Лаборатории в космосе

Человек стремится в космос не ради простого любопытства. Он хочет познать далекие небесные тела, чтобы применить затем эти знания в земной «практической» жизни. Межпланетные перелеты, посещение других планет, несомненно увеличат могущество человека, укрепят и расширят его власть над силами природы.

Искусственные спутники Земли, как уже отмечалось, будут иметь двоякое значение. С одной стороны, их используют как топливные базы, с помощью которых пассажирские ракеты доберутся до Луны, а затем и до планет. С другой стороны, в условиях безвоздушного пространства станут возможными такие научные исследования, которые в земных условиях или затруднительны или вовсе неосуществимы. Таким образом, спутники Земли можно использовать как внеземные научные станции, где будет постоянно вестись интенсивная научная работа.

Какова же программа деятельности этих космических лабораторий? Какие научные исследования можно провести с помощью искусственных спутников Земли?

Прежде всего спутники окажут большую помощь метеорологии.

Со спутника, обращающегося вокруг Земли на высоте в несколько тысяч километров, будет видна огромная часть поверхности земного шара (рис. 26). Произведем несложные расчеты.

Рис. 26. Со спутника видна значительная часть поверхности Земли.

Пусть радиус Земли равен R, а высота спутника С над Землей h. Тогда дальность горизонта, наблюдаемого со спутника, будет равна длине отрезка АС. Но из ΔАОС

С другой стороны, дуга r, измеряемая углом , равна приближенно радиусу обозримой со спутника части поверхности Земли. Угол α может быть найден из очевидного соотношения:

Для спутника, находящегося на высоте 1000 км, дальность горизонта близка к 3700 км, а угол α близок к 30°. Учитывая, что 1° земного меридиана соответствует 111 км, находим, что радиус обозримой со спутника области приблизительно равен 3330 км.

Таким образом, в каждый данный момент наблюдатель, находящийся на спутнике, сможет следить за распределением облачности и движением отдельных облаков на огромной части поверхности Земли. Учитывая, что спутник совершает обращение вокруг Земли с периодом около двух часов, и предполагая, что его орбита проходит над полюсами Земли, легко сообразить, что с такого спутника можно обеспечить постоянную «службу погоды», т. е. наблюдения за облачностью всей земной атмосферы.

С заатмосферной метеорологической станции на Землю будут регулярно поступать радиосообщения о распределении и характере облачного покрова, о движении фронта теплых и холодных воздушных масс, о границах распространения бурь.

Искусственные спутники Земли помогут значительно увереннее предсказывать погоду, что имеет большое народно-хозяйственное значение.

Весьма интересны геофизические исследования, которые можно осуществить с применением спутников.

Геофизика, как известно, изучает физическое состояние различных оболочек Земли — атмосферы, гидросферы, литосферы. Первая из них может быть подвергнута разнообразным исследованиям. Во-первых, важно детально изучить характер и природу полярных сияний. Заатмосферные геофизики увидят эти сияния «сверху», т. е. из мирового пространства. Такая необычная позиция облегчит их исследования (так как наблюдателям не будет мешать облачный покров Земли) и, вероятно, позволит открыть ряд новых свойств этих загадочных явлений.

В связи с полярными сияниями подвергнется исследованию и магнитное поле Земли. Можно будет установить, по каким траекториям несутся вблизи Земли частицы, вызывающие полярные сияния. Тем самым будут проверены теоретические расчеты, сделанные «земными» геофизиками.

Как уже говорилось, по движению спутников Земли можно определить величину ее сжатия. Допустим теперь, что в каком-нибудь месте Земли, над которым периодически пролетает спутник, находятся неизвестные залежи полезных ископаемых.

Как это ни странно, но спутник может выступить в роли разведчика земных недр. Пролетая над районом, где в земной коре есть плотные, тяжелые породы (например, железные руды), спутник притянется к Земле сильней, чем в других частях своей орбиты. Это увеличит скорость движения спутника, что может быть обнаружено наземными наблюдателями.

Большое практическое значение имеют наблюдения за дрейфом льдов. До сих пор такого рода исследования затруднялись суровой обстановкой Арктики и Антарктики. С «меридианного» спутника (т. е. со спутника, орбита которого проходит над полюсами Земли) исследования околополярных районов станут сравнительно легкой задачей.

Особое научное значение приобретает радиосвязь между спутником и Землей. Кроме чисто служебного назначения (передача сведений с Земли на спутник и обратно) она преследует и иные цели.

