Создан наноматериал со структурой паучьего шелка
Снимок нового материала, подвергнутого испытаниям на прочность. В верхней части иллюстрации находится зона, не подвергнувшаяся растяжению, в которой находятся наночастицы примеси.
Группой ученых из Массачусетского технологического института под руководством Гарета Маккинли создан новый сверхпрочный искусственный полимерный материал. Интересно то, что они его сделали по модели паучьего шелка.
"Если при большом увеличении посмотреть на структуру паучьего шелка, то вы увидите, что он наполнен множеством очень маленьких кристаллов", — говорит профессор Маккинли. Именно благодаря этим частичкам наноразмеров паучий шелк и получает удивительную прочность.
В своих опытах ученые решили воспроизвести такую структуру в материалах, которые они собрались сделать самостоятельно из полимеров. Предыдущие эксперименты в этой области были неудачными, так как исследователи просто смешивали вещества в определенном соотношении. Однако на этот раз было решено учесть не только свойства примеси, но и форму ее частиц.
Сначала экспериментаторы поместили глиняные пластинки толщиной всего в 1 нанометр и диаметром в 25 нанометров в воду. Затем в получившейся смеси они постепенно заменили воду на другое вещество, растворяющее полиуретан. После они растворили в этой смеси полиуретан и удалили из нее растворитель. В итоге был получен наноматериал, который обладает, как и ожидали исследователи, очень высокой прочностью.
Важно то, что структура этого материала очень хаотична, из-за чего его прочность оказалась одинаково высокой в различных направлениях. Существенно также и то, что при определенных нагрузках материал практически не деформировался, даже при повышении температуры до 150 градусов по Цельсию.
Как заметили ученые, материалы такого рода особенно удачно могут использоваться при разработке сверхлегких мембран, для изоляции газообразных веществ друг от друга, а также для изоляции материалов, применяющихся в топливных элементах. Также исследователи сказали о значимости их разработки для военной промышленности.
Придумана система хранения данных на одном фотоне
Вверху: аббревиатура университета, выполненная в виде так называемого "фотонного изображения”. Внизу — Джон Хоуэлл в своей лаборатории.
Во всяком случае так ее называют создатели, хотя название не вполне корректно — фотонов требуется несколько. И все же. Джон Хоуэлл из университета Рочестера сделал огромный шаг на пути создания систем хранения данных в виде "замороженного" света.
Физики сумели "записать" визуальную информацию, состоящую из нескольких сотен пикселей на 100 фотонов, пропущенных через установку по одному, затем приостановить их бег, а после — восстановить изображение.
Невероятный, на первый взгляд, фокус стал возможным благодаря законам квантовой механики и тому факту, что фотон — это не только частица, но и волна. В своей установке Хоуэлл сумел использовать этот дуализм — он послал импульс света, величиной в один фотон, через трафарет, на котором были вырезаны буквы UR.
В качестве волны этот фотон прошел через все части трафарета одновременно, неся с собой информацию о нем. Далее импульс света попал в небольшую ячейку с газообразным цезием, находящемся при температуре 100 градусов по Цельсию, где свет был замедлен.
Хоуэлл сумел задержать импульс на 100 наносекунд, что позволило большему числу таких импульсов, посланных следом, поспеть в ячейку, прежде, чем первый фотон покинул ее. Всего таких сохраненных единичных фотонов было 100. После их выхода из цезиевого замедлителя они были направлены в камеру, в которой и было восстановлено начальное изображение — нечто вроде распределения вероятностей прохождения фотонов через те или иные части трафарета.
Физики пишут, что выходной импульс, по существу, прекрасно соответствовал оригиналу, не было почти никаких искажений, никакой дополнительной дифракции, фаза и амплитуда первоначального сигнала были сохранены. Хоуэлл даже полагает, что квантовая запутанность фотонов осталась невредимой, что и намерен доказать в следующих опытах.
Ну а сохранение данных в виде замедленных летящих фотонов — это возможный путь к созданию систем хранения информации для оптических компьютеров, имеющих дело с фотонами вместо электронов.
