О НЕКОТОРЫХ ВОПРОСАХ МИРОВОГО РАЗВИТИЯ

ЗЕМЛЯ И ОБЩЕСТВО Ю. А. КОСЫГИН

Земля — объект изучения геологии. Однако в сферически-симметрические структуры Земли вписывается биосфера, существующая уже миллиарды лет. Причем эта длительность соразмерна с предполагаемой длительностью существования планеты. Продолжительность существования человека отвечает не более чем одной тысячной доле интервала времени развития биосферы.

Начнем с характеристики некоторых общих понятий. Это, прежде всего вопросы уровней организации, геосфер, окружающей среды и всеобщего закона сохранения.


УРОВНИ ОРГАНИЗАЦИИ

Уровни организации — это очень общее понятие, применяемое в области как естественных, так и общественных наук и имеющее существенный системно-кибернетический аспект. Логику, математику и кибернетику ни к естественным, ни к общественным наукам отнести нельзя: они дают общие методы для всех наук, и нет общепринятого подхода, позволяющего распространить на них понятие уровня организации. Однако использовать идеи и средства логики, математики и кибернетики для уточнения представлений об организации и ее уровнях можно и нужно. Но всякое такое уточнение предполагает, прежде всего, знание внелогического, внематематического и внекибернетического содержания. По опыту своей работы мне удобнее всего это пояснить на геологическом примере.

Относительно небольшие геологические объекты — минералы и некоторые горные породы — мы относим к атомно-молекулярному уровню организации вещества. Целостность агрегатов частиц этих объектов, таких, как молекулы и кристаллы, обеспечивается ионными, ковалентными и другими связями, имеющими в основном электромагнитную природу. Кристаллам свойственна правильная форма, обязанная регулярным кристаллическим решеткам, а кускам и глыбам горных пород — неправильная, но устойчивая форма, определяемая, в частности, так называемыми эпитаксиальными связями тоже электромагнитной природы, обусловливающими «прилипание» друг к другу граней различных составляющих породу кристаллов и обеспечивающими ее прочность. Гравиметрические силы меньше электромагнитных в 10 раз, но в отличие от электромагнитных сил, которые имеют разный знак, т. е. способны как притягивать частицы друг к другу, так и отталкивать их, обладают только свойством притяжения. Поэтому в кристаллах, обломках горных пород и даже таких крупных глыбах, как астероиды, гравитационные силы еще не в состоянии преобладать над электромагнитными, но в крупных телах, как, например, Луна, гравитационные силы уже подавляют электромагнитные своим постоянством, своей направленностью только на притяжение, становятся доминирующими и определяют следующий высший планетарный уровень организации вещества. Тела этого уровня обладают фигурой гидростатического равновесия, т. е. в общем сферической. Внутри этих тел происходит перераспределение вещества и генерируется тепло (с которым связан и вулканизм), а сами тела под влиянием гравитации приобретают слоистую структуру.

Заметим, кстати, что механизм гравитационной дифференциации в таком твердом объекте, как Земля, чрезвычайно затруднен и даже может быть и нереален в рамках геологического времени для того, чтобы в твердом состоянии обеспечить слоистое распределение вещества в твердой Земле. Поэтому весьма заманчивым оказывается представление, высказанное академиком Н. А. Шило[6], связывающим образование Солнечной системы, планет и спутников с вихревыми движениями соответственно первого, второго и третьего порядка.

Пылевые облака или иное космическое вещество, служащее основой образования этих вихрей, может распределяться по плотности или по другим своим качествам и образовывать слоистую структуру указанных тел планетной системы еще тогда, когда эти тела как таковые еще не сформировались: они находились в вихревом состоянии и вещество могло распределяться слоями, а образующиеся планеты или спутники обретали слоистую структуру в процессе своего становления.

Такое представление снимает очень многие трудности, связанные с механизмом гравитационной дифференциации в твердом теле. Действительно, расчеты, приводимые Е. В. Артюшковым[7], показывают, что гравитационная дифференциация, т. е. опускание и подъем частиц твердых тел разной плотности в условиях весьма больших давлений и вязкости (например, в условиях нижней мантии), чрезвычайно медленна и скорости перемещений не могут обеспечить такой гравитационной дифференциации, чтобы за ее счет была создана слоистая структура.

Тела планетарного уровня организации во многом определяют для входящих в них мелких тел атомно-молекулярного уровня условия существования. Например, с увеличением глубины в связи с ростом гравитационного давления кремнекислота может существовать у поверхности в виде кварца, глубже — в виде коэсита, еще глубже — в виде стишовита (все эти минералы одного химического состава, но с разной «упаковкой» атомов и разной всевозрастающей плотностью). За счет давления и тепла горные породы, включающие их минералы и кристаллы могут плавиться. При застывании расплавов могут образовываться совсем другие горные породы и минералы. Этим подчеркивается коренная зависимость существования объектов низшего уровня организации от высшего уровня.

Вообще уровни организации можно рассматривать как наиболее надежный и более общий естественный каркас для системного подхода в исследовании. Однако в разных отраслях знаний эти уровни различны. Их нельзя сравнивать опираясь на одни аналогии. Если в неживой природе они более или менее удачно связываются с электромагнитным и гравитационным влияниями, то в живой природе, а тем более в социальной среде какое-либо подобное простое обоснование вряд ли окажется подходящим. Наличие сложных систем обратных связей, иерархическая структура, информационные взаимодействия и процессы управления, типичные для таких систем, делают это невозможным.