Ионосфера, задерживающая значительную часть радиоволн, состоит из нескольких слоев ионизированных газов. Состояние этих слоев, их высота над Землей, толщина и пропускная способность не остаются постоянными. Солнечное излучение и другие причины порождают изменчивость ионосферы.

«Прощупывание» различных «радиоокон» в ионосфере, наблюдения за силой радиоприема, выяснение связи между явлениями на Солнце и характером радиосвязи между спутником и Землей, — таковы научные проблемы, над решением которых будут работать радиотехники и геофизики.

Нельзя при этом не упомянуть, что спутники Земли расширят возможности телевидения (рис. 27). Как известно, прием изображений по радио можно вести только в зоне прямой видимости антенны передающего телецентра. Так, например, передачи Московского телецентра можно принять лишь в тех пунктах, которые удалены от Москвы не более, чем на 200 км.

Рис. 27. Из одного телецентра с помощью четырех спутников можно вести телепередачу для всей Земли.

Вообразим себе теперь, что на спутнике, удаленном от поверхности Земли на расстояние 36 000 км и совершающем оборот вокруг Земли за 24 часа, установлена радиостанция, которая ретранслирует телепередачу с Земли. Тогда, послав из телецентра радиоволны на спутник, мы можем направить их на огромную территорию, почти равную площади полушария Земли.

Как видите, возможности телевидения сильно возрастут.

Заметим, что такая ретрансляционная космическая станция должна двигаться по орбите, лежащей в плоскости земного экватора.

Вполне мыслимо, что в будущем удастся построить не одну, а несколько подобных станций. Тогда можно будет из одного телевизионного центра обслужить передачей население всего земного шара.

Перейдем теперь к той части научной программы спутника, которая относится к области физики.

Для некоторых физических исследований безвоздушное пространство исключительно удобно. Здесь легко получить как очень низкие, так и чрезвычайно высокие температуры, между тем как в земных условиях достижение таких температур сопряжено с большими трудностями.

Вокруг спутника — мировое пространство, где получить температуру, близкую к абсолютному нулю (–273°C) очень просто. Для этого достаточно испытуемое тело поместить в тень от спутника. В безвоздушном пространстве нет перемешивания воздушных слоев (конвекции), которое в земных условиях сглаживает контраст температуры «на Солнце» и в тени. Поэтому, если небольшой покрытый сажей шар, выброшенный со спутника в пространство, нагреется солнечными лучами до +3°C, то его температура «в тени» упадет почти до абсолютного нуля. Физики непременно воспользуются этими удобствами.

Известно, что при температурах близких к абсолютному нулю у тел появляются необычные свойства. Так, например, проводники становятся сверхпроводниками, т. е. их сопротивление электрическому току падает практически до нуля. Другие вещества, как, например, жидкий гелий становятся сверхтекучими, т. е. пропадает их внутреннее трение, или вязкость.

Изучение свойств веществ при температурах, близких к абсолютному нулю, имеет огромное значение. Оно раскрывает перед наукой природу атомных и молекулярных сил. Оно, возможно, позволит в будущем передавать электроэнергию по «сверхпроводящей» сети без всяких потерь на сопротивление.

В земных условиях физики бьются над получением вакуума — искусственной «пустоты». Создание высоких степеней разрежения вещества — исключительно сложная техническая задача.

На спутнике к услугам физиков будет почти идеальный вакуум. Межпланетное пространство наполнено настолько разреженной средой, что плотность ее не превышает . Это значит, что даже наиболее совершенный из современных технических вакуумов настолько же плотнее «пустоты» межпланетного пространства, во сколько свинец плотнее такого вакуума!

Наряду с получением сверхнизких температур можно получить и очень высокие температуры. Для этого достаточно поместить тело в фокус какого-нибудь огромного вогнутого зеркала. Всем известная школьная забава — выжигание увеличительным стеклом — здесь будет воспроизведена в грандиозных масштабах.

В фокусе зеркала, поперечником в несколько метров, можно легко получить температуру в тысячи градусов. Это означает, что солнечные лучи расплавят, обратят в пар любой металл! Отсюда понятно, что на спутнике в широких масштабах будут применятся методы гелиосварки. Несомненно, что гелиосварка получит со временем распространение и в земном строительстве.

Рис. 28. Физическая лаборатория на спутнике.

