Компания IBM создала транзистор, который работает в 100 раз быстрее, нем нынешние чипы. Быстрый транзистор построен на основе кремния с добавкой германия. Он достиг частоты переключений в 500 гигагерц, что на два порядка быстрее, чем тактовая частота самых быстрых "камней", производимых массово для PC. Правда, эту скорость транзистор показал при охлаждении до температуры, близкой к абсолютному нулю, но и при комнатной температуре его показатель внушителен — 300 гигагерц. Специалисты предсказывают, что в серийных продуктах новая технология обоснуется в течение пары лет, прежде всего — в чипах, управляющих сверхбыстрыми беспроводными сетями, способными перегнать с компьютера на компьютер фильм качества DVD за 5 секунд. Заметим, ранее физики показали необычный транзистор с частотой 604 гигагерца, но его технология дальше от массового применения, чем технология нового образца от IBM.
Европейский космический аппарат Venus Express принёс учёным очередную загадку Венеры: "Как сформировался необычный сдвоенный вихрь над её южным полюсом Venus Express, прибывший к Венере 11 апреля 2006-го и передавший первые снимки фактически на следующий день, теперь подкинул специалистам очередную порцию "информации к размышлению". На более чётких кадрах южного полюса, выполненных в разных диапазонах (а особенно — в инфракрасном, виден огромный вихрь с двумя "глазами" в центре, вместо привычного одного. Ветры на Венере обращаются на запад, на скорости в сотни километров в час, и обегают планету всего за четыре дня. Это "супервращение", объединённое с естественной рециркуляцией горячего "воздуха" в атмосфере планеты, должно, по идее, создавать по огромному вихрю на каждом из полюсов. И они там есть. Но вот почему южный вихрь — двойной — тайна. Учёные говорят, что слишком мало ещё знают о механизме связи глобальных ветров нашей горячей соседки и вихрей на её полюсах. Впрочем, поскольку европейский спутник-исследователь проработает около Венеры более года (и это только номинальный срок миссии, а ведь её могут и продлить), у учёных будет ещё время, чтобы разгадать эту тайну.
Компания NEC выпустила сотовый телефон в габаритах кредитной карты — модель N908.
Размер кредитки составляет 85,5х53,98 миллиметра, так что телефон, обладая примерно той же длиной и шириной (толщина N908 равна 12,8 миллиметра), пожалуй, можно будет запихнуть и в бумажник
Учёные из университета Киото (Kyoto University), совместно со специалистами японской компании Rohm, создали полупроводниковый лазер, способный выдавать очень тонкий луч с управляемым сечением произвольной формы. Лазер построен на основе полупроводникового чипа с габаритами 0,5х0,5 миллиметра, который содержит несколько слоёв так называемых фотонных кристаллов. Это материал с рядами в десятки тысяч крошечных (нанометрового масштаба) отверстий, которые работают как оптические резонаторы, создавая когерентный луч со свойствами, которыми экспериментаторы могут управлять по желанию. Особенно интересной представляется способность нового лазера создавать луч очень малого диаметра, а также — луч, поперечное сечение которого похоже на бублик, с отверстием в центре или даже на два таких "бублика", вложенных один в другой, и, говорят учёные, лучи ряда других форм. Авторы работы считают, что столь виртуозное управление формой тончайшего луча и другими его параметрами (направлением излучения, например) позволит в будущем создать массу интересных приборов, в частности, оптические накопители на сотни гигабайт в одном диске. Полые внутри лазерные лучи могут также использоваться к пинцеты для наночастиц.
Доктор Никола Стабер (Nicola Stuber) и его коллеги из британского университета Ридинга (University of Reading) установили, что по воздействию на климат планеты ночные полёты авиалайнеров намного хуже, чем дневные. Речь идёт об инверсионных следах и их воздействии на глобальное потепление. Ранее мы уже объясняли, почему климатологи призывают авиаторов ликвидировать эти следы за самолётами. Теперь учёные выяснили, что негативное воздействие авиации на тепловой баланс Земли можно сильно сократить, если выполнять ещё больше полётов днём, и ещё меньше — ночью, в сравнении с нынешним расписанием рейсов. Следы за самолётами отражают как тепловое излучение, идущее в космос от планеты, так и солнечный свет, идущий вниз. Но нагревающий эффект при этом превышает охлаждающий, и в сумме следы (так же, как и перистые облака) ускоряют потепление климата. Ночью работает только эффект "одеяла" от такого следа, так как солнечных лучей нет. Потому ночью воздействие следов за самолётами на климат планеты — сильнее. Результаты своего исследования британские учёные опубликовали в Nature. В частности, они сообщают, что, хотя ночные полёты составляют четверть воздушного трафика, они дают 60–80 % общего нагревающего эффекта от инверсионных следов за полные сутки. Также учёные добавили, что зимние полёты вносят больший вклад в глобальное потепление, чем полёты в другие сезоны. При доле менее четверти от годового трафика полёты зимой дают половину нагревающего эффекта за год работы мировой авиации. И хотя среди других факторов человеческого воздействия (выбросы заводов, например) инверсионные следы вносят небольшой вклад в глобальное потепление, нужно заранее и детально изучать их влияние, так как мировые объёмы авиаперевозок интенсивно и постоянно растут.