Геосферы

Издавна установившейся традицией выделяются такие сферические оболочки Земли (геосферы), как литосфера (каменная оболочка), гидросфера и атмосфера, существование которых относится к планетарному уровню организации, т. е. обусловлено гравитационными силами. Эти оболочки геометрически не идеальны, границы их неровные, а гидросфера, представленная океанами, морями, озерами и ледниками, несплошная, прерывистая, не ограничивается «собственным» пространством, проникает в литосферу в виде подземных вод и в атмосферу в виде пара, часто сгущающегося в облака различного типа.

К гидросфере, а одновременно к литосфере относится кристаллизационная вода. Гидросфера как оболочка и как тело планетарного уровня организации целиком перекрывает пространства биосферы, поскольку нет организмов, не содержащих воду.

Биосфера вовсе не имеет «собственного» пространства. Составляющие ее организмы населяют гидросферу, перемещаются в нижних частях атмосферы (в прошлом летающие рептилии, ныне птицы, летающие насекомые), внедряются в литосферу (все животные, роющие норы или сверлящие подземные каналы) и в большом разнообразии классов, родов, семейств и видов животных и растений размещаются на границе литосферы и атмосферы. Хотя биосфера состоит из живых организмов, она в целом, как оболочка Земли, связана с ее гравитационным полем и принадлежит планетарному уровню организации вещества, реализующемуся на основе энергетических и информационных взаимодействий.

Поскольку существование и развитие всех элементов биосферы зависит от окружающей среды, в понятие биосферы входит не только совокупность всех ее элементов (организмов, популяций и т. д.), но и совокупность связей с окружающей средой.

В биосфере можно выделить комплекс подсистем: во-первых, биогеоценозы и соответствующие им биогеофациальные провинции (области, зоны и т. д.), во-вторых, специализированные биогеосферы, определяемые распространением, условиями проживания и развития отдельных типов, классов, видов, разновидностей организмов. Биогеоценозы — это естественные совокупности связанных своей жизнедеятельностью организмов в соответствии с особенностями окружающей их среды; биогеофациальные провинции и т. д. — это участки распространения различных биогеоценозов в поверхностных и приповерхностных зонах Земли. Выделение подобных провинций может служить ориентиром для районирования биосферы с учетом рангов и иерархий выделяемых районов. В слово «биогеофациальный» вставлена частица «гео» для того, чтобы подчеркнуть связь выделяемых участков с геосферой и чтобы отличить его от термина «биофациальный», широко применяемого в палеогеографии для явлений значительно меньшего масштаба.

Специализированные биогеосферы обычно не выделяют (так как различные виды организмов слишком тесно связаны в биогеоценозах), хотя одна из них, наиболее близкая к биогеоценозам, даже имеет свое название — антропосфера. Антропосфера — субстанциональная биологическая основа социальных структурой процессов.

С антропосферой тесно связаны техносфера и ноосфера.

Под техносферой понимаются образования, связанные с материальной культурой человека, а также существующие и действующие инженерные сооружения и многообразные энергоинформационные связи. Техносфера не принадлежит биосфере, являясь ее производной, так же как толщи биогенных известняков, ископаемых углей, нефтей органического происхождения и т. д., отличаясь от них по характеру.

Техносфера состоит как из пород, так и из искусственных материалов. В ней можно различать два основных структурных элемента («слоя») — остаточный («культурный») слой (руины, заброшенные, бездействующие каналы, горные выработки, ископаемые отбросы и т. д.) и активный (материальная часть современных городов и поселков, действующие инженерные сооружения и др.).

Ноосфера имеет определенную субстанциональную биосферную основу, так как связана с проявлением разума человека, и «эфемерную» (учитывая масштабы геологического времени) природу вследствие связи во времени и пространстве с наличием разумных существ. При этом ноосферу нельзя представлять как некую «замкнутую» информационную систему. Человек формируется в условиях социальной среды и, являясь порождением биосферы, действует в соответствии с основными следствиями всеобщего закона сохранения. Ноосфера — это производная социальной жизни, природы человека и человеческого общества[8].

Каждая из перечисленных геосфер, а также многие другие сферы, которые могут быть выделены на нашей планете, обладают гравитационной природой, сферической формой и часто содержат элементы слоистости. И тонкое строение геосфер, и происходящие в них внутренние процессы обусловлены особыми законами, свойственными пространству и веществу данной геосферы. Об автономности этих внутренних процессов можно судить по аналогии с приведенным примером атомно-молекулярного уровня организации вещества в пределах огромных (по сравнению с атомами, молекулами, кристаллами, минералами и некоторыми крупными массивами горных пород) пространств вмещающих геосфер.


Окружающая среда

Окружающая среда — очень обобщенное понятие, применимое ко всем геосферам, не имеющим частично или полностью собственного пространства. Геосферы, кроме, литосферы и атмосферы, полностью лишены собственного пространства. Поэтому для исследований таких геосфер понятие «окружающая среда» имеет исключительное значение. Иначе говоря, геосферы — сложные динамические системы — не могут ни рассматриваться, ни исследоваться отдельно от окружающей среды: ведь их существование и развитие во многом определяется ею.

