыки экспрессируемых последовательностей"). EST — это короткие, прочитанные однократно (то есть весьма неточно), фрагменты цитоплазматической (сплайсированной, содержащей только экзоны) РНК. Если у нас есть геном, то мы можем эти EST картировать на геном и, тем самым, найти, где находятся интроны и экзоны.
Если при картирование EST полностью, без перерывов, соответствует геномной последовательности — это ген без интронов. Если EST ложится на геном с перерывами, то мы наблюдаем результат сплайсинга. Если же разные EST демонстрируют несколько вариантов расположения в одном и том же участке генома (то есть выявляют разные сочетания экзонов), то мы наблюдаем альтернативный сплайсинг. Экзон, который может включаться в белок, а может и не включаться, называется кассетным экзоном. мРНК с разными наборами экзонов данного гена (то есть в которые некий кассетный экзон или включается или не включается), называются изоформами.
Частота альтернативного сплайсинга
Сначала альтернативный сплайсинг был обнаружен у вирусов, считалось, что это экзотика. До 1998 г. считалось, что только около 6 % генов человека имеют альтернативный сплайсинг. Рассчитали, что для того, чтобы обеспечить наблюдаемое разнообразие белков, в геноме человека должно было быть 80 — 100 тысяч генов. В 1998 году было показано, что около половины генов человека имеют альтернативный сплайсинг. За счет альтернативного сплайсинга число генов может быть меньше числа кодируемых ими белков, так как с одного гена может образовываться несколько белков.
Как было написано в какой-то газете "Многолетними усилиями ученых количество генов человека было сокращено со 100 тысяч до 25". Действительно, по последним оценкам в геноме человека около 25–30 тысяч генов. Оценка количества белков не изменилась — разных белков около 80-100 тысяч. Разнообразие белков обеспечивается альтернативным сплайсингом. Например, в одних клетках белок должен быть в цитоплазме, в других — такой же белок в мембране, в третьих — транспортироваться наружу. И это легко делается не за счет наличия разных генов для каждого случая, а за счет альтернативного сплайсинга, который цепляет на N-конец разные сигналы, при том что "рабочая часть" белка остается одной и той же, и одна изоформа белка размещается в мембране, другая изоформа белка — в цитоплазме, и т. д.
Сейчас общеизвестно, что не менее 50 % генов человека альтернативно сплайсируется.
Альтернативный сплайсинг бывает разных типов (галочками показано, как вырезаются экзоны):
На этом рисунке показаны кассетный экзон (вставляемый в одни изоформы и отсутствующий в других), альтернативный акцептор, альтернативный донор, далее интрон может либо вырезаться, либо не вырезаться.
Теперь вернемся к вопросу о человеке и мыши. Человек и мышь биологически очень похожи. Белки похожи — уровень сходства аминокислотных последовательностей 80 %, также похожа значительная часть некодирующих областей генома. Практически у всех генов одинаково устроена экзон-интронная структура, для 99 % генов экзонная структура одинакова. Только 1 % генов уникален у каждого генома, остальные гены имеют гомологи в другом геноме. Интересен тот факт, что при таком относительно невысоком уровне различий человека от мыши внешне отличают легко. А два вида мухи дрозофилы вряд ли кто-то различит на глаз, хотя генетически они различаются сильнее, чем человек и мышь.
Возникает вопрос: Если геномы одинаковы, то может быть, и белки одинаковы? Непонятно, чем же человек отличается от мыши. Одинаково ли устроен альтернативный сплайсинг у мыши и человека?
Наивный подход для ответа на этот вопрос такой: возьмем весь набор альтернативного сплайсинга мыши и человека и сравним его. Этот подход неправильный, так как при исследовании альтернативного сплайсинга мы здесь имеем дело с EST. Если у человека EST просеквенировано несколько миллионов штук, то у мыши сделано всего несколько тысяч, поэтому там, где мы можем увидеть альтернативный сплайсинг у человека, можем ничего не увидеть у мыши, так как базы данных еще не совсем полные. Поэтому такое сравнение даст нам неправильный ответ.
Правильный подход в данной ситуации заключается в следующем: мы на основе имеющихся данных на человеческой ДНК строим мРНК, соответствующую белку, и затем этот белок проецируем на мышиный геном. Если оказывается, что для этого белка (или его части) нет кодирующих последовательностей в мышиной ДНК, то это значит, что тот экзон, который есть у человека, отсутствует в геноме у мыши.
Возьмем человеческие и мышиные гены, происходящие от общего предкового гена. Возьмем такие пары генов-ортологов, сделаем сравнение. Мы получим некоторую выборку, среди которым 50 % генов человека имеют такие изоформы, которых нет у мыши, то же самое и с мышью.
Сравним пары генов человек-мышь. Например, ген бета-глобина человека и мыши — такие гены, разошедшиеся в процессе эволюционного видообразования, называются ортологами. Выборку мы взяли не очень большую, в ней присутствовали гены, имеющие альтернативный спалйсинг. И оказалось, что у 52 % человеческих генов есть такие экзоны, которых нет у мыши. И половина мышиных генов имеет такие изоформы, которых нет у человека.
Но нам могут сказать — вы использовали EST, это неточные данные. Если мы возьмем полноразмерные мРНК (а данные по ним гораздо точнее, хотя общее количество сиквенсов по ним меньше), и проведем с ними ту же процедуру, то окажется, что примерно треть генов человека имеет изоформы, которые в геноме мыши не кодируются, отсутствуют, и также в геноме человека отсутствуют мышиные экзоны.
А вот конкретные примеры: сверху изображены ДНК и ее изоформы у человека, а снизу — то же у мыши. Например, для белка р53, который участвует в регуляции клеточных процессов (раковое перерождение, апоптоз). Видно, что у мыши есть изоформа, которая теряет экзон, порождая стоп в другом месте.
Представленные данные показывают, что альтернативный сплайсинг — явление весьма распространенное, и что мышь сильно отличается от человека по альтернативному сплайсингу. Можно сделать и эволюционное предположение. По-видимому, альтернативный сплайсинг допускает большую свободу для создания новых белков, или изменения функций существующих белков, и в этом и состоит его связь с эволюцией.
Д.В. Ребриков
Полимеразная цепная реакция (ПЦР) — экспериментальный метод молекулярной биологии, позволяющий добиться значительного увеличения малых концентраций определённых фрагментов нуклеиновой кислоты (ДНК) в биологическом материале (пробе).
Помимо простого увеличения числа копий ДНК (этот процесс называется амплификацией), ПЦР позволяет производить множество других манипуляций с генетическим материалом (введение мутаций, сращивание фрагментов ДНК) и широко используется в биологической и медицинской практике, например, для диагностики заболеваний (наследственных, инфекционных), для установления отцовства, для клонирования генов, выделения новых генов.
История
В начале 1970-х годов норвежскому ученому Хьеллю Клеппе (Kjell Kleppe) из лаборатории нобелевского лауреата Хара Гобинды Хораны (Наг Gobind Khorana) пришла в голову мысль, что можно амплифицировать ДНК с помощью пары коротких одноцепочечных молекул ДНК — синтетических праймеров [1]. Однако в то время эта идея осталась невостребованной. Полимеразная цепная реакция была вновь открыта в 1983 году Кэри Маллисом (Kary Mullis). Его целью было создание метода, который бы позволил амплифицировать ДНК в ходе многократных последовательных удвоений исходной молекулы ДНК с помощью фермента ДНК-полимеразы. Через 7 лет после опубликования этой идеи, в 1993 г., Маллис получил за неё Нобелевскую премию[2].