Разрез международного термоядерного реактора ITER, который должен быть построен к 2014–2015 году.
Нестабильное состояние плазмы на её внешних границах (так называемые потоки edge localised modes — ELM), в токамаках — реакторах ядерного синтеза — это одна из главных проблем, препятствующих таким устройствам превратиться в рентабельные источники энергии. Теперь исследователи под руководством Тодда Эванса (Todd Evans) из американской компании General Atomics решили эту проблему. Огромные камеры в форме пончика, в которых при помощи системы магнитных полей удерживается горячая плазма, в будущем могут стать основой энергетических реакторов ядерного синтеза. Пока же на работу таких экспериментальных машин уходит больше энергии, чем её получается в результате синтеза ядер. Огромным шагом на пути к электростанциям ядерного синтеза должен стать крупнейший в мире токамак — ITER, возводимый сейчас во Франции совместными усилиями Евросоюза, Индии, Китая, Южной Кореи, России, США и Японии. Этот термоядерный реактор, пусть ещё не промышленный, а экспериментальный, должен впервые продемонстрировать работоспособность и оправданность технологии. Если удастся решить ряд технических проблем. ELM — одна из них. Такие потоки, несмотря на ограждающее магнитное поле, вызывают ускоренную эрозию стенок реактора, из-за чего их придётся довольно часто менять. А это — колоссальные расходы, ставящие под сомнение дешевизну энергии синтеза. К тому же, материал со стенок загрязняет плазму, снижая эффективность реактора. Новая работа, выполненная в General Atomics, показывает путь решения проблемы: оказывается, дополнительное маленькое резонансное магнитное поле, вырабатываемое специальными катушками, расположенными в реакторе, создаёт "хаотическое" вмешательство на краю плазмы, которое мешает формироваться потокам, способным разрушать стенки.
Как показали наблюдения, попадание вещества в чёрную дыру возможно только благодаря возникновению магнитного поля в движущемся вокруг неё газовом диске.
Как показало исследование астрономов из университета Мичигана (University of Michigan), опубликованное в журнале Nature, теория 1973 года о том, что магнитное поле заставляет материю падать в чёрную дыру и излучать энергию, оказалась соответствующей действительности. Гравитация чёрной дыры велика и достаточна для того, чтобы притянуть материю и начать её "накручивать" в виде аккреционного диска. Однако, чтобы оказаться поглощённым, вещество должно потерять часть энергии движения. Но состояние диска практически уравновешено, и частицы из него не могут сразу падать под действием гравитации. Если угловой момент не уменьшается, то диск так и будет вращаться, как это происходит с планетами вокруг Солнца. И, тем не менее, вещество как-то перемешается в чёрную дыру. Наблюдение, проведённое с помощью орбитальной обсерватории Чандра (Chandra X-ray Observatory), показало, что в двойной звёздной системе GRO J1655-40 один из "компаньонов" — чёрная дыра, затягивающая в себя вещество с другого. При этом накручивающийся и вращающийся газ генерирует собственное магнитное поле, "выдувающее" некоторую часть вещества в окружающее пространство, что приводит к уменьшению вращательного момента. Кроме того, поле вызывает появление турбулентности и трения внутри диска. Эти процессы разогревают газ до миллионов градусов, заставляя его светиться в ультрафиолетовом и инфракрасном диапазонах. Исследователи уверены, что магнитное поле играет важную роль в активности чёрных дыр любых размеров — от небольших до тех, что находятся в центрах галактик (например, в нашей).