В неорганической природе это понятие касается не имеющей собственного пространства гидрокарбосферы, а также некоторых других возможных специализированных геохимических геосфер. В органической природе, прежде всего, выделяется биосфера, для которой в целом окружающая среда составляется из областей литосферы, гидросферы и атмосферы. В пределах биосферы иногда выделяют специализированные биосферы (антропосфера и другие биогеосферы, связанные с разными семействами, классами, типами и «мирами» организмов). Тогда основная масса биосферы (за исключением данной специализированной биогеосферы) рассматривается как окружающая среда. Так, для человечества (антропосферы) в понятие окружающей среды входит не только Земля (литосфера), водные артерии бассейна (гидросфера), воздух (атмосфера), но и весь растительный (леса, луга, водорослевые заросли) и животный мир.

Взаимоотношения с окружающей средой и характеризующие, их процессы для всех, не обладающих своим полным пространством геосфер, исключая антропосферу, естественны, т. е. развиваются по законам природы, независимо от разума.

Социальная среда в рассматриваемом аспекте представляет собой частный специализированный случай окружающей среды. Однако для человечества социальная среда имеет важнейшее самостоятельное значение, поскольку во многом определяет общественную жизнь людей. Поэтому понятие социальной среды более близко и более важно для человека и человечества, чем понятие окружающей среды в широком смысле слова. По этой же причине понятие социальной среды, один из важнейших объектов общественных наук, человек выработал значительно раньше, чем более обобщенное понятие окружающей среды.

С прогрессом техники, с тех пор как деятельность человека стала вносить изменения в окружающую среду и нарушать естественное равновесие между ней и антропосферой, для человечества возникла проблема окружающей среды, выражающаяся в необходимости сознательного вмешательства в ход процессов, определяющих взаимоотношения между человеком и средой. Проблема окружающей среды сейчас представляет сочетание задачи сохранения окружающей среды в состоянии, обеспечивающем неухудшающиеся условия существования в ней человечества и задачи использования окружающей среды для улучшения ее состояния с позиций обитания и развития в ней человеческого общества.

Кардинальное решение проблемы окружающей среды требует глобальных мероприятий; результаты любых локальных мероприятий неизбежно эфемерны, хотя и полезны для отдельных интервалов времени и для отдельных участков пространства.

Существование геосфер позволяет предполагать их сохранение на протяжении достаточно длительных интервалов времени. Здесь уместно говорить о некоем законе сохранения системы от времени появления до времени вырождения со всеми сопровождающими ее развитие изменениями. Такой закон не предполагает сохранения некоторой неизменяющейся величины. Он не подобен законам сохранения в физике, которые могут быть отнесены к категории частных или общих законов и могут быть названы параметрическими. Здесь должна идти речь о всеобщем законе сохранения, предусматривавшем бы, что каждая система (элементы, состояние, организмы, сообщества и т. д.) в мертвой и живой природе, общественной жизни и мышлении сохраняется в течение времени, пределы которого связаны с происхождением и изменениями системы и взаимодействием ее с окружающей средой (наличие обратной связи, выражающейся в стремлении активно воздействовать на окружающую среду для поддержания существования системы). В отличие от параметрических законов сохранения в физике такой закон сохранения может быть назван системным. Отнесение его к категории всеобщих законов обусловлено применимостью к явлениям природы в общественной жизни. Естественно, что к системным законам сохранения могут быть отнесены множества частных и общих законов, применимых в пределах некоторых групп или типов систем.

Размышления о закономерностях развития биосферы, специализированных биосфер (антропосферы и др.), а также ноосферы делают необходимым введение системного закона сохранения. Он, несомненно, имеет всеобщее значение, и поэтому сведение его сразу же лишь к частному закону (например, для биосферы) неоправданно. Из системного закона сохранения вытекает ряд важных следствий для понимания развития биосферы и всех связанных с ней геосфер.

Из всеобщего закона сохранения применительно к биосфере вытекают три основных следствия.

Во-первых, сохранение биосферы возможно при условии сохранения входящих в нее элементов. Это следствие относится не только к биосфере как к целому, но и к специализированным биосферам, в частности к антропосфере и ее атрибутам (ноосфера). Первое следствие заключается в тенденции сохранения индивидуума, т. е. инстинкте сохранения вида, в частном случае — человека (личности), путем поддержания и сохранения энергии его за счет питания, подходящих для существования климатических и температурных условий и т. д. Вхождение человека в антропосферу позволяет ему с участием других ее элементов поддерживать и сохранять энергию посредством одежды, жилищ, организации здравоохранения, борьбы с загрязнениями окружающей среды, техники безопасности и других защитных мероприятий.

Во-вторых, сохранение биосферы возможно при условии восстановления ее отмирающих элементов (инстинкт продолжения рода). Второе следствие, естественно, полностью распространяется на антропосферу.

В-третьих, сохранение биосферы возможно, если она достаточно прочна, т. е. обладает структурой. В отношении специализированной биосферы — антропосферы в основе прочности структуры лежит, по-видимому, ее иерархичность. Не исключены, конечно, другие свойства структуры, определяющие ее прочность, однако любые временные и локальные нарушения иерархичности ведут к появлению чего-то подобного «турбулентным ячейкам» в структуре антропосферы, что нарушает ее прочность.