В начале использования метода после каждого цикла нагревания — охлаждения приходилось добавлять в реакционную смесь ДНК-полимеразу, так как она быстро инактивировалась при высокой температуре, необходимой для разделения цепей спирали ДНК. Процедура была очень неэффективной, требовала много времени и фермента. В 1986 г. она была существенно улучшена. Было предложено использовать ДНК-полимеразы из термофильных бактерий [3]. Эти ферменты оказались термостабильными и были способны выдерживать множество циклов реакции. Их использование позволило упростить и автоматизировать проведение ПЦР. Одна из первых термостабильных ДНК-полимераз была выделена из бактерий Thermus aquaticus и названа Taq-полимеразой. Недостаток этой полимеразы заключается в том, что вероятность внесения ошибочного нуклеотида у неё достаточно высока, так как у этого фермента отсутствуют механизмы исправления ошибок (3'^5' экзонуклеазная активность). Полимеразы Pfu и Pwo, выделенные из архей, обладают таким механизмом, их использование значительно уменьшает число мутаций в ДНК, но скорость их работы (процессивность) ниже, чем у Taq. Сейчас применяют смеси Taq и Pfu, чтобы добиться одновременно высокой скорости полимеризации и высокой точности копирования.
В момент изобретения метода Маллис работал в компании Цетус (Cetus), которая и запатентовала метод ПЦР. В 1992 году Цетус продала права на метод и патент на использование Taq-полимеразы компании Хофман-Ла Рош (Hoffmann-La Roche) за 300 млн. долларов. Однако оказалось, что Taq-полимераза была охарактеризована русским биохимиком Алексеем Калединым в 1980 году [4], в связи с чем компания Промега (Promega) пыталась в судебном порядке заставить Рош отказаться от исключительных прав на этот фермент [5]. Американский патент на метод ПЦР истёк в марте 2005 г.
Проведение ПЦР
Метод основан на многократном избирательном копировании определённого участка ДНК при помощи ферментов в искусственных условиях (in vitro). При этом происходит копирование только того участка, который удовлетворяет заданным условиям, и только в том случае, если он присутствует в исследуемом образце. В отличие от амплификации ДНК в живых организмах, (репликации), с помощью ПЦР амплифицируются относительно короткие участки ДНК. В обычном ПЦР-процессе длина копируемых ДНК-участков составляет не более 3000 пар оснований (3 kbp[6]). С помощью смеси различных полимераз, с использованием добавок и при определённых условиях длина ПЦР-фрагмента может достигать 20–40 тысяч пар нуклеотидов. Это всё равно значительно меньше длины хромосомной ДНК эукариотической клетки. Например, геном человека состоит примерно из 3 млрд пар оснований [7].
Компоненты реакции
Для проведения ПЦР в простейшем случае требуются следующие компоненты:
• ДНК-матрица, содержащая тот участок ДНК, который требуется амплифицировать.
• Два праймера, комплементарные концам требуемого фрагмента.
• Термостабильная ДНК-полимераза — фермент, который катализирует реакцию полимеризации ДНК. Полимераза для использования в ПЦР должна сохранять активность при высокой температуре длительное время, поэтому используют ферменты, выделенные из термофилов — Thermus aquaticus (Taq-полимераза), Pyrococcus furiosus (Pfu-полимераза), Pyrococcus woesei (Pwo-полимераза) и другие.
• Дезоксинуклеотидтрифосфаты (dATP, dGTP, dCTP, dTTP).
• Ионы Mg2+, необходимые для работы полимеразы.
• Буферный раствор, обеспечивающий необходимые условия реакции — pH, ионную силу раствора. Содержит соли, бычий сывороточный альбумин.
Чтобы избежать испарения реакционной смеси, в пробирку добавляют высококипящее масло, например, вазелиновое. Если используется амплификатор с подогревающейся крышкой, этого делать не требуется.
Добавление пирофософатазы может увеличить выход ПЦР-реакции. Этот фермент катализирует гидролиз пирофосфата, побочного продукта присоединения нуклеотидтрифосфатов к растущей цепи ДНК, до ортофосфата. Пирофосфат может ингибировать ПЦР-реакцию [8].
Праймеры
Специфичность ПЦР основана на образовании комплементарных комплексов между матрицей и праймерами, короткими синтетическими олигонуклеотидами длиной 18–30 оснований. Каждый из праймеров комплементарен одной из цепей двуцепочечной матрицы, обрамляя начало и конец амплифицируемого участка.
После гибридизации матрицы с праймером (отжиг [9]), последний служит затравкой для ДНК-полимеразы при синтезе комплементарной цепи матрицы (см. ниже).
Важнейшая характеристика праймеров — температура плавления (Тm) комплекса праймер-матрица. Она определяется, как температура, при которой праймер присоединился к половине возможных сайтов связывания. Тт можно приблизительно определить по формуле
Тm = 2(nА + nТ) + 4(nG + nс),
где nх — количество нуклеотидов X в праймере. Если праймер короткий и Тm мала, то праймер может оказаться частично комплементарен другим участкам матричной ДНК, что может привести к появлению неспецифических продуктов. Верхний предел температуры плавления ограничен оптимумом температуры действия полимеразы, активность которой падает при температурах выше 80 °C.
При выборе праймеров желательно придерживаться следующих критериев:
• GC-состав ~ 40–60 %;
• близкие Тm праймеров (отличия не более чем на 5 °C);
• отсутствие неспецифических вторичных структур — шпилек[10] и димеров [11];
• желательно, чтобы на 3'-конце был гуанин или цитозин, поскольку они образуют три водородные связи с молекулой матрицы, делая гибридизацию более стабильной.
Амплификатор
Рис. 1: Амплификатор для проведения ПЦР
ПЦР проводят в амплификаторе — приборе, обеспечивающем периодическое охлаждение и нагревание пробирок, обычно с точностью не менее 0,1 °C. Современные амплификаторы позволяют задавать сложные программы, в том числе с возможностью «горячего старта», Touchdown ПЦР (см. ниже) и последующего хранения амплифицированных молекул при 4 °C. Для ПЦР в реальном времени выпускают приборы, оборудованные флуоресцентным детектором. Существуют также приборы с автоматической крышкой и отделением для микропланшет, что позволяет встраивать их в автоматизированные системы.
Ход реакции
Обычно при проведении ПЦР выполняется 20–35 циклов, каждый из которых состоит из трех стадий (рис. 2).
Фотография геля, содержащего маркерную ДНК (1) и продукты ПЦР-реакции (2,3). Цифрами показана длина фрагментов ДНК в парах нуклеотидов.
Денатурация
Двухцепочечную ДНК-матрицу нагревают до 94–96 °C (или до 98 °C, если используется особенно термостабильная полимераза) на 0,5–2 мин., чтобы цепи ДНК разошлись. Эта стадия называется денатурацией, так как разрушаются водородные связи между двумя цепями ДНК. Иногда перед первым циклом (до добавления полимеразы) проводят предварительный прогрев реакционной смеси в течение 2–5 мин. для полной денатурации матрицы и праймеров. Такой приём называется горячим стартом, он позволяет снизить количество неспецифичных продуктов реакции.