Физическая лаборатория на спутнике поставит одной из своих основных задач изучение космических лучей. О значении подобных исследований мы уже говорили. Добавим к сказанному, что в отличие от современных ракет и первых спутников, большие космические лаборатории дадут возможность вести наблюдение за космическими лучами не кратковременно, а постоянно. К тому же отсутствие веса на стационарном спутнике позволит создать там грандиозные физические установки любой конструкции.

Разгадка природы космических лучей и источников их происхождения — вот что можно ожидать от «заатмосферных» физиков.

Как ни увлекательны возможности, которые раскроются в будущем для метеорологов, геофизиков, радиотехников и физиков, все же, пожалуй, самыми плодотворными исследованиями на спутнике будут работы в области астрономии.

Атмосфера для астрономических наблюдений является серьезной помехой. Во-первых, преломление в атмосфере лучей, идущих к нам от светил, так называемая рефракция, искажает их форму, размеры и цвет. Так, Солнце у горизонта кажется сплюснутым и красноватым, а в некоторых случаях и очень искаженным.

Во-вторых, движение отдельных струек воздуха изменяет направление лучей небесных светил. Этим объясняется мерцание звезд, а также дрожание и расплывчатость изображений светил в телескопах.

Чем сильнее увеличивает телескоп, тем более мелкие детали можно, как будто, обнаружить на поверхности небесных тел. Однако с ростом увеличения становится более заметными и движения воздуха. Поэтому при астрономических наблюдениях в земных условиях увеличение больше девятисот раз обычно не применяют.

В-третьих, в земной атмосфере лучи света испытывают дисперсию, т. е. они частично разлагаются на составные лучи. Этим вызваны красивые цветные переливы, которые можно наблюдать при мерцании ярких звезд, а также другие явления.

Наконец, земная атмосфера поглощает часть лучей, идущих к нам от светил, что заметно ослабляет их видимую яркость (минимум на 0,2 зв. величины).

На заатмосферной обсерватории астроном может позабыть обо всех этих неприятностях. Мир небесных тел предстанет перед ним, так сказать, в «чистом», неискаженном виде.

На совершенно черном небе ярко сияют Солнце, Луна, планеты и немерцающие звезды. Отсюда, со спутника, знакомые созвездия кажутся значительно ярче, четче. Среди тысяч звезд то в одном, то в другом участке неба глаз различает сравнительно яркие туманные пятнышки — далекие звездные скопления и облака разреженных газов.

Тщетно ожидали бы мы увидеть на небе падающую звезду или летящий метеорит. За атмосферой эти крохотные небесные тела дают знать о себе лишь в случае прямого столкновения с ними.

Астрономическая обсерватория на спутнике во многом не похожа на земные обсерватории. Ее помещение герметически изолировано от безвоздушного пространства. Следовательно, ни о каком вращающемся куполе с раздвижным люком не может быть и речи. Полусферическая крыша обсерватории сделана из прозрачного и в то же время прочного материала (например специальной пластмассы).

Обсерватория укреплена на оси спутника и вращается вместе с ним. Астроному на спутнике будет казаться, что он неподвижен, а все небо кружится вокруг него, как бы насаженное на ось спутника. Полярная звезда, вероятно, потеряет свое значение указателя небесного полюса и ее роль перейдет к какой-нибудь другой звезде.

Астрономическая обсерватория на спутнике состоит из двух половин, обращенных друг к другу своими основаниями. Таким образом, наблюдениями можно охватить любой участок небосвода.

Телескопы на заатмосферной обсерватории во многом будут отличаться от земных. Во-первых, в условиях пониженной тяжести (или полного ее отсутствия), конструкция телескопа может быть сильно облегчена. Отпадут заботы о прогибе трубы и осей инструмента, не понадобятся «противовесы», которые являются непременной частью земных телескопов. С другой стороны, размеры телескопа могут быть сколь угодно большими, что неизмеримо расширяет возможности исследования.

Есть одна трудность, с которой придется считаться. Масса спутника очень мала в сравнении с массой Земли. Поэтому и его вращение будет гораздо менее устойчивым, чем вращение Земли. Значит, наведя со спутника телескоп на какую-нибудь звезду, мы не будем уверены, что последняя останется все время в одной и той же точке поля зрения. Обычный часовой механизм здесь не поможет. Для земных телескопов достаточно, чтобы такой механизм вращал телескоп вокруг одной так называемой «полярной» оси. На спутнике его осевое вращение сильно осложняется другими движениями. Ведь даже перемещение людей внутри спутника заметно отзовется на положение оси его вращения, не говоря уже о других более существенных причинах.

Значит, наблюдая звезду в телескоп, «заатмосферный» астроном увидит прыгающую в поле зрения яркую точку. Заставить звезду «остановиться» может только соответствующее «следящее» устройство. Принцип его действия таков.

Луч от звезды падает на фотоэлемент, соединенный с механизмами, которые могут вращать телескоп вокруг любой из осей. Если телескоп слегка сместится, и, следовательно, луч звезды изменит свое направление относительно фотоэлемента, последний немедленно среагирует и с помощью механизмов вернет телескоп в исходное положение. Так, вероятно, будут устроены телескопы заатмосферной обсерватории.

Впрочем, сложность установки вполне окупится возможностью применять при наблюдениях любые, сколь угодно большие увеличения.

Вот пример. При увеличении в 10 000 раз мы могли бы со спутника увидеть в телескоп на Луне предмет поперечником всего в 12 метров. Даже на Марсе нам стали бы доступны детали поверхности, имеющие размеры около 1,5 км. А ведь с прогрессом телескопической техники вполне мыслимо применение и значительно бóльших увеличений.

Все главнейшие разделы современной астрофизики (астрофотография, астрофотометрия, астроспектроскопия) получат с помощью спутников Земли дальнейшее развитие.

Бóльшая видимая яркость небесных тел позволит сфотографировать такие далекие звездные системы, которые современным земным телескопам вовсе недоступны. Радиус изученной нами части вселенной будет увеличен.

Особенно много открытий будет сделано в области астроспектроскопии. Астрономы изучат весь спектр излучений от гамма-лучей до наиболее длинных радиоволн. Как много нового мы узнаем о составе небесных тел, их свечении, источниках звездной энергии и других вопросах, волнующих современных ученых.

Весьма возможно, что будут открыты и какие-нибудь новые излучения, о существование которых мы и не подозреваем.

Всего четверть века тому назад зародилась новая отрасль естествознания — радиоастрономия. Установлено, что источниками радиоволн, приходящих к нам из космоса, являются разнообразные небесные тела — начиная от Луны и кончая далекими звездными системами — галактиками. В одних случаях испускание радиоволн вызвано просто некоторой нагретостью тела — таково, например, радиоизлучение Луны. В других случаях космические радиоволны вызваны, например, грандиозными катастрофами — столкновениями галактик.

Скоро радиотелескопы станут принадлежностью каждой земной обсерватории. Принцип их действия достаточно прост.

Огромное вогнутое металлическое зеркало (в ряде случаев оно состоит из отдельных проволок) собирает в своем фокусе космические радиоволны. Здесь, в фокусе, помещают «приемный диполь», похожий на обычную антенну. Ток, возбужденный радиоволнами в диполе, идет на приемную радиостанцию и здесь исследуется.

На спутнике непременно установят радиотелескопы. Если на Земле крупнейшие из существующих радиотелескопов имеют поперечник зеркала в десятки метров, то на заатмосферной станции можно будет установить и еще бóльшие инструменты.

Рис. 29. Один из вариантов заатмосферной астрономической обсерватории.

На Земле развитию радиоастрономии мешает непрозрачность атмосферы к радиоволнам с длиной волны, большей 30 метров. На спутнике эта помеха отпадет и все радиоизлучение небесных тел будет изучаться беспрепятственно.

Сейчас даже трудно себе представить, какие удивительные открытия будут сделаны в области радиоастрономии.

Со спутника можно в любое время и без каких-либо сложных приспособлений наблюдать солнечную корону и протуберанцы. Так как состояние этих образований отзывается на погоде, радиосвязи и других земных явлениях, регулярные наблюдения Солнца со спутника приобретут большое практическое значение.

Для того, чтобы работа заатмосферной обсерватории приносила максимальную пользу, надо точно знать момент наблюдения и положение спутника в пространстве. Первое легче всего осуществить, сверяя часы на спутнике с радиосигналами точного времени, которые будут передаваться с Земли. Что касается положения спутника в пространстве, то его определят специальные радиолокаторы.

Какими фантастически-смелыми кажутся сейчас проекты внеземных научных лабораторий! Как заманчива программа их работ!

Невозможное сегодня, станет возможным в недалеком будущем. Придет время, и вокруг Земли возникнут многочисленные лаборатории первого Космического института.

Загрузка...