Озоновая дыра над Антарктикой. Необычный прогноз в отношении озоновой дыры над Антарктидой сделал Эйдзи Акиёси (Eiji Akiyoshi) из японского национального исследовательского института по окружающей среде (National Institute for Environmental Studies). Учёный выполнил численное моделирование поведения антарктической озоновой дыры — огромного участка с пониженной концентрацией озона в земном защитном слое, прикрывающем нас от солнечного ультрафиолета, — с учётом кардинального сокращения выбросов хлорфторуглеродов и других разрушающих озон газов, которое (сокращение) наблюдается с 1990-х годов благодаря ряду международных усилий по обузданию этой эмиссии. Согласно данным японского исследователя, антарктическая озоновая дыра, впервые "открывшаяся" ещё в 1980-х годах, сейчас обладает наибольшим размером, но в 2020-м начнёт быстро сокращаться и, вероятнее всего, полностью исчезнет к 2050 году. Правда, некоторые специалисты сомневаются в корректности расчёта даты заживления дыры, указывая, что хотя в новых продуктах (таких, как холодильники и кондиционеры) инженеры заменили опасные для озона вещества на безопасные, в эксплуатации ещё находится немало старых образцов такой техники. А она, после исчерпания ресурса и выбрасывания на свалку, ещё выпустит в атмосферу опасные хлорфторуглероды. Ранее, к слову, учёные отмечали, что озоновые дыры очень чувствительны не только к содержанию в атмосфере разрушающих озона газов, но и к колебаниям климата, в частности — к долгосрочным изменениям температуры воздуха на больших высотах.
* * *
АНОНС!
В следующем номере точно будет:
• «Акация» пахнет смертью. 152-мм самоходная гаубица 2СЗ.
• Путешествие среди чёрных дыр. Наука на грани фантастики.
• Прицельные приспособления.
• Простейший — значит Первый! История создания Первого Спутника Земли.
• Грузовик MAN TG-A. Король дорог.
• А также наши постоянные рубрики «Морской каталог» и «Авиационный каталог».
На 2-й странице обложки: Автомобили Dodge WC-51 и ГАЗ-64. Художник Реминский В.А.
На 3-й странице обложки: Бомбардировщики ВВС Германии и России 1915–1917 г.г. Художник Поляков А.В.
На 4-й странице обложки: Средний бомбардировщик Gota G.IV. Художник Поляков А.В.
Цветная вклейка, 1 стр.: МБР Р-7. Художник Поляков А.В.
Цветная вклейка, 2–3 стр.: Линкор Santisima Trinidad (Испания). Художник Поляков А.В.
Цветная вклейка, 4 стр.: Истребитель Gloster “Meteor” (Великобритания). Художник Поляков. А.В.
* * *
Интеллектуальная поддержка: Национальный Аэрокосмический Университет им. Н.Е. Жуковского (ХАИ)
Информационная поддержка:
РЕКЛАМНЫЙ ПРОЕКТ «ГОРОДСКАЯ РЕКЛАМНО-ИНФОРМАЦИОННАЯ СИСТЕМА»
(057) 717-65-84; (057) 717-65-82; т/ф (057) 719-11-12
Smart Print реклама з доставкою.
т.(057) 71 76 337, т./ф.: (057) 71 70 338
* * *
Журнал «Наука и техника» зарегистрирован Государственным Комитетом телевидения и радиовещания Украины (Св-во КВ № 10947 3.02.2006)
УЧРЕДИТЕЛЬ — Поляков А.В., издатель ООО “Беркут+”
ГЛАВНЫЙ РЕДАКТОР — Павленко С.Б.
Редакционная коллегия: Павленко С.Б., Поляков А.В., Кладов И.И., Мороз, Игнатьев Н.И., Барчук С.В.
Дизайн и верстка: т. (057) 7-177-541
Мнение редакции может не совпадать с мнением автора.
В журнале могут быть использованы материалы из сети Интернет.
Приглашаем к сотрудничеству авторов статей, распространителей, рекламодателей.
Редакция приносит извинения за возможные опечатки и ошибки в тексте или в верстке журнала.
Журнал можно приобрести в редакции или оформить редакционную подписку.
Адрес редакции: г. Харьков, ул. Плехановская, 18, оф. 502. тел. (057)7177-540, 7177-542 Адрес электронной почты: samson@vl.kharkov.ua. Адрес для писем: 61140, г. Харьков, а/я 206.
Формат 60x90-1/8. Бумага офсетная. Печать офсетная. Усл. печ. лист 8. Зак. № 254 Тир. 2500. Типография ООО «Беркут+». г. Харьков, ул. Плехановская, 18, оф. 501, т. (057)7-543-577, 7-177-541