* * *

Изучение Земли позволило выделить два уровня организации вещества — атомно — молекулярный и планетарный, отличающиеся формами связей между элементами соответствующих систем. Для первого уровня — это электромагнитные силы, для второго — гравитационные. Было показано, что высший (планетарный) уровень организации определяет поведение элементов низшего уровня. Крупнейшими на Земле образованиями, относящимися к высшему уровню организации, являются геосферы, в частности биосфера. В биосфере, как и в других основных геосферах, можно различать специализированные соподчиненные ей подсистемы — зоосферу, фитосферу, антропосферу и т. д. Устойчивость геосфер во времени и пространстве позволяет ввести понятия о всеобщем законе сохранения и показать, что следствия этого закона определяют поведение элементов низшего уровня организации в данной геосфере. Это относится и к антропосфере. Таким образом, намечаются причинно-следственные связи в системе природа — общество. Стремиться наметить пути к поискам положительных видов обратных связей в выше названной системе, значит пытаться использовать наиболее целесообразные и эффективные воздействия человека на природу.

ДИАЛЕКТИКА, СИСТЕМНОСТЬ, ГЛОБАЛЬНОЕ МОДЕЛИРОВАНИЕ Д. М. ГВИШИАНИ

Почти полтора века назад Карл Маркс отметил: «Философия не витает вне мира, как и мозг не находится вне человека…»[9]. Через всю историю марксизма руководящей нитью проходит принцип активного вмешательства философского знания в процесс диалектического изменения бытия.

Ныне одно из проявлений действенного характера философии марксизма-ленинизма связано с областью теоретического и методологического обоснования компьютерного системного моделирования процессов глобального развития. При этом важно отметить, что по мере расширения масштабов практического применения этого нового частного технического инструмента познания социально-экономических явлений значимость его методологического обоснования, исходя из принципов материалистической диалектики, не только не убывает, но, напротив, становится все большей и большей. Необходимо постоянное отслеживание новых приемов построения и системного анализа глобальных моделей, их философское осмысление и корректировка с позиций материалистической диалектики, а также в свете задач идеологической борьбы с апологетико-метафизическими и техницистскими трактовками этого познавательного приема в ряде работ на Западе.

Диалектическое учение о системных объектах, прежде всего социальной природы (так называемые человековключающие системы), как органических целостностях лежит в основе всей методологии системного анализа сверхсложных объектов.

Это фундаментальное учение ныне служит основой проводимых на высокой технической базе с помощью все совершенствующихся электронно-вычислительных машин системных разработок по моделированию глобального развития. Причем именно диалектическая идея органической целостности позволяет раскрыть внутреннее единство процессов анализа и синтеза; в познании сложных систем. В частности, в выражении «системный анализ», как нам думается, термин «анализ» выступает не в качестве антитезы синтезу, но именно как системный инструмент многоэтапного исследования интегрированных аналитико-синтетических особенностей систем с их противоречивым разделением на элементы и в то же время неразделимостью на элементы, т. е. целостностью.

Вообще в выражении «системный анализ» мы делаем упор на термин «системный», подчеркивая, что системное исследование ориентировано в конечном счете (после стадии анализа) именно на системный синтез как выражение и интеграции элементов в системную целостность, и интеграции информации из разных наук в целостную системную модель, и интеграции теории и практики, и, что особенно важно, интеграции всеобщего и конкретного.

Системные исследования особенно значимы для социалистического общества, интегрируемого в органическую целостность с учетом плана, выступающего в форме государственного закона. Об этом свидетельствует как опыт СССР в разработке комплексных программ социально-экономического развития, так и других социалистических стран. Этот опыт может оказаться полезным и при развитии модельного познания на уровнях страны и региона.

Построение и исследование глобальных моделей опирается на взаимосвязь диалектических принципов системности и развития. На предмодельной фазе исследования в концепцию модели вводятся мировоззренческие принципы марксизма-ленинизма; в свою очередь, проведение экспериментов на работающей в диалоговом режиме системе моделей развития глобальных процессов подтверждает и конкретизирует марксистскую теорию мирового исторического процесса. Выявляя количественные характеристики различных сторон этого процесса, система глобального моделирования позволяет обнаружить возможные альтернативы будущего состояния глобальных процессов и помогает при принятии решения выбрать наилучшие для человека, предотвращая при этом осуществление негативных возможностей.

Глобальное моделирование — одно из эффективных направлений системного анализа, использующее данные общественных, естественных и технических наук для выявления наиболее вероятных вариантов конкретной реализации социально-экономических процессов в исторически определенные отрезки времени[10].

Системное моделирование глобальных процессов, опираясь на философско-методологические принципы управления сложными системами, позволяет сформировать целостную картину взаимоотношений научно-технического прогресса с развитием общества.

Говоря об общих чертах системности глобального моделирования, следует указать на его органическую связь с диалектически обоснованными принципами системного подхода. Глобальное моделирование опирается на концепцию междисциплинарной целостности всего процесса изучения глобального объекта, на принцип системной интеграции знания (в глобальных моделях синтезируются данные, добываемые практически всеми современными научными дисциплинами), на материалистическую концепцию единства природы, обосновывающую возможность плодотворного научного синтеза, на идею человека как цели исторического процесса (речь идет о принципиальной привязке всех критериев, принципов и сторон системного подхода и системного моделирования к потребностям и интересам человека как высшей ценности). В этой связи важно отметить ограниченность узкоэкономических подходов к оценке развития мировой системы и к оценке социальных последствий научно-технического прогресса.