Умирающая звезда дает начало новым планетам
Мира А — справа, Мира В — слева. Зеленое облако — поток пыли, движущейся от Миры А и превращающейся в протопланетный диск (показан красным) Миры В
Удивительная особенность нашлась у звезды Миры А из созвездия Кита: несмотря на то, что она умирает, она дает начало новой планетарной системе. Причем делает это вместе со своей напарницей Мирой В. Звезда Мира А, находящаяся в 350 световых годах от нас, некогда была похожа на Солнце, а сейчас это — вздутый красный гигант. В настоящее время ее развитие приближается к концу, и она превращается в "звездный труп" — белый карлик. Этот процесс может занять несколько миллионов лет.
В ходе своей трансформации Мира А оставляет за собой пыль, которая сформировалась из вещества самой же звезды. За семь лет масса этой пыли увеличивается на одну земную.
Второй компонент этой двойной системы — Мира В, находящаяся на расстоянии около 90 астрономических единиц от компонента А — захватывает своей гравитацией у своей компаньонки примерно 1 % этого материала. Из этого вещества вокруг Миры В формируется пылевой диск, в котором когда-то могут сформироваться планеты. Интересно, что основную часть пыли составляют силикаты; из них же в большей части состоит и Земля.
Это планетарный диск нового типа, который рождается, когда умирает звезда. Сейчас масса диска, возможно, меньше, чем у Юпитера. Но пока жива Мира А, должно набраться до пяти юпитирианских масс".
Санта может стать самой большой кометой в истории
Маленькая планета (а официально — "объект") 2003 EL61, открытая на окраине Солнечной системы в 2005 году, может превратиться в самую яркую комету в истории человечества.
Это странное космическое тело известно также под неофициальным именем Санта (Santa). Его поперечник астрономы оценили примерно в 1,5 тысячи километров, выяснив тогда же, что вокруг своей оси Санта обращается всего за 3 часа 54 минуты, что для объекта такого размера — очень быстро.
Теперь астроном Майкл Браун из Калифорнийского технологического института вычислил, что Санта может претерпеть очень близкое сближение с Нептуном, в результате которого гравитация этой планеты может катапультировать Санту во внутреннюю Солнечную систему, превратив в коротко-периодическую комету.
Замерзший "мяч для регби" по своей наибольшей оси сопоставим в размере с Плутоном. Ядра комет, нам известные, в таком сравнении просто исчезают. Правда, состоит Санта из скального материала лишь с относительно тонким слоем льда снаружи.
Браун заодно предложил сценарий формирования тонкой ледяной оболочки Санты. Он говорит, что 4,5 миллиарда лет назад объект 2003 EL61 был шаром, наполовину составленным изо льда и наполовину — из скал. Как Плутон. И был того же размера, как Плутон. Но позже Санта был отброшен на край Солнечной системы другим большим объектом пояса Койпера. В результате этого взаимодействия большая часть ледяной мантии Санты была разрушена и сформировала несколько спутников. Возможно, часть выброшенных тогда обломков мантии этой миниатюрной планетки уже попала во внутреннюю Солнечную систему в виде комет, предполагает ученый.
Газовые гиганты появляются раньше других планет
Газовые гиганты, схожие с нашими Юпитером и Сатурном, начинают формироваться во время самых ранних стадий эволюции их родительских звезд, но никак не в другие периоды. В ходе своей работы ученые исследовали свойства газа, окружающего 15 звезд, похожих на Солнце. Возраст изученных светил составляет от 3 до 30 миллионов лет.
Посредством Spitzer ученые! узнали свойства газа во внутренней части газопылевых дисков этих звезд, примерно совпадающей по размеру с юпитерианской орбитой. А посредством аризонского радиотелескопа субмиллиметровой частоты SMT были изучены области, аналогичные районам Солнечной системы за пределами орбиты Сатурна.