Отжиг
Когда цепи разошлись, температуру понижают, чтобы праймеры могли связаться с одноцепочечной матрицей. Эта стадия называется отжигом. Температура отжига зависит от состава праймеров и обычно выбирается на 4–5 °C ниже их температуры плавления. Время стадии — 0,5–2 мин. Неправильный выбор температуры отжига приводит либо к плохому связыванию праймеров с матрицей (при завышенной температуре), либо к связыванию в неверном месте и появлению неспецифических продуктов (при заниженной температуре).
Элонгация
ДНК-полимераза реплицирует матричную цепь, используя праймер в качестве затравки. Это — стадия элонгации. Полимераза начинает синтез второй цепи от 3'-конца праймера, который связался с матрицей, и движется вдоль матрицы. Температура элонгации зависит от полимеразы. Часто используемые полимеразы Taq и Pfu наиболее активны при 72 °C. Время элонгации зависит как от типа ДНК-полимеразы, так и от длины амплифицируемого фрагмента. Обычно время элонгации принимают равным одной минуте на каждую тысячу пар оснований. После окончания всех циклов часто проводят дополнительную стадию финальной элонгации, чтобы достроить все одноцепочечные фрагменты. Эта стадия длится 7-10 мин.
Рис. 2: Схематическое изображение первого цикла ПЦР.
(1) Денатурация при 94–96 °C. (2) Отжиг при 68 °C (например). (3) Элонгация при 72 °C (Р=полимераза). (4) Закончен первый цикл. Две получившиеся ДНК-цепи служат матрицей для следующего цикла, поэтому количество матричной ДНК в ходе каждого цикла удваивается.
ДНК-полимераза реплицирует матричную цепь, используя праймер в качестве затравки. Это — стадия элонгации. Полимераза начинает синтез второй цепи от 3'-конца праймера, который связался с матрицей, и движется вдоль матрицы. Температура элонгации зависит от полимеразы. Часто используемые полимеразы Taq и Pfu наиболее активны при 72 °C. Время элонгации зависит как от типа ДНК-полимеразы, так и от длины амплифицируемого фрагмента. Обычно время элонгации принимают равным одной минуте на каждую тысячу пар оснований. После окончания всех циклов часто проводят дополнительную стадию финальной элонгации, чтобы достроить все одноцепочечные фрагменты. Эта стадия длится 7-10 мин.
Количество специфического продукта реакции (ограниченного праймерами) теоретически возрастает пропорционально 2n, где n — число циклов реакции. На самом деле эффективность каждого цикла может быть меньше 100 %, поэтому в действительности Р ~ (1+Е)n, где Р — количество продукта, Е — средняя эффективность цикла.
Число «длинных» копий ДНК тоже растет, но линейно, поэтому в продуктах реакции доминирует специфический фрагмент.
Рост требуемого продукта в геометрической прогрессии ограничен количеством реагентов, присутствием ингибиторов, образованием побочных продуктов. На последних циклах реакции рост замедляется, это называют «эффектом плато» [12].
Разновидности ПЦР
• Вложенная» ПЦР (Nested PCR(англ.)) — применяется для уменьшения числа побочных продуктов реакции. Используют две пары праймеров и проводят две последовательные реакции. Вторая пара праймеров амплифицирует участок ДНК внутри продукта первой реакции.
• «Инвертированная» ПЦР (Inverse PCR(aHrn.)) — используется в том случае, если известен лишь небольшой участок внутри нужной последовательности. Этот метод особенно полезен, когда нужно определить соседние последовательности после вставки ДНК в геном. Для осуществления инвертированной ПЦР проводят ряд разрезаний ДНК рестриктазами с последующим соединением фрагментов (лигирование). В результате известные фрагменты оказываются на обоих концах неизвестного участка, после чего можно проводить ПЦР как обычно.
• ПЦР с обратной транскрипцией (Reverse Transcription PCR, RT-PCR(aнгл.)) — используется для амплификации, выделения или идентификации известной последовательности из библиотеки РНК. Перед обычной ПЦР проводят на матрице мРНК синтез одноцепочечной молекулы ДНК с помощью ревертазы и получают одноцепочечную кДНК, которая используется в качестве матрицы для ПЦР. Этим методом часто определяют, где и когда экспрессируются данные гены.
• Ассиметричная ПЦР (англ. Asymmetric PCR) — проводится тогда, когда нужно амплифицировать преимущественно одну из цепей исходной ДНК. Используется в некоторых методиках секвенирования и гибридизационного анализа. ПЦР проводится как обычно, за исключением того, что один из праймеров берется в большом избытке.
• Количественная ПЦР (Quantitative PCR, Q-PCR (англ.)) — используется для быстрого измерения количества определенной ДНК, кДНК или РНК в пробе.
• Количественная ПЦР в реальном времени (Quantitative real-time PCR) — в этом методе используют флуоресцентно меченые реагенты для точного измерения количества продукта реакции по мере его накопления.
• Touchdown (Stepdown) ПЦР (Touchdown PCR(aHrn.)) — с помощью этого метода уменьшают влияние неспецифического связывания праймеров на образование продукта. Первые циклы проводят при температуре выше температуры отжига, затем каждые несколько циклов температуру снижают. При определённой температуре система пройдёт через полосу оптимальной специфичности праймеров к ДНК.
• Метод молекулярных колоний (ПЦР в геле, англ. Polony — PCR Colony) — акриламидный гель полимеризуют со всеми компонентами ПЦР на поверхности и проводят ПЦР. В точках, содержащих анализируемую ДНК, происходит амплификация с образованием молекулярных колоний.
• ПЦР с быстрой амплификацией концов кДНК (англ. Rapid amplification of cDNA ends, RACE-PCR)
• ПЦР длинных фрагментов (англ. Long-range PCR) — модификация ПЦР для амплификации протяженных участков ДНК (10 тысяч оснований и больше). Используют две полимеразы, одна из которых — Taq-полимераза с высокой процессивностью (то есть, способная за один проход синтезировать длинную цепь ДНК), а вторая — ДНК полимераза с 3'-5' эндонуклеазной активностью. Вторая полимераза необходима для того, чтобы корректировать ошибки, внесенные первой.
• RAPD PCR (англ. Random Amplification of Polymorphic DNA PCR, ПЦР со случайной амплификацией полиморфной ДНК — используется тогда, когда нужно различить близкие по генетической последовательности организмы, например, разные сорта культурных растений, породы собак или близкородственные микроорганизмы. В этом методе обычно используют один праймер небольшого размера (20–25 п.н.). Этот праймер будет частично комплементарен случайным участкам ДНК исследуемых организмов. Подбирая условия (длину праймера, его состав, температуру и пр.), удается добиться удовлетворительного отличия картины ПЦР для двух организмов.
Если нуклеотидная последовательность матрицы известна частично или неизвестна вовсе, можно использовать вырожденные праймеры, последовательность которых содержит вырожденные позиции, в которых могут располагаться любые основания. Например, последовательность праймера может быть такой:…АТН…, где Н — А, Т или С.
Применение ПЦР
ПЦР используется во многих областях для проведения анализов и в научных экспериментах.
Криминалистика
ПЦР используют для сравнения так называемых «генетических отпечатков пальцев». Необходим образец генетического материала с места преступления — кровь, слюна, сперма, волосы и т. п. Его сравнивают с генетическим материалом подозреваемого. Достаточно совсем малого количества ДНК, теоретически — одной копии. ДНК расщепляют на фрагменты, затем амплифицируют с помощью ПЦР. Фрагменты разделяют с помощью гель-электрофореза. Полученную картину расположения полос ДНК и называют генетическим отпечатком пальцев (англ. genetic fingerprint).
Установление отцовства
Хотя «генетические отпечатки пальцев» уникальны (за исключением случая однояйцевых близнецов), родственные связи все же можно установить, сделав несколько таких отпечатков (рис. 3). Тот же метод можно применить, слегка модифицировав его, для установления эволюционного родства среди организмов.
Рис. 3: Результаты электрофореза ДНК-фрагментов, амплифицированных с помощью ПЦР.
(1) Отец. (2) Ребенок. (3) Мать. Ребенок унаследовал некоторые особенности генетического отпечатка обоих родителей, что дало новый, уникальный отпечаток.
Медицинская диагностика
ПЦР дает возможность существенно ускорить и облегчить диагностику наследственных и вирусных заболеваний. Нужный ген амплифицируют с помощью ПЦР с использованием соответствующих праймеров, а затем секвенируют для определения мутаций. Вирусные инфекции можно обнаруживать сразу после заражения, за недели или месяцы до того, как проявятся симптомы заболевания.
Персонализированная медицина
Известно, что большинство лекарств действуют не на всех пациентов, для которых они предназначены, а лишь на 30–70 % их числа. Кроме того, многие лекарства оказываются токсичными или аллергенными для части пациентов. Причины этого — отчасти в индивидуальных различиях в восприимчивости и метаболизме лекарств и их производных. Эти различия детерминируются на генетическом уровне. Например, у одного пациента определенный цитохром (белок печени, отвечающий за метаболизм чужеродных веществ) может быть более активен, у другого — менее. Для того, чтобы определить, какой разновидностью цитохрома обладает данный пациент, предложено проводить ПЦР-анализ перед применением лекарства.
Такой анализ называют предварительным генотипированием (англ. prospective genotyping).
Клонирование генов
Клонирование генов (не путать с клонированием организмов) — это процесс выделения генов и, в результате генноинженерных манипуляций, получения большого количества продукта данного гена. ПЦР используется для того, чтобы амплифицировать ген, который затем вставляется в вектор — фрагмент ДНК, переносящий чужеродный ген в тот же самый или другой, удобный для выращивания, организм. В качестве векторов используют, например, плазмиды или вирусную ДНК. Вставку генов в чужеродный организм обычно используют для получения продукта этого гена — РНК или, чаще всего, белка. Таким образом, в промышленных количествах получают многие белки для использования в сельском хозяйстве, медицине и др.
Рис. 4: Клонирование гена с использованием плазмиды.
(1) Хромосомная ДНК организма А. (2) ПЦР. (3) Множество копий гена организма А. (4) Вставка гена в плазмиду. (5) Плазмида с геном организма А. (6) Введение плазмиды в организм В. (7) Умножение количества копий гена организма А в организме В.
Секвенирование ДНК
В методе секвенирования с использованием меченых флуоресцентной меткой или радиоактивным изотопом дидезоксинуклеотидов ПЦР является неотъемлемой частью, так как именно в ходе полимеризации в цепь ДНК встраиваются производные нуклеотидов, меченые флуоресцентной или радиоактивной меткой. Это останавливает реакцию, позволяя определить положения специфических нуклеотидов после разделения синтезированных цепочек в геле.
Мутагенез
В настоящее время ПЦР стала основным методом проведения мутагенеза. Использование ПЦР позволило упростить и ускорить процедуру проведения мутагенеза, а также сделать её более надежной и воспроизводимой.
Примечания
1. Kleppe, К. et al. (1971): Studies on polynucleotides. XCVI. Repair replications of short synthetic DNA's as catalyzed by DNA polymerases. In: J. Mol. Biol. Bd. 56, S. 341–361. PMID 4927950
2. Нобелевские лауреаты по химии, 1993 г.(англ.)
3. R. К. Saiki, D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, К. B. Mullis, H. A. Erlich. Primer-Directed Enzymatic Amplification of DNA with a Thermostable DNA Polymerase, in: Science. 239.1988, 487–491. ISSN 0036–8075 PMID: 2448875
4. Каледин А. С., Слюсаренко А. Г., Городецкий С. И. // Биохимия.- 1980. — Т. 45. — С. 644–651.
5. http://www.roche.com/med-cor-2005-09-12
6. 1 kbp (kilo base pair(англ.)) — 1 тысяча пар оснований, единица измерения длины ДНК
7. Venter J, et al. (2001). «The sequence of the human genome». Science
291 (5507): 1304-51. PMID 11181995
8. http://www.biofidal.com/biofidal2/cat/2/pyro.php
9. Отжиг (англ. annealing) — гибридизация фрагментов ДНК
10. Шпилька — внутримолекулярная самокомплементарная структура
11. Димер — межмолекулярные структуры, образуемые праймерами друг с другом или сами с собой
12. [http://www.dna-technology.ru/doc/DNA-Technology_PCR-base.pdf «Теоретические основы ПЦР» (PDF)]
Литература
1. Глик Б., Пастернак Дж. Молекулярная биотехнология. Принципы и применение. Пер. с англ. — М.: Мир, 2002. — 589 с, илл. ISBN 5-03-003328-9
2. Щелкунов С. Н. Генетическая инженерия — Новосибирск: Сиб. унив. изд-во, 2004. - 496 с; илл. ISBN 5-94087-098-8
3. Патрушев Л. И. Искусственные генетические системы — М.: Наука, 2005 — В 2 т. — ISBN 5-02-033278-Х
• Аберрация хромосомная (или хромосомная аномалия) — обобщенное название любого из типов хромосомных мутаций: делеций, транслокаций, инверсий, дупликаций. Иногда также обозначают и геномные мутации (анеуплодии, трисомии ит. д.).
• Авторадиография — способ обнаружения вещества, меченного радиоактивным изотопом, путем наложения на чувствительную пленку.
• Акроцефалия (оксицефалия) — высокий «башенный» череп.
• Аллель — одна из двух или более альтернативных форм гена, каждая из которых характеризуется уникальной последовательностью нуклеотидов; аллели, как правило, отличаются последовательностями нуклеотидов.
• Аллель дикого типа (нормальный): мутация гена, не затрагивающая его функции.
• Аллель доминантный: аллель, одна доза которого достаточна для его фенотипического проявления.
• Аллель мутантный: мутация гена, нарушающая его функцию.
• Аллель рецессивный: аллель, фенотипически проявляющийся только в гомозиготном состоянии и маскирующийся в присутствии доминантного аллеля.
• Аллельные серии — моногенные наследственные заболевания, вызванные различными мутациями в одном и том же гене, но относящиеся к разным нозологическим группам по своим клиническим проявлениям.
• Алопеция — стойкое или временное, полное или частичное выпадение волос.
• Альфа-фетопротеин (АФП) — эмбриональный белок, обнаруживаемый в крови плода, новорожденного, беременной женщины, а также в амниотической жидкости.
• Амниоцентез — прокол амниотического мешка с целью получения амниотической жидкости.
• Ампликон — внехромосомная единица амплификации.
• Амплификатор ДНК (термоциклер) — прибор, необходимый для проведения полимеразной цепной реакции (ПЦР); позволяет задавать нужное количество циклов и выбирать оптимальные временные и температурные параметры для каждой процедуры цикла.
• Амплификация — увеличение числа копий генов (количества ДНК)
• Амплификация ДНК — выборочное копирование определенного участка ДНК.
• Амфидиплоиды — эукариотические клетки, содержащие два двойных набора хромосом в результате объединения двух геномов.
• Анеуплодия — измененный набор хромосом, в котором одна или несколько хромосом из обычного набора или отсутствуют, или представлены дополнительными копиями.
• Аниридия — отсутствие радужной оболочки.
• Анкилоблефарон — сращение краев век спайками, покрытыми слизистой оболочкой.
• Анофтальмия — отсутствие одного или обоих глазных яблок.
• Антибиотик — вещество, подавляющее рост клеток или убивающее их. Обычно антибиотики блокируют одну из стадий синтеза белков или нуклеиновых кислот.
• Антиген — вещество (обычно белки, реже полисахариды), вызывающее у животных иммунный ответ (образование антител).
• Антигенная детерминанта (эпитоп) — участок белковой или полисахаридной молекулы, обладающей способностью вызывать образование антител данной специфичности.
• Антикодон — последовательность из трех нуклеотидов в молекуле транспортной РНК, комплементарная кодирующему триплету в молекуле мРНК. Антимонголоидный разрез глаз — опущены наружные углы глазных щелей. Антимутагенез — процесс предотвращения закрепления (становления) мутации, т. е. возврат первично поврежденной хромосомы или гена в исходное состояние.
• Антитело — белок (иммуноглобулин), образуемый иммунной системой организма животных в ответ на введение антигена и способный вступать с ним в специфическое взаимодействие.
• Антиципация — нарастание тяжести течения заболевания в ряду поколений. Анэнцефалия — полное или почти полное отсутствие головного мозга.
• Аплазия (агенезия) — полное врожденное отсутствие органа или части его. Арахнодактилия — необычно длинные и тонкие пальцы.
• Ассортативные браки — браки, при которых выбор брачного партнера по одному или нескольким признакам неслучаен.
• Аутосома — любая неполовая хромосома. У человека имеется 22 пары аутосом.
• Аутосомно-доминантное наследование — тип наследования, при котором одного мутантного аллеля, локализованного в аутосоме, достаточно, чтобы болезнь (или признак) могла быть выражена.
• Аутосомно-рецессивное наследование — тип наследования признака или болезни, при котором мутантный аллель, локализованный в аутосоме, должен быть унаследован от обоих родителей.
• Ахейрия (аподия) — недоразвитие или отсутствие кисти (стопы).
• Бактериофаг — вирус бактерий: состоит из ДНК или РНК, упакованной в белковую оболочку.
• Банк (библиотека) генов — полный набор генов данного организма, полученный в составе рекомбинантных ДНК.
• Белковая инженерия — создание искусственных белков с заданны ми свойствами путем направленных изменений (мутаций) в генах или путем обмена локусами между гетерологичными генами.
• Биопсия хориона — процедура, осуществляемая на 7-11-й неделе беременности, с целью получения клеток для пренатальной диагностики.
• Блефарофимоз — укорочение век по горизонтали, т. е. сужение глазных щелей.
• Блефарохалазия — атрофия кожи верхних век
• Блот-гибридизация по Саузерну — метод идентификации участков ДНК, содержащих комплементарные ДНК-зонду последовательности, среди электрофоретически разделенных фрагментов ДНК, фиксированных на твердом матриксе (нитроцеллюлозных или нейлоновых фильтрах).
• Блотинг — перенос молекул ДНК, РНК или белка из геля, в котором шел электрофорез, на нитроцеллюлозный фильтр (мембрану).
• Болезни аутосомные — обусловлены дефектами генов, локализованных в аутосомах
• Болезни врожденные — присутствуют у ребенка с момента рождения
• Болезни доминантные — развиваются при наличии одного мутантного гена в гетерозиготном состоянии
• Болезни моногенные — обусловлены дефектом одного гена
• Болезни мультифакториальные — имеющие в своей основе как генетическую, так и средовую компоненты; генетическая компонента представляет собой сочетание разных аллелей нескольких локусов, определяющих наследственную предрасположенность к заболеванию при разных условиях внешней среды Болезни наследственные — имеющие в своей основе генетическую компоненту Болезни рецессивные — развиваются при наличии мутантного гена в гомозиготном состоянии
• Болезни сцепленные с полом — обусловлены дефектом генов, локализованных в X- или Y-хромосомах
• Болезни хромосомные — обусловлены числовыми и структурными нарушениями кариотипа
• Брахидактилия — укорочение пальцев.
• Брахикамптодактилия — укорочение метакарпальных (метатарзальных) костей и средних фаланг в сочетании с камптодактилией.
• Брахицефалия — увеличение поперечного размера головы при относительном уменьшении продольного размера
• Вакцина — препарат ослабленного или убитого инфекционного агента (вируса, бактерии и т. п.) или его отдельных компонентов, несущих антигенные детерминанты, способный вызывать образование иммунитета к данной инфекции у животных (человека). Кроме того, в последнее время появились вакцины, произведенные методами генной инженерии (примером такой вакцины может служить вакцина против гепатита В)
• Везикулы — мембранные пузырьки. Кроме того, везикулами в медицине называют любые элементы сыпи, представляющие собой пузырьки.
• Вектор — молекула ДНК, способная к включению чужеродной ДНК и к автономной репликации, служащая инструментом для введения генетической информации в клетку.
• Вектор для клонирования — любая небольшая плазмида, фаг или ДНК содержащий вирус животных, в которые может быть встроена чужеродная вирусной ДНК.
• Вирусы — инфекционные агенты неклеточной природы, способные в процессе реализации генетической информации, закодированной в их геноме, перестроить метаболизм клетки, направив его в сторону синтеза вирусных частиц. Вирусы могут иметь белковую оболочку, а могут и состоять только из ДНК или РНК
• Витилиго — очаговая депигментация кожи.
• Водородная связь — образуется между электроотрицательным атомом молекулы (кислород, азот) и электроположительным ядром водорода (протоном), который, в свою очередь, ковалентно связан с другим электроотрицательным атомом той же или соседней молекулы.
• Врожденные болезни — болезни, имеющиеся при рождении.
• β-Галактозидаза — фермент, гидролизующий — β-галактозиды, в частности лактозу, с образованием свободной галактозы.
• Гамета — зрелая половая клетка.
• Гаплоид — клетка, содержащая одинарный набор генов или хромосом.
• Гемизиготность — состояние организма, при котором какой-то ген представлен в одной хромосоме.
• Ген — последовательность нуклеотидов в ДНК, которая обусловливает определенную функцию в организме или обеспечивает транскрипцию другого гена.
• Генетическая карта — схема расположения структурных генов и регуляторных элементов в хромосоме.
• Генетический код — соответствие между триплетами в ДНК (или РНК) и аминокислотами белков.
• Генная инженерия — совокупность приемов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы.
• Генная терапия — введение генетического материала (ДНК или РНК) в клетку, функцию которой он изменяет (или функцию организма).
• Геном — общая генетическая информация, содержащаяся в генах организма, или генетический состав клетки. Термин «геном» иногда употребляется для обозначения гаплоидного набора хромосом.
• Генотип 1) вся генетическая информация организма; 2) генетическая характеристика организма по одному или нескольким изучаемым локусам.
• Ген-регулятор — ген, кодирующий регуляторный белок активирующий или подавляющий транскрипцию других генов.
• Ген-репортер — ген, чей продукт определяется с помощью простых и чувствительных методов и чья активность в тестируемых клетках в норме отсутствует. Используется в генно-инженерных конструкциях для маркирования целевого продукта.
• Ген-усилитель (энхансер) — короткий сегмент ДНК, который влияет на уровень экспрессии примыкающих к нему генов, увеличивая частоту инициации и транскрипции.
• Гетерозигота — клетка (или организм), содержащая два различных аллеля в конкретном локусе гомологичных хромосом.
• Гетерозиготность — наличие разных аллелей в диплоидной клетке.
• Гетерозиготный организм — организм, имеющий две различные формы данного гена (разные аллели) в гомологичных хромосомах.
• Гетерохроматин — область хромосомы (иногда целая хромосома), имеющая плотную компактную структуру в интерфазе.
• Гетерохромия радужки — неодинаковое окрашивание различных участков радужки.
• Гибридизация in situ — гибридизация между денатурированной ДНК клеток на предметном стекле и меченной радиоактивными изотопами или иммунофлюоресцентными соединениями одноцепочечной РНК или ДНК.
• Гибридизация ДНК — образование в опыте двуцепочечной ДНК или дуплексов ДНК: РНК в результате взаимодействия комплементарных нуклеотидов.
• Гибридизация соматических клеток — слияние неполовых клеток, способ получения соматических гибридов (см.).
• Гибридный белок (полипептид) — см. Слитый белок (полипептид).
• Гибридомы — гибридные лимфоидные клетки, полученные путем слияния опухолевой миеломной клетки с нормальными лимфоидными клетками иммунизированного животного или человека.
• Гиперкератоз — чрезмерное утолщение рогового слоя эпидермиса.
• Гипертелоризм — увеличенное расстояние между внутренними краями глазниц.
• Гипертрихоз — избыточный рост волос.
• Гипоплазия врожденная — недоразвитие органа, проявляющееся дефицитом относительной массы или размера органа.
• Гипоспадия — нижняя расщелина мочеиспускательного канала со смещением его наружного отверстия.
• Гипотелоризм — уменьшенное расстояние между внутренними краями глазниц.
• Гирсутизм — избыточное оволосение у девочек по мужскому типу.
• Гликозилирование — присоединение к белку углеводного остатка
• Голандрическое наследование — наследование, сцепленное с Y-хромосомой.
• Голопрозэнцефалия — конечный мозг не разделен и представлен полусферой с единственной вентрикулярной полостью свободно сообщающейся с субарахноидальным пространством.
• Гомозигота — клетка (или организм), содержащая два одинаковых аллеля в конкретном локусе гомологичных хромосом.
• Гомозиготность — наличие одинаковых аллелей в диплоидной клетке.
• Гомозиготный организм — организм, имеющий две идентичные копии данного гена в гомологичных хромосомах.
• Гомологичные хромосомы — хромосомы, одинаковые по набору составляющих их генов.
• Группа сцепления — все гены, локализованные в одной хромосоме.
• Дактилоскопия генная — выявление вариаций в числе и длине тандемных повторов ДНК.
• Делеция — тип хромосомной мутации, при которой утрачивается участок хромосомы; тип генной мутации, при которой выпадает участок молекулы ДНК.
• Денатурация — нарушение пространственной структуры молекулы в результате разрыва внутри- или межмолекулярных нековалентных связей.
• Дистихиаз — двойной ряд ресниц.
• ДНК-полимераза — фермент, ведущий матричный синтез ДНК.
• Долихоцефалия — преобладание продольных размеров головы над поперечными.
• Доминантность — преимущественное участие только одного аллеля в формировании признака у гетерозиготной клетки.
• Доминантный — признак или соответствующий аллель, проявляющийся у гетерозигот.
• Дрейф генов — изменение частот генов в ряду поколений, обусловленное случайными событиями митоза, оплодотворения и размножения.
• Дупликация — тип хромосомной мутации, при которой удвоен какой-либо участок хромосомы; тип генной мутации, при которой удвоен какой-либо участок ДНК.
• Зонд генетический — короткий отрезок ДИК или РНК известной структуры или функции, меченный каким-либо радиоактивным или флуоресцентным соединением.
• Иммунитет — невосприимчивость организма к инфекционным агентам типа вирусов и микробов.
• Иммунотоксин — комплекс между антителом и каталитической субъединицей какого-либо белкового яла (дифтерийного токсина, рицина, абрина и др.).
• Иммунофлюоресцентные зонды — см. зонды ДНКовые, РНКовые.
• Индуктор — фактор (вещество, свет, теплота), вызывающий транскрипцию генов, находящихся в неактивном состоянии.
• Индукция профага — инициирование вегетативного развития фага в лизогенных клетках.
• Интеграза — фермент, осуществляющий внедрение какого-либо генетического элемента в геном через специфический сайт.
• Интегроны — генетические элементы, которые содержат в себе ген интегразы, специфический сайт и рядом с ним промотор, что придает им способность интегрировать в себя мобильные генные кассеты и экспрессировать присутствующие в них беспромоторные гены.
• Интерфероны — белки, синтезируемые клетками позвоночных в ответ на вирусную инфекцию и подавляющие их развитие.
• Интрон — некодирующий участок гена, который транскрибируется, а затем удаляется из предшественника мРНК при сплайсинге (см. сплайсинг).
• Интронированный ген — ген, содержащий интроны.
• Итероны — повторяющиеся последовательности нуклеотидных остатков в ДНК.
• Каллус — масса недифференцированных клеток, образующаяся при повреждении растения. Может образовываться из единичных клеток при их культивировании на искусственных средах.
• Кампомелия — искривление конечностей.
• Камптодактилия — сгибательная контрактура проксимальных межфаланговых суставов пальцев кисти.
• Капсида — белковая оболочка вируса.
• Кассета экспрессионная — фрагмент ДНК, содержащий все необходимые генетические элементы для экспрессии внедренного в него гена.
• кДНК — однонитевая ДНК, синтезируемая in vivo по РНКовой матрице с помощью обратной транскриптазы.
• Кератоконус — коническое выпячивание роговицы.
• Клинодактилия — латеральное или медиальное искривление пальца.
• Клон — группа генетически идентичных клеток, возникших неполовым путем от общего предка.
• Клонирование ДНК — разделение смеси рекомбинантных молекул ДНК путем их введения в клетки методом трансформации или инфекции. Одна бактериальная колония представляет собой клон, все клетки которого содержат одну и ту же молекулу рекомбинантной ДНК.
• Клонирование клеток — их разделение путем рассева на питательном агаре и получение колоний, содержащих потомство от изолированной клетки.
• Кодон — тройка расположенных подряд нуклеотидных остатков в ДНК или РНК, кодирующая определенную аминокислоту или являющаяся сигналом окончания трансляции.
• Компартментализация — ограничение процесса (продукта) определенной областью клетки.
• Компетентность — способность клеток к трансформации.
• Комплементарность (в генетике) — свойство азотистых оснований образовывать с помощью водородных связей парные комплексы аденин — тимин (или урацил) и гуанин — цитозин при взаимодействии цепей нуклеиновых кислот. Конкатемерная ДНК — линейная ДНК, в которой некоторый элемент (например, фаговый геном) повторен несколько раз.
• Контиг — группа из нескольких последовательно соединенных секвенированных участков ДНК.
• Конъюгат — комплекс из нескольких ковалентно связанных молекул.
• Конъюгация — способ обмена генетической информацией у бактерий, при котором вследствие физического контакта между клетками происходит перенос клеточной, плазмидной или транспозонной ДНК от донорной клетки в реципиентную.
• Космида — вектор, содержащий соэ-сайт ДНК фага А.
• Краниосиностоз — преждевременное зарастание черепных швов, ограничивающее рост черепа и приводящее к его деформации.
• Криптофтальм — недоразвитие или отсутствие глазного яблока, век и глазной щели.
• Лектины — белки, связывающие углеводы.
• Лигаза — фермент, образующий фосфодиэфирную связь между двумя полинуклеотидами.
• Лиганд — молекула, распознаваемая специфической структурой, например, клеточным рецептором.
• Лидерная последовательность — N-концевая последовательность секретируемых белков, обеспечивающая их транспорт через мембрану и отщепляющаяся при этом.
• Лизис — распад клетки, вызванный разрушением её оболочки.
• Лизогения — явление носительства бактериальными клетками фага в виде профага (см. профаг).
• Линия клеток — генетически однородные клетки животных или растений, которые можно выращивать in vitro в течение неограниченно долгого времени. Линкер — короткий синтетический олигонуклеотид, применяемый для соединения фрагментов ДНК in vitro; обычно содержит участок узнавания определенной рестриктазой.
• Липкие концы — комплементарные однонитевые участки ДНК, расположенные на концах молекул ДНК.
• Липосомы — капельки жидкости, окруженные искусственной мембраной; искусственные липидные везикулы (см. везикулы).
• Лиссэнцефалия (агирия) — отсутствие в больших полушариях головного мозга борозд и извилин.
• Литическое развитие фага — фаза жизненного цикла фага, начинающаяся инфекцией клетки и завершающаяся её лизисом.
• Локус — участок ДНК (хромосомы), где расположена определенная генетическая детерминанта.
• Макроглоссия — патологическое увеличение языка.
• Макросомия (гигантизм) — чрезмерно увеличенные размеры отдельных частей тела или очень высокий рост.
• Макростомия — чрезмерно широкая ротовая щель.
• Макротия — увеличенные ушные раковины.
• Макроцефалия — чрезмерно большая голова.
• Маркерный ген — ген в рекомбинантной ДНК, кодирующий селективный признак.
• Мегалокорнеа (макрокорнеа) — увеличение диаметра роговицы.
• Межвидовые гибриды — гибриды, полученные от слияния клеток, принадлежащих к разным видам.
• Метаболизм — совокупность фермевтативных процессов, обеспечивающих существование и воспроизведение клетки.
• Метаболит — вещество, образующееся в химических реакциях живой клетки.
• Метилазы — ферменты, присоединяющие метильную группу к определенным азотистым основаниям в ДНК.
• Микрогения — малые размеры нижней челюсти.
• Микрогнатия — малые размеры верхней челюсти.
• Микрокорнеа — уменьшение диаметра роговицы.
• Микростомия — чрезмерно узкая ротовая щель.
• Микротия — уменьшенные размеры ушных раковин.
• Микрофакия — малые размеры хрусталика.
• Микрофтальмия — малые размеры глазного яблока.
• Микроцефалия — малые размеры головного мозга и мозгового черепа.
• Миниклетки — клетки, не содержащие хромосомной ДНК. Модификация биополимера — изменение его структуры.
• Монголоидный разрез глаз — опущены внутренние углы глазных щелей.
• Моноклональные антитела — антитела с определенной специфичностью, синтезируемые гибридомами (см. гибридомы).
• Морфогенез — осуществление генетической программы развития организма.
• Мугагенез — процесс индукции мутаций.
• Мутагены — физические, химические или биологические агенты, увеличивающие частоту возникновения мутаций.
• Мутация — изменение генетического материала, часто приводящее к изменению свойств организма.
• «Мыс вдовы» — клиновидный рост волос на лбу.
• Ник — однонитевой разрыв в дуплексе ДНК с образованием 3 'ОН- и 5 'р концов; ликвидируется ДНК-лигазой (см. ДНК-лигаза).
• Нитрогеназа — фермент, осуществляющий фиксацию атмосферного азота.
• Нуклеазы — общее название ферментов, расщепляющих молекулы нуклеиновых кислот.
• Обратная транскриптаза — фермент, катализирующий реакцию синтеза ДНК по РНКовой матрице.
• Олигонуклеотид — цепь, состоящая из нескольких (от 2 до 20) нуклеотидных остатков.
• Омфалоцеле — грыжа пупочного канатика.
• Онкогены — гены чьи продукты обладают способностью трансформировать эукариотические клетки так, что они приобретают свойства опухолевых клеток.
• Онкорнавирус — РНК-содержаший вирус, вызывающий перерождение нормальных клеток в раковые; содержит в своем составе обратную транскриптазу.
• Оператор — регуляторный участок гена (оперона), с которым специфически связывается репрессор (см. репрессор), предотвращая тем самым начало транскрипции.
• Оперон — совокупность совместно транскрибируемых генов, обычно контролирующих родственные биохимические функции.
• Пахионихия — утолщение ногтей.
• Перомелия — малая длина конечностей при нормальных размерах туловища.
• Пилонидальная ямка (сакральный синус, эпителиальный копчиковый ход) — канал, выстланный многослойным плоским эпителием, открывающийся в межъягодичной складке у копчика.
• Плазмида — кольцевая или линейная молекула ДНК, реплицирующаяся автономно от клеточной хромосомы.
• Полидактилия — увеличение количества пальцев на кистях и (или) стопах.
• Полилинкер — синтетический олигонуклеотид, содержащий участки узнавания для нескольких рестриктаз (см. рестриктаза).
• Полимеразы — ферменты, ведущие матричный синтез нуклеиновых кислот.
• Полипептид — полимер, состоящий из аминокислотных остатков, связанных пептидными связями.
• Праймер — короткая олиго- или полинуклеотидная последовательность со свободной 3'ОН-группой, комплементарно связанная с однонитевой ДНК или РНК; с его 3'-конца ДНК-полимераза начинает наращивать полидезоксирибонуклеотидную цепь.
• Преаурикулярные папилломы — фрагменты наружного уха, расположенные впереди ушной раковины.
• Преаурикулярные фистулы (преаурикулярные ямки) — слепо оканчивающиеся ходы, наружное отверстие которых расположено у основания восходящей части завитка ушной раковины.
• Прогения — чрезмерное развитие нижней челюсти, массивный подбородок.
• Прогерия — преждевременное старение организма.
• Прогнатия — выступание верхней челюсти вперед по сравнению с нижней вследствие её чрезмерного развития.
• Прозэнцефалия — недостаточное разделение переднего мозгового пузыря на большие полушария.
• Прокариоты — организмы, у которых нет клеточного ядра.
• Промотор — регуляторный участок гена (оперона), к которому присоединяется РНК-полимераза с тем, чтобы начать транскрипцию.
• Протоонкогены — нормальные хромосомные гены, от которых произошли онкогены, содержащиеся в некоторых ретровирусах.
• Протопласт — растительная или микробная клетка, лишенная клеточной стенки.
• Профаг — внутриклеточное состояние фага в условиях, когда его литические функции подавлены.
• Процессинг — частный случай модификации (см. модификация), когда в биополимере уменьшается число звеньев.
• Птеригиум — крыловидные складки кожи.
• Регулон — система генов, разбросанных по всему геному, но подчиняющихся общему регуляторному белку.
• Рекомбинантная молекула ДНК (в генетической инженерии) — получается в результате ковалентного объединения вектора и чужеродного фрагмента ДНК.
• Рекомбинантная плазмида — плазмида, содержащая фрагмент(ы) чужеродной ДНК.
• Рекомбинантный белок — белок, часть аминокислотной последовательности которого кодируется одним геном, а часть — другим.
• Рекомбинация in vitro — операции in vitro, приводящие к созданию рекомбинантных молекул ДНК.
• Рекомбинация гомологическая — обмен генетическим материалом между двумя гомологичными молекулами ДНК.
• Рекомбинация сайт-специфическая — объединение путем разрыва и слияния двух молекул ДНК или участков одной молекулы, происходящее по определенным сайтам.
• Ренатурация — восстановление исходной пространственной структуры молекул.
• Репарация ДНК — исправление повреждений молекулы ДНК, восстанавливающее её первоначальную структуру.
• Репликатор — участок ДНК, ответственный за инициацию репликации.
• Репликация — процесс удвоения молекул ДНК или геномных вирусных РНК.
• Репликон — молекула ДНК или её участок, находящиеся под контролем репликатора.
• Репрессия — подавление активности генов, чаще всего путем блокирования их транскрипции.
• Репрессор — белок или антисмысловая РНК, подавляющие активность генов.
• Рестриктазы — сайт-специфические эндонуклеазы, составляющие часть системы рестрикции-модификации.
• Рестрикты — фрагменты ДНК, образовавшиеся после её гидролиза рестриктазой.
• Рестрикционная карта — схема молекулы ДНК, на которой указаны места разрезания её различными рестриктазами.
• Рестрикционный анализ — установление мест расщепления ДНК рестриктазами.
• Ретровирусы — РНК-содержащие вирусы животных, кодирующие обратную транскриптазу и образующие провирус с хромосомной локализацией.
• Рецессивность — неучастие аллеля в формировании признака у гетерозиготной клетки.
• Рибонуклеазы (РНКазы) — ферменты расщепляющие РНК.
• Сайт — участок молекулы ДНК, белка и т. п.
• Секвенирование — установление последовательности звеньев в молекулах нуклеиновых кислот или белков (полипептидов).
• Селективные среды — питательные среды, на которых могут расти лишь клетки с определенными свойствами.
• Септум — структура образующаяся в центре бактериальной клетки в конце цикла деления и разделяющая её на две дочерние клетки.
• Симфалангия (ортодактилия) — сращение фаланг пальца.
• Синдактилия — полное или частичное сращение соседних пальцев кисти или стопы.
• Синехии — фиброзные тяжи, соединяющие поверхности смежных органов.
• Синофриз — сросшиеся брови.
• Скафоцефалия — удлиненный череп с выступающим гребнем на месте преждевременно заросшего сагиттального шва.
• Скрининг — поиск в рассевах клеток или фагов тех колоний, которые содержат рекомбинантные молекулы ДНК.
• Слитый белок (полипептид) — белок, образованный слиянием двух различных полипептидов.
• Соматические гибриды — продукт слияния неполовых клеток.
• Соматические клетки — клетки тканей многоклеточных организмов, не относящиеся к половым.
• Спейсер — в ДНК или РНК — некодирующая последовательность нуклеотидов между генами; в белках — аминокислотная последовательность, связывающая соседние глобулярные домены.
• Сплайсинг — процесс формирования зрелой мРНК или функционального белка путем удаления внутренних частей молекул — интронов РНК или интеинов у белков.
• Стопа-«качалка» — стопа с провисающим сводом и выступающей кзади пяткой.
• Страбизм — косоглазие.
• Суперпродуцент — микробный штамм, нацеленный на синтез определенного продукта в высокой концентрации.
• Сферофакия — шаровидная форма хрусталика.
• Телеангиоктазия — локальное чрезмерное расширение капилляров и мелких сосудов.
• Телекант — смещение внутренних углов глазных щелей латерально при нормально расположенных орбитах.
• Трансдукция — перенос фрагментов ДНК с помощью бактериофага.
• Транскриипия — синтез РНК на ДНК-матрице; осуществляется РНК-полимеразой.
• Транскрипт — продукт транскрипции, т. е. РНК, синтезированная на данном участке ДНК как на матрице и комплементарная одной из его нитей.
• Транскриптаза обратная — фермент, синтезирующий по РНК как по матрице комплементарную ей однонитевую ДНК.
• Трансляция — процесс синтеза полипептида, определяемый матричной РНК.
• Транспозон — генетический элемент, реплицируемый в составе репликона и способный к самостоятельным перемещениям (транспозиции) и интеграции в разные участки хромосомной или внехромосомной ДНК.
• Трансфекция — трансформация клеток с помощью изолированной ДНК.
• Трансформация — изменение наследственных свойств клетки, вызванное поглощенной ДНК.
• Трансформация (в молекулярной генетике) — перенос генетической информации посредством изолированной ДНК.
• Трансформация (онкотрансформация) — частичная или полная дедифференцировка клеток, вызванная нарушением регуляции роста клеток.
• Тригоноцефалия — расширение черепа в затылочной и сужение в лобной части.
• «Трилистник» — аномальная форма черепа, характеризующаяся высоким выбухающим лбом, плоским затылком, выпячиванием височных костей, при соединении которых с теменными определяются глубокие вдавления.
• Умеренный фаг — бактериофаг. способный лизогенизовать клетку и в виде профага находиться внутри бактериальной хромосомы или в плазмидном состоянии.
• Фактор F (фактор фертильности, половой фактор) — коньюгативная F-плазмида найденная в клетках Е. coli.
• Фенотип — внешнее проявление свойств организма, зависящих от его генотипа и факторов окружающей среды.
• Фильтр — расстояние от нижненосовой точки до красной каймы верхней губы.
• Фокомелия — отсутствие или значительное недоразвитие проксимальных отделов конечностей, вследствие чего нормально раз витые стоны и (или) кисти кажутся прикрепленными непосредственно к туловищу.
• Химеры — лабораторные гибриды (рекомбинанты).
• Центромера — локус на хромосоме, физически необходимый для распределения гомологичяых хромосом по дочерним клеткам.
• Шайн-Далгарно последовательность — участок прокариотической мРНК, необходимый для посадки на неё рибосом и её правильной трансляции. Содержит последовательность нуклеотидов, комплементарную 3'-концу 16S рибосомной РНК.
• Штамм — линия клеток (или вирусов), ведущая начало от одной клетки (или вируса).
• Экзон — сохраняющаяся при сплайсинге часть интронированного гена.
• Экзонуклеаза — фермент, гидролизующий фосфодиэфирные связи с концов ДНК.
• Экзофтальм — смещение глазного яблока вперед, сопровождающееся расширением глазной щели.
• Эксплантат — выделенный из организма материал какой-либо ткани.
• Экспрессия гена — процесс реализации информации, закодированной в гене. Состоит из двух основных стадий. — транскрипции и трансляции.
• Эктопия хрусталика (подвывих хрусталика, вывих хрусталика) — смещение хрусталика из стекловидной ямки.
• Эктропион века — выворот края века.
• Электрофорез — разделение электрически заряженных полимеров в электрическом поле. Обычно ведется в гелях (гель-электрофорез), чтобы зоны разделяемых молекул не размывались тепловым движением.
• Эндонуклеаза — фермент, гидролизующий фосфодиэфирные связи внутри нити ДНК.
• Энхансер — регуляторный участок ДНК, усиливающий транскрипцию с ближайшего к нему промотора.
• Эпибульбарный дермоид — липодермоидные разрастания на поверхности глазного яблока, чаще на границе радужки и белочной оболочки.
• Эпикант — вертикальная кожная складка у внутреннего угла глазной щели.
• Эукариоты — организмы, клетки которых содержат ядра.