Диалектико-материалистическое обоснование системного анализа и системного моделирования глобальных процессов исходит из ряда методологических принципов:

• реализация концепции системности глобального объекта как движение от целого к части, от системы к элементам;

• выделение структурных уровней системы элементов и построение той или иной иерархии;

• движение от изучения свойств к изучению отношений;

• ориентация на функционирующее в диалоговом режиме многомодельное описание сложного глобального объекта;

• определение оптимальных масштабов системы-модели, способной неуклонно повышать меру своей адекватности изучаемому системному объекту;

• учет противоречий, присущих системе, и в первую очередь борьбы и соревнования двух противоположных социально-экономических систем.

Очевидно, что практическая реализация перечисленных принципов лучше всего может быть обеспечена работой многодисциплинарного научного коллектива, в деятельности которого сочетаются фундаментальные и прикладные исследования. В то же время заметим, что все эти принципы ориентируют на системную структуризацию изучаемого объекта.

Если обратиться к анализу тенденций глобального моделирования, то нельзя не отметить нарастание системности в методах построения моделей и в разрабатываемых человеко-машинных диалоговых системах. Так, если на первых подступах к построению глобальных моделей строилась жесткая структура, без механизма обратных связей, то ныне разработаны человеко-машинные диалоговые системы моделирования процессов глобального развития. В нашем понимании построение и анализ человеко-машинных моделей глобального развития — одно из важных направлений развития системных исследований.

Нам думается, что системный характер глобального моделирования наиболее полно выражается, во-первых, в диалектическом характере как предмета, так и метода глобального моделирования, во-вторых, во все более адекватном приближении к системной сложности масштабных природных и социоприродных объектов и, в-третьих, во все более полном учете социальных факторов развития глобальной системы.

Вот на этих трех принципиально важных обстоятельствах мы бы и хотели сосредоточить внимание.


* * *

В проблеме структуризации объекта глобального моделирования проявляются два важных принципа системной методологии: движение от целого к части (выделение элементов) и представление объекта как многоуровневой системы. Важно в то же время иметь в виду, что вся глубокая противоречивость процессов мирового развития не отрицает элементов целостности, присущих глобальной системе, судьбы которой неразрывно связаны с судьбой нашей планеты.

Структуризация объекта глобального моделирования как системы взаимосвязанных элементов со своими специфическими характеристиками следует из предметного рассмотрения самого объекта, а также из перечня проблем, которые необходимо анализировать. Последовательный просмотр элементов объекта с точки зрения исследовательских задач, возникающих в глобальном моделировании, позволяет выделить то необходимое для анализа глобальной проблематики множество подсистем, развитие которых собственно и определяет ход и течение процессов в глобальной системе.

В сложной совокупности этих подсистем ведущая роль принадлежит вопросам обеспечения прочного мира, прекращения гонки вооружений. Ныне — это вопросы жизни или смерти для всей глобальной системы. Здесь, действуют два взаимосвязанных процесса — во-первых, только в условиях мирного сосуществования при гарантированной равноправной безопасности всех стран и народов на нашей планете могут быть успешно разрешены острые современные проблемы сохранения природной среды, обеспечения растущего населения энергией, продовольствием, повышения уровня здоровья населения; во-вторых, значительные материальные средства, которые высвободились бы в результате прекращения гонки вооружений, можно было бы использовать как базу финансирования крупномасштабных мероприятий по экологической перестройке технологии, но наращиванию производства продовольствия, по подъему уровня здоровья населения.

В «Политической декларации государств — участников Варшавского Договора» подчеркивается: «В конце XX века перед человечеством остро встали глобальные проблемы социально-экономического, демографического, экологического характера. Нынешний уровень развития производительных сил, науки и техники в мире обеспечивает необходимые материальные и интеллектуальные ресурсы, чтобы взяться за практическое решение этих грандиозных проблем. Но развитию международного сотрудничества в этих целях препятствуют силы реакции, ведущие линию на консервацию отсталости целых континентов, на разобщение и противопоставление одних государств другим»[11].

Оздоровление международной обстановки — в первую очередь сокращение ядерных вооружений — это и острейшая глобальная проблема, и предпосылка решения всех других глобальных проблем. Нет сейчас более важной задачи, чем отодвинуть нарастающую угрозу ядерной войны, взять под контроль, прекратить гонку ядерных вооружений.

Экономика как элемент глобальной системы лежит в основе всех глобальных процессов и имеет большое количество связей с остальными элементами. Динамику экономической активности населения мира можно охарактеризовать ростом валового мирового продукта. Из подсистемы экономики специально выделяется элемент, связанный с производством продовольствия, которое наряду с обычной для экономических элементов зависимостью от производственных фондов, трудовых ресурсов и научно-технического прогресса еще специфически зависит от площади обрабатываемой земли (лимитирующий фактор) и природно-климатических условий.

Запасы природных ископаемых ресурсов — элемент глобальной системы, определяемый не только физическими объемами, но также их концентрацией и доступностью. От двух последних факторов во многом зависит стоимость добычи и переработки ресурсов, а сама стоимость выступает как критерий экономической целесообразности замещения одного ресурса другим. Поэтому для этого элемента чрезвычайно важен геологический прогноз условий добычи. Другая его важная черта — неравномерность распределения природных ресурсов, в частности энергетических, по регионам мира, из-за чего при регионализации объекта моделирования приходится учитывать не только демографические, экономические, социальные и политические характеристики стран, но и степень обеспеченности природными ресурсами.

С добычей и использованием природных ресурсов во многом связано загрязнение среды обитания — того элемента мировой системы, для которого, по мнению экспертов, ожидаются наиболее серьезные последствия стихийного, неконтролируемого развития. В числе возможных последствий называют «кислотные» дожди, частичное разрушение озонного слоя, повышение концентрации С02в атмосфере, разрушение почв, гибель многих биологических видов, превращение в пустыни значительных земельных площадей. Кроме загрязнений, на среду обитания сильное влияние могут оказать изменения климата, индуцируемые антропогенной деятельностью. Необходимо отметить, что именно о динамике этого элемента до последнего времени у экспертов не было единодушного мнения, хотя, по-видимому, большинство их стало считать вероятным общее потепление климата.

Наравне с перечисленными элементами в глобальной системе как объекте моделирования обязательно выделяют такой специфический элемент, как научно-технический прогресс, в силу его чрезвычайно важной роли в процессах мирового развития: он генерирует новые технологии, позволяющие непрерывно повышать эффективность экономики, а также заменять исчерпанные и использовать новые природные ресурсы. В соответствии со многими моделями экономического роста темп экономической активности населения связан с темпом демографического роста и темпом научно-технического прогресса. Последний же обусловливает не только изменение условий жизнедеятельности человека, но и его растущее воздействие на среду обитания даже при стабильной численности населения.

Среднегодовые темпы научно-технического прогресса можно оценить только после принятия ряда гипотез о его природе. Если считать, что научно-технический прогресс индуцирован капитальными вложениями и расходами на научно-исследовательские разработки, то эти темпы поддаются определенной оценке.

Одна из важных глобальных проблем, характеризующая всю глобальную систему, — проблема населения мира, численность которого к 2000 г. по последним прогнозам возрастет до 6,1–6,4 млрд. человек при среднегодовом темпе роста 1,7–1,8 %. Неоднородность демографических процессов в различных странах и регионах мира заставляет рассматривать эти процессы в первую очередь в региональном разрезе. Регион выступает в качестве обязательного элемента рассмотрения глобальной системы в силу исключительного многообразия последней. Необходимость акцентирования внимания на данном элементе диктуется разнородностью экономических и социально-политических процессов в различных регионах земли. Нельзя упускать из виду и заметные различия географических и климатических условий.

Говоря о населении в глобальном аспекте, ни в коем случае нельзя ограничиваться только демографическими характеристиками, т. е. вопросами рождаемости и смертности, половозрастной и семейной структур. Ведь способы удовлетворения духовных и материальных потребностей и сами эти потребности зависят от классовых, идеологических и социально-политических установок, ценностной ориентации, сложившихся норм поведения, эволюционирующих под влиянием развития способа производства. Таким образом, элементом объекта глобального моделирования является население не столько как биологическая популяция, но прежде всего как социально активная, целеполагающая сила. Поэтому специально должна быть выделена в качестве элемента объекта моделирования социально-классовая структура общества. Социальные процессы обусловливают устойчивость социальной структуры общества, трудовую активность населения, его систему ценностей. Социальный портрет общества определяется соотношением классов. Существенны к тому же профессиональные и образовательные структуры населения, структуры занятости и бюджетов времени.

Социальная активность населения (и определяемые ею демографическая, экологическая и другие формы активности) в различной степени регулируется механизмами управления, которые по целям, методам и структуре существенно различаются для стран с социалистической, капиталистической и многоукладной экономикой. Очевидно, что альтернативные сценарии развития, возможные для реализации, различны для противоположных механизмов управления и, следовательно, при рассмотрении глобальных процессов необходимо выделять элемент, характеризующий социальное устройство общества.

Процессы глобального развития во многом — процессы межстрановых и межрегиональных взаимодействий, под которыми подразумеваются не только мировой рынок и внешнеторговые потоки между странами, но и обмен технологиями, миграция трудовых ресурсов, культурный обмен и другие межстрановые процессы. Поэтому в мировой системе должен быть выделен такой элемент, как межрегиональные взаимодействия. Через него осуществляются связи стран и регионов (объединение стран в регионы проводится экспертно или с помощью факторного анализа).

В приведенной здесь структуризации мировой системы указывается минимальное количество элементов. Оно может быть увеличено при более детальном описании объекта, когда перечисленные элементы, в свою очередь, структуризуются и возникает более подробное иерархическое описание. Кроме того, в принципе возможен и выбор других оснований для деления объекта глобального моделирования на элементы.


* * *

Глобальные проблемы представляют собой некоторое противоречие и в то же время целостное системное единство. Этот диалектический характер глобальной проблематики необходимо постоянно учитывать в ходе моделирования, исходя из того факта, что решение одной проблемы может ухудшить возможности разрешения другой глобальной проблемы. Чтобы этого не случилось, необходимо выходить на некоторый оптимум, учитывающий противоречивые тенденции в анализе всех проблем, взятых в виде целостной совокупности.

В части проблематики, допускающей использование количественных показателей, с формальной точки зрения восходящей к наиболее общим принципам системности, требуется тщательный анализ особенностей поведения определенных подсистем, с тем чтобы избежать неоправданного распространения присущих им специфических особенностей на систему в целом. Так, отдельные проблемы могут выражать порожденную системой частной собственности несбалансированность темпов развития отдельных элементов мировой системы, существенную неоднородность мировой системы по ряду показателей, возможность приближения некоторых показателей к «критическим» значениям, за которыми система в целом или крупные ее подсистемы резко меняют структуру. Отметим и различие между двумя типами показателей, описывающих систему. К первому относятся так называемые переменные состояния (фазовые переменные), на которые нельзя повлиять непосредственно. Ко второму типу относятся управляющие воздействия, которые хотя и не могут принимать произвольные значения, так как обычно выбираются в рамках определенных ограничений, однако их можно варьировать в зависимости от имеющихся целей развития системы.

Эта классификация показателей как переменных состояний и управляющих переменных требует различать сценарии развития, построенные в терминах управляющих воздействий (управляющих переменных), и сценарии развития, выраженные в терминах переменных состояний. При наличии теоретического аппарата, устанавливающего взаимосвязи между обоими типами сценариев, возможны две постановки задачи. В первой — из набора альтернативных вариантов задается сценарий в терминах управляющих воздействий и ставится вопрос: каким при данных управляющих воздействиях окажется развитие системы, т. е. каков будет сценарий, выраженный в терминах переменных состояний? Вторая постановка задачи предполагает сначала подготовку сценария развития системы в терминах переменных состояний, после чего необходимо подобрать сценарий, построенный в терминах управляющих воздействий, отвечающий первоначально заданному сценарию развития системы. С технической точки зрения вторая постановка задачи обычно намного сложнее первой, так как в ней приходится решать проблему существования и единственности управляющих воздействий в пределах имеющихся ограничений.

В свете вышесказанного каждая глобальная проблема должна быть не только связана с различными элементами системного объекта моделирования, но и описана с помощью определенного сценарного аппарата. Именно сценарии обычно служат мостом, соединяющим концептуально-теоретические исследования глобальной проблематики с непосредственно модельными исследованиями, ибо позволяют учесть неформализуемые аспекты проблем.

Проблема сохранения мира, разрядки и прекращения гонки вооружений воздействует на такие элементы мировой системы, как население, среда обитания, межрегиональные взаимодействия, экономика. По оценкам экспертов, на военные цели в мирное время тратится значительная часть валового мирового продукта и направляется примерно 40 % всех расходов на научные исследования и разработки[12]. Одним из примеров сценария, связанного с данной проблемой, могла бы стать постановка следующей задачи: как будут развиваться различные элементы глобальной системы, если страны начнут ежегодно сокращать на 3 % объем военных расходов и передавать эти средства развивающимся странам в виде капитальных вложений в производственную сферу.

Увеличение численности населения мира влияет не только на такие элементы мировой системы, как экономика, производство продовольствия и среда обитания, но и на межрегиональные взаимодействия.

Неравномерность демографического роста по регионам мира ведет к быстрому изменению соотношений между численностью населения развитых и развивающихся стран, что создает новую ситуацию в механизме межрегиональных взаимодействий.

Предметом исследования здесь были бы сценарии активной демографической политики, проводимой в странах с самым многочисленным населением, и сценарии международной миграции трудовых ресурсов. Что касается глобальной проблемы обеспечения продовольствием увеличивающегося по численности населения Земли, то следует отметить следующее. Если сравнивать многоплановые оценки темпов роста мирового производства продовольствия и темпов роста населения — производство продольствия на душу в среднем в мире повышается. Однако если рассматривать эту проблему в региональном разрезе с учетом разных возможностей оплаты продовольствия развитыми и развивающимися странами, то возникает проблема увеличения в определенных регионах численности людей, получающих недостаточное питание.

При изучении этой проблемы представляют несомненный интерес сценарии взаимодействия такого элемента глобальной системы, как производство продовольствия, со средой обитания и с возможными изменениями климата планеты.

Проблема разрыва в уровнях экономического развития между развитыми и развивающимися странами, так же как и предыдущая, просматривается лишь при структуризации мира в страновом и региональном разрезе. Более чем 10-кратный разрыв в уровнях развития сказывается не только на межрегиональных взаимодействиях, но также тормозит распространение научно-технического прогресса. Ведь технологии, разрабатываемые в развитых странах, ориентированы на высокую фондовооруженность рабочих мест и высокий профессиональный уровень рабочей силы. Эти технологии не могут найти массового применения в странах с 10 — 15-кратным отставанием по фондовооруженности.

Расходы на научные исследования сконцентрированы сейчас в нескольких высокоразвитых в промышленном отношении странах. Поэтому при исследовании проблемы снижения разрыва в уровнях экономического развития представляют интерес не только сценарии с финансовой помощью со стороны развитых стран менее развитым, но и сценарии специализированной научно-технической помощи, позволяющей повысить темпы научно-технического прогресса в развивающихся странах и соответственно темпы экономического роста в расчете на душу населения.

Проблема изменения характеристик среды обитания в результате антропогенных воздействий сейчас находится скорее в стадии предмодельных разработок и построения моделей, чем модельного анализа. Но именно этот элемент мировой системы, по мнению части экспертов, может претерпеть наиболее серьезные структурные изменения. Здесь в первую очередь представляют интерес сценарии развития, позволяющие удерживать систему в состоянии гомеостаза.

Уже перечисленный далеко не полный перечень элементов системного объекта моделирования и глобальных проблем показывает, что система моделирования процессов мирового развития обладает особой степенью сложности.

Междисциплинарный характер глобальной проблематики, наличие у объекта исследования большого количества взаимосвязанных элементов различного типа с различными целями управления, динамическое поведение и иерархическая структура объекта, принципиальная неопределенность некоторых видов информации о нем, невозможность формализованного описания многих процессов — все эти особенности, взятые в совокупности, приводят к необходимости реализации системного подхода при использовании методов глобального моделирования как нового технического приема познания социально-экономических процессов современности.


* * *

Обострение глобальных проблем тесно связано с противоречивым развитием научно-технического прогресса в современном мире. С одной стороны, наука и техника вносят значительный вклад в преобразование окружающей природы и способствуют удовлетворению материальных потребностей людей. С другой — использование достижений науки и техники нередко ведет к непредвиденным негативным последствиям, угрожающим не только жизни отдельного человека, но и существованию всего живого на Земле. Этот конфликт между негативными и позитивными последствиями научно-технического прогресса оказывается столь углубляющимся во второй половине XX в., что вызывает серьезную озабоченность у широких масс, у политиков и общественных деятелей, у многих ученых, обеспокоенных обострением глобальных проблем и кризисных процессов в современном мире.

В условиях частнособственнического хозяйства конфликт между негативными и позитивными последствиями научно-технического прогресса приобретает угрожающий характер. Не случайно, поэтому именно сейчас на Западе широкое хождение приобрели различного рода концепции и теории, авторы которых пытаются разобраться в истоках возникновения глобальных проблем и кризисных ситуаций, в существе вопросов, связанных с трудностями и противоречиями экономического роста, а также в возможностях и перспективах развития современного буржуазного общества.

Почти во всех работах буржуазных авторов независимо от их апологетического или либерально-критического настроя предпринимаются многочисленные попытки рассмотреть проблемы и противоречия западного мира как глобальные, характерные якобы для всех социально-экономических систем, для человечества в целом. Все это ведет к таким интерпретациям глобальной проблематики, которые характеризуются существенными искажениями в понимании причин возникновения и существа глобальных проблем в современном мире.

В последние годы в связи с нависшей над человечеством ядерной угрозой, обусловленной небывалым наращиванием военной мощи и нагнетанием милитаристского психоза в капиталистических странах, на страницах западных книг, журналов и газет все чаще высказывается мысль о том, что глобальные проблемы современности — это, прежде всего проблемы «выживания».

Известно, что человечество располагает такими средствами массового уничтожения, практическое применение которых в считанные минуты может стереть с лица земли не только отдельные города, но и целые регионы. Более того, в мире накоплен колоссальный ядерный потенциал, использования которого в разрушительных целях вполне достаточно для того, чтобы человек как биологический вид навсегда прекратил свое существование. Поэтому было бы преступлением не осознавать всей пагубности последствий безрассудного отношения к накопленному оружию массового уничтожения. Следует отметить, что во многих работах западных исследователей вся глобальная проблематика неправомерно сводится только к «выживанию» рода человеческого. Однако подлинно научный подход не может ограничиваться лишь умозрительной, бесстрастной трактовкой этих фактов, а призван вооружить людей обоснованной программой практической борьбы за сохранение человеческой цивилизации, за разоружение и неприменение ядерного потенциала в военных целях.

КПСС, опираясь в своей деятельности на научную теорию общественного развития, выступая в авангарде всех прогрессивных сил мира, борющихся за великие идеалы будущей человеческой цивилизации, постоянно выдвигает конкретные мирные предложения, направленные на предотвращение новой войны, рассматривая проблему сохранения мира на Земле как одну из первоочередных, от решения которой зависит будущее человечества.

Такое понимание глобальной проблематики открывает путь к конструктивному решению проблем современного мира в условиях разрядки и международного сотрудничества.

Новейшие направления научно-технического прогресса, связанные с развитием производства микропроцессоров, роботов, со всей силой ставят вопрос о способности капиталистической социально-экономической системы воспринять эти революционизирующие изменения в сфере общественного производства. Как подчеркивали на Международном симпозиуме «Научное прогнозирование и человеческие потребности» (проведенном под эгидой ЮНЕСКО в Тбилиси в декабре 1981 г.) А. Кинг (президент ИФИАС) и американский ученый Р. Эйрес, именно роботизация и микропроцессоры бросают вызов западной цивилизации, подвергая ее проверке на адаптивность к этому революционному технологическому нововведению, создающему угрозу резкого увеличения безработицы в развитых капиталистических странах. Для капиталистического мира грозно звучит предостережение, о том, что дешевый робот будет вытеснять труд людей.

Принципиально иная перспектива применения микропроцессоров, роботов и многих других интенсивно развивающихся новых технических средств в СССР и других социалистических странах. Возможности использования микроэлектроники при социализме поистине огромны. Развивать производство и обеспечить широкое применение автоматических манипуляторов, встроенных систем автоматического управления с использованием микропроцессоров и микро-ЭВМ, создавать автоматизированные цехи и заводы — одна из насущных и важных задач нашего промышленного развития.

Учет благоприятных возможностей, открываемых научно-техническим прогрессом и реализуемых при соответствующих общественных отношениях, весьма существен при системном исследовании путей успешного разрешения глобальных проблем, на что именно и ориентированы все построения глобального моделирования.

Загрузка...