Масса газа вокруг этих звезд незначительна — она составляет только 10 % массы Юпитера. Это свидетельствует о том, что газовые гиганты в проанализированных системах уже сформировались на ранних этапах развития системы. А если таких планет там нет, то они уже не возникнут никогда. Исходя из схожести рассмотренных звезд между собой, а также с Солнцем, можно сделать вывод о том, что в звездных системах типа Солнечной газовые гиганты возникают вскоре после начала формирования их родительской звезды — раньше, чем появляются другие планеты.
Умирающие суперструны создают гравитационные волны
Так схематически ученые изображают закольцованную суперструну, излучающую гравитационные волны и постепенно теряющую энергию
Возникновение гравитационных волн — загадочное явление, предсказанное теоретически, но пока никем не зафиксированное. Тем не менее, оно может быть связано с существованием суперструн — других не менее "проблемных" объектов. Об этом говорят результаты вычислений, сделанных Крэгом Хогэном и Мэттом Депьесом, исследователями из университета Вашингтона.
Согласно представлениям, развивающимся в рамках упомянутой теории, все существующие элементарные частицы (в том числе, кварки) представляют собой различные колебания так называемых суперструн.
Как утверждает Хогэн, суперструны, как и — теоретически — все остальные объекты, могут создавать гравитационные волны. Хогэн исходит из положения о том, что каждое движущееся тело является источником гравитационных волн. Что же касается суперструн, то они порождают гравитационные волны следующим образом. Как говорит физик, суперструны могут замыкаться в петли, которые "болтаются" в пространстве. В процессе этого дрожания они испускают гравитационные волны. При этом суперструны тратят свою энергию, что приводит к их постепенному уменьшению, а затем и исчезновению.
Большие надежды исследователь возлагает на результаты наблюдений обсерватории LICO, предназначенной для поиска гравитационных волн. Однако ученый уверен, что волны, излучаемые суперструнами, необходимо искать на более низких частотах по сравнению с теми, которые сейчас ищет LICO.
Китайцы совершили прорыв в термоядерном синтезе
Общий вид реактора EAST. О масштабах можете догадаться по фигурке человека внизу снимка
Качественно новые достижения были достигнуты в сфере термоядерного синтеза. Об этом заявили китайские ученые, проводящие эксперименты с термоядерным реактором EAST, являющимся частью международного проекта ITER. Первые тесты реактора были проведены в сентябре 2006 года. После этого ученые произвели дополнительную регулировку оборудования, которая была должна улучшить результат. Недавно китайские ученые снова приступили к новой серии экспериментов с EAST, которая продолжится до 10 февраля.
В процессе синтеза атомы дейтерия и трития будут сталкиваться друг с другом при температурах, достигающих 100 миллионов градусов по Цельсию. При этом плазма, возникающая в реакторе, будет отдавать свою энергию. Длительность этого процесса будет составлять порядка тысячи секунд, и ожидается, что это будет самая большая длительность реакции управляемого термоядерного синтеза.
Самое крупное достижение, полученное в уже проведенных экспериментах, которое отметил директор проекта EAST Вань Юаньси, — это соотношение потраченной и полученной энергии, которое составило 1:1,25. Что касается планов на будущее, то, по словам ученого, планируется повысить это значение до 1:50. Таким образом, можно говорить, что, по крайней мере, с точки зрения энергозатрат, термоядерный синтез уже не убыточный. Однако, по самым оптимистичным оценкам экспертов, о коммерческой эксплуатации реактора можно будет говорить лишь через полвека.
На строительство реактора Институт физики плазмы Китайской академии наук потратил около $25 миллионов. По сравнению с другими аналогичными устройствами, созданными в Европе, китайский вариант оказался самым дешевым и строился быстрее всех.
Биологи работают над генетическим выключателем ВИЧ
ВИЧ и его основные ингредиенты
Подбором определенных белков и ферментов можно заставить ВИЧ, заразившие клетки иммунной системы, перейти в "спящий" режим. Таков основной вывод работы Леора Вейнбергера и Томаса Шенка из университета Принстона.
