В начале августа 1955 года в Копенгагене состоялся Международный конгресс астронавтов. На конгрессе обсуждались проекты искусственных спутников Земли, а также перспективы дальнейших работ в области астронавтики.
По единодушному мнению участников конгресса, успехи современной реактивной техники настолько велики, что запуск первых искусственных спутников Земли может быть осуществлен в 1957–1958 годах.
Как известно, с 1 июля 1957 года по 31 декабря 1958 года будет организован так называемый Международный геофизический год, во время которого ученые разных стран проведут исследования магнитного поля Земли, полярных сияний, строения земной коры, землетрясений и других явлений, изучаемых геофизикой[7]. Таким образом, по решению Копенгагенского конгресса астронавтов, обширные исследования физики Земли будут дополнены созданием первых ее спутников.
Каково же устройство этих спутников, как мыслится их запуск и, наконец, какую пользу они принесут человечеству?
Первые искусственные спутники Земли будут несколько напоминать снаряд ньютоновой пушки. Во-первых, предполагается сделать их небольшими, так как чем меньше масса тела, тем легче его превратить в спутник Земли. По одним из существующих проектов первые спутники не превзойдут по размерам баскетбольный мяч. В других проектах они мыслятся несколько бóльшими.
Во-вторых, первые спутники Земли, в отличие от снаряда жюльверновской «колумбиады», не понесут в себе пассажиров, если только под последними не понимать разнообразные научные приборы.
Самый простой спутник — это металлический шар поперечником в несколько десятков сантиметров. Чтобы такой шар превратить в спутника Земли, необходимо, во-первых, поднять его в верхние, разреженные слои атмосферы и, во-вторых, сообщить ему соответствующую «круговую» горизонтальную скорость. Обе задачи может выполнить двухступенчатая ракета, похожая на современные (рис. 17).
Первая ее ступень состоит из топливных баков и ракетного двигателя. После исчерпания всех запасов топлива первая ступень автоматически отделяется от остальной части ракеты и возвращается обратно на Землю В момент отделения первой ступени начинает действовать вторая ступень.
Ее устройство несколько сложнее. Кроме топливных баков и двигателя, в головной части ракеты помещается спутник, под которым находится некоторое количество взрывчатых веществ. В нужный момент с помощью автоматического устройства происходит взрыв, который выбрасывает спутник на круговую орбиту. Такова принципиальная сторона одного из наиболее простых проектов. Однако несмотря на всю свою простоту, описанный спутник может принести немалую пользу науке.
Представим себе, что такой спутник получил круговую скорость на высоте 200 км. Нетрудно подсчитать (см. стр. 10), что в этом случае он будет обладать линейной скоростью 7791 и периодом обращения около полутора часов. Следует заметить, что в момент выброса спутника из ракеты очень важно, чтобы спутник приобрел не только нужную круговую скорость, но и вполне определенное направление движения. Дело в том, что далеко не всякая круговая орбита будет устойчивой. Можно доказать, что спутник приобретет устойчивое движение только в такой плоскости, которая проходит через центр Земли. В противном случае, если, например, спутник начнет обращаться в плоскости какой-нибудь параллели, то либо орбита спутника сместится в одну из «устойчивых» плоскостей, либо спутник упадет на Землю.
На высоте 200 км над Землей плотность воздуха в миллионы раз меньше, чем у поверхности Земли. Это значит, что спутник, получив первоначальную скорость, будет затем двигаться, почти не встречая сопротивления атмосферы. Следовательно, спутник, обращающийся вокруг Земли на высоте 200 км, совершит достаточно большое число оборотов вокруг земного шара. Очень важно выяснить характер этого движения. Рассмотрим причины, которые на него влияют.
Главной силой, определяющей движение спутника, является сила земного притяжения. Оказывается, ее величина зависит не только от массы, но и от формы Земли. В частности, чем более сжата планета у полюсов, тем быстрее (при прочих равных обстоятельствах) будет обращаться вокруг нее спутник[8].
Астрономы по движению спутников планет определяют степень их сжатия. Так, например, исследовав движение V спутника Юпитера, советский астроном проф. К. Л. Баев нашел, что полярный радиус планеты на 8882 км меньше экваториального.
Сжатие Земли, равное отношению разности экваториального и полярного радиусов к величине экваториального радиуса, близко к 1/298. Оно определено разнообразными методами, в частности по движению Луны. Проверить, уточнить найденную величину сжатия по движению искусственных спутников очень важно в практическом отношении — чем точнее мы узнаем форму Земли, тем большей точностью будут обладать составленные затем географические карты. А карты крайне необходимы во всей практической деятельности современного человека.
На движение искусственного спутника Земли, пусть в ничтожной степени, но все же будет влиять сопротивление атмосферы. Удары молекул воздуха о поверхность спутника постепенно уменьшат его первоначальную скорость, и рано или поздно спутник упадет на Землю. Проникнув в нижние, более плотные слои атмосферы, спутник уподобится метеориту. Он раскалится до высокой температуры, оплавится, частично разрушится и, в конце концов, наблюдатели увидят пролетающий по небу искусственный метеорит.
Таким образом, благодаря сопротивлению воздуха, орбита спутника не останется круговой. Грубо говоря, она станет похожей на спираль довольно сложной формы. Изучение скорости движения спутника в каждой точке его пути, точное определение формы этого пути позволит выяснить характер сопротивления атмосферы на разных высотах, которое в свою очередь зависит от плотности воздуха, его температуры и других факторов. В этом — второй цикл научных проблем, решению которых поможет спутник.
Наконец, для межпланетных перелетов, для создания крупных заатмосферных станций очень важно выяснить, насколько часто встречаются в мировом пространстве небесные камни — метеориты. Столкновение межпланетного корабля с крупным метеоритом весом в десятки или сотни килограммов, не говоря о более крупных, может оказаться катастрофическим, Меньшие по массе метеориты способны нанести серьезные повреждения космическому кораблю.
Изучение метеоритной опасности в безвоздушном пространстве — одна из главных задач, которую хотя бы отчасти должны решить первые «разведочные» спутники Земли. Кое-что в данном вопросе может выяснить и простейший из спутников.
Не исключена возможность прямого попадания метеорита в спутник — в этом случае очень интересно изучить результат столкновения. Чем мельче метеориты, тем в бóльшем количестве встречаются они в мировом пространстве, тем вероятнее столкновения с ними.
Может быть на спутнике-шаре, упавшем на Землю, сохранятся не только следы его поединка с атмосферой, но и углубления, вызванные ударами мелких метеоритов. Их изучение представит значительный научный интерес.
Между прочим, исследования подобного рода ведутся уже и сейчас. Так, например, в 1953 году в США с помощью стратосферных ракет, поднимавшихся на высоту от 40 до 140 километров, было зарегистрировано 66 попаданий мелких микрометеоритов за 144 секунды. В среднем на каждый квадратный метр поверхности ракеты за секунду пришлось около 5 столкновений. При некоторых опытах удалось даже (правда с помощью микроскопов) обнаружить на металле крошечные ямочки, образованные микрометеоритами.
Чтобы следить за движением спутника, надо его видеть. Спутник, не обладая собственным свечением, будет, подобно Луне, отражать падающие на него солнечные лучи. Расчеты показывают, что шар поперечником в 1 м, отражающий свет как Луна, будет с расстояния в 900 км казаться звездочкой 7-й звездной величины, а с расстояния 200 км — звездочкой 3-й величины. Напомним для сравнения, что блеск самых слабых из звезд, доступных невооруженному глазу, равен 6-й звездной величине, а наиболее слабые звезды, зафиксированные с помощью крупнейших современных телескопов на фотопластинке, имеют блеск 23-й звездной величины.
Таким образом, некоторые из спутников удастся увидеть не только в телескоп, но и невооруженным глазом. Правда, видны они будут не всегда. Как известно, Земля отбрасывает в мировое пространство огромный конус тени. На расстоянии 200 км от поверхности Земли поперечник конуса близок к 13 000 км. Когда спутник попадет в тень Земли, он станет невидимым — произойдет затмение спутника, аналогичное лунному затмению.
Только на фоне утренних или вечерних зорь спутник будет доступен наблюдателю. Измерительные круги, которыми снабжены телескопы, позволят точно фиксировать положение спутника в пространстве.
Вполне возможно, что уже первые спутники Земли будут снабжены автоматическими приборами, но поскольку приборы боятся резких сотрясений, придется использовать иную систему запуска такого спутника. Не снаряд, выстреливаемый из ракеты, а третья, последняя ступень трехступенчатой ракеты — таков, по-видимому, наилучший вариант запуска подобного спутника (рис. 18).
Преимущества рассматриваемого проекта очевидны. В отличие от спутника-снаряда, спутник-ракета постепенно наберет нужную круговую скорость, а потому ускорения спутника не будут чрезмерными. Это сохранит главную часть спутника — приборы. Разумеется, по достижении требуемой круговой скорости ракетный двигатель автоматически остановится и спутник начнет облет земного шара под действием единственной силы — собственного веса.
Какие же приборы поместят внутрь спутника и что они должны регистрировать?
Снаряжение первых спутников Земли будет, вероятно, во многом напоминать оборудование современных ракет, предназначенных для исследования атмосферы. Его можно разделить на следующие основные группы:
1. измерители температуры,
2. приборы для взятия проб воздуха,
3. измерители атмосферного движения,
4. спектрограф для фотографирования солнечного спектра,
5. счетчик космических лучей,
6. киносъемочный аппарат,
7. радиоаппаратура.
Рассмотрим принцип действия каждого из приборов и оценим возможность их применения на искусственном спутнике Земли.
Измерение температуры воздуха на быстро летящей ракете — сложное дело. Обычные термометры для этой цели непригодны, так как разреженный воздух больших высот не успеет их нагреть. Измерителями температуры должны быть приборы, очень быстро реагирующие на ее изменения. Такие приборы изобретены — они называются термисторами. В них используются вещества, электрическое сопротивление которых очень быстро меняется с изменением температуры. С помощью термисторов можно практически мгновенно обнаружить изменения температуры на тысячные доли градуса! Для стремительно летящих стратосферных ракет применение термисторов в качестве измерителей температур неизбежно.
Иная обстановка сложится на спутнике.
Обращаясь вокруг Земли по круговой орбите и практически за границами земной атмосферы, спутник будет находиться в условиях сравнительно постоянного теплового режима. На «дневном» участке своего пути он обогревается лучами Солнца. Попадая же в тень Земли, спутник при этом подвергается значительному охлаждению. Чередование нагрева и охлаждения спутника станет регулярно повторяющимся явлением.
Температура есть степень нагрева какого-нибудь тела, есть мера энергии движения составляющих его элементарных частиц (молекул, атомов). Какую же температуру будут измерять приборы спутника?
Вокруг спутника — безвоздушное пространство. Воздуха на высотах в сотни километров так мало, что измерить его температуру невозможно.
Представляет несомненный научный интерес измерение нагрева самого спутника, отдельных его частей и материалов. В данном случае измерителями температуры, кроме описанных выше приборов, могут стать термоэлементы. Принцип их действия очень прост.
Представьте себе два спая из различных металлов, например, цинка и меди. Пусть спаи соединены последовательно и в цепь включен электроизмерительный прибор — чувствительный гальванометр.
Если один из спаев нагреть, а другой оставить холодным, в цепи возникнет электрический ток, который заставит отклониться стрелку гальванометра. По силе тока можно вычислить температуру спая, а в некоторых случаях и температуру источника нагревания.
Термоэлементы нашли себе широкое применение в астрономии. Современные астрономические термоэлементы, объединенные в батарею — «термопару», способны обнаружить тепло от свечки, удаленной на расстояние в 300 км! Точность измерения этих удивительных приборов составляет миллионные доли градуса! С помощью термопар можно узнать, как меняется температура спутника при его полете вокруг Земли и как при этом ведут себя различные материалы, из которых он сделан.
С другой стороны, поместив в спутник небольшую камеру, наполненную воздухом под давлением, близким к нормальному, можно будет выяснить изменение температуры воздуха, что важно для конструирования пассажирских ракет.
На современных ракетах устанавливают приборы для взятия проб воздуха. Очевидно, на заатмосферных искусственных спутниках ни эти приборы, ни измерители атмосферного давления не понадобятся, зато остальные приборы современных ракет на спутнике очень пригодятся.
Известно, что воздушная оболочка Земли играет роль фильтра. Она прозрачна далеко не для всех лучей, приходящих к нам из космоса.
Первое «окно прозрачности» расположено в области видимых лучей. Атмосфера пропускает лучи света с длиной волны от 0,29 микрона до 0,76 микрона. Большая часть этого «окна» доступна для наших глаз, которые чувствительны к лучам, имеющим длины волн от 0,40 до 0,76 микрона. Что же касается ультрафиолетовых лучей с длиной волны меньшей 0,29 микрона, то для них, как и для некоторых инфракрасных лучей, земная атмосфера совершенно непрозрачна.
Установлено, что преградой для большей части ультрафиолетовых лучей является слой озона, расположенный на высоте 25–30 километров над Землей. Не будь этого слоя, ультрафиолетовые лучи Солнца убили бы все живые организмы нашей планеты. Разрушительная сила ультрафиолетовых лучей, несущих с собой большое количество энергии, общеизвестна. Вспомните, как мучительны ожоги, полученные от Солнца в жаркий летний день. А ведь вызваны они лишь самой слабой, ничтожной долей ультрафиолетового излучения Солнца.
Что касается инфракрасных лучей, то их задерживают водяные пары атмосферы. И все же, в инфракрасной части спектра есть еще одно «окно прозрачности». В него проникают лучи с длиной волны от 1,25 см до 30 м.
Такие лучи глаз не воспринимает — их мы называем радиоволнами. Принципиально они не отличаются от лучей видимого света. Известно, что как те, так и другие представляют собой электромагнитное излучение, но различной длины волны. Радиоволны, приходящие к нам из космоса, мы не видим, но изучить их с помощью специальных радиоприемников вполне возможно.
Спутник Земли оставит под собой земную атмосферу с ее «окнами прозрачности». Приборы спутника смогут воспринять любое излучение, пронизывающее космос. Одним из таких приборов несомненно будет спектрограф. Он имеет следующее устройство. Луч света попадает в трубку, называемую коллиматором. На одном ее конце имеется узкая щель, а на другом — двояковыпуклая линза. Так как щель коллиматора помещена в фокусе его линзы, лучи света, пройдя через коллиматор, выходят из него параллельным пучком. Далее они направляются на трехгранную стеклянную призму, которая разлагает белый пучок света на составляющие его разноцветные лучи. Получающийся при этом спектр фотографируется обычной фотокамерой.
Таково устройство «земных» спектрографов. Для фотографирования солнечного спектра со спутника конструкция спектрографа будет несколько изменена.
Так как обычное стекло непрозрачно к ультрафиолетовым лучам, исследовать которые особенно интересно, оптическая часть спектрографа (линзы) должна быть изготовлена из так называемого увиолевого стекла, пропускающего ультрафиолетовые лучи. Разложение солнечного света на спектр иногда лучше производить не призмой, а так называемой дифракционной решеткой. В школьном физическом кабинете можно увидеть простейшую дифракционную решетку. Она представляет собой прозрачную целлулоидную пластинку с нанесенными на нее многочисленными порезами — штрихами. Число штрихов в школьных решетках доходит до 250 на 1 см. Если посмотреть сквозь решетку на зажженную лампочку, можно увидеть несколько радужных спектральных ее изображений.
Межпланетное пространство пронизывается множеством стремительно летящих мельчайших частиц, которые образуют так называемые космические лучи. Взаимодействуя с атмосферой, космические лучи порождают новые частицы, ливнем обрушивающиеся на Землю. В космических лучах обнаружены протоны, электроны, а также мезоны — частицы с массой, промежуточной между массой протона и электрона. Обладая массой в 200 раз большей, чем масса электронов, мезоны бывают как положительными и отрицательными, так и нейтральными. Удивительна скорость движения мезонов — она сравнима со скоростью света.
При такой энергии движения мезоны обладают огромной пробивной способностью. Они не только свободно пронизывают наше тело, но и способны пробить броневую плиту толщиной в метр. Даже спускаясь под Землю в метрополитен, мы не всегда спасаемся от мезонов — они проникают в Землю на глубину до ста метров!
Исследование космических лучей за пределами атмосферы в их «чистом», неизмененном виде — такова одна из интереснейших научных проблем, решить которую помогут уже первые спутники Земли.
На спутнике будут помещены счетчики, которые зарегистрируют число летящих космических частиц и определят направление их полета. Простейший счетчик представляет собой стеклянную трубку, наполненную воздухом, со вставленным внутрь ее металлическим острием. На внутреннюю поверхность трубки нанесен слой металла, изолированный от острия. Между острием и металлом создается электрическое напряжение, близкое к разрядному. Когда космическая частица влетит внутрь счетчика, она, сталкиваясь с молекулами воздуха, превращает некоторые из них в ионы. Благодаря присутствию ионов проводимость воздуха сильно возрастает — между острием и трубкой проскакивает электрическая искра.
Так каждая космическая частица дает знать о себе, о своем пролете через счетчик.
Современные счетчики настолько совершенны, что они не только автоматически фиксируют пролетающие частицы, но и определяют направление их полета.
На некоторых из стратосферных ракет были установлены киноаппараты. Когда ракета взлетала на высоту в 50, 100, 200 километров, киноаппараты автоматически производили снимок земной поверхности с данной высоты.
Интересно заметить, что на некоторых снимках хорошо видна шарообразность Земли — искривленность ее «края».
Фотографирование земной поверхности и атмосферных образований войдет в программу научных работ спутника. Оно поможет в частности заснять движение облачных массивов над всей Землей. Интересно сфотографировать со спутника полярные сияния. Как известно, последние представляют собой холодное свечение разреженных слоев воздуха на высотах от 65 до 1100 км. По своей природе они сходны со свечением газов в рекламных трубках и вызываются бомбардировкой земной атмосферы мельчайшими частицами, испускаемыми Солнцем.
Фотографирование полярных сияний в непосредственной близости от них раскроет перед наукой природу этого пока еще плохо изученного явления.
Особое значение в работе спутника принадлежит радиоаппаратуре.
Роль современной радиотехники огромна. В самых различных областях жизни, начиная от обычных радиопередач и кончая «радиотелескопами» астрономических обсерваторий, радиоволны помогают человеку познавать и покорять природу.
На искусственных спутниках Земли наибольшее применение получит, по-видимому, тот раздел радиотехники, который называется радиотелемеханикой.
Управление механизмами на расстоянии — это не мечты, а давно разрешенная техническая задача. Ею и занимается радиотелемеханика.
Всякая радиоволна переносит с собой от передатчика к приемнику некоторое количество энергии. Если удастся энергию радиосигнала превратить в механическую работу, задача управления на расстоянии будет разрешена. Принцип действия всех радиотелемеханических устройств — это воздействие полученного радиосигнала на аппаратуру, управляющую машинами. Рассмотрим один из простейших примеров подобного устройства. Допустим, надо включить электромотор с помощью радиоволн. Радиоволны, посланные передатчиком, в приемнике преобразуются в электрический ток. Ток этот слаб и не годится для включения мотора. Однако его можно пустить в обмотку электромагнита, который притянет к себе металлическую пластинку. Пластинка замкнет электрическую цепь обычного переменного тока, и мотор заработает.
Так с помощью радиоволн можно включить неработающий электромотор.
Разумеется, при более сложных задачах нужны и более сложные устройства. Тем не менее принцип их действия останется таким же, как в рассмотренном примере.
В наши дни созданы управляемые по радио самолеты и корабли. Радиотелемеханикой увлекаются и школьники. Ежегодно на Всесоюзных авиамодельных соревнованиях ими демонстрируются радиоуправляемые модели самолетов.
Первые спутники Земли будут также управляться по радио.
Уже взлет спутника, доставка его на круговую орбиту потребуют, по-видимому, применения радиоуправляющих устройств.
Дело в том, что наиболее выгодно послать ракету в таком направлении, при котором расход горючего будет минимальным. По этому заранее вычисленному направлению и поведут ракету радиоприборы. Когда ракета достигнет высоты 200–300 километров, с Земли будут посланы радиосигналы, которые заставят ракету перейти на круговую орбиту. Радиоволны выключат затем ставший ненужным ракетный двигатель. С их же помощью одна ступень ракеты отделится от другой. В случае необходимости радиоприборы вернут спутник обратно на Землю.
В свою очередь радиосигналы, посылаемые со спутника, сообщат о работе приборов спутника и помогут определить его местонахождение в пространстве.
Многого можно ожидать от телевидения. Представьте себе, что на спутнике установлен телепередатчик, который посылает радиоволны на Землю. Принимая телепередачу со спутника, вы, сидя дома, увидите на экране телевизора то, что станет доступным лишь первым межпланетным путешественникам. Посмотреть на Землю из мирового пространства, не покидая в то же время пределов своей квартиры, — такова пока фантастическая, но в будущем вполне осуществимая мечта!
Мы описали, разумеется, в самых общих чертах устройство первых спутников Земли.
В настоящее время существует уже несколько конкретных технических проектов спутников Земли.
Так, например, в одном из них спутник представляет собой алюминиевый шар поперечником около 60 см. Внутри спутника размещены приборы для измерения магнитного поля Земли, космических лучей и солнечного излучения. На спутнике имеются также радиоаппаратура и солнечная силовая установка.
При запуске спутника с помощью трехступенчатой ракеты спутник приводится во вращение. Скорость вращения подбирается так, что спутник будет обращен к Солнцу всегда одной и той же стороной. Это облегчит фотографирование солнечного спектра и работу солнечной установки.
Предполагаемая высота полета спутника — 300 км, скорость движения — 27 800 . Плоскость орбиты спутника будет проходить через ось вращения Земли, так что каждые 45 минут спутник будет появляться то над северным, то над южным ее полюсами. Так как приборы спутника очень компактны, его общий вес не превысит 5 кГ.
Постройка спутника по предварительным расчетам обойдется в 1 миллион долларов, что дешевле стоимости реактивного самолета — истребителя.
Насколько ценны для науки спутники Земли, насколько они оправдают неизбежные затраты, можно судить по тем результатам, которые уже сейчас получены с помощью высотных ракет.
Как уже говорилось, современные ракеты взлетают до высот, на которых будут двигаться первые искусственные спутники Земли. К сожалению, их пребывание на этих высотах очень непродолжительно и исчисляется минутами. Тем не менее полеты ракет обогатили науку новыми сведениями. Вот некоторые из них:
1) Проверено распределение температуры до высоты 100 км. Оно совпало с тем, которое было известно по другим данным.
2) Измерена плотность воздуха до высоты 200 км. Взятые пробы воздуха показали, что газы в атмосфере располагаются в соответствии со своим удельным весом — тяжелые в нижних слоях, более легкие — в верхних. Отмечено, в частности, значительное количество редких газов (гелия, неона, аргона) на больших высотах. Выявлена концентрация озона на высоте 30–40 км.
3) Исследована невидимая с Земли ультрафиолетовая часть солнечного спектра. Обнаружены новые, ранее неизвестные линии спектра, которые принадлежат железу, магнию, кальцию и другим элементам.
Выяснилось, что Солнце излучает значительное количество рентгеновских лучей.
4) Фотоэлементы измерили освещенность неба на разных высотах. Оказалось, что уже на высоте 25 км фон неба темнее, чем на поверхности Земли, в 20 раз.
5) Наблюдения за клубами дыма, выпущенного с борта ракеты, позволили изучить скорости и направления ветров в стратосфере.
6) Получены новые данные о космических лучах, о магнитном поле Земли и о так называемой ионосфере — слоях земной атмосферы, отражающих радиоволны.
Спутники, которые будут пребывать в безвоздушном пространстве несравненно дольше, чем теперешние ракеты, станут еще более ценными космическими лабораториями, чем стратосферные ракеты.
И все-таки это будет только начало, только первый этап наступления человека на космос. Человек не успокоится на создании радиоуправляемых спутников Земли. Рано или поздно, но он сам пожелает совершить на космической ракете полет вокруг земного шара. Тем самым будет положено начало той колонии «эфирных жилищ», о которой в свое время писал Циолковский.