Ученые разобрались в цепочках биохимических реакций, влияющих на молекулярные сигналы, заставляющие ВИЧ приступить к копированию самого себя. Ключевую роль в запуске размножения вируса играет ВИЧ-белок Tat. Исследователи идентифицировали участок генома вируса, ответственного за его синтез. Как выяснилось, другой важный компонент сигнала на размножение — фермент р300, существующий в Т-лимфоцитах. Присоединяясь к Tat, он формирует окончательное сообщение.
Между тем другой фермент в Т-клетке, по имени SirTl, способен подавлять синтез Tat. А поскольку размножение вируса начинается после появления далеко не первой связки молекул Tat и р300, а накопления большого числа таких соединений, баланс между синтезом р300 и SirTl в зараженной клетке может оказаться тем переключателем, который будет определять размножение вируса или отсутствие оного.
Пока авторы работы не выяснили всех деталей этих химических цепочек и не определили всех их участников. Но они утверждают, что, разобравшись с этими взаимосвязями, можно создать препарат, который будет держать данный переключатель в положении "выключено", и ВИЧ останется пассивным.
Вейнбергер подчеркнул, что данное открытие имеет значение, прежде всего, для фундаментальной науки, но добавил, что потенциально оно может привести к появлению (в течение десятилетия) новых препаратов, способных пусть и не вылечить человека от заражения ВИЧ, но зато подавить размножение этого вируса в организме.
Пульсар в Крабовидной туманности имеет четыре полюса
Крабовидная туманность, известная также как M1, NGC 1952 или просто "Краб"
Пульсар, находящийся в центре Крабовидной туманности, может иметь больше двух полюсов. Такое сенсационное заявление сделал заместитель директора обсерватории Arecibo Тим Хэнкинс и Джин Эилек, его коллега из технологического института Нью-Мехико.
Обычно пульсары имеют пару магнитных полюсов — северный и южный. Однако для радиосигнала, исходящего от пульсара Крабовидной туманности, такая простая модель не подходит. Как говорит ученый, дело в том, что этот пульсар обладает еще одним полюсом, который искажает картину магнитного поля этого объекта.
У некоторых пульсаров помимо главного пульса есть еще один — так называемый интерпульс. Считают, что каждый из этих пульсов связан со своим полюсом, и они очень похожи друг на друга. Но Хэнкинс и Эилек заметили, что у пульсара Краба основной пульс представляет собой очень короткие и мощные сигналы, тогда как интерпульс — долгие и слабые.
Более того, интерпульс характеризуется таким радиоизлучением, которое никогда не регистрировалось у пульсаров. Согласно концепции Хэнкинса, причиной необычного излучения служит еще один — третий — полюс. Вероятно, возникновение этого образования произошло в ходе формирования пульсара — мощного, сложного и ассиметричного процесса.
К этому Хэнкинс добавил то, что у изучаемого объекта должен быть еще и четвертый полюс, "дополняющий" третий, так как все магнитные поля имеют по паре полюсов.
Сверхновая уничтожила Столпы Творения
Снимок телескопа Spitzer, из которого стало известно о гибели Столпов Творения. На врезке — снимок Столпов Творения, сделанный с помощью Hubble в 1995 году
Знаменитые Столпы Творения — удивительно стройные и красивые структуры в туманности Орла, сфотографированные в 1995 году с помощью HuDDie, уничтожены взрывом сверхновой, случившимся неподалеку. Об этой космической катастрофе стало известно благодаря новым снимкам другой орбитальной обсерватории — инфракрасного телескопа Spitzer.
На последних снимках Столпы Творения на своем месте. Однако на недавнем инфракрасном изображении, полученном от Spitzer, ученые увидели, что за Столпами находится шар из горячего, быстро расширяющегося вещества. Эта масса, состоящая из газа и пыли, разогрета взрывом сверхновой, имевшим место 7–9 тысяч лет назад.
Как утверждают ученые, ударная волна, сформировавшаяся в результате взрыва, уже уничтожила Столпы Творения около 6 тысяч лет назад. Но с учетом того, что этот восхитительный космический объект находится на расстоянии в 7 тысяч световых лет от нас, мы будем получать его изображения в целостном виде еще на протяжении тысячи лет.
Кстати, у ученых и раньше были предположения о том, что какая-нибудь сверхновая разрушит Столпы Творения, ведь звезд, "созревших" для такого взрыва, в этой области насчитывается порядка двух десятков. К тему же эти структуры состоят из довольно разреженного материала, который не может противостоять действию ударной волны.
Внимание АКЦИЯ!
Подпишитесь на журнал «Наука и техника» на период от 3-х месяцев 2007 года и пришлите копию подписной квитанции до 15 апреля 2007 года. У Вас будет возможность бесплатно продлить свою подписку.
Будет разыграно следующее:
Среди подписавшихся до конца 2007 года -10 комплектов подписки на такой же период 2008 года.
Среди подписавшихся на 6 мес. — 10 комплектов подписки на следующие 6 мес.
Среди подписавшихся на 3 мес. — 10 комплектов подписки на 3 мес. II полугодия 2007 года.
Результаты розыгрыша будут опубликованы в майском номере журнала.
Цена журнала по подписке через «Укрпочта» — 7,5 грн. за 1 номер
* * *
Ожидайте в следующих номерах журнала:
• Эта нестареющая “ТАТРА”;
• Промежуточные боеприпасы;
• Динозавры — все больше и больше;
• Легенда о шагающем танке;
• Петр I. Колосс Российской истории;
• А также наши постоянные рубрики «Морской каталог» и «Авиационный каталог».
* * *
На 1-й странице обложки: Рисунок к статье “Бегство от умирающего Солнца”.
На 2-й странице обложки: Ракеты-перехватчики ПРО России.
На 3-й странице обложки: Бомбардировщики ВВС Великобритании 1926–1938 г.г. Художник Чечин А.А.
На 4-й странице обложки: Тяжелый бомбардировщик Бристоль “Бомбей" (Великобритания, 1938 г.) Художник Игнатий А.Ф.
Цветная вставка, 1 стр.: Средний танк Т-62 и иностранные танки конца 50-х годов.
Цветная вставка, 2–3 стр.: Линейный корабль “Bretagne” (Франция). Художник Поляков А.В.
Цветная вставка, 4 стр.: Самолет-разведчик SR-7 ВВС США. Художник Чечин А.А.
* * *
Журнал «Наука и техника» зарегистрирован Министерством Юстиции Украины (Св-во КВ № 12091-962ПР от 13.12.2006)
УЧРЕДИТЕЛЬ и ИЗДАТЕЛЬ — Поляков А.В.
ГЛАВНЫЙ РЕДАКТОР — Павленко С.Б.
Заместитель главного редактора — Барчук С.В.
Редакционная коллегия: Павленко С.Б., Поляков А.В., Кладов И.И., Мороз С.Г., Игнатьев Н.И.
Мнение редакции может не совпадать с мнением автора.
В журнале могут быть использованы материалы из сети Интернет.
Приглашаем к сотрудничеству авторов статей, распространителей, рекламодателей.
Редакция приносит извинения за возможные опечатки и ошибки в тексте или в верстке журнала.
Подписка принимается всеми отделениями “Укрпочты” до 20-го числа каждого месяца. Подписной индекс 95083
Журнал можно приобрести или оформить редакционную подписку, обратившись в редакцию.
Адрес редакции: г. Харьков, ул. Плехановская, 18, оф. 502. тел. (057)7177-540, 7177-542
Адрес электронной почты: samson@kharkov.ua. Адрес для писем: 61140, г. Харьков, а/я 206.
Адрес в сети Интернет: www.nauka-tehnika.com.ua
Формат 60x90-1/8. Бумага офсетная. Печать офсетная. Усл. печ. лист 9. Зак. № 26 Тир. 5200.
Типография ООО «Беркут+». г. Харьков, ул. Плехановская, 18, оф. 501, т. (057)7-543-577, 7-177-541 «Наука и техника». 2007, № 2 с